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Abstract

Active colloids are self-propelled particles moving in viscous fluids by con-
suming fuel from their surroundings. Here, we review the numerical and
theoretical modeling of active colloids propelled by self-generated near-
surface flows.We start with the generic model of an active Brownian particle
taking into account potential forces and effective pairwise interaction, which
include hydrodynamic and phoretic interactions. Also, the squirmer as a
model microswimmer is introduced. We then discuss the explicit modeling
of self-generated fluid flow and the full hydrodynamic-chemical coupling.
Finally, we discuss recent advances in selected topics in which modeling
of active colloids is used to study motion in crowded and complex envi-
ronments, microrheology in active baths, active colloidal engines, adaptive
responses of active colloids with the help of machine learning techniques, as
well as effects of colloid and fluid inertia.

109

mailto:andreas.zoettl@univie.ac.at
mailto:holger.stark@tu-berlin.de
https://doi.org/10.1146/annurev-conmatphys-040821-115500
https://doi.org/10.1146/annurev-conmatphys-040821-115500
https://www.annualreviews.org/doi/full/10.1146/annurev-conmatphys-040821-115500
https://creativecommons.org/licenses/by/4.0/


CO14CH06_Stark ARjats.cls February 17, 2023 9:18

1. INTRODUCTION

Active colloids convert chemical or free energy and thereby perform autonomous directedmotion.
In contrast to externally driven particles, the direction of motion is set by an intrinsic orientation
that can vary in time. Active colloids are a well-defined model system to investigate microscopic
out-of-equilibrium phenomena such as emergent collective phenomena or the activity-induced
phase behavior in a controllable way (1, 2). Furthermore, active colloids may have technological
implications, for example, for cargo transport and (drug) delivery through microvessels, or they
serve as building blocks for active, potentially self-assembling materials (3).

In principle, in light of condensed matter physics, we can see an active colloid from different
angles, namely

■ as an active agent operating out of equilibrium,
■ as a (Brownian) microswimmer interacting through hydrodynamic, chemical, electric, or

other fields,
■ as a building block for active matter assembly, and
■ as a machine that performs work running with “fuel” from its surrounding.

1.1. How Do Active Colloids Move?

When we think of active colloids, we have in mind a fixed shape, typically spherical, and the colloid
can actively move without applying external forces in a fluid. Instead, it uses some sort of fuel from
the surroundings to maintain, for example, a reaction on the colloidal surface, which eventually
generates self-propulsion. In contrast, shape-deforming microswimmers or microorganisms swim
forward by performing periodic nonreciprocal motion (4), whereas “dry” systems such as active
granular matter operate and move out of equilibrium through vibrations of the carrying surface,
as demonstrated, for example, in Reference 5.

How is it possible that colloids of fixed shape actively move in a homogeneous mediumwithout
applying forces? Most realizations of active colloids self-generate hydrodynamic flows us at and
tangential to their surfaces, as a result of fuel consumption. These self-generated phoretic flows
close to the colloid surface can have different origins, but typically they are initiated by chemical
reactions at the particle surface (6–8). The instantaneous orientation e(t ) of the active colloid
may be imprinted through the front–back asymmetry of Janus particles (8), through the presence
of other phoretically active particles (9), or through spontaneous symmetry breaking as in active
droplets (10).

There are various mechanisms for how self-propulsion based on the required near-surface flow
fields us evolves: Self-diffusiophoresis creates a tangential gradient ∇c of a chemical field c(rs ) at
the surface location rs(7, 11), self-electrophoresis creates an electric potential gradient ∇ζ (7), self-
thermophoresis creates a temperature gradient ∇T (12–14), and binary fluid mixtures can locally
demix so that a gradient in composition occurs (15). We do not aim here to describe the origins
of the different phoretic flows; this is reviewed in detail elsewhere (6–8). We only point out that
the surface flow is typically linear in the field gradient tangential to the surface,

us(rs ) = −κ (rs )∇ψ (rs ), 1.

where ψ can be any of the aforementioned or other phoretic fields and the prefactor κ depends on
the specific coupling of the fields to the colloid surface.Here,we are interested in the consequences
of the emerging hydrodynamic near-surface flows and the phoretic fields induced by the phoretic
mechanisms. First and most importantly, the generated surface velocity field us determines the
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colloid’s swimming speed and rotational velocity. For spherical colloids of diameter σ they are
given by (6, 16)

v0 = v0e = −⟨us⟩, 2.

ω0 = 3
σ

⟨us × n⟩, 3.

where ⟨. . .⟩ indicates a surface average and n the local surface normal. Often the surface velocity
field us is axisymmetric as, for example, in half-coated self-propelled Janus colloids, and hence the
intrinsic angular velocity ω0 vanishes.However, both the position and the orientation of the active
colloid are influenced by random noise. This results in a persistent random walk, which renders
its trajectory diffusive in times greater than the persistence time, indicating the time during which
the active colloid follows a straight path (1). We quantify it in Section 2.1.

A standard approach is to abstract from the concrete mechanism, which generates self-
propulsion. Then the active colloids are considered as active Brownian particles (ABPs) with
swimming (v0) and rotational (ω0) velocities that interact by hydrodynamic and phoretic flow,
which they generate themselves, and also by potential forces such as hard-core interactions.

1.2. Interacting Active Colloids

The specific hydrodynamic and phoretic fields, as well as the particle shape, become important
when considering interacting active colloids or colloids interacting with either confining sur-
faces or complex environments. In these situations the specific forms of the self-generated fields
play a crucial role in the dynamic behavior. When two or more active colloids are sufficiently
close, they interact with each other through the hydrodynamic and phoretic fields they create and
also through short-range repulsive or attractive interactions. This modifies their swimming ve-
locities and, even more importantly, rotates active colloids so that they change their swimming
directions.

The self-generated flow fields of active colloids are governed by the Stokes equations, which
describe the hydrodynamics of viscous fluids at the micron scale, where the Reynolds number
typically is very small; hence, inertia is negligible (1).The Stokes equations are linear second-order
differential equations for the fluid flow u(r, t) and pressure field p(r, t ),

η∇2u = ∇p and ∇ · u = 0, 4.

where η is the shear viscosity of the fluid, and the second part in Equation 4 is due to fluid in-
compressibility. In a bulk fluid the flow fields of active colloids are uniquely determined by the
specific form of the self-generated surface velocity field us, but they are distorted in the presence
of objects such as other colloids or bounding surfaces. The solution of the Stokes equations can
be expanded into hydrodynamic multipoles similar to the multipole expansion in electrostatics.
The leading-order solution is the stokeslet flow field uSt, which belongs to a particle dragged
by an external force through the fluid. However, self-propelling active colloids are force-free by
definition and, therefore, do not create a stokeslet flow field if external forces are not applied. In-
stead, their intrinsic flow fields have to be described by higher-order singularities (1, 17), and the
most important ones for active colloids are force dipoles uFD and source dipoles uSD. While the
force-dipole field consists of two nearby stokeslets with opposing forces, the source-dipole field is
composed of two infinitesimally close source and sink fields, which each can be described as ∝∇ 1

r .
Thus, they are potential flows and in combination fully equivalent to an electric dipole field. The
specific contributions of the flow-field multipoles can analytically be calculated for spherical active
colloids and depend on the surface velocity field us of the active colloid oriented along the unit
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vector e. In general, for any shape of the active colloid, the leading-order flow fields are given by

uSt(r) = f
8πηr

[e + (r̂ · e)r̂], 5.

uFD(r) = p
8πηr2

[−1 + 3(e · r̂)2] r̂, 6.

uSD(r) = q
8πηr3

[−e + 3(e · r̂)r̂] , 7.

where we included the stokeslet term with point force f for completeness, p and q are the respec-
tive strengths of the force dipole and source dipole, and r̂ is the radial unit vector.When p> 0, the
force-dipole flow field is extensile, and the active colloid behaves as a pusher, whereas for p< 0 it is
contractile with the active colloid being a puller. This notation is motivated by swimming strokes
and corresponding flow fields of swimming microorganisms (4). Indeed, experimental measure-
ments of flow fields of active colloids demonstrated how the leading-order flow field is related to
the surface velocity us induced by catalytic activity (18).

In the far-field limit (separation much larger than particle radius), the leading-order multi-
pole fields determine how hydrodynamically interacting particles are reoriented. However, when
particles are close to each other, potentially strong near fields, for example, generated by the tan-
gential surface velocity fields, determine their reorientation (19, 20). The near fields do not have
generic forms as multipole fields but are specific for each problem. Hydrodynamic and phoretic
fields crucially determine the collective dynamics of active colloids. Here, theoretical modeling
and computer simulations are useful because they allow us to access these fields together with the
colloidal dynamics. In contrast, measuring hydrodynamic and phoretic fields in experiments, and
also how they vary in time, is very challenging.

Similarly, the phoretic fields are governed by linear second-order differential equations such
as the diffusion equation for the chemical field, the heat equation for temperature fields, or Pois-
son’s equation for the electric potential. Often, a quasistatic limit is used so that the diffusion
equation also becomes a Poisson equation.Nevertheless, the fields ψ (r, t ) are time-dependent be-
cause they move with the colloids located at positions ri(t ). Sufficiently far from the colloid, the
monopole term of a point source dominates and the quasistatic field becomes (21, 22)

ψ (r, t ) ∼
∑
i

1
|r − ri(t )| , 8.

with constant prefactors that depend on the specific phoretic mechanisms. Although the phoretic
fields decay with r−1 in leading order, their gradients ∇ψ , which determine the interactions
between colloids as we outline in Section 2.2.2, decay as r−2.

1.3. Outline

In this review, we focus on modeling active matter on the particle level and not on field-based
continuum modeling, which is reviewed, for example, in Reference 23. In Section 2, we introduce
the modeling of active colloids at different levels of complexity. We start with the simplest
level of an ABP, where potential forces are included, and then introduce different types of
effective pairwise interactions. They include attractive forces and, in particular, phoretic and
hydrodynamic interactions. To prepare the following discussion, we also introduce the squirmer
as a model microswimmer. In Section 3, we turn to a discussion of more accurately modeling the
hydrodynamic and phoretic fields as well as approaches, where they are explicitly coupled to each
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Figure 1

Different levels of modeling interacting active colloids. (a) Purely repulsive ABPs with intrinsic orientations e(i) interacting through
mutual short-range repulsive interactions F2→1 = −F1→2 = −∇(1)U . (b) Phoretic interactions between catalytically active colloids.
(c) Hydrodynamic interactions between two squirmers moving in a monolayer. (d) Hydrodynamic-chemical coupling between active
colloids. Left: Magnitude of hydrodynamic flow field. Right: Chemical field. Panel b adapted with permission from Reference 24.
Panel c provided by A. Zantop. Panel d adapted with permission from Reference 25; copyright 2019 American Physical Society.

other. In Section 4, we present a personal selection of recent developments in the field, where
particle-based modeling is also applied. We finish with a short conclusion.

2. MODELING ACTIVE COLLOIDS AS ACTIVE BROWNIAN PARTICLES

2.1. Purely Repulsive Active Brownian Particles

The simplest model for describing the behavior of active colloids is the ABP model, which is
heavily used when studying interacting active colloids (1, 2). In the generic, most simple ABP
model, hydrodynamic, phoretic, and essentially all other interactions between active colloids are
neglected, except steric repulsion. It assumes that they move with an intrinsic speed v0 along a
polar orientation, e(t ), under the influence of translational and rotational random noise. Further-
more, taking into account a volume-exclusion interaction potential U, the overdamped Langevin
equations for the ith ABP become (see Figure 1a),

d
dt

r(i) = v0e(i) − D
kBT

∇(i)U +
√
2Dξ(i), 9.

d
dt

e(i) =
√
2Drξ

(i)
r × e(i), 10.

where the components of the random variables ξ(i) and ξ(i)r are usuallymodeled asGaussian random
white noise with zeromean and unit variance, ⟨ξ (i)j (t )ξ (i

′ )
k (t ′ )⟩ = δ jkδ

ii′δ(t − t ′ ), and the same applies
to ξ(i)r . The strengths of the translational and rotational noise are determined by the translational
and rotational diffusion constants D and Dr, respectively. The solution of Equations 9 and 10 for
a single ABP or noninteracting ABPs (U = 0) is a persistent random walk, where the persistence
length of the trajectories is given by v0/Dr (1, 2). Here,D−1

r is the time on which the orientational
correlations of e(t ) decay exponentially, which we mentioned as persistence time in Section 1.1. It
is also the time that an active particle swimming against a wall needs to orient away from thewall by
rotational diffusion so that it can leave the wall. The relative strength of active to random motion
is quantified by the Péclet number, Pe = v0σ/D, the ratio of times the active particle needs to
either move by activity or to diffuse a particle diameter σ , respectively. The alternative rotational
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Péclet number, Per = v0/(Drσ ), is the ratio of persistence length to particle diameter σ and a
clear measure for the persistence of swimming against the action of rotational noise. Thereby, it
crucially determines the dynamics of active colloids.

The potential U ensures that particles do not overlap substantially. It is realized by pairwise
potentialsUij such thatU= ∑

i < jUij(rij) with ri j = |r(i) − r( j)|. Typically, for spherical colloids this
is included by means of a purely repulsive short-range potential, often of the Weeks–Chandler–
Andersen (WCA) type,

UWCA
i j (r) =

{
4ϵ

[(
σ

r

)12 − (
σ

r

)6 + 1
4

]
, if r < 21/6σ

0, otherwise
, 11.

with ϵ being the strength of the potential, where ϵ ∼ kBT models soft- and ϵk kBT hard-sphere
interactions.When pure Brownian noise at temperature T is considered, the relationDr = 3D/σ 2

is valid, which follows from the Einstein relations D = kBT/γ and Dr = kBT/γ r (with γ = 3πησ
and γ r = πησ 3 the translational and rotational friction coefficients, respectively). Equations 9–11
are then solved using Brownian dynamics (BD) simulations (1).

In both two dimensions (2D) and three dimensions (3D), the system phase-separates into a
dense and gas-like phase at sufficiently large particle density ρ and rotational Péclet number
Per (26–28). Thus, collisions between active colloids are sufficiently frequent so that the mean
collision time is smaller than the time D−1

r a colloid needs to reorient and leave a cluster. This
motility-induced phase separation (MIPS) has extensively been investigated as a prototypical and
generic feature of a nonequilibrium, active matter system (see, e.g., the review in Reference 29).
One might think that the simple ABP model, which completely neglects any hydrodynamic and
phoretic interactions, does not describe any real system. However, this is not the case. For ex-
ample, in the system of collectively moving active Janus colloids, which self-propel by heating
them with laser light that locally demixes a binary fluid, thermal reorientation dynamics is con-
sidered to be dominant over hydrodynamic, phoretic, and other attractive interactions (27). Here,
when rotational noise is sufficiently small and particle density sufficiently large, particles become
trapped when pushing against each other, which allows more and more particles to join and form
a cluster. Hence, the simple ABP model is the prototypical model for studying the resulting MIPS
(26–30) or more general mechanisms of active self-assembly (3). Furthermore, dense clusters of
ABPs display various dynamic and structural features that are known from dense colloidal systems
in equilibrium, such as jamming, crystallization, and hexatic phases (26, 28, 30). Motivated by ex-
periments mainly conducted in a monolayer of active colloids, most of the ABP simulations have
been performed in 2D (26, 27, 30) or in a quasi-2D geometry (31). However, the main features of
the observed phase behavior in 2D still hold in 3D (32, 33).

Besides the canonical spherical shape (or disk shape in 2D), several types of nonspherical ABPs
have been investigated, most prominently active Brownian dumbbells (34) and rods (35–37), for
example, by spheres rigidly connecting to each other.Themain difference of these elongated active
particles compared to spherical particles is an extra nematic aligning mechanism for interacting
rods due to the interplay of self-propulsion and steric interactions (37).

Furthermore, the classical ABP model with intrinsic velocity has been extended to also in-
clude an intrinsic angular velocity, which was then termed “circle swimmer” (38). This model
is motivated by chiral biological microswimmers such as bacteria moving in circles close to sur-
faces, but also asymmetric phoretically active colloids have been designed (39). Other models only
consider an intrinsic angular velocity without translational self-propulsion, also termed spinners
(40). However, for active spinners with spherical shape the ABP model is not sufficient because
hydrodynamic interactions play an essential role (41, 42).
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All in all, the simplest ABP model with pure repulsion has been heavily used. It con-
tains a minimum number of ingredients—self-propulsion, random reorientation, and hard-core
interaction—characteristic for active colloids. As such, it is used to describe and quantify principal
features of active matter, which we also address in Section 4. However, in real active colloidal sys-
tems particle interactions are more complex,which needs modifications in themodeling approach,
as discussed in the following.

2.2. Active Brownian Particles with Effective Pairwise Interactions

In addition to the purely repulsive potential, we now consider other forms of interactions,
which are specific for certain situations. They include attractive, phoretic, and hydrodynamic
interactions, which we treat on the pairwise level. We also introduce the squirmer as a model
microswimmer.

2.2.1. Attractive interactions. Similar to those of passive colloidal systems, the interaction and
collective behavior of active colloids can be significantly influenced by short-range attractive inter-
actions (43, 44). In combination with repulsive interactions due to volume exclusion, a canonical
form to describe and model such attractive forces is the Lennard–Jones (LJ) potential, which is
described by the first line of theWCA potential shown in Equation 11 but with the cutoff distance
rc removed or shifted to a larger value such that the attractive part is included.

As a result of activity and short-range attraction, active colloids show a re-entrant phase behav-
ior in 2D depending on particle activity (26) as well as dynamic cluster formation in 2D and 3D
(45, 46). All in all, adding attractive interactions allows one to explain cluster formation observed
in experiments at relatively low densities (43, 44).

2.2.2. Phoretic interactions. As outlined in the introduction, various self-phoretic mechanisms
rely on the emergence of phoretic fields centered around the particles, which reorient with the
intrinsic particle direction,e.Now,when a phoretic particlemoves in the vicinity of other particles,
it interacts with the phoretic fieldψ (r, t ) created by all the other particles (or by an external source).
This modifies its translational and angular velocities, which we therefore term a field-mediated
phoretic interaction between active colloids. We quantify them by field-dependent velocities vψ
and angular velocities ωψ (47, 48), which in the simplest form (assuming the intrinsic velocity v0

not influenced by the field) modify the equation of motion of the active colloids to

d
dt

r(i) = v0e(i) + v(i)ψ − D
kBT

∇(i)U +
√
2Dξ(i), 12.

d
dt

e(i) =
(
ω

(i)
ψ +

√
2Drξ

(i)
r

)
× e(i), 13.

where v(i)ψ and ω
(i)
ψ are proportional to the gradient of the phoretic field at position r(i),∇ψ (r(i), t ),

and they also depend on the specific surface properties of the active colloids (21, 22).
The solutions of Equations 12 and 13 (or modifications of them) lead to a diverse dynamic

behavior, ranging from dynamic clustering (47) to aster formation (48) and collective oscillations
(22, 48), also in mixtures with passive colloids (49). In addition, these equations were used to
describe phototaxis of synthetic microswimmers (15).

2.2.3. Hydrodynamic interactions. Active colloids interact with each other through their
self-generated hydrodynamic flow fields. When they are sufficiently distant from each other
(far-field approximation), the instantaneous hydrodynamic flow field created by all colloids can be
approximated simply by the sum of flow fields u(i)

(
r; r(i)(t ), e(i)(t )), each created by colloid i
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located at r(i)(t ) and oriented along e(i)(t ). We write it as u(i)(r, t ) for short. Now, each of these
individual field contributions may be decomposed into hydrodynamic multipoles, with force
dipoles (Equation 6) in leading order or a stokeslet (Equation 5) if external forces such as gravity
act. The dynamics of the hydrodynamically interacting active colloids can be treated by the same
Equations 12 and 13, but instead of the phoretic velocities the colloids now experience flow-
field-induced velocities v(i)HI and angular velocities ω

(i)
HI. For far-field hydrodynamic interactions

between spherical colloids, they are governed by Faxén’s laws applied to the flow fields initiated
by all other active colloids ( j ̸= i),

v(i)HI(t ) =
∑
j ̸=i

[
1 + σ 2

24
(∇(i) · ∇(i))]u( j)(r, t ), 14.

ω
(i)
HI(t ) = 1

2

∑
j ̸=i

∇(i) × u( j)(r, t ). 15.

The second term on the right-hand side of Equation 14 takes into account that the active par-
ticles have a finite extent. Often it can be neglected. Such far-field interactions can be used to
model dilute suspensions of active colloids where colloid–colloid collisions and, hence, near-field
effects are negligible. For example, it has been used to model fluid pumps generated by active
colloids in a harmonic potential (50). Even when thermal noise is negligible, these hydrodynamic
far-field interactions cause random reorientations in interacting active colloidal suspensions and
thereby contribute to the effective rotational diffusion of interacting colloids. However, in di-
lute and particularly semidilute suspensions, occasional close encounters of active colloids greatly
enhance this effective hydrodynamic rotational diffusion. This can only be understood by hydro-
dynamic near fields, whereas far-field interactions alone substantially underestimate diffusion in
three-dimensional active colloidal suspensions (51, 52).

Hence, in order to obtain a meaningful description of hydrodynamically interacting active
colloids in the semidilute or dense regime, it is important to include hydrodynamic near-field in-
teractions (20, 52, 53). An attempt to correctly include them together with far-field hydrodynamic
interactions in the equations of motion of active colloids, with prescribed surface flow fields u(i)

s , is
presented in Reference 20. The key is to correctly calculate the generally strong near-field inter-
actions and to find a reasonable interpolation between far- and near-field contributions (19, 20).
However, in order to fully capture the hydrodynamic field on all distances, it has to be determined
explicitly, as described in Section 3.1.

2.2.4. The squirmer model microswimmer. A canonical model for studying hydrodynamic
interactions of spherical (but also elongated) active colloids is the squirmer, originally introduced
to model swimming microorganisms (54, 55). The squirmer swims with the help of an imprinted,
stationary and axisymmetric velocity field us at its surface. Typically, us is taken tangential to the
surface of the spherical active colloid along the polar direction, us = uθ (θ )θ̂. Then, it is expanded
into surface velocity modes Bn using Legendre polynomials Pn(cos θ ), where cos θ = e · r̂s with the
unit vector r̂s pointing from the colloid center to its surface (55),

uθ (θ ) =
∞∑
n=1

Bn
2

n(n+ 1)
sin θ

dPn(cos θ )
d cos θ

= B1 sin θ + B2 sin θ cos θ + . . . . 16.

The swimming speed of the squirmer is calculated using Equation 2, and one finds v0 = 2B1/3;
thus, it is solely determined by B1 (55), whereas all surface modes Bn contribute to the flow field
around the squirmer. The leading-order flow field is the hydrodynamic force-dipole field (Equa-
tion 6), which emerges from mode B2 with force-dipole strength p = −πσ 3ηB2/2, where B2 < 0
models pushers and B2 > 0 models pullers. When B2 = 0, the leading-order flow field decays as
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r−3. It belongs to either a source-dipole field (Equation 7) generated by surfacemode B1 or a force-
quadrupole field through B3. Often, a minimal squirmer model is employed, which only considers
modes B1 and B2. In contrast, phoretically active Janus colloids with half or partial coating can
have more complicated surface velocity fields that require a larger number of surface modes (13,
18). They are, in particular, significant when near-field hydrodynamic interactions of these active
colloids need to be considered. Finally, nonaxisymmetric surface fields generate additional flow
field contributions and active rotation of colloids (56, 57).

3. EXPLICIT MODELING OF HYDRODYNAMIC
AND CHEMICAL FIELDS

Using effective interactions between active colloids, as discussed in Section 2.2, allows efficient
simulation of a large number of interacting colloids. However, this approach does not fulfill the
correct boundary conditions of the hydrodynamic and phoretic fields at the colloids’ surfaces,
which is crucial, in particular, for dense suspensions, where near fields become relevant and there
is screening by the presence of the other colloids. Therefore, an explicit modeling of hydrody-
namic and chemical fields using the governing field equations is necessary. Methods to explicitly
solve these field equations, namely the (Navier–)Stokes equations and the reaction–diffusion
equation for self-diffusiophoretic colloids, are discussed below.

3.1. Explicit Modeling of Self-Generated Fluid Flow

In order to determine the full hydrodynamic flow field that fulfills the correct boundary condition
at the surface of colloid i, u(r, t )|r=r(i)s

= u(i)
s

(
r(i)s (t ), e(i)(t )

)
, explicit numerical simulations are nec-

essary, as described below.We focus here on modeling hydrodynamic interactions between active
colloids—the coupled hydrodynamic–phoretic modeling is described in Section 3.2. Due to its
simple yet generic implementation of microswimmers propelled by surface flow,many studies use
the squirmer model.

3.1.1. Non-Brownian active colloids in (Navier–)Stokes flow. Due to the micron size of ac-
tive colloids, the Reynolds number is very small and fluid dynamics can be approximated in many
situations by the Stokes equations (Equation 4). The first explicit numerical simulation of two
interacting squirmers in Stokes flow has been performed in Reference 19 based on the boundary
element method (BEM). It solves an integral equation equivalent to the Stokes equations using
surface triangulations of interacting spherical (19) or ellipsoidal (51) squirmers. To simulate the
collective motion of many squirmers at a specific volume fraction, one needs a simulation do-
main of finite extent, which is often realized by periodic boundary conditions. When using the
Stokesian dynamics (SD) method, the Ewald summation technique is needed to correctly account
for the long-range hydrodynamic interactions in combination with the periodic boundary condi-
tions (51). In order to correctly simulate near-field hydrodynamics in concentrated suspensions,
lubrication corrections have to be included. Then, it has been demonstrated that concentrated
suspensions of squirmers in 3D develop polar order due to hydrodynamic interactions (58) and
form clusters when moving in a monolayer (51). Another approach for simulating a large number
of squirmers is the force coupling method (FCM), where the emerging polar order has also been
analyzed for nonsteady and ellipsoidal squirmers (59). Finally, a method reminiscent of SD solves
the Stokes equations around collectively squirming disks in 2D, which shows that in this system
hydrodynamic interactions suppress cluster formation in the absence of attractive interactions
(60). Altogether, all these methods rely on the linearity of the Stokes equations.
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In order to simulate effects of a nonzero Reynolds number, one option is a direct nu-
merical solution of the full Navier–Stokes equations. This has, for example, been achieved
using a Lagrange-multiplier-based finite volume method to show inertial effects on pairwise
squirmer–squirmer interactions (61).

3.1.2. Coarse-graining methods for Navier–Stokes flow. Alternative approaches to simulate
the hydrodynamics around active colloids are coarse-graining methods such as multiparticle colli-
sion dynamics (MPCD; reviewed in Reference 62) or the lattice Boltzmann (LB) method (see, for
example, References 63 and 64). They allow modeling of a large number of interacting colloids
and the inclusion of complex boundaries.While the LB method evolves the distribution function
for the flow velocity field based on the Boltzmann transport equation,MPCD simulates point-like
effective fluid particles and therefore includes thermal noise intrinsically.

The squirmer model was first implemented using MPCD in Reference 65 for a single swim-
mer, then for two interacting squirmers (66), and then for a squirmer in wall-bounded flow (67).
Also, a version of MPCD with decreased compressibility has been developed (68). The collective
motion and clustering of hydrodynamically interacting squirmers have extensively been studied
in a monolayer (31, 52, 69–71), where also a Wigner fluid and swarming were identified (70).
In 3D and under gravity, squirmers exhibit very dynamic sedimentation profiles (72), and when
adding bottom-heaviness, additional states like plumes, convective rolls, and spawning clusters oc-
cur (73), driven by gyrotactic cluster formation. Because MPCD includes thermal noise, it allows
us to simulate squirmers at finite Péclet numbers in the presence of the thermally fluctuating hy-
drodynamic flow field. The specific surface velocity modes of squirmers at finite Péclet number
strongly influence their collective behavior in a monolayer (31, 52, 69). The occurrence of MIPS
is often suppressed compared to simple ABPs, but that also depends on the specific settings such
as dynamics in 2D or quasi-2D, bounding walls and wall-hydrodynamic interactions, squirmer
reorientation only in 2D or in 3D, zero or finite Reynolds number, and fluid (in-)compressibility
(20, 31, 52, 60, 69). Furthermore, elongated squirmer rods (74) and squirmer ellipsoids (69) in a
monolayer show clustering, polar order, and active turbulence (71, 75).

The LB method was first applied to two-dimensional active colloids and was eventually ex-
tended to hydrodynamically interacting squirmers in 3D (63). A very accurate implementation of
a squirmer and its flow fields in LB has been proposed in Reference 64. The collective dynamics
of many squirmers in a bulk fluid in 3D (76) and in the presence of attractive interactions (46)
demonstrates the importance of hydrodynamic flow fields in active colloidal suspensions.

3.2. Explicit Modeling of Hydrodynamic-Chemical Coupling

Self-phoresis in anisotropic active colloids, such as Janus colloids catalyzing reactions at their sur-
faces, generates anisotropic phoretic fields. Their gradients induce tangential surface flows us, as
demonstrated in Equation 1, which uniquely define the flow fields around active colloids using the
Stokes equations (Equation 4). In turn, the flow field u determines the spatiotemporal evolution
of the phoretic field ψ (r, t ), for example, of a chemical field c(r, t ) that evolves according to an
advection-diffusion equation,

∂c
∂t

+ u · ∇c = Dc∇2c, 17.

where Dc is the diffusion constant of the chemical substance. This equation is supplemented by
a boundary condition at the colloid surface, where the chemical is produced. Typically, the diffu-
sion of the chemical is fast and the time-derivative in Equation 17 can be neglected such that a
quasistatic field evolves.
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The coupled equations for fluid flow (Equation 4) and phoretic field (Equation 17) have to be
solved self-consistently using the appropriate boundary conditions for both fields at the surfaces
of the colloids. A single colloid in bulk then carries with it a flow and phoretic field while moving,
which are static in the comoving frame of the colloid. Thus, also the surface flow field is static as
in a squirmer. Now, if these colloids interact with each other or a bounding surface, their phoretic
fields ψ and the resulting surface velocities us depend on the surrounding colloids or the distance
to the bounding surface and, therefore, they change continuously. So, assuming a prescribed static
surface velocity field as in a squirmer strictly is not valid anymore (77). A special case arises for self-
phoretic isotropic colloids: A single colloid creates an isotropic chemical field around itself but not
a flow field. Therefore, it does not move for sufficiently small solute Péclet number Pec = vaσ/Dc,
i.e., for fast chemical diffusionDc or for low surface activity of the colloid,which is quantified by the
associated characteristic velocity va (10).However, in the presence of other colloids their isotropic
symmetry is broken, leading to fluid flow and self-propulsion (9, 78). Alternatively, the isotropic
symmetry of a single self-phoretic colloid is broken beyond a critical solute Péclet number and
the colloid moves (10). This is similar to active droplets that start to swim when spontaneous
symmetry breaking generates Marangoni flow close to the droplet surface (79).

Different methods have been used in recent years to accurately model the dynamic evolution
of flow fields and chemical fields of interacting catalytically active colloids or of active colloids in-
teracting with bounding surfaces. Approaches to determine the chemical field using BEM (80) and
semianalytic methods (81) have been coupled to the hydrodynamic problem using the reciprocal
theorem. They investigate the hydrodynamic-chemical coupling of a single active colloid inter-
acting with a bounding wall and identify different dynamic regimes depending on surface activity.
For two interacting colloids analytic solutions of chemical and hydrodynamic fields for specific
configurations have been derived using bispherical coordinates (24, 82, 83). Based on phoretic-
field expressions, semianalytic solutions for the flow field of more general configurations can be
calculated through the method of reflections (24, 25), which include far-field expressions only
valid in the dilute regime as used in References 84 and 85. Studying the collective motion of many
interacting chemically active colloids requires numerical methods that couple hydrodynamic to
chemical fields. Indeed, recently several methods have been successfully applied for investigating
collective phenomena in such systems. First, reactive multiparticle collision dynamics (R-MPCD)
enables explicit simulation of different chemical species and their reactions together with hydrody-
namic flow fields including thermal motion (86, 87).MPCD has also been coupled to temperature
gradients in collectively moving self-thermophoretic colloids (88). Second, large-scale LB simu-
lations are used to solve for the flow fields of self-diffusiophoretic particles and, in combination
with the finite-difference method, to determine the chemical field from the advection–diffusion
equation, where hydrodynamic-chemical effects lead to arrested cluster formation (89). Another
approach employs the BEM (25) or the FCM together with a multipole expansion of the chemical
field (90). In summary, in contrast to methods relying on far-field solutions (84, 85), explicit mod-
eling of hydrodynamic-chemical fields allows us to account for correct near-field effects, which
are important when active colloids come close to each other. However, the role of the interplay
of hydrodynamic and phoretic fields in dense active colloidal suspensions is complex and depends
on the specific model assumptions. We expect this to be subject to further investigations in the
near future.

4. SELECTED TOPICAL APPLICATIONS OF MODELING
ACTIVE COLLOIDS

The field of modeling active colloids has grown immensely in the past decade (1, 2) and covering
the field in its entirety is not possible here.Therefore, in the following we give a personal selection
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of current topics, which are in our opinion timely and relevant and likely to become increasingly
important in the near future. They rely on the models and methods discussed in the first three
sections of this review.

4.1. Crowded and Complex Environments

Although most of the studies on single or collective dynamics of active colloids have been
performed in homogeneous fluid environments, recently there has been great interest in un-
derstanding active colloidal motion in heterogeneous and complex environments as thoroughly
reviewed in Reference 2. Motivations for this are at least twofold. First, active colloids are of-
ten used as well-controllable model systems for biological microswimmers, which in their natural
habitats often encounter complex environments such as viscoelastic fluids, soil, and various sorts
of confinement (2, 91). Second, microscopic active particles may be utilized in the future as smart
micromachines operating in complex environments in vivo (92). In general, the environment can
be modeled as (a) static, realized by fixed walls or obstacles, or (b) dynamic, realized by moving
obstacles or polymers dissolved in a Newtonian fluid.

4.1.1. Static environments. Active colloids generically tend to accumulate near large obsta-
cles such as flat walls due to their persistence in swimming (1, 2). In contrast, for relatively small
spherical obstacles, active colloids either are scattered off or, for larger obstacle radii, can become
trapped and orbit around obstacles due to hydrodynamic colloid–surface interactions (93). In dis-
ordered environments consisting of randomly placed obstacles, the long-time diffusion of active
colloids strongly depends on the obstacle density and on the specific collision mechanism (94–
96). Furthermore, arrays of asymmetrically shaped obstacles rectify the motion or transport of
initially randomly oriented active colloids (97), which is a hallmark of active systems operating
out of equilibrium.

4.1.2. Complex fluids. Biological microswimmers often have to swim through viscoelastic
and shear-thinning fluids (61). Recent investigations have sought to understand how complex
structured fluids influence the dynamics of active colloids. On the ABP level, the viscoelastic
environment has effectively been modeled using a memory friction kernel in a non-Markovian
Langevin equation (98). However, the motion of microswimmers in complex fluids is strongly in-
fluenced by the self-generated flow fields (91). In particular, the swimming speed of a squirmer
in viscoelastic (99) and shear-thinning (100, 101) fluids depends on not only the first surface-
velocity mode B1 but also higher modes, i.e., crucially on the nature of the self-generated flow
field. Furthermore, other studies showed that a nematic environment induces reorientation of a
pusher squirmer parallel to the director and of a puller perpendicular to it (102, 103). Finally, mi-
croswimmers in the Poiseuille flow of a viscoelastic fluid experience an additional cross-streamline
swimming lift that again depends on the neutral or pusher/puller swimmer type (104).

Besides considering continuum models of complex fluids, in recent years efforts have been
made to explicitly model polymer solutions and networks with heterogeneous microstructure.
For example, the pore size of the polymer network crucially influences the long-time diffusion of
ABPs. In particular, sufficiently small pores lead to sudiffusion and trapping (105), similar to ABPs,
which become temporally trapped in cages of a static disordered environment (94–96). Using
MPCD allows studying the interplay of the polymer microstructure with the self-generated fluid
flow of driven or active particles (106–108). A first work on the collective motion of phoretically
active microswimmers or nanomotors in polymer networks show enhanced clustering induced by
the possibility that the motors are able to attach to the filaments (109).
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4.2. Active and Passive Microrheology

Active and passive microrheology is a well-established method for exploring the properties of
a complex fluid (see, e.g., Reference 110 for a review). In thermal equilibrium external forcing
in the linear-response regime and thermal fluctuations are related by the fluctuation–dissipation
theorem, but this is no longer valid for active media. Experiments on passive tracer particles in
bacterial baths (111) or in suspensions of the alga Chlamydomonas reinhardtii (112) show short-
time superdiffusive or ballistic motion followed by strongly enhanced diffusion. These studies
also revealed a characteristic property of so-called active baths. The spherical tracer particles are
pushed around randomly by the active-bath particles. However, in contrast to a thermal bath the
random forces are described by colored noise of the form (111, 113, 114)

⟨ξ(t )⟩ = 0 and ⟨ξ(t ) ⊗ ξ(t ′ )⟩ = 1
DA

µ2τA
e−

|t−t′ |
τA . 18.

Here, τA is of the order of the orientational correlation time, which the active particles need to
orient away from the tracer; µ is the mobility of the spherical tracer in the pure solvent; andDA is
its diffusion constant in the active bath. For polar tracers these relations become anisotropic, and
a stochastic torque also has to be included.

Recent research concentrated on understanding the properties of an active bath in more de-
tail, where Langevin dynamics simulations of ABPs are crucial. For example, simulations of the
passive microrheology of an asymmetric or polar tracer revealed conventional diffusion in the
long-time limit (114), whereas theory predicts long-time tails in the active-noise correlations and
thereby superdiffusive behavior,which becomes normal diffusion for symmetric tracers (115). Also
an extended fluctuation–dissipation theorem for ABPs has been developed (116). Constant-force
active microrheology was investigated either by using the low-density description of the active
bath based on the Smoluchowski equation, which is equivalent to the Langevin description of
ABPs (117), or by employing BD simulations over a wide range of suspension densities (118).
Furthermore, experiments did not probe any frequency dependence of the tracer mobility in the
active microrheology setting, presumably due to the very low density (113, 119). Most recent
simulations, using a broad range for the constant driving force, show a highly nonlinear tracer
mobility, where the relevant force scale is the stall force of a half shell of ABPs pushing against the
tracer (120). Furthermore, the same work reports a study of oscillatory active microrheology and
reveals a frequency dependence of the tracer mobility that can be described by a Lorentzian in
the low-frequency domain. Exploring the nonlinear regime and the crossover to linear response
as well as the frequency dependence of an active bath provides opportunities for further research.

4.3. Active Colloidal Engines

Active baths described in the previous section exert pressure on a bounding surface or just push
against it, which can be harnessed to construct active colloidal engines. The modeling with ABPs
as a minimal model of self-propelled particles serves for performing conceptual studies. A recent
perspective article by Fodor & Cates reviews the field (121), and they introduce two categories of
active engines. First, autonomous engines create motion out of active noise. These are asymmet-
ric objects with grooves, where ABPs or bacteria become trapped so that rotational (122, 123) or
translational (114, 124, 125) ratchet motors are realized. Differently shaped polar tracer particles
are, e.g.,modeled by overlapping spheres or disks,which interact via a hard-core potential with the
ABPs (114, 124, 125). Second, active cyclic engines can execute work by performing cyclic changes
in a bath of active particles varying, e.g., the stiffness of boundaries and/or the activity of the
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particles (meaning the active temperature). An experimental realization of this strategy motivated
by the Carnot cycle and the Stirling engine exists (126).The theoretical work of Reference 127 ex-
plores extracting themaximum power from an active colloidal heat engine,whereas Reference 128
considers cyclic changes of the particle activity.

Fodor & Cates in Reference 121 also outline future directions of research including devel-
oping systematic methods to address the optimization of finite-time cyclic protocols (which they
call an outstanding challenge), the investigation of many-body effects, and new realizations of
work cycles. Indeed, most recently, active Szilard engines have been introduced that use the
information of Maxwell’s demon to extract work from an active system. The harnessed work can
be much larger than the Landauer value of kBT ln 2 for thermal Szilard engines when the Péclet
number is sufficiently large (129).

4.4. Machine Learning of Active Colloid Navigation

Although self-propelled colloids are able to move actively, i.e., without using external forces, their
response to physical environments (phoretic fields, boundaries, external flow, etc.) is purely pas-
sive. They translate and rotate according to their surface flow field (Equations 2 and 3) but also
due to external driving such as fluid flow and phoretic gradients. This is in contrast to shape-
deforming biological microswimmers such as algae or bacteria, which are able to actively adjust
their swimming direction by perceiving information from their environment through different
receptors and using an internal decision-making machinery.

Nevertheless, even for a single active colloid, which cannot make decisions on its own, an exter-
nal information processing unit may be coupled to the colloid. It monitors the state of the colloid,
decides on its reorientation, and then takes the required action. In an experimental realization the
state of a self-thermophoretic active colloid was observed by a microscope, which was coupled to
a laser to locally heat the colloid and thereby reorient it (130). Reinforcement learning (RL) based
on the Q-matrix approach was used to obtain the optimal action for each state in order to perform
an optimization task. Thus, the goal is to develop more advanced, smart micromachines, which
make independent decisions based on internal sensing and thereby perform tasks without external
guidance (92).

Theoretical modeling of active colloid navigation in different environments has also success-
fully used RL in connection with the ABP model. It is assumed that the active colloid has an
internal machinery to sense the environment in order to decide and perform a change in direction
or intrinsic speed. Constructing such a machinery based on physical mechanisms constitutes a
major challenge. To perform an optimization task with RL, a simple Q-learning procedure (131),
deep neural networks (132), or networks evolved by genetic algorithms (133) are used. Based
on RL, ABPs have been trained to optimally navigate in external fluid flow (131, 134–136), in
external potentials (137), in crowded environments (132), to control collective transport (138),
and to optimally cloak a prey against a predator using cloaking agents and hydrodynamic far-field
interactions (139).

Most recent works go beyond the ABPmodel and provide an explicit reorientation mechanism
of microswimmers in a hydrodynamic environment.They either use bioinspired shape-deforming
microswimmers,which have been trained to adjust their swimming strokes in response to environ-
mental conditions (133, 140), or rely on the squirmer that uses different state-dependent surface
velocity fields to modulate speed and orientation (141).

4.5. Effects of Inertia

So far, we have considered active particles without inertia, meaning in the overdamped case.
However, recently also inertial effects of active particles have come into focus as reviewed in
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Reference 142, in particular, in connection with dry active matter and active walkers (143).Macro-
scopic active particles with inertia have been studied under confinement for two cases, camphor
surfers and hexbug crawlers, with the surprising result that in contrast to ABPs the surfers are not
preferentially stuck at the boundary but on average a distance away from it due to their epicycle
dynamics (144). Also, the influence of inertia on phase separation (145) and, in particular, MIPS
(142) has been investigated, showing that inertia hinders clustering.

The equations for adding inertia to active particles were first formulated in Reference 146:

ṙ = v, v̇ = − γ

m
(v − v0e) + ω × v0e + 1

m
F + ζ,

ė = ω × e, ω̇ = −γr
I

ω + η.

19.

When the translational and rotational accelerations ζ and η are of thermal origin, their second
moments fulfill the fluctuation–dissipation theorem: ⟨ζ(t ) ⊗ ζ(t ′ )⟩ = (2γ kBT/m2 )δ(t − t ′ )I and
⟨η(t ) ⊗ η(t ′ )⟩ = (2γrkBT/I2 )δ(t − t ′ )I. The pseudoacceleration term ω × v0e is reminiscent of a
Coriolis force but also present in an inertial frame. Using the first equation in the second line,
one can rewrite it together with the inertial term as d(v − v0e)/dt. Thus, the forces only generate
acceleration relative to self-propulsion,whichmakes sense.The pseudoacceleration term has been
added in Reference 147 to describe dry active particles in the noninertial frame of a rotating disk,
where ω is replaced by the angular velocity of the disk. Otherwise, the consequences of this term
have not been investigated so far. It should become relevant in so-called circle swimmers with an
intrinsic active rotation (38, 148) or when an external torque and/or rotational noise acts on the
particle.

Other studies have concentrated on the effect of fluid inertia while swimmer inertia can still
be ignored. In particular, the dependence of the swimming velocity of a squirmer expanded into
the Reynolds number was calculated in References 149 and 150. The field of inertial microfluidics
uses so-called inertial lift forces for cell sorting and flow cytometry techniques. They are due to
fluid inertia, cause cross-streammigration in a Poiseuille flow, and focus particles halfway between
channel center andwall.Here again, particle inertia can be ignored.A recent article has generalized
these lift forces to microswimmers, also introducing an inertial swimming lift (151).Depending on
the swimmer type, a rich spectrum of complex dynamics including bistable states, where tumbling
coexists with stable centerline swimming or swinging, has been identified.

5. CONCLUSIONS

We have reviewed methods to model the motion of interacting active colloids by discussing
different levels of approximations. They range from the generic ABP model, where effective hy-
drodynamic and phoretic interactions can be included mainly in the far-field approximation, to
explicit modeling approaches, which fulfill the exact boundary conditions of the involved hydro-
dynamic and phoretic fields even when active colloids come close to each other so that near-field
interactions are needed. These modeling approaches on the particle level are versatile and we il-
lustrated their use with selected current topics in the field of active matter and microswimmers
that promise to advance the field.

SUMMARY POINTS

1. Active colloids swim by creating self-generated fluid flows induced by local gradients of
phoretic fields close to the colloids.
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2. The generic model of ABPs can include hydrodynamic and phoretic interactions in the
far-field approximation.

3. Explicit modeling of hydrodynamic and phoretic fields is necessary for dense systems
and to access the full hydrodynamic-chemical coupling.

4. Selected current topics using the modeling of active colloids include the following:
(a) motion in crowded and complex environments, (b) microrheology in active baths,
(c) active colloidal engines, (d) adaptive response of active colloids usingmachine learning
techniques, and (e) effects of colloid and fluid inertia.
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45. Mognetti BM, Šarić A, Angioletti-Uberti S, Cacciuto A, Valeriani C, Frenkel D. 2013. Phys. Rev. Lett.

111:245702
46. Alarcón F, Valeriani C, Pagonabarraga I. 2017. Soft Matter 13:814–26
47. Pohl O, Stark H. 2014. Phys. Rev. Lett. 112:238303
48. Saha S, Golestanian R, Ramaswamy S. 2014. Phys. Rev. E 89:62316
49. Stürmer J, Seyrich M, Stark H. 2019. J. Chem. Phys. 150:214901
50. Hennes M,Wolff K, Stark H. 2014. Phys. Rev. Lett. 112:238104
51. Ishikawa T. 2009. J. R. Soc. Interface 6:815–34
52. Zöttl A, Stark H. 2014. Phys. Rev. Lett. 112:118101
53. Kyoya K, Matsunaga D, Imai Y, Omori T, Ishikawa T. 2015. Phys. Rev. E 92:63027
54. Lighthill JM. 1952. Commun. Pure Appl. Math. 5:109–18
55. Blake JR. 1971.Math. Proc. Camb. Philos. Soc. 70:303
56. Pak OS, Lauga E. 2014. J. Eng. Math. 88:1–28
57. Schmitt M, Stark H. 2016. Phys. Fluids 28:012106
58. Evans AA, Ishikawa T, Yamaguchi T, Lauga E. 2011. Phys. Fluids 23:111702
59. Delmotte B, Keaveny EE, Plouraboué F, Climent E. 2015. J. Comput. Phys. 302:524–47
60. Matas-Navarro R, Golestanian R, Liverpool TB, Fielding SM. 2014. Phys. Rev. E 90:032304
61. Li G, Ostace A, Ardekani AM. 2016. Phys. Rev. E 94:053104
62. Zöttl A. 2020. Chin. Phys. B 29:074701
63. Llopis I, Pagonabarraga I. 2010. J. Non-Newtonian Fluid Mech. 165:946–52
64. Kuron M, Stärk P, Burkard C, De Graaf J, Holm C. 2019. J. Chem. Phys. 150:144110
65. Downton MT, Stark H. 2009. J. Phys. Condens. Matter 21:204101
66. Götze IO, Gompper G. 2010. Phys. Rev. E 82:041921
67. Zöttl A, Stark H. 2012. Phys. Rev. Lett. 108:218104
68. Zantop AW, Stark H. 2021. J. Chem. Phys. 154:024105
69. Theers M,Westphal E, Qi K,Winkler RG, Gompper G. 2018. Soft Matter 14:8590–603
70. Kuhr JT, Rühle F, Stark H. 2019. Soft Matter 15:5685–94
71. Qi K,Westphal E, Gompper G,Winkler RG. 2022. Commun. Phys. 5:49
72. Kuhr JT, Blaschke J, Rühle F, Stark H. 2017. Soft Matter 13:7548–55
73. Rühle F, Stark H. 2020. Eur. Phys. J. E 43:26

www.annualreviews.org • Modeling Active Colloids 125

https://doi.org/10.1103/PhysRevFluids.4.124204
https://doi.org/10.1103/PhysRevFluids.4.124204


CO14CH06_Stark ARjats.cls February 17, 2023 9:18

74. Zantop AW, Stark H. 2021. J. Chem. Phys. 155:134904
75. Zantop A, Stark H. 2022. Soft Matter 18:6179–91
76. Alarcón F, Pagonabarraga I. 2013. J. Mol. Liq. 185:56–61
77. Popescu MN, Uspal WE, Eskandari Z, Tasinkevych M, Dietrich S. 2018. Eur. Phys. J. E 41:145
78. Varma A, Montenegro-Johnson TD, Michelin S. 2018. Soft Matter 14:7155–73
79. Schmitt M, Stark H. 2013. Europhys. Lett. 101:44008
80. Uspal WE, Popescu MN, Dietrich S, Tasinkevych M. 2015. Soft Matter 11:434–38
81. Mozaffari A, Sharifi-Mood N, Koplik J, Maldarelli C. 2016. Phys. Fluids 28:053107
82. Popescu MN, Tasinkevych M, Dietrich S. 2011. Europhys. Lett. 95:28004
83. Reigh SY, Kapral R. 2015. Soft Matter 11:3149–58
84. Liebchen B, Löwen H. 2019. J. Chem. Phys. 150:061102
85. Kanso E, Michelin S. 2019. J. Chem. Phys. 150:044902
86. Thakur S, Kapral R. 2012. Phys. Rev. E 85:026121
87. Huang MJ, Schofield J, Gaspard P, Kapral R. 2019. J. Chem. Phys. 150(12):124110
88. Wagner M, Roca-Bonet S, Ripoll M. 2021. Eur. Phys. J. E 44(3):43
89. Scagliarini A, Pagonabarraga I. 2020. Soft Matter 16:8893–903
90. Rojas-Pérez F, Delmotte B, Michelin S. 2021. J. Fluid Mech. 919:A22
91. Li G, Lauga E, Ardekani AM. 2021. J. Non-Newtonian Fluid Mech. 297:104655
92. Huang TY, Gu H, Nelson BJ. 2022. Annu. Rev. Control Robot. Auton. Syst. 5:279–310
93. Spagnolie SE, Moreno-Flores GR, Bartolo D, Lauga E. 2015. Soft Matter 11:3396–411
94. Chepizhko O, Peruani F. 2013. Phys. Rev. Lett. 111:160604
95. Zeitz M,Wolff K, Stark H. 2017. Eur. Phys. J. E 40:23
96. Morin A, Lopes Cardozo D, Chikkadi V, Bartolo D. 2017. Phys. Rev. E 96:042611
97. Reichhardt CJ, Reichhardt C. 2017. Annu. Rev. Condens. Matter Phys. 8:51–75
98. Narinder N, Bechinger C, Gomez-Solano JR. 2018. Phys. Rev. Lett. 121:078003
99. Zhu L, Lauga E, Brandt L. 2012. Phys. Fluids 24:051902

100. Montenegro-Johnson TD, Smith DJ, Loghin D. 2013. Phys. Fluids 25:081903
101. Datt C, Zhu L, Elfring GJ, Pak OS. 2015. J. Fluid Mech. 784:R1
102. Lintuvuori JS, Würger A, Stratford K. 2017. Phys. Rev. Lett. 119:068001
103. Mandal S, Mazza MG. 2021. Eur. Phys. J. E 44:64
104. Choudhary A, Stark H. 2022. Soft Matter 18:48–52
105. Du Y, Jiang H, Hou Z. 2019. Soft Matter 15:2020–31
106. Zöttl A, Yeomans JM. 2019. J. Phys. Condens. Matter 31:234001
107. Zöttl A, Yeomans JM. 2019.Nat. Phys. 15:554–58
108. Qi K,Westphal E, Gompper G,Winkler RG. 2020. Phys. Rev. Lett. 124:068001
109. Qiao L, Huang MJ, Kapral R. 2020. Phys. Rev. Res. 2:033245
110. Zia RN. 2018. Annu. Rev. Fluid Mech. 50:371–405
111. Wu XL, Libchaber A. 2000. Phys. Rev. Lett. 84:3017–20
112. Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE. 2009. Phys. Rev. Lett. 103:198103
113. Maggi C, Paoluzzi M, Angelani L, Di Leonardo R. 2017. Sci. Rep. 7:17588
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