
CO14CH19_Vitelli ARjats.cls February 17, 2023 11:5

Annual Review of Condensed Matter Physics

Odd Viscosity and Odd
Elasticity
Michel Fruchart,1 Colin Scheibner,1

and Vincenzo Vitelli1,2
1James Franck Institute and Department of Physics, The University of Chicago, Chicago,
Illinois, USA
2Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, Illinois, USA;
email: vitelli@uchicago.edu

Annu. Rev. Condens. Matter Phys. 2023. 14:471–510

The Annual Review of Condensed Matter Physics is
online at conmatphys.annualreviews.org

https://doi.org/10.1146/annurev-conmatphys-
040821-125506

Copyright © 2023 by the author(s). This work is
licensed under a Creative Commons Attribution 4.0
International License, which permits unrestricted
use, distribution, and reproduction in any medium,
provided the original author and source are credited.
See credit lines of images or other third-party
material in this article for license information.

Keywords

continuum mechanics, fluid mechanics, nonequilibrium, active matter,
hydrodynamics, rheology

Abstract

Elasticity typically refers to a material’s ability to store energy, whereas vis-
cosity refers to a material’s tendency to dissipate it. In this review, we discuss
fluids and solids for which this is not the case. These materials display
additional linear response coefficients known as odd viscosity and odd elas-
ticity. We first introduce odd viscosity and odd elasticity from a continuum
perspective,with an emphasis on their rich phenomenology, including trans-
verse responses, modified dislocation dynamics, and topological waves. We
then provide an overview of systems that display odd viscosity and odd elas-
ticity. These systems range from quantum fluids and astrophysical gases to
active and driven matter. Finally, we comment on microscopic mechanisms
by which odd viscosity and odd elasticity arise.
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1. INTRODUCTION

Continuum theories are phenomenological tools that allow us to understand and manipulate the
world around us (1–3). Classical field theories such as elasticity and fluid mechanics have been
built upon certain symmetries and conservation laws that are suitable for everyday materials such
as water in rivers or steel beams in bridges. Examples include time-reversal invariance, mirror
reflection symmetry, or conservation of energy and angular momentum. Yet not all systems are
subject to these constraints: Counterexamples range frombiological tissues and astrophysical gases
to quantum fluids. In this review, we analyze minimal extensions of fluid and solid mechanics that
arise when the microscopic constituents of a medium do not follow these usual symmetries and
conservation laws. As a consequence, the continuum theories acquire new terms that take into
account the collective effect of the broken symmetries. The advantage of this perspective is that
we obtain universal effective theories that describe an array of systems that span many areas of
research. The drawback is that these universal theories, by nature, do not describe every detail of
each system.

The key feature shared by all the systems in this review is that their evolution is governed by
forces between adjacent parcels of a continuous medium. This physics is captured mathematically
by the stress tensor,

σi j = Ci jkℓ∂ℓuk + ηi jkℓ∂ℓu̇k + · · · , 1.

which summarizes the surface forces between material elements. (Throughout this review, re-
peated indices are summed over unless otherwise mentioned.) In terms of the stresses, the internal
forces in the medium are given by fi = �jσ ij. The elasticity tensor Cijkℓ is the proportionality
coefficient between the stress tensor and the displacement gradient ekℓ = ∂ℓuk. The viscosity ten-
sor ηijkℓ is the proportionality coefficient between the stress and the velocity gradient ėkℓ = ∂ℓu̇k.
Equation 1 gives a mechanical definition of elasticity and viscosity. In usual fluids and solids,
respectively, these coefficients can be expressed as

Ci jkℓ = δ2F
δ(∂ jui )δ(∂ℓuk )

and ηi jkℓ = T δ2Ṡ
δ(∂ j u̇i )δ(∂ℓu̇k )

(usually), 2.

where F is the free energy of the elastic medium, Ṡ the rate of entropy production of the fluid, and
T is the temperature. Equation 2 summarizes the usual meaning of elasticity and viscosity: Elas-
ticity usually describes the reversible storage of energy, whereas viscosity describes its irreversible
dissipation. When Equation 2 holds, the elasticity and viscosity tensors obey the symmetries

Ci jkℓ = Ckℓi j and ηi jkℓ = ηkℓi j (usually). 3.

This review discusses situations in which Equation 3 is not valid, i.e., situations in which the
elasticity and viscosity tensors are not symmetric:

Ci jkℓ ̸= Ckℓi j and ηi jkℓ ̸= ηkℓi j (more generally). 4.

The antisymmetric parts ofCijkℓ and ηijkℓ in Equation 4 are henceforth referred to as “odd” because
they flip sign upon exchanging the pair of indices ij with kℓ. As we explain in Sections 2.3 and
3.3, odd elasticity is generally associated with microscopic nonconservative forces, whereas odd
viscosity is usually associated with microscopic dynamics that do not obey time-reversal symmetry
(t→ −t). Both happen to be often related to the breaking of mirror symmetry (also called parity),
in which a single coordinate is flipped (e.g., x→ −x). These coefficients arise in systems spanning
scales, from quantum fluids to geophysical flows, and tabletop experiments with driven and active
particles.
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2. ODD VISCOSITY

2.1. What Is Viscosity?

When you stir a fluid, such as water or honey, the fluid resists the motion you are trying to im-
part. This is due to viscosity, which captures the resistance of the fluid against inhomogeneities
in its velocity field. Honey is more viscous than water, so stirring honey requires more work
than stirring water.When velocity gradients are present, forces appear between neighboring fluid
parcels that tend to make their velocities equal. Formally, this is described by the Navier–Stokes
equation,

ρDtvi = ∂ jσi j + fi, 5.

in which Dt = �t + vk�k is the convective derivative, ρ is the density, v(t, x) is the velocity field, fi
are external body forces, and

σi j = σ h
i j + ηi jkℓ ∂ℓvk 6.

is the stress tensor, which describes the forces between fluid parcels. We have decomposed the
stress tensor into so-called hydrostatic stresses σ h

i j that are present even when the fluid is at rest
(in usual fluids, σ h

i j = −pδi j , where p is the pressure), and viscous stresses σ vis
i j = ηi jkℓ∂ℓvk, which are

induced by velocity gradients.1 The coefficient of proportionality ηijkℓ between velocity gradients
and the stress is called the viscosity tensor. The divergence of the viscous stress tensor is a force
density, f visi = ∂ jηi jkℓ∂ℓvk, that enters the Navier–Stokes equation. In an isotropic, incompressible
fluid at equilibrium, it takes the familiar form f visi = η 1vi, where η is the shear viscosity.

As one may expect from the examples of water and honey, viscosity measures how much me-
chanical energy is converted into heat by the friction between layers of fluid. The rate of loss of
mechanical energy by viscous dissipation per unit volume is (2, 4)

ẇ = σ vis
i j ∂ jvi = ηi jkℓ(∂ jvi )(∂ℓvk ) = ηS

i jkℓ(∂ jvi )(∂ℓvk ). 7.

From this expression, we see that only the symmetric part ηS
i jkℓ = [ηi jkℓ + ηkℓi j]/2 of the viscosity

tensor contributes to dissipation. The antisymmetric part,

ηA
i jkℓ = [ηi jkℓ − ηkℓi j]/2 (odd viscosity tensor), 8.

drops out. Therefore, the antisymmetric part of the viscosity tensor ηA
i jkℓ describes nondissipative

viscosities, which are called odd viscosities (5). Depending on the context, odd viscosity is known
by other names, such as Hall viscosity, gyroviscosity, Lorentz shear modulus, and the Senftleben–
Beenakker effect.

2.1.1. Two-dimensional fluids with odd viscosity. In two dimensions, the viscosity tensor
ηijkℓ contains 24 = 16 independent components. To keep track of them, it is useful to introduce a
physically intuitive basis for stress and strain rate, summarized inTable 1 and in the Supplemental
Text. In this notation, the velocity gradient ėkℓ = ∂ℓvk and stress σ ij are represented by vectors
ėα and σ α , respectively, and the viscosity tensor ηijkℓ is represented by a four-by-four matrix ηαβ

(α, β = 0, . . . ,3). In an isotropic fluid (i.e., one with no distinguished axis), the stress-velocity

1In this review, we focus on Newtonian fluids, in which the viscous stresses are assumed to be linearly propor-
tional to the velocity gradients, and we treat the viscosities as constants. In general, the viscous stress tensor
can be a nonlinear function of the velocity gradients.Within linear response, the stress tensor can also depend
on gradients of other fields (temperature, density, etc.). In general, the stress tensor can be a nonlinear function
of all the fields.
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Table 1 Irreducible components of rank-two tensors in two dimensions

Deformation Deformation rate Stress Geometric meaning
e0 = = ∂xux + ∂yuy ė0 = = ∂xvx + ∂yvy σ0 = = [σxx + σyy]/2 isotropic area change
e1 = = ∂xuy − ∂yux ė1 = = ∂xvy − ∂yvx σ1 = = [σyx − σxy]/2 rotation
e2 = = ∂xux − ∂yuy ė2 = = ∂xvx − ∂yvy σ2 = = [σxx − σyy]/2 pure shear 1
e3 = = ∂xuy + ∂yux ė3 = = ∂xvy + ∂yvx σ3 = = [σxy + σyx]/2 pure shear 2

A pure shear (rate) corresponds to a (rate of ) change in shape without a change in volume or orientation. Shear 1 describes a
horizontal elongation and vertical compression, whereas shear 2 describes elongation along the 45° direction and
compression along the −45° direction. We note that ė0 = ∇ · v and ė1 = ω is vorticity. The stresses are the conjugate forces
to these deformations and have similar interpretations. In particular, σ 0 includes pressure. The antisymmetric stress σ 1 is
discussed in the sidebar titled Antisymmetric Stress.

gradient relation takes the following form (6; see also the Supplemental Text):

9.

Here, p is the hydrostatic pressure, and τ is a hydrostatic torque that can arise, for instance,
when particles have transverse (i.e., noncentral) forces (see the sidebar titled Antisymmetric
Stress). The matrix ηαβ has six independent coefficients. The shear, bulk, and rotational viscosi-
ties, η, ζ , and ηR, respectively, arise in usual fluids.2 The coefficients ηA and ηB couple compression
and rotation, whereas the odd shear viscosity ηo couples the two independent shears. In standard
tensor notation, the viscosity tensor in Equation 9 reads as

ηi jkℓ = ζ δi jδkℓ − ηAϵi jδkℓ − ηBδi jϵkℓ + ηRϵi jϵkℓ

+ η(δikδ jℓ + δiℓδ jk − δi jδkℓ ) + ηo(ϵikδ jℓ + ϵ jℓδik ), 10.

ANTISYMMETRIC STRESS

The stress tensor of fluids and solids composed of particles with noncentral interactions can exhibit an antisymmetric
part, the antisymmetric stress σA

i j = 1
2 [σi j − σ ji] (6–8). This effect is distinct from odd viscosity and odd elasticity but

often coexists with them. Mechanically, the antisymmetric stress corresponds to a torque density τi = 1
2 ϵi jkσ

A
jk, and

it can arise, for instance, in fluids and solids made of spinning particles.Odd viscosity and elasticity can contribute to
the antisymmetric stress, e.g., through ηA in Equation 9 andA in Equation 28.However, an antisymmetric stress can
exist even in the absence of velocity or displacement gradient, in which case it is part of the so-called hydrostatic
stress in fluids and of the so-called prestress in solids. In addition, antisymmetric stresses can also be generated
by other mechanisms (distinct from odd elasticity or viscosity), such as passive Cosserat elasticity (9) or rotational
viscosities (such as ηR in Equation 9; see also Reference 10). Note that the phrase “odd stress” (or “Hall stress”)
has been variously used in the literature to refer to either antisymmetric stress or any stress due to odd elasticity or
viscosity.

2The shear viscosity η is the most familiar. The bulk viscosity ζ does not appear in the equations of motion
of incompressible flows (because �ivi = 0). The rotational viscosity is also often neglected because it typically
disappears from the equation of motion on a short timescale corresponding to the equilibration of internal
angular momentum (11, their chapter XII, section 1).
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where δij and ϵij denote the Kronecker delta and the Levi–Civita symbol (with ϵxy = 1). The full
Navier–Stokes equation then reads as3

ρDtv = ∇ · σ h + (ζ − ηR )∇ (∇ · v) + (η + ηR )1v + (ηo + ηB ) ϵ · 1v − (ηA + ηB ) ϵ · ∇ (∇ · v),

in which∇ × v = ϵi j∂iv j . The symmetry ηijkℓ = ηkℓij is equivalent to the symmetry ηαβ = ηβα of the
matrix in Equation 9. Hence, having no odd viscosities (ηA

i jkℓ = 0) amounts to having ηA = ηB and
ηo = 0. By coincidence, it also turns out that ηA, ηB, and ηo all violate mirror symmetry. Hence, in
order to have odd viscosities in 2D isotropic fluids, it is necessary that some physical ingredient
breaks mirror symmetry, such as an external magnetic field or particles that all rotate in the same
direction.

Anisotropic 2D fluids can have more odd viscosities (14, 18): This has been discussed in the
context of nematic systems (18–20) as well as in solid-state physics, where the viscosity tensor can
be constrained by the crystallographic symmetries of the underlying lattice (13, 14, 21–23). In
the language of rheology, odd viscosity can be expressed in terms of the so-called normal stress
difference (more precisely, the part that is odd in shear rate; see Reference 24 for details). Finally,
we note that odd viscosities have also been studied in relativistic fluids (25, 26) and on curved
surfaces (27, 28).

2.1.2. Three-dimensional fluids with odd viscosity. In three dimensions, the situation is
more complex. The tensor ηijkℓ has 34 = 81 independent components. It turns out that there
are no odd viscosities compatible with spatial isotropy, implying that an odd viscous fluid in three
dimensions must have (at the minimum) a preferred axis (4). A simple way to obtain such a pre-
ferred axis is to apply a magnetic field to the system, or to rotate it (this can indeed produce odd
viscosity; see Section 2.5.1). In this case, the system still has cylindrical symmetry, and there are
8 independent nondissipative (i.e., odd) viscosities, 6 of which require parity to be broken (there
are also 11 dissipative viscosities, 3 of which require parity to be broken; see the Supplemental
Text); a full classification is given in Reference 4. This highlights that nondissipative viscosities
and parity-violating viscosities are distinct notions. Even if we restrict our attention to shear vis-
cosities in systems with cylindrical symmetry, two independent odd shear viscosities can exist,
and have been measured experimentally (see Section 2.4.1). Like in two dimensions, point group
symmetries of the underlying crystal further constrain the viscosity tensor in solid-state systems
(14, 21, 29).

2.2. How Does Odd Viscosity Affect Flows?

As depicted in Figure 1, odd viscosity can have pronounced effects on fluid flows. Below, we detail
how odd viscosity can enter the Navier-Stokes equations and modify their solutions.

3From the point of view of the bulk Navier-Stokes equations, the six viscosities compatible with rotation
invariance are redundant: There are only four independent coefficients. The equations are invariant when
the viscosities are transformed as ηA → ηA + α, ηB → ηB − α, ηo → ηo + αζ → ζ + β, η → η − β, ηR →
ηR + β, for arbitrary α and β. This ambiguity can be resolved if the stress tensor can be directly measured or
imposed (e.g., through boundary conditions). See References 8, 12–16, and 17 for more details. Note also that
different forms of theNavier-Stokes equation can be obtained using the vector calculus identity ϵ · ∇ (∇ × v) =
∇ (∇ · v) − 1v for 2D vector fields.
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Figure 1

Phenomenological consequences of odd viscosity. (a) Topological sound waves arise from a combination of the Coriolis/Lorentz force
and odd viscosity. Panel adapted with permission from Reference 40; copyright 2019 American Physical Society. (b) A chiral flow arises
when a bubble expands inside a Hele–Shaw cell filled with a 3D odd viscous fluid. The flow acquires a circulation far from the bubble
(represented by spiraling arrows) as a result of odd viscosities. Panel adapted from Reference 41. (c) A chiral flow arises in a Corbino disk
filled with an odd viscous electron fluid under magnetic field. The electric current (in blue) between the inner and the outer disks
spirals, because it has both a longitudinal and a transverse component (in red) with a ratio jϕ/jr = ηo/η. Panel adapted with permission
from Reference 42; copyright 2019 American Physical Society. (d) The Stokes flow past a sphere develops an azimuthal component
(blue and pink arrows) in an odd viscous fluid. On the right, the color represents the azimuthal component of the velocity (red and blue
are opposite signs). Panel adapted from Reference 4. (e) Odd viscosity modifies the electrochemical potential near sources and drains in
inhomogeneous charge flows in solid-state systems. Panel adapted with permission from Reference 43; copyright 2017 American
Physical Society. ( f ) A moving liquid droplet consisting of an odd viscous fluid (green) in a normal liquid exhibits a nonaxisymmetric
flow. Panel adapted from Reference 44. (g) An instability in the sedimentation of clouds of particles is suppressed by odd viscosity. Panel
adapted from Reference 4. (h) A transverse flow appears in a compression shock in an odd viscous fluid. The color represents the
transverse component of the velocity (vertical in the picture; red and blue are opposite signs). Panel adapted with permission from
Reference 6; copyright 2021 Springer Nature.
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2.2.1. Incompressible two-dimensional flows. Let us first consider the case of an incompress-
ible (lowMach number4) 2D flow and consider only shear viscosities η and ηo.5 TheNavier–Stokes
equations for such a system are

ρDtv = − ∇ p+ η1v + ηoϵ · 1v, 11.

with∇ · v = 0. In Equation 11, odd viscosity induces a viscous force perpendicular to the force one
would generally expect from shear viscosity (the matrix ϵ performs a clockwise rotation by 90°).
Because of the incompressibility of the fluid, the odd viscous term ηoϵ · 1v can be incorporated
in an effective pressure (30, 31),

p′ = p− ηoω, 12.

where ω = ϵkℓ�kvℓ is the vorticity of the fluid, and we used the identity ϵ1v = ∇ω for incompress-
ible flows. We can therefore map the Navier–Stokes equation with odd viscosity (Equation 11)
onto an effective system ρDtv

′ = −∇ p′ + η1v′ without odd viscosity, with v′ = v. This fact has
an important consequence: When boundary conditions only involve the velocity of the fluid, the
velocity field in a 2D fluid with and without ηo are indistinguishable.

As an illustration, let us consider a 2D Poiseuille flow in which a fluid flows through a channel
under a constant pressure gradient. In a normal fluid (ηo = 0), the velocity field is (32)

v = G
2η
y(h− y)êx, 13.

where G is the pressure gradient in the direction x (with unit vector êx), h is the height of the
channel, and η is the (normal) shear viscosity. It satisfies the no-slip boundary conditions v = 0
(which do not involve the stress) at the walls. The vorticity is given by ω = �xvy − �yvx =
−G/[2η] (h − 2y). We now consider a fluid with odd viscosity in the same geometry. Recall that
the velocity field is not modified by the presence of odd viscosity (nor is the vorticity). The
pressure, however, is modified. Using Equation 12, we obtain

p = p′ + ηoω = p′ − Gηo

2η
(h− 2y), 14.

in which p′ is the pressure in the system without odd viscosity. The transverse pressure difference,
measured between the bottom and the top of the channel, is then6

1p = p(h) − p(0) = Gh
ηo

η
15.

as the pressure p′(y) of the Poiseuille flow without odd viscosity is up–down symmetric. A slightly
more elaborate version of this method has been used to measure odd viscosities in 3D polyatomic
gases (33–38; see Figure 2a and Section 2.4.1).

2.2.2. Compressible flows. The effect of ηo can bemore dramatic in compressible flows.When
odd viscosity is present in weakly compressible flows (at low Mach number), one expects vorticity

4The Mach number Ma = U/c is the ratio of a characteristic velocity of the fluid U by the speed of sound
in the fluid c. Usually, a fluid can be considered incompressible when Ma j 1. In odd fluids, the additional
condition Ma2/Reo j 1 can in certain conditions be required (30), where Reo is the odd Reynolds number
defined in Footnote 8.
5In dilute systems, the rotational viscosities ηA and ηB are small and may be neglected (6).
6In the 2D incompressible system, the difference between normal forces at the top and bottom wall, σ yy(h) −
σ yy(0), does not capture odd viscosity, because in this geometry σ yy(y) = −p − ηo�yvx = −p′(y) is unchanged
compared to the case with ηo = 0. The changes from pressure and viscous shear stress that contribute to these
normal forces compensate exactly.
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Figure 2

Experimental platforms for odd viscosity. (a) Three-dimensional magnetized polyatomic gases such as N2, CO, or CH4 exhibit odd
viscosities (called η4 and η5 in the nomenclature of Reference 11). When the gas flows in a capillary, odd viscosity can be measured via
the transverse pressure it creates. As an example, the odd viscosities of CH4 are plotted as a function of H/p, where H is the external
magnetic field, p is the overall pressure, and η0 is the viscosity of the gas with no magnetic field. Panel adapted from Reference 38. (b) A
2D fluid of electrons in graphene under a magnetic field exhibits an odd shear viscosity (Hall viscosity), which can be determined from
multiterminal electric transport measurements. Panel adapted with permission from Reference 88, AAAS. (c) It has been suggested that
the flow of in vitro neural progenitor cells can exhibit odd viscosity. Panel adapted from Reference 92. (d) A 2D fluid consisting of small
cubes with a permanent magnetic dipole moment in a colloidal suspension under a rotating magnetic field exhibits odd viscosity. It can
be measured from the decay of surface waves originating from the antisymmetric part of the stress. Panel adapted with permission from
Reference 52; copyright 2019 Springer.

to induce density changes implied by δρ ∝ δp = −ηoω (30). For example, a Lamb–Oseen vortex
without odd viscosity exhibits a density dip due to inertia. This dip can either be deepened or
changed into a peak depending on the relative signs of odd viscosity and vorticity (30). In addition,
correlations between density and vorticity due to odd viscosity are expected to occur at the level
of fluctuating hydrodynamics (39). In strongly compressible flows, odd viscosity can also lead to
transverse flows under the influence of the term ηoϵ · 1v in Equation 11, which is rotated by
90° with respect to 1v. This occurs, for instance, in compression shocks (6, 30), as illustrated in
Figure 1h, in which a flow develops transverse to the direction of travel of the shock.

2.2.3. Boundary effects. Odd viscosity has an effect on the flow even in incompressible 2D
fluids when boundary conditions involve the stress.7 For instance, surface waves have been used

7What boundary conditions are appropriate to describe a certain system is a complex question even in passive
fluids (32, 45). Although microscopic considerations provide some guidance, the answer ultimately boils down
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to measure odd viscosity in a colloidal chiral fluid made of spinning magnetic cubes (52); see
Section 2.4.5. In these experiments, the antisymmetric part of the stress tensor (see the sidebar
titled Antisymmetric Stress), corresponding to the terms τ and ηR in Equation 9, produces chiral
surface waves on top of a persistent particle current at the edge. Although not responsible for the
presence of these surface waves, odd viscosity modifies their dispersion relation and damping rate
in a way that can be measured.

In systems without antisymmetric stress, odd viscosity induces distinct chiral surface waves
with dispersion � ≈ −2νoq|q| at a free surface (with a no-stress boundary condition), in which
νo = ηo/ρ (53–55). Another class of boundary effects are topological sound waves (40, 56, 57).
These occur in compressible odd viscous flows under the combined influence of the Lorentz (or
Coriolis) body force and odd viscosity. We refer to References 58 and 59 for a pedagogical intro-
duction to topological waves; the gist is that these topological waves are unidirectional sound
waves appearing at the boundary of the fluid because it has to untangle its internal topology
(Figure 1a). Here, odd viscosity provides a short-distance cutoff that makes the topological
invariant well defined and triggers unusual topological phase transitions (40, 56).

Finally, the drag and lift forces on an object embedded in a 2D fluid with odd (shear) viscosity
have been analyzed in References 31, 44 and 60–62. The total lift force on a fixed object in a
2D incompressible fluid is not changed by ηo, although the contributions to the lift force from
pressure and shear stress are both modified (31). However, a change in the lift force has been
reported in compressible odd fluids (62).

2.2.4. Low Reynolds number limit: Stokes flows. In the limit of low Reynolds numbers,8

the term v · ∇v can be ignored in the Navier–Stokes Equation 5, which reduces to the so-called
Stokes equation. Because the Stokes equation is linear, the general solutions are expressed in terms
of its Green function Gi j (x), called the Oseen tensor, which gives the flow in response to a point
force (63, 64). In normal fluids, there is a symmetry in the exchange between the source (that
produces a force) and the receiver (that measures the velocity field) called Lorentz reciprocity,
which is expressed by Gij = Gji (65, their section 4.2, equation 4.7). In fluids with odd viscosity,
Gi j (x) ̸= G ji(x), so Lorentz reciprocity is broken (4, 66).

In Reference 61, swimming in a 2D fluid with odd (shear) viscosity is analyzed. The fluid
produces a torque on the swimmer when it changes area. In 3D Stokes flow, odd viscosity can
no longer be absorbed in the pressure, even if the fluid is incompressible, leading to azimuthal
flows that would otherwise be absent (4). This is illustrated in the flow past a sphere in Figure 1d,
where an azimuthal velocity appears with opposite sign above and below the sphere.

2.2.5. Hydrodynamic instabilities. Hydrodynamic instabilities are abrupt changes in a fluid
flow that arise when a control parameter is varied (67). How does odd viscosity affect these
instabilities?

Let us first ask a simple question: Is an odd viscous fluid at rest linearly stable? It turns out that
the answer is determined solely by the dissipative viscosities.To see that, let us linearize Equation 5

to whether the continuum theory correctly describes the experimental system under consideration (32, 45–49).
For example, in a gas of rotating dumbbells (50, 51), a solid boundary prevents the rotation of the particles,
leading to a boundary flow (v = v0 ̸= 0) rather than a no-slip condition. Similarly, frictional rotating disks roll
without slipping on solid boundaries, leading again to a net flow and a nonzero hydrodynamic slip velocity.
8The dimensionless Reynolds number Re= ρUL/η,whereU is a characteristic velocity andL is a characteristic
length, measures the ratio between inertial and viscous forces. In some situations, it can be helpful to define
by analogy an odd Reynolds number Reo = ρUL/ηo (see, for instance, References 30 and 40).
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and Equation 6 about the state v = 0 with a uniform density ρ, yielding ρ�tvi = −ηijkℓqjqℓvk.
Multiplying by vi, we find

ρ∂t

(∥v∥2
2

)
= −ηi jkℓq jqℓvkvi = −ηS

i jkℓq jqℓvkvi, 16.

in which the odd viscosities drop out in a way similar to that in Equation 7. In particular, if the
symmetric part of the matrices of viscosities is positive-definite, the fluid is linearly stable.9

The effect of odd viscosity can be more dramatic in more complex flows, in which it can lead to
both destabilization and stabilization. For instance, the magnetized Kelvin–Helmholtz instability
(in magnetohydrodynamics) is modified by the presence of odd viscosities and is either stabilized
or destabilized depending on the sign of the odd viscosity coefficient (68–70). Odd viscosity also
prevents the breakup of clouds of sedimenting particles (4) in an odd viscous fluid (see Figure 1g),
and stabilizes the Saffman–Taylor instability (41). Further examples have been studied in falling
thin films (71–75) and in plasmas (76–78; more references in Section 2.4.2).

2.3. Statistical Thermodynamics of Odd Viscosity

The viscosity tensor represents the diffusive transport ofmomentum.Near equilibrium, the theory
of transport processes is structured around two concepts (11, 79, 80): The Green–Kubo relations
provide a link between transport coefficients and fluctuations at equilibrium; and the Onsager–
Casimir reciprocity relations provide algebraic constraints on transport coefficients. Neither of
these principles are guaranteed in general far from equilibrium, raising the question, To what
extent do they apply to odd viscosity?

2.3.1. Green–Kubo relations. In fluctuating hydrodynamics, the stress tensor fluctuates about
its mean value.These fluctuations are characterized by the time correlation functions ⟨σ ij(t)σ kℓ(0)⟩
(we ignore spatial fluctuations for simplicity). When the correlations are symmetric in time, i.e.,
when ⟨

σi j (t )σkℓ(0)
⟩ = ⟨

σkℓ(t )σi j (0)
⟩
, 17.

then we say that the system obeys detailed balance or microscopic reversibility. At equilibrium,
the Green–Kubo relation states that the viscosities can be expressed in terms of these correlation
functions as

ηi jkℓ = A
kBT

∫ ∞

0

⟨
σi j (t )σkℓ(0)

⟩
dt, 18.

in whichA is the area (or volume in three dimensions) of the system. Fluids with odd viscosity can
exhibit the same relation (6, 15, 81, 82). In particular, inspection of Equations 17 and 18 reveals
that odd viscosity arises when the correlation functions are not symmetric in time, namely when⟨

σi j (t )σkℓ(0)
⟩ ̸= ⟨

σkℓ(t )σi j (0)
⟩
. 19.

Green–Kubo relations have been used to describe the viscosity of quantum Hall fluids and other
solid-state systems (83–85). In the context of active fluids, these relations were derived using the
Mori–Zwanzig projection operator formalism and verified using molecular dynamics simulations
in Reference 6 for the shear part of the viscosity tensor of a 2D active fluid, in which time-
antisymmetric parts of the correlation functions have indeed been observed. They can also be

9Formally, the case of odd elasticity with an overdamped dynamics is identical (see Section 3.2.3).
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obtained from the Onsager regression hypothesis (81, 82), as well as from kinetic theory (15). Ex-
amples from molecular dynamics simulations are discussed in Section 3.5.4 and figure therein).
We emphasize, however, that the validity of Green–Kubo relations is a priori not guaranteed in
nonequilibrium systems.

2.3.2. Onsager–Casimir reciprocity. The Onsager–Casimir reciprocity relations are con-
straints on transport coefficients, usually associated with microscopic reversibility (11, 86, 87).
For the viscosity tensor, the Onsager–Casimir relations are expressed as

ηi jkℓ(B) = ηkℓi j (−B), 20.

in which B symbolizes all external sources of time-reversal breaking (such as magnetic fields or
rotation). The Onsager relations are a particular case of Equation 20, where the left- and right-
hand sides describe the same system, so ηijkℓ = ηkℓij. Using the shear viscosities in isotropic 2D
systems in Equation 9 as an example, Equation 20 corresponds to η(B) = η(−B) and ηo(B) =
−ηo(−B). When the matrix in Equation 9 is not symmetric, Onsager reciprocity is said to be
violated. This occurs whenever ηo ̸= 0. For all systems known to the authors, Onsager–Casimir
reciprocity appears to hold: The antisymmetric component of the viscosity tensor changes sign
under time-reversal, whereas the symmetric component remains unchanged.

However, the range of applicability of the relation in Equation 20 has not yet been fully de-
lineated. Current numerical (6, 82) and experimental (88) results for the shear viscosities η and
ηo are in agreement with Equation 20, which is also compatible with theoretical results from
nonequilibrium thermodynamics (10, 11) and from kinetic theory (15, 89–91).10 However, theo-
retical arguments based on the Onsager regression hypothesis (81, 82) suggest that nondissipative
(odd) viscosities can exist in systems that do not break time-reversal symmetry at the level of stress
correlations. In addition, the fact that the breaking of mirror symmetry and time-reversal invari-
ance originate in the same physical phenomena in these systems can be a confounding factor, as
both symmetries impose constraints on the transport coefficients.

2.4. Where to Find Odd Viscosity?

According to the “central dogma” of phenomenology, anything that is not forbidden will, in prin-
ciple, be present. Odd viscosity can only occur when certain spatial (see Sections 2.1.1 and 2.1.2)
and nonspatial (see Section 2.3.2) symmetries are broken. For example, the shear odd viscosity ηo

can only exist if the fluid violates mirror symmetry. Below, we discuss some systems that exhibit
odd viscosity. In practice, all experimental systems we are aware of break time-reversal symmetry
and mirror symmetry and involve either spinning particles or an external magnetic field.

2.4.1. Polyatomic gases under magnetic field. Rarefied polyatomic gases (such as N2 or
CO) under a magnetic field exhibit odd viscosities (often called transverse viscosities in this
context; 33–37), as well as transverse nondissipative thermal conductivities (see the sidebar ti-
tled Other Oddities). This is illustrated in Figure 2a. These effects have been experimentally
observed in a variety of gases; see References 33 and 34 for extensive reviews (in particular, table 2
in Reference 33 and table 7.1 in Reference 34 for lists of the various measurements known at the
time). Odd viscosities in these systems originate from the precession of the magnetic moment of

10When the Green–Kubo relations discussed in Section 2.3.1 apply, the Onsager relations arise as a con-
sequence of detailed balance (Equation 17). In the simplified kinetic theory discussed in Section 2.5.2, the
Onsager–Casimir relations can be obtained from Equation 22 by assuming that L(B) = L†(− B) (this relation
may then be derived from microscopic considerations in a given system).

www.annualreviews.org • Odd Viscosity and Elasticity 481



CO14CH19_Vitelli ARjats.cls February 17, 2023 11:5

Gyroviscosity:
synonym of odd
viscosity in the context
of plasma physics

OTHER ODDITIES

Odd responses similar to odd viscosity or elasticity arise in various contexts and are often associated with a transverse
response (93). Perhaps the most well known is the Hall effect: a transverse voltage difference arises in response to a
longitudinal electric current in electric conductors undermagnetic field.This originates from the localOhm law j =
σE relating the current density to the electric field, in which the electrical conductivity σ acquires an antisymmetric
part called Hall conductivity. Similar phenomena arise in heat diffusion (under the names of thermal Hall or Righi–
Leduc effects; 94), in particle diffusion (see References 95–98, and references therein), in light diffusion (99, 100), or
in the case ofWillis couplings (101). See Reference 93 for a review of Hall-like effects. Analogs of odd elasticity also
occur in the generalized elasticity (102, 103) of mesophases with nonvariational dynamics such as active cholesterics
and hexatics (104, 105). As an example, consider the diffusion equation

∂tρ + ∇ · j = 0 where j = −D∇ρ,

in which ρ is the particle density. The antisymmetric part of the diffusion tensorDij contains odd (Hall) diffusivities.
In a uniform system, ∇ · j = Di j∂i∂ jρ, so odd diffusivities drop out of the equation of motion. They can still be
observed if they enter the boundary conditions or if the current can be measured directly.

the molecules due to the external magnetic field, which modifies the collision cross-section of the
molecules. These experimental studies are part of a large body of work on the effect of electric
and magnetic fields on transport properties, which occurred hand in hand with progress made in
kinetic theory (33, 34). The measurement of transverse viscosities has also been used to deter-
mine the sign of the so-called g-factor of the molecules (a dimensionless proportionality constant
relating the magnetic moment and the angular momentum of an object; 106).

2.4.2. Magnetized plasma. Electrically conducting fluids such as plasma or liquid metals can
directly couple to a magnetic field (externally produced or induced by the fluid motion). These
systems are described by a continuum theory called magnetohydrodynamics (MHD), in which the
coupled dynamics of the fluid density ρ, its velocity field v, and the magnetic field B are described.
In a magnetized plasma, time-reversal symmetry and parity (mirror symmetry) are broken, so we
expect odd viscosities to arise, and indeed they do. As reviewed in Sections 2.5.1 and 2.5.3, the
physical mechanism relies on the fact that charged particles in a magnetic field have a tendency to
rotate along circular orbits because of the Lorentz force. In this context, odd viscosity is usually
known as gyroviscosity.

The existence of gyroviscosity has been established from kinetic theory calculations (107–110)
as well as from more heuristic approaches (77, 111). Consequences of gyroviscosity have been
explored in the context of magnetic confinement fusion (112; in particular, their section III.D.2,
and references therein), and in the context of the ionosphere and magnetosphere of planets (68,
113, and references therein). Gyroviscosity is expected to stabilize certain instabilities that would
otherwise occur and to destabilize otherwise stable situations, in qualitative agreement with experi-
mental observations (70, 76–78, 112, 114–125).As an example, gyroviscous theories have been used
to model the observed dusk–dawn asymmetry in the Kelvin–Helmholtz instabilities occurring in
the magnetosphere of planets (68, 70, 116).

2.4.3. Gases under rotation. Odd viscosity is expected to arise in gases under rotation as a
consequence of Coriolis forces. This prediction has been made using kinetic theory in dilute
gases (126), and we sketch the physical mechanism in Section 2.5.1. One finds that the ratio of
odd over normal viscosity is given by ηo/η ∼ �τ , where � is the angular frequency of rotation and
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τ ∼ η/p is a collision time, expressed in terms of the shear viscosity of the unperturbed fluid η and
the pressure p. This estimate suggests that obtaining a sizeable odd viscous response would require
a combination of low pressures, high viscosities, and fast rotation. To give an order of magnitude,
in order to have ηo ∼ η, the required spinning speed should be of the order of τ−1 ≃ 1 × 109 s−1

for air at atmospheric pressure.

2.4.4. Condensed matter: graphene, superfluids, etc. The transport of electrons in a metal
is usually described by Ohm’s law, but this is not the only possibility (49, 127–133). When only
electron–electron collisions occur, electrons behave like a viscous fluid.11 This has been observed
in high-mobility systems such as graphene (127–132). In this regime, odd viscosities (called Hall
viscosities in this context) occur when the electrons are put in a magnetic field, so time-reversal
symmetry is broken. Hall viscosities lead to corrections to charge transport quantities such as
resistances. An isotropic 2D shear Hall viscosity has been measured in graphene under magnetic
field from transportmeasurement inmultiterminalHall bars (88),where the normal shear viscosity
is ν ≈ 20 × 10−2 m2/s at T ≈ 100 K, whereas νo ≈ 7 × 10−2 m2/s at B ∼ 40mT. Here, ν = η/ρ

and νo = ηo/ρ.
Odd viscosity is also expected in superfluids under magnetic field or under rotation such as

liquid helium and other chiral superfluids (84, 134–138). In gapped quantum Hall fluids, odd
viscosity contains information about the topological order of the state (5, 43, 83, 85, 138–143). In
this case, in a rotationally invariant 2D system, the Hall viscosity is proportional to a quantized
topological invariant S called shift through ηo = ℏ(S/4)n, where ℏ is the Planck constant and n is
the electron density.

2.4.5. Active and driven soft matter. Fluids composed of active objects exhibiting a preferred
chirality are called chiral active fluids (6, 30, 51, 144–147). They include collections of self-
spinning colloidal particles (52, 147–149), circle swimmers (150, 151), driven chiral grains (50),
and 3D-printed rotors fluidized by a turbulent upflow (98, 152), as well as robotic systems (153,
154) and biological matter (92, 155–157). Theoretical works have predicted that these systems
exhibit odd viscosity as well as hydrostatic torques (see the sidebar titled Antisymmetric Stress)
(30, 144, 150, 151, 158).

Experimental measurements of odd viscosity have been performed in a fluid made of spinning
colloids (52). The colloidal cubes suspended in water over a glass surface have a magnetic moment
and spin under the effect of a rotating magnetic field. Odd viscosity is then measured through
modifications in the dispersion of surface waves (see Section 2.2.3), and the values reported are
ηo = (1.5 ± 0.1) × 10−8 Pa ms and η = (4.9 ± 0.2) × 10−8 Pa ms.

Odd viscosity has also been numerically observed in simulations of dense but passive chiral
fluids composed of ratchet-shaped particles in simple shear and planar extensional flows (24, 159;
see also 160). Magnetized nematic ferrofluids are also expected to exhibit odd viscosities (19, 20).

2.4.6. Vortex matter. In an ideal fluid, stable point vortices can exist and interact with each
other. A large collection of such vortices can itself be treated as a fluid. It has been predicted that
such a 2D fluid composed of vortices of the same sign exhibits odd viscosity (161–163). Intuitively,
this can be understood from the fact that the vortices have transverse interactions (breaking the
symmetries that would forbid odd viscosity in two dimensions). It has also been reported that
numerical simulations of skyrmions in chiral magnets exhibit odd viscosity (164).

11The diffusive behavior described by Ohm’s law arises when only electron–lattice collisions are present.
When all collisions are negligible, the transport is ballistic.When both electron–electron and electron–lattice
collisions are present, the behavior of electrons is similar to the flow of a viscous fluid in a porousmedium (127).
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2.5. Microscopic Mechanisms

Microscopically, odd viscosity can arise from at least two classes of mechanisms: (a) as a single-
particle effect originating from an individual particle’s dynamics between collisions (this is
discussed in Section 2.5.1) and (b) as an effect of interactions between particles (Section 2.5.2).
We first discuss the physical mechanisms and then outline how continuum equations can be
obtained from microscopics using kinetic theory (Section 2.5.3). Finally, we sketch how odd
viscosity can be obtained from variational principles consistent with microscopic symmetries
(Section 2.5.4).

2.5.1. Collisionless odd viscosity. Odd viscosity can be generated by the individual motions
of particles in an external field. The Lorentz force (for charged particles in a magnetic field) and
Coriolis force (for all particles in a rotating reference frame) tend to move the particles along
circular orbits. This single-particle effect leads to odd viscosity. To illustrate how this works, con-
sider a gas of charged particles in an external magnetic field, as shown in Figure 3. Recall that
an individual charged particle in a magnetic field follows a circular orbit called a Larmor or-
bit or cyclotron orbit, whose center is called the guiding center and radius is called the Larmor
radius (see References 165 and 166 for more about plasma physics). When the Larmor radius
is small enough (in a thermal plasma, this occurs at large enough magnetic field), the gyrating
particle behaves as a magnetic point dipole aligned with the field and located at the guiding
center.

The guiding center of the particles in the plasma can move under the influence of external
forces and of other particles. For a collection of particles, this motion is summarized by the velocity
field of the plasma. In a nonuniform external force (such as an electric field), the cyclotron orbit
of a single particle deforms into an ellipse. This can be shown explicitly from the equations of
motion for a single particle (77, 111; see also the Supplemental Text). At the continuum level,
the nonuniform external force leads to a velocity gradient. As illustrated in Figure 3, the elliptic
cyclotron orbit is rotated by 45° with respect to the velocity gradient. The resulting momentum
flux is therefore also rotated by 45°. This means that a shear rate 1 (ė2) in Table 1 leads to minus
a shear stress 2 (−σ3), whereas a shear rate 2 (ė3) leads to shear stress 1 (σ2): This corresponds to

Figure 3

Collisionless odd viscosity. In a magnetized plasma, the charged particles follow closed trajectories called
cyclotron orbits. In a fluid at rest, the orbits are circular. When a shear rate (in the plane orthogonal to the
magnetic field) is applied to the fluid, the cyclotron orbits become elliptic. The principal axes of the ellipse
are rotated by 45° with respect to the shear rate axes with a handedness set by the magnetic field. This leads
to a stress rotated by 45° from the shear rate, corresponding to odd viscosity.
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the odd shear viscosity ηo in Equation 9. Hence, odd viscosity is due to the deformation of the
Larmor orbits. Because the mechanism goes beyond the picture of effective dipoles, it is known as
a finite Larmor radius effect or as a nonideal MHD effect. This effect can be captured in a more
systematic manner using kinetic theory (77, 107–109, 111).

2.5.2. Odd viscosity from collisions. The preceding section discussed a mechanism in which
odd viscosity is essentially a single-body effect: the free trajectory of a particle is modified in
between collisions. However, odd viscosity can also arise as the result of abnormal collisions, even
when the free motion of particles is unchanged. In typical fluids, the collisions are, on average,
invariant under mirror reflections (Figure 4a,b). In contrast, collisions that on average violate
parity (i.e., mirror reflection symmetry, as in Figure 4c,d; 50, 52, 149) can lead to odd viscosity (6,
15). The mechanism can be understood pictorially (Figure 4). When we subject the fluid to a
constant shear rate (shown in Figure 4e), vertical collisions are more frequent and horizontal
collisions are less frequent than in the fluid at rest. The resulting change in the momentum flux
is qualitatively obtained by examining where particles go after collision. When the collisions are
asymmetric (Figure 4d), there is an increase of the momentum flux at 45° and a decrease of the

Figure 4

Odd viscosity from collisions. (a,b) In the case of normal collisions, the cross-section σ (g, θ ) giving the probability of particles going out
with an angle θ is symmetric: σ (g, θ ) = σ (g, −θ ), where g is the center of mass momentum. (c,d) This is not the case for parity-
violating collisions, for which σ (g, θ ) ̸= σ (g, −θ ). (e) The fluid is subjected to a constant shear rate ė2 (see Table 1). As a consequence,
there are more vertical collisions and fewer horizontal collisions compared to the fluid at rest. The change in the momentum flux
(compared to the fluid at rest) is qualitatively obtained by looking at where particles go after collision. As the collisions are asymmetric
(see panel d), there is an increase of the momentum flux at 45° (in red) and a decrease of the momentum flux at −45° (in blue).
Combining these, we find the resulting viscous stress −σ 3 in the rightmost part of panel e. Note that the momentum flux tensor
(pressure tensor) is the opposite of the stress tensor. There are also changes in the horizontal and vertical momentum fluxes, which
correspond to normal shear viscosity and are not shown. ( f ) We follow the same reasoning as that in panel e when the fluid is subjected
to a constant shear rate ė3. The result is a viscous stress σ 2. Hence, we have found that σ2 ∝ ė3 and σ3 ∝ −ė2 (ignoring normal shear
viscosity), which is the effect of odd viscosity. Figure adapted from Reference 15.
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momentum flux at −45°. The corresponding viscous stress is the opposite of this momentum flux.
Repeating this argument for a constant shear rate at 45° (Figure 4f ), we find an increase in the
vertical momentum flux and a decrease in the horizontal momentum flux. The relations between
the resulting stresses and the strain rates we apply in Figure 4e and Figure 4f are antisymmetric:
This is odd viscosity.

Realistic microscopic descriptions of magnetized neutral polyatomic gases, which take into
account internal molecular degrees of freedom, indeed agree quantitatively withmeasured nondis-
sipative transport coefficients (33–37, 167–176). The main ideas from these calculations can be
captured via a simplified model in which the internal degrees of freedom are neglected and only
the fact that collisions are not invariant under mirror symmetry are kept (15).

2.5.3. Kinetic theory. In this section, we sketch how (odd) viscosities can be obtained from
microscopic models using kinetic theory. We focus on the simplest case, and refer the reader to
the literature (33–37, 167–176) for more realistic cases. To do so, let us consider the distribution
function f (t, r, c), giving the probability f (t, r, c)ddrddc of finding a particle in a volume centered
at position r and velocity c in phase space at time t. The fluid at rest is described by a stationary
distribution such as the Boltzmann distribution f ° ∝ exp[m∥c − v∥2/(2kBT )] (v is the fluid veloc-
ity, T is the temperature, m is the particles’ mass, and kB is the Boltzmann constant). Viscosity is
contained in the way the distribution function relaxes toward equilibrium after being perturbed
by a velocity gradient. This relaxation can be described by kinetic theories, such as the Boltz-
mann equation.When linearized about the stationary distribution, the Boltzmann equation reads
as (107, 177, 178)

∂ϕ

∂t
+ ci

∂ϕ

∂ri
+ bi

∂ϕ

∂ci
= Lϕ, 21.

where f = f °(1 + ϕ), mb are body forces, and L is the linearized collision operator. L can be
expressed in terms of the scattering cross-section σ (g, θ ) defined in Figure 4. Equation 21 ex-
presses the conservation of probability, where the left-hand side captures the probability flow
without interactions and L on the right-hand side captures the redistribution of probability due
to collisions.

Let us first consider the case of chiral collisions with no external force (b = 0). The viscosity
tensor can be expressed as an inner product of the form (15)

ηi jkℓ

ρ
= − m

kBT
(
cic j ,L−1 ckcℓ

)
, 22.

where (χ1,χ2 ) = (m/ρ )
∫
f °(c)χ1(c)χ2(c) ddc. An explicit calculation shows that when collisions

are chiral [σ (g, θ ) ̸= σ (g, −θ )], the linearized collision operator L becomes non-Hermitian
(L ̸= L†), which leads to odd viscosity ηijkℓ ̸= ηkℓij through Equation 22.

The case of particles in a magnetic field (or in a rotating reference frame) can be treated in
a similar way. The charged particles are subject to an out-of-plane magnetic field B and expe-
rience a Lorentz force, mbi(c) = mωBϵi jc j , where ωB = (q/m)B (q is the charge) or equivalently
a Coriolis force on neutral particles in a frame of reference rotating at angular frequency � =
ωB/2. Here, the collisions are not chiral, so we can model them using the so-called relaxation
time approximation, where Lϕ ≃ −ϕ/τ in Equation 21, in which τ is a relaxation time (177).
The viscosity can then be obtained. A simplified calculation is given in Reference 111, which pro-
duces η = pτ/(1 + 4τ 2ω2

B ) and ηo = 2ωBτη. See References 107–109 and 126 for more detailed
calculations.
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2.5.4. Action principles and Hamiltonian structure. The dynamics of an ideal fluid can be
obtained from an action or a Hamiltonian (179). The action of such an ideal fluid is

S =
∫ (

1
2
ρ∥v∥2 − ρU

)
dt ddr, 23.

in which v is the velocity field, ρ is the density field, and U is the internal energy per unit mass of
the fluid. Imposing a stationary action δS = 0 directly leads to the Euler equation. To be precise,
the action in Equation 23 is written in Eulerian coordinates, but it must be varied in Lagrangian
coordinates (179). From the action principle, one can deduce a Hamiltonian and a Poisson bracket
structure as well. This point of view provides useful insights on conservation laws, the stability of
the fluid, and approximation methods (179, 180).

Because odd viscosity does not contribute to dissipation, it is a form of ideal flow and can be
captured in this framework. The main idea, originating in the physics of plasma (181–186) and
recently analyzed in the context of active and electronic matter (30, 158, 187), consists of adding
to the action a term

1S =
∫
L · ω dt ddr 24.

in whichω = ∇ × v is the vorticity, andL is a new quantity introduced phenomenologically, which
sometimes corresponds to the density of angular momentum.

In the context of gapped quantum Hall fluids, odd viscosity has also been described by so-
called topological terms known as the Wen–Zee and (gravitational) Chern–Simons actions (139,
143, 188–191). In the case of gapless fluids, it has been described by another kind of topological
term known as the Wess–Zumino–Witten action (192; see also 26, 193 for other effective field
theory approaches).

3. ODD ELASTICITY

The canonical formulation of elasticity typically assumes that the stress–strain relationship is com-
patible with a potential energy. This assumption is in general not appropriate for a range of living,
driven, or active media, and odd elasticity is the theory that emerges when this assumption is
removed.

3.1. What Is Elasticity?

When you gently deform a solid, such as a rubber pencil eraser, the solid resists the shape change
you are trying to impart. This is due to elasticity, which captures the resistance of a solid against
inhomogeneities in its displacement field. The elastic solid exerts stresses,

σi j = Ci jkℓ∂ℓuk, 25.

in response to shape changes, described by gradients ekℓ = ∂ℓuk of the displacement field u(t, x).
The stress tensor describes the forces that a parcel of elastic continuum applies to the neighboring
parcels, or to the environment.The coefficient of proportionalityCijkℓ is called the elasticity tensor,
also known as the elastic modulus tensor or stiffness tensor. Each independent component of Cijkℓ
is referred to as an elastic modulus.

Let us consider a cyclic deformation in which we slowly deform an elastic solid so that it goes
back to its original configuration when we are finished (as shown in Figure 5). The total work
done (which is computed in Section 3.3) is then

1W el =
∫
Ẇ eldt = −

∫
dt ddxCA

i jkℓ(∂ j u̇i )(∂ℓuk ), 26.
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Odd elastic modulus:
an antisymmetric
component of the
elasticity tensor

Figure 5

Odd elasticity. (a) The odd modulus A induces a torque density when the medium is dilated or compressed. (b) The odd modulus Ko

induces a shear stress that is rotated with respect to the applied shear strain. The black arrows are a proxy for deformation, and the blue
arrows indicate the stress. (c,d) Both A and Ko are nonconservative. This means that there exists (quasistatic) cycles of deformation
along which the work done is nonzero. (e) A uniaxial compression of a passive material generically results in symmetric deformation. If
the material sides move outward, its Poisson ratio ν is positive. ( f ) A uniaxial compression of an odd elastic block results in a tilt whose
intensity is proportional to the odd ratio νo. If Ko is sufficiently large, the material also becomes auxetic (ν < 0), meaning that the
material contracts in response to compression. (g) A transverse wave in a passive solid is illustrated. (h) An odd elastic wave propagates
with a circular polarization. The thin red lines represent the displacement field. (i) For an overdamped passive solid, the displacement
field of the transverse mode decays toward its rest position along a straight line. ( j) For an overdamped odd elastic solid with K o > 0,
the displacement field traces out spirals that become closed ellipses when B = µ = 0. Figure adapted with permission from
Reference 194, copyright 2020 Springer Nature.

in which only the antisymmetric part,

CA
i jkℓ = [Ci jkℓ −Ckℓi j]/2 (odd elastic tensor), 27.

of the elasticity tensor appears.As a consequence, the work performed by elastic forces over a cyclic
deformation vanishes provided that the elastic tensor is symmetric (CA

i jkℓ = 0). An elastic medium
whereCA

i jkℓ ̸= 0 is called odd elastic: In such a system, the work of elastic forces depends on the path
taken in deformation space. As a consequence, it is possible to both loose and gain energy from
the medium (depending on whether the cycle of deformations is performed in a direction or in
reverse). Hence, materials exhibiting odd elasticity are typically active or driven, in the sense that
they must contain or have access to energy sources. Elasticity can also be used to model systems
in which the stress σ is not physically a current of linear momentum, and 1W el is therefore not
an energy. In these cases, odd elastic moduli can arise without activity (see Sections 3.4.2–3.4.6).

3.2. Case Study: Two-Dimensional Isotropic Solids

To illustrate odd elasticity in a concrete setting, we ask the following: What does odd elasticity
look like in a 2D isotropic solid? Besides providing a mathematically simple illustration of the
general concepts (194), this setting is relevant for many of the experimental systems discussed in
Section 3.4 and Figure 6. Examples of anisotropic and 3D odd elastic materials are discussed in
Section 3.4.5 and References 194–196.

3.2.1. Two-dimensional odd elastic moduli. BecauseCijkℓ is a rank 4 tensor, in two dimensions
it has at most 24 = 16 independent coefficients. However, assumptions such as spatial symmetries,
coupling to rotations, and angular momentum conservation constrain the number of independent
parameters. To enumerate the components of Cijkℓ, we use the same basis for stress and strain as
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Figure 6

Experimental platforms for odd elasticity. (a) A pairwise interaction with a longitudinal force F∥(r) (black) and a transverse force F⊥(r)
(red) connects two particles (circles). (b) Janus particles and (c) hematite colloids driven to spin by external magnetic fields. Panel b
adapted with permission from Reference 148. Panel c adapted with permission from Reference 149, copyright 2021 Springer Nature.
(d) A network of gyroscopes connected by springs is a realization of gyroscopic matter, whose elastodynamics can be mapped onto odd
elasticity in the limit of fast-spinning gyroscopes. Panel adapted from Reference 239. (e) Skyrmion lattices exhibit transverse
interactions via a Magnus force. Panel adapted with permission from Reference 240; copyright 2016 Springer Nature. ( f ) Starfish
embryos and (g) bacteria form chiral crystals with particle rotation driven by flagella and cilia, respectively. Panel f adapted with
permission from Reference 157, copyright 2022 Nature. Panel g reproduced with permission from Reference 156; copyright 2015
American Physical Society. (h) Rayleigh–Bénard convection cells organized in a hexagonal pattern. When the system is put under
rotation, odd elasticity can appear. Panel adapted from Reference 241. (i) A realization of the active hinge described by Equation 47.
Such hinges are tiled into a 2D wall to create an odd elastic solid. Panel adapted from Reference 220. ( j) A moderately thick beam with
piezoelectric patches that couple bending and shearing degrees of freedom. The repeated unit cell gives rise to a 1D chain with odd
elasticity. Panel adapted from Reference 219. (k) A schematic depicting a muscle fiber, roughly 1 µm in length.When many fibers are in
a bundle, the active stresses can couple transverse and longitudinal strains antisymmetrically. Panel adapted from Reference 196.
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that for the viscosity tensor in Equation 9 and Table 1. Under the assumption of isotropy, the
stress-strain relationship takes the form (see the Supplemental Text)

28.

where p(pre) and τ (pre) are, respectively, the pressure and torque density present in the undeformed
state (they are so-called prestresses). In Equation 28, B and µ are, respectively, the usual bulk
and shear moduli. The odd elastic moduli are the antisymmetric contributions to the matrix in
Equation 28, namely Ko and A − 3. In standard tensor notation, Cijkℓ reads as

Ci jkℓ = Bδi jδkℓ − Aϵi jδkℓ − 3δi jϵkℓ + 0ϵi jϵkℓ

+ µ(δiℓδ jk + δikδ jℓ − δi jδkℓ ) + Ko(ϵikδ jℓ + ϵ jℓδik ). 29.

Often, one also assumes that solid-body rotations do not induce stresses and, hence, one sets
3 = 0 = 0. This assumption, sometimes called objectivity, is natural if the microscopic forces
only depend on relative distances between points in the solid and not on the orientation of the
solid in space. It can be violated, for instance, in the presence of a substrate (197, 198). The re-
maining off-diagonal elastic moduli are A and Ko. As illustrated in Figure 5a,b, the modulus A
converts dilation into torque, and the modulus Ko converts shear strains to shear stresses with a
rotation of principal axes. Figure 5c,d shows examples of deformation cycles that extract energy
via the moduli A and Ko, respectively.

3.2.2. Elastostatics. One immediate consequence of the presence of odd elastic moduli is that
the static response of a solid changes when it is exposed to external loads and stresses. For example,
Figure 5e, f illustrates a solid under uniaxial compression (194). Without odd elasticity, a typical
solid deforms with left–right symmetry (Figure 5e). In contrast, a solid with nonzero K o ̸= 0
displays a horizontal deflection in a direction determined by the sign ofKo (Figure 5f ).12 The ratio
of the horizontal to the vertical motion of the top surface is dubbed the odd ratio νo. Additionally,
the Poisson ratio ν measures the ratio of horizontal expansion to vertical compression. Their
physical meaning is illustrated in Figure 5e, f and their values are given by

νo = −∂yux
∂yuy

= BKo

µ(B+ µ) + (Ko )2
and ν = −∂xux

∂yuy
= µ(B− µ) − (Ko )2

µ(B+ µ) + (Ko )2
.

For sufficiently large K o, the material becomes auxetic, meaning that ν < 0.

3.2.3. Elastodynamics. So far, our discussion of elasticity has not yet involved any equations of
motion. For inertial systems, the dynamics of the displacement field can be described by

ρ∂2
t ui + γ ∂tui = fi = ∂ jσi j , 30.

where ρ is the mass density, and the term γ�tui represents friction on a lubricated substrate.
Explicitly, the equations read as

ρ∂2
t u+ γ ∂tu = (B− 0)∇ (∇ · u) + (µ + 0)1u+ (Ko + 3)ϵ · 1u− (A+ 3)ϵ · ∇ (∇ · u). 31.

12A seemingly similar effect can occur in passive anisotropic elastic media when the direction of compression
is not aligned with the principal axis of stiffness. The distinction is that in Figure 5f, the odd elastic modulus
Ko is compatible with isotropy and, hence, the resulting deflection occurs with the same handedness regardless
of the orientation of the material being compressed.
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In the rest of this paragraph, we set 3 = 0 and 0 = 0 without loss of generality.13 Because
Equation 31 is linear, it supports plane wave solutions u(x) = u ei(q·x−ωt ) with wave number q and
frequencyω. As amatrix equation in terms of the longitudinal u∥ = q̂ · u and transverse u⊥ = q̂× u

components, Equation 31 reads as

−(ρω2 + iγω)

[
u∥
u⊥

]
= −q2

[
B+ µ Ko

−Ko + A µ

][
u∥
u⊥

]
= D

[
u∥
u⊥

]
. 32.

The matrix D in Equation 32, known as the dynamical matrix, relates forces to displacements.
When γ = 0 and A = K o = 0, we recover the two usual types of elastic waves: a longitudinal and
a transverse mode, with dispersions ω = ±q√ B+µ

ρ and ω = ±q√ µ
ρ , respectively. The transverse

wave is illustrated in Figure 5g. In contrast, in an overdamped system (ρ = 0 and γ > 0) passive
elastodynamics (A= K o = 0) becomes diffusive: ω = −iq2 B+µ

γ
and ω = −iq2 µ

γ
. In our convention,

a negative imaginary frequency implies that a wave is attenuated. In the case of an overdamped
odd elastic solid with A, K o ̸= 0, we obtain

ω = −iq2
B/2 + µ ±

√
(B/2)2 − Ko(Ko − A)

γ
. 33.

Notice that when K o(K o − A) > (B/2)2, the frequency has a real part, implying oscillations even
though the system is overdamped (see Figure 7a). Just as in the case of a damped harmonic os-
cillator, the transition between exponential relaxation and damped oscillations is marked by an
exceptional point (see Figure 7a), where the dynamical matrix D is not diagonalizable (194; see
References 58 and 199 for an introduction to exceptional points). When the imaginary part of ω

becomes positive, the solid can even become unstable (Figure 7a). In Figure 5h, an odd elastic
phonon is shown for K o, µ, B > 0. Notice that the displacement field is circularly polarized; i.e.,
it traces out ellipses. A single point in the displacement field is shown as a function of time for an
overdamped passive solid (A = K o = 0; Figure 5i) and an overdamped odd elastic solid (K o, µ,
B > 0; Figure 5j).

3.3. Odd Elastic Moduli and Energy Conservation

In Section 3.1, we stated that odd elastic moduli require a source of energy. In this section, we
make this statement more precise and provide a derivation. To do so, we compute the work done
by elastic forces when a solid quasistatically undergoes a closed cycle of deformations. If the work
is nonzero along any closed loop, then the stress–strain relationship is not compatible with a
potential energy.

3.3.1. Lagrangian and Eulerian coordinates. Before going to the main derivation, we make
a brief technical aside. To make precise statements about stress, strain, and energy, it is useful to
introduce the distinction between Eulerian coordinates and Lagrangian coordinates (200, 201).
More detail is provided in the Supplemental Text, but the key idea is the following. When a
material is deformed, a point originally at position x is moved to a new location X (x). Fields
expressed in terms of x are said to be in Lagrangian coordinates, whereas fields expressed in terms
of points in the lab (i.e., X ), without reference to an undeformed state, are said to be in Eulerian

13In the same way as in fluids (see Section 2.1.1), the six elastic moduli compatible with rotation symmetry
are redundant from the point of view of the bulk elastodynamics equation: There are only four independent
coefficients. Again, this ambiguity can be resolved if the stress tensor can be directly measured or imposed.
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Figure 7

Phenomenology of odd elastic systems. (a) Phase diagram of an overdamped odd elastic solid in the continuum. Regions with no wave
propagation (gray) are separated from regions of active wave propagation (white) by red boundaries marked by exceptional points of the
dynamical matrix. In addition, the solid can become linearly unstable (yellow regions). The dashed line corresponds to a triangular lattice
formed from masses and springs with transverse interactions (upper panel; see Equations 42 and 43); the corresponding elastic moduli are
given by Equations 45 and 46. Adapted with permission from Reference 194. Copyright 2020 Springer Nature. (b) A honeycomb lattice
is formed from masses and springs with transverse interactions (see Equation 42). When the system is poked at the side (black arrow), a
unidirectional wave propagates at the boundary. Color and size are proxies for displacement. This wave is protected by a topological
invariant known as the Chern number. Panel adapted with permission from Reference 195; copyright 2020 American Physical Society.
(c) The active hinge from Figure 6i is configured in a hexagon. Such a hexagon undergoes an instability that propels it up a ramp. Panel
adapted from Reference 220. (d) A triangular lattice of bonds experiencing a clockwise transverse force forms an odd elastic solid. A
topological defect called a dislocation is embedded in the lattice: It consists of a particle with only five neighbors (labeled 5) paired with
a particle with seven neighbors (labeled 7; other particles have six neighbors). The horizontal line separating these two particles is called
the glide plane. The transverse forces from the bonds not crossing the glide plane (highlighted in red) give rise to opposing lateral
forces on the rows of atoms containing the 5 and the 7. These forces motivate the dislocation to travel left and can be captured by a
continuum notion known as the Peach–Koehler force FPK. (e) The bonds that straddle the glide plane push in the opposite direction
and, therefore, motivate the dislocation to move to the right. This effect has been referred to as a core force, Fcore (197), which evades a
continuum description. The core force vanishes when the microscopic interactions are entirely longitudinal. ( f ) A linkage system using
the active hinge from Figure 6i, now with different length rods, undergoes shape changes that power swimming at low Reynolds
number. Time traces of the joints are shown, and V represents the average velocity. Panel adapted from Reference 315.

coordinates.14 Depending on whether Lagrangian or Eulerian coordinates are used, there are two
distinct versions of the stress tensor, respectively called the Piola–Kirchhoff (Lagrangian) stress
Pij and the Cauchy (Eulerian) stress σij. In practice, one can often ignore the distinction between
σij and Pij in linear elasticity, especially when there is no stress prior to deformation.15

14The fluid mechanics described in Section 2 is formulated entirely in terms of Eulerian coordinates. By
contrast, derivations in elasticity are often easier in Lagrangian coordinates because the undeformed state is
physically meaningful.
15To see why the distinction between the Piola–Kirchhoff and Cauchy stresses can often be ignored, it is
useful to convert them into each other. They are related by PikJ jk = (det J) σi j , where Ji j = ∂Xi

∂x j
= δi j + ∂ jui

is the Jacobian of the map X , and u(x) = X (x) − x is the displacement field. When there is no prestress,
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Maxwell–Betti
reciprocity: symmetry
of the linear response
matrix CPK

i jkℓ relating
forces and
displacements

3.3.2. Betti’s theorem andMaxwell–Betti reciprocity. To set up themain derivation,we recall
that the elasticity tensor in linear elasticity is the proportionality coefficient between the stress
and the displacement gradient. The goal is to relate tensorial symmetries of the elasticity tensor to
energy conservation.Our derivation is easiest in Lagrangian coordinates, in which linear elasticity
takes the form

Pi j = P(pre)
i j +CPK

i jkℓ ∂ℓuk. 34.

In Equation 34, P(pre) is the prestress present prior to deformations, u(x) = X (x) − x is the dis-
placement field, �iuj are displacement gradients, and CPK

i jkℓ is the elasticity tensor relating the
Piola–Kirchhoff stress to displacement gradients. The forces due to the elastic stresses are given
by fi = �jPij. When a material is deformed, the power exerted by the elastic forces is given by

Ẇ =
∫

fiu̇iddx =
∫

(∂ jPi j )u̇iddx =
∫

(∂ jP
(pre)
i j +CPK

i jkℓ∂ j∂ℓuk )u̇iddx. 35.

Upon performing an integration by part, we find that the elastic part of the power is

Ẇ el = −
∫
CPK
i jkℓ(∂ j u̇i )(∂ℓuk )ddx, 36.

in which we have ignored boundary terms and assumed that the elastic tensor CPK
i jkℓ is uniform.

The goal now is to compute the total elastic work done during a cyclic evolution in time in
which the material is deformed and then returned to its initial state. By integrating Equation 36
over time, we find that the work is

1W el =
∫
Ẇ eldt =

∫
dt ddxCPK

i jkℓ(∂ j u̇i )(∂ℓuk ) = −
∫

dt ddxCPK
i jkℓ(∂ jui )(∂ℓu̇k ), 37.

in which the last equality is obtained from an integration by parts in time. After relabeling indices
and summing the two equalities in Equation 37 we end up with

1W el =
∫
Ẇ eldt = −

∫
dt ddxCPK,A

i jkℓ (∂ j u̇i )(∂ℓuk ). 38.

Only the antisymmetric part CPK,A
i jkℓ = (CPK

i jkℓ −CPK
kℓi j )/2 of the elasticity tensor appears in

Equation 38. This leads to the central result: IfCPK,A
i jkℓ ̸= 0, then there is always some cyclic defor-

mation such that 1Wel ̸= 0. This result is known as Betti’s theorem (194, 202), and there are many
equivalent statements. For example, the total work done by an elastic medium under an arbitrary
deformation depends only on the final and initial states if and only if CPK,A

i jkℓ = 0. Equivalently,
CPK,A
i jkℓ = 0 if and only if there is a potential V such that Pij = �V/�(�jui). The symmetry of the

elasticity tensor CPK
i jkℓ is known as Maxwell–Betti reciprocity (202, 203).

3.3.3. Conversion between Cauchy and Piola–Kirchhoff stresses. In the above derivation
(Section 3.3.2), we have used the Piola–Kirchhoff stress and Lagrangian coordinates.16 However,
it is sometimes useful to work with the Cauchy stress σij because it does not make reference to the
undeformed material, and it is symmetric when angular momentum is conserved (see the sidebar
titled Antisymmetric Stress). Just as with the Piola–Kirchhoff stress, we may expand the Cauchy
stress as

σi j = σ
(pre)
i j +Ci jkℓ∂ℓuk, 39.

Pi j = σi j + O(∂iu j )2 at first order in displacement gradients. In all of Section 3, �i = �/�xi, where xi is a
position in the undeformed reference state. In Section 2, �i = �/�Xi, where Xi is a fixed (Eulerian) position
in the lab. See the Supplemental Text for further discussion.
16Lagrangian coordinates are required to permute the time and space derivatives betweenEquations 36 and 37.
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where σ
(pre)
i j is the (Cauchy) prestress present even in the undeformedmedium.We emphasize that

Cijkℓ is different from CPK
i jkℓ because it relates the Cauchy stress, not the Piola–Kirchhoff stress, to

the displacement gradients. As shown in the Supplemental Text, the two tensors are related to
linear order in strain by (197)

CPK
i jkℓ = Ci jkℓ + σ

(pre)
i j δkℓ − σ

(pre)
iℓ δ jk. 40.

The takeaway from Equation 40 is that there is no distinction between Cijkℓ and CPK
i jkℓ when the

prestress vanishes σ
(pre)
i j = 0. For the matrix in Equation 28 describing a 2D isotropic system, the

conversion formula in Equation 40 yields

CPK
αβ =


B− p(pre)

2 3 + τ (pre)

2 0 0
A− τ (pre)

2 0 − p(pre)

2 0 0
0 0 µ + p(pre)

2 Ko − τ (pre)

2

0 0 −Ko + τ (pre)

2 µ + p(pre)

2

. 41.

Hence, the constitutive relation in Equation 28 is compatible with a potential energy if and only
if A − 3 = 2τ (pre) = 2Ko.

Equation 26 in Section 3.1 is valid only when the prestress vanishes (and to lowest order in
gradients). When the prestress σ

(pre)
i j is nonzero, the correct expression is Equation 38, which

featuresCPK
i jkℓ instead of Cijkℓ. The expression in Equation 38 is correct to all orders in displacement

gradients if the constitutive relation in Equation 34 is assumed to be exact.

3.3.4. Other geometries and constitutive relations. The above derivation applies to linear
elasticity, in which the stress is linearly proportional to the strain. Going beyond linear elasticity,
a stress–strain relationship σ = f (∇u) is called hyperelastic if it is derived from a strain energy
density (201). Another class of nonlinear constitutive relations specify the rate of change of
the stress as a function of the velocity gradient by σ̇ = f (σ,∇v), in which ∇v is the Eulerian
velocity gradient tensor. Such constitutive relations are called hypoelastic (1) and can also be
classified based on whether they require energy sources and/or dissipation. The above discussion
was also framed in terms of Cauchy elasticity, in which the solid has the same dimension as the
space it lives in. More generally, energy arguments can be considered for slender geometries (see
Section 3.4.5); for constitutive relations involving memory or viscoelasticity (see Section 3.5.4);
for elastoplasticity (204–209), hypoelasticity (210), and damage (211–213); and for materials with
additional geometric degrees of freedom (214), such as the polymer alignment fields (215, 216)
or micropolar degrees of freedom (217–219).

3.4. Where to Find Odd Elasticity?

We now turn to the following questions: What experimental systems display odd elasticity, and
what are the key ingredients to observe it? Many systems exhibit the qualitative ingredients re-
quired for odd elasticity, and it has been suggested as an explanation for observed mechanical
behavior in colloidal and biological systems (149, 157, 196). Odd elastic moduli have also been
determined in realistic simulations of engineered metamaterials (219, 220).

3.4.1. Point particles with noncentral, pairwise interactions. The simplest microscopic pic-
ture of an elastic solid is a collection of masses connected by springs, or more generally, point
particles interacting via pairwise forces (149, 194, 195, 197). This class of models can be described
as follows. Let us consider N particles with positions xα (t ), where α labels particles, and assume
that the total interaction force Fα (x1, . . . , xN ) only depends on the particle positions. This force is
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VIOLATIONS OF NEWTON’S THIRD LAW

In most of this review, we have assumed that linear momentum is conserved.Microscopically, this means that when
two constituents interact, they exert equal and opposite forces on each other (this is Newton’s third law). At the
continuum level, it means that interparticle interactions enter the balance of linear momentum equation as the
divergence of a momentum current (∇ · σ). However, there are many systems in which linear momentum is effec-
tively not conserved (at the level of description that is most convenient; when all degrees of freedom are kept in the
description, the linear momentum of a closed system is conserved). These include collections of self-propelled par-
ticles such as birds or active colloids (221–225), particles interacting through hydrodynamic interactions (226–230)
or through chemical fields (231–233), complex plasma (234), and optical matter (235–237). For solids, a gradient ex-
pansion of the continuum force density then takes the general form fi = f 0i + Aikuk + Bi jk∂ juk +Ci jkℓ∂ j∂ℓuk, where
the familiar second derivative term due to elasticity is no longer the leading contribution (238). For example, in the
context of microfluidic 1D crystals, one can derive a linear wave equation of the form (227)

∂tu = α∂xu+ β∂2
x u.

The first term in this equation results from an effective violation of Newton’s third law and is lower-order in
gradients than one would expect from elasticity. It describes the advection of deformations. The full equation is an
advection-diffusion equation. The dispersion ω(q) = αq ̸= ω(−q) of waves described by this equation is asymmetric,
in contrast with normal elastic waves (described by ∂2

t u = β∂2
x u) for which ω(q) = √

β|q| = ω(−q). In 2D crystals,
violations of Newton’s third law have been shown to spontaneously drive dislocation motion (238). In addition, an
effective interaction violating Newton’s third law emerges between dislocations themselves in odd elastic crystals,
even though the microscopic constituents obey Newton’s third law (197).

said to be potential if Fα
i = −∂V /∂xα

i for some potential function V(x1, . . . , xN ). Here, we do not
assume, as is often done, that the forces are potential. However, we focus on forces that respect
Newton’s third law, as these can be captured by a stress tensor in the continuum (see the sidebar
titled Violations of Newton’s Third Law for when this is not the case). Formally, Newton’s third
law means that the forces Fα can be decomposed as Fα (x1, . . . , xN ) = ∑

β F
αβ (x1, . . . , xN ) with

Fαβ = −Fβα .
For concreteness, let us focus on 2D systems with pairwise forces that are covariant under

rotation. In this case, the force law takes the form Fαβ (x1, . . . , xN ) = F (xα − xβ ), where

F (r) = F ∥(r) r̂ − F⊥(r) ϕ̂ 42.

in which r̂ = r/r, r = ∥r∥, and ϕ̂ = −ϵ · r̂. As illustrated in Figure 6a, F∥(r) is a radial force, and
F¥(r) is a transverse force. The force law is noncentral when F¥ ̸= 0. Notice that such an inter-
action is compatible with a potential if and only if ∇ × F = 1

r ∂r (rF
⊥ ) = 0. Except for the special

case of F¥ ∝ 1/r (relevant to vortices; see Section 3.4.2), the force is nonpotential if F¥ ̸= 0. As
illustrated in Figure 6b–g and discussed in Sections 3.4.2 and 3.4.3, the model in Equation 42
has been used to describe systems ranging from biological and colloidal crystals to skyrmions and
gyroscopic matter within the approximation of pairwise interactions.

Particles interacting via Equation 42 tend to form triangular lattices (also called hexagonal
lattices). Linearizing about a perfect lattice with spacing a, we may write Equation 42 as

F ∥(r) ≈ F ∥(a) − k(r − a) F⊥(r) ≈ F⊥(a) − ka(r − a). 43.

The linearized interactions in Equation 43 can be thought of as (odd)Hookean springs with spring
constant k and a transverse spring constant ka. When F (r) falls off sufficiently rapidly, a useful
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approximation is to keep only the interactions between nearest neighbors. In this approximation,
the ambient pressure p(pre) and ambient torque τ (pre) in a triangular lattice are

p(pre) =
√
3
F ∥(a)
a

τ (pre) = −
√
3
F⊥(a)
a

, 44.

and the isotropic 2D elastic moduli are

B =
√
3
2

(
k+ F ∥(a)

a

)
µ =

√
3
4

(
k− 3F ∥(a)

a

)
45.

A = −
√
3
2

(
ka + F⊥(a)

a

)
Ko =

√
3
4

(
ka − 3F⊥(a)

a

)
. 46.

We see explicitly from Equation 46 that the transverse force gives rise to odd elastic moduli. We
refer to References 8, 16, 17, 194, 197, 238, and 242–245 for more details on the coarse-graining
procedures and to Reference 246 for situations in which disorder is included.

3.4.2. Skyrmions, vortices, and gyroscopes. Describing the motion of particles in lossy envi-
ronments (such as colloids in water) and quasiparticles such as topological defects often involves
a mobility matrix µ, such that ẋ = µ · F̃ ≡ F , where F̃ = −∇V is potential. Such an equa-
tion of motion arises, for example, in collections of fast-spinning, pinned gyroscopes connected
by springs (239, 247–255), skyrmions (256–261), and vortices in superfluids17 (262–270); see
Figure 6d,e. These systems typically form triangular lattices; odd elasticity can also occur in less
ordered systems, provided that they are rigid.

By coarse graining the forces F (e.g., via the Irving–Kirkwood formula; 17), we obtain a con-
tinuum equation of motion of the form γ�tui = �jσ ij, where σ ij = Cijkℓ�ℓuk and γ is a scalar drag
coefficient. Ifµ is asymmetric, thenCijkℓ contains odd elastic moduli. Furthermore, ifµ is isotropic
in two dimensions, then it is proportional to a rotation matrix R(θ ). The effect of µ is then to ro-
tate by an angle θ all the interparticle forces that there would be in a standard overdamped solid.
In this case, the nonzero odd elastic moduli are A and Ko, and they are constrained to the ratio
A/B = Ko/µ = tan θ .

An equivalent coarse-graining method starts with the equation of motion [µ−1] · ẋ = F̃ , where
now the mobility matrix is written on the left-hand side. Written this way, one is led to coarse
grain the force F̃ instead of F . This is a common approach for systems governed by a Lagrangian
of the form L = ∑

α x
α · ϵ · ẋα −V (x1, . . . , xN ) such as skyrmions or gyroscopes (264, 265). We

then obtain a continuum equation of motion of the form γik∂tuk = ∂ j σ̃i j , where σ̃i j = C̃i jkℓ∂ℓuk and
γ = γµ−1. Because F̃ is conservative, the elasticity tensor C̃i jkℓ has no odd elasticity. However,
the complexity has been transferred into the structure of the effective drag coefficient γ which is
now a tensor. Not all combinations of odd elastic moduli can be obtained in this way. Whenever
A/B ̸= Ko/µ, the elastic moduli are not compatible with an asymmetric mobility matrix (195,
197). Likewise, odd elasticity does not capture all of gyroscope mechanics: When not in the fast
spinning limit, gyroscopic systems give rise to a distinct theory known as gyroelasticity (see the
sidebar titled Gyroelasticity).

17Skyrmions and superfluid vortices are topological objects in the magnetic and velocity field, respectively.
They both experience a so-called Magnus force that gives rise to their transverse interactions. Superfluid
vortices have an interaction that goes as 1/r for sufficiently large separation, resulting in complex dynamics
that evade standard elasticity (262).
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GYROELASTICITY

Gyroelasticity provides a continuum description for networks of coupled gyroscopes (239, 247–256). Consider
tracking the displacement x of the tip of a gyroscope pinned to the ceiling. For small deflections, the tip responds
to a Newtonian force F̃ as

(mδi j∂
2
t + αϵi j∂t )x j = F̃i,

where α is proportional to the angular momentum of the gyroscope (248). In the continuum, the force density in
a network of gyroscopes is the divergence of the stress F̃i = ∂ j σ̃i j , where σ̃i j = C̃i jkℓ∂ℓuk. In the limit that α → 0,
one obtains standard elasticity. In the limit that m → 0, we can rewrite the equations as α∂txi = ϵi jF̃j . Because the
motion is perpendicular to the force, as discussed in Section 3.4.2, it is useful to define an effective stress σi j = ϵikσ̃k j .
Defined this way, the effective stress–strain relationship σ ij = Cijkℓ�ℓuk has odd elasticity (though the stress does
not correspond to linear momentum transfer). In general, gyroelasticity interpolates between odd elasticity with
first-order dynamics and standard elasticity with second-order dynamics. Topological boundary modes and other
chiral waves have been studied extensively in these systems (239, 247–256).

The systems discussed in this section share an important conceptual feature: The stress tensor
σ ij does not represent the flux of linear momentum, and the work δW = F · δx does not represent
a physical energy. For example, quasiparticles such as vortices or skyrmions do not have mass or
linear momentum in the usual sense. Likewise, the motion of the tips of pinned gyroscopes is gov-
erned by the transfer of angular momentum (not linear momentum) because the gyroscopes are
anchored to a substrate. In the same way, submerged particles at low Reynolds number discussed
in Section 3.4.3 are not ruled by linear momentum conservation, as they continually exchange
momentum with the fluid. In these situations, the equations of motion are a firmer starting point
than the mechanical notions of force or work.

3.4.3. Spinning particles at lowReynolds number: from driven colloids to starfish embryos.
The interactions in Equation 42 have been used to model 2D aggregates of particles driven to
spin at low Reynolds number. As shown in Figure 6b,c, f,g, examples include Janus particles (148),
magnetic colloids (149), spinning bacteria (271), swimming algae (272), and starfish embryos, for
which the values A/µ ≈ 8 and Ko/µ ≈ 7 have been reported (157). The fluid mechanics in these
systems involves a complex interplay among electromagnetic interactions, steric contact between
particles or with the substrate, and particle shape change (such as ciliary and flagellar motion).Odd
elasticity has been suggested (149, 157) as a natural ingredient in the continuum theory because the
fluid-mediated force between two spinning particles has a nonzero transverse component (273–
275), thus resembling the model in Equation 42. Open challenges include the systematic coarse
graining of the particle system with nonpairwise and long-range hydrodynamic interactions into
an effective continuum theory and the role of additional order parameters (such as the angular
velocity of the particles) in this description.

3.4.4. Active hinges: odd elasticity with conserved angular momentum. In an inertial sys-
tem, the transverse force in Equation 42 inherently requires a torque to be provided to each bond.
The building blocks must therefore have an internal or external reservoir of angular momentum.
However, such a reservoir is not necessary for odd elasticity in systems with nonpairwise interac-
tions (194). For example, the linkage shown in Figure 6i has two angular degrees of freedom, θ1

and θ2, each determined by the location of three vertices. When an angle deforms, it experiences
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a torsional force τ i proportional to the change in angle δθ i, for example, given by[
τ1

τ2

]
=

[
−κ κa

−κa −κ

][
δθ1

δθ2

]
. 47.

Here, κ is the standard bond bending stiffness provided, for example, by the elastic band sub-
tending the joint. The coefficient κa is an antisymmetric coupling that would not appear in
passive systems. Both the usual bond bending stiffness and the odd bending stiffness describe
nonpairwise interactions because the angle at each vertex (and hence the force) is determined by
the locations of three vertices. The active hinge described by Equation 47 can be realized, for
example, in robotic metamaterials with internal motors (see Figure 6i and Reference 220). For
this system, the power done by the torsional forces is Ẇ = τiθ̇i, so the work done along a closed
cycle vanishes if and only if κa = 0.Hence, the torque–angle relationship is nonconservative when
κa ̸= 0. Consequently, a lattice made of such units (Figure 6i) generically exhibits odd elasticity
in the continuum limit. Because the microscopic building block has no unbalanced torques,
A = 0 and τ (pre) = 0 in the continuum description.

3.4.5. Slender geometries: from robotic beams to muscles and biomembranes. So far, we
have primarily considered 2D isotropic media confined to the plane, but this need not be the case.
For example, Figure 6j shows a quasi-1D metamaterial in which each unit cell consists of three
piezoelectric patches mounted on a steel beam (219). The beam has two modes of deformation,
bending (Figure 6j, left) and shearing (Figure 6j, right). These modes of deformation in turn
induce a shear stress σ and a bending moment, M. The constitutive relation between the two
takes the form [

σ

M

]
=

[
µ P
0 B

]
︸ ︷︷ ︸

C

[
s
b

]
. 48.

The matrix C plays the role of the elasticity tensor, and µ and B are the shear and bending moduli,
respectively, that one would expect from Timoshenko–Ehrenfest beam theory (276). An elec-
tronic feedback between the piezoelectric patches induces an additional modulus P. Because the
energy differential is δW = σδs + Mδb, the asymmetric part of C corresponds to a violation of
Maxwell–Betti reciprocity and therefore requires a source of energy. The parity-violating and
nonconservative modulus P also induces unidirectional wave amplification (219).

Theoretical designs for 2D piezoelectric odd elastic materials have been proposed (277). In
addition to quasi-1D structures (219, 220), three-dimensional solids (194, 196), thin membranes
(278), and moderately thick plates (279) have been considered. Odd elasticity can also emerge, in
principle, frommore complex building blocks. For example, as illustrated in Figure 6k, it has been
recently suggested that muscle tissue in suitable operating regimes can be approximately modeled
as a 3D anisotropic odd elastic medium (196, 280).

3.4.6. Phase diffusion in pattern formation: rotating Rayleigh–Bénard convection. Al-
though elasticity is often associated with solidmedia, it can also refer more broadly to the tendency
of a pattern to resist deformation. For instance, in Rayleigh–Bénard convection a fluid is confined
between two horizontal plates at different temperatures, with the hot plate below.When the tem-
perature difference is large enough, an instability develops, leading to the appearance of spatial
patterns (281–283). For example, Figure 6h shows a triangular lattice of hexagonal convection
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NONVARIATIONAL DYNAMICS OF ORDER PARAMETERS

In systems with spontaneously broken symmetries such as critical phenomena and pattern formation, the dynamics
of the order parameter X can be modeled by a dynamical system �tX = f (X). Such a dynamical system is called
nonvariational (or nonpotential) when it is not possible to locally express f as the gradient of a potential ( fi ̸= −�iV;
288–294). In this case, the Jacobian Jij = �ifj ̸= Jji is not symmetric. In contrast, for potential systems, it must be
symmetric as Jij = −�i�jV = Jji. This is reminiscent of odd elasticity and odd viscosity, but here the antisymmetry
enters at the level of the linearized equations of motion rather than in the constitutive relations. The nonvariational
nature of the dynamics leads to various effects that would not occur in purely relaxational systems, including time-
dependent states with complex spatiotemporal structure, some of which have been experimentally observed (295,
296). These include rotating spiral states (295); self-propelled localized structures such as dislocations, Bloch walls,
and defects moving at constant speed (283, 291, 292, 294, 296–300); proliferation of defects (298, 299); localized
pulses (295); spontaneous parity breaking and traveling states (288, 293, 301–303); and spatiotemporal chaos (288,
295, 304, 305). When a noise term is added to the dynamical system, the nonvariational nature of the dynamics is
typically associated with broken time-reversal invariance, a nonvanishing rate of entropy production in the steady
state (289, 290, 306), and nonreciprocal couplings or interactions (307, 308).

cells. Pattern formation is an instance of spontaneous symmetry breaking, in the same way that
translational symmetry is broken by a solid. Large wavelength modulations of the pattern are
therefore slow variables that describe the elastic response of the pattern: Gentle perturbations
tend to relax in the same way as disturbances in an overdamped crystal.

In rotating Rayleigh–Bénard convection, the fluid is put under rotation (284–287), leading to
Coriolis forces and a nonvariational dynamics for the order parameter describing the pattern (see
the sidebar titled Nonvariational Dynamics of Order Parameters). The relaxation of the pattern is
then described by an equation of motion formally identical to that of elastodynamics. To see that,
let us describe a slightly deformed hexagonal pattern as

T (x, t ) = T0

∑
j

eiq j ·[x−u(t,x)] + c.c., 49.

in which T is the temperature field in a horizontal plane (other variables can be deduced from
T); q1 = (0, 1), q2 = (−√

3/2,−1/2), and q3 = (
√
3/2,−1/2) are the wave vectors of the Fourier

modes producing the hexagonal pattern; u(x, t ) is a slow phase shift describing the deformation
of the pattern; T0 a constant; and c.c. means complex conjugate. The dynamics of the effective
displacement field u(x, t ) is then (309–311)

∂tu = D∥∇ (∇ · u) +D⊥1u +D×
∥ ϵ · ∇ (∇ · u) +D×

⊥ϵ · 1u, 50.

whereD∥,D¥,D×
∥ , andD

×
⊥ are termed phase diffusivities.Equation 50 is identical to the equation of

motion (Equation 31) of an overdamped (ρ → 0) 2D isotropic odd elastic system, with the phase
diffusivities playing the role of the elastic moduli: D∥ = B/γ ,D¥ = µ/γ ,D×

∥ = −A/γ , and D×
⊥ =

Ko/γ .We emphasize that although the displacement field is a slow variable in these systems, there
is a priori no distinguished notion of stress or particle in the system.

3.5. Odd Elastic Phenomenology

The presence of odd elasticmoduli andmicroscopic nonconservative forces gives rise to distinctive
phenomena. Below we detail these effects, which range from self-propelled topological defects to
topological waves.
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3.5.1. Topological defects. A crystalline topological defect is an imperfection in a crystal struc-
ture that cannot be removed by local rearrangements of the particles (see References 102, 198,
and 312–314 for an introduction). These defects act as quasiparticles, and their motion governs
the large-scale rearrangement of the crystal. For example, in a hexagonal lattice, an extra row of
atoms inserted into the crystal structure typically results in a pair of atoms with five and seven
neighbors (in a Voronoi tessellation) known as a dislocation (see Figure 7d). The dislocation
carries a topological charge, the Burgers vector b j = ∮

∂iu jdri, where the contour encloses the
dislocation of interest. Transverse forces as in Equation 42 fundamentally modify how the de-
fects move and interact. Spontaneous dislocation motion and nucleation have been reported in
experiments on colloidal crystals (148, 149). In addition, theoretical arguments suggest that the
interaction between defects can become nonmutual (197). Even without defect motion, transverse
forces can also modify the static strain around stationary topological defects (157, 197).

For example, a dislocation is said to glide when the two rows of atoms containing the fivefold-
and sevenfold-coordinated particles slide past each other. The dislocation moves in the same
direction as the fivefold particle. For forces with a clockwise handedness, the bonds that do not
cross the glide plane favor dislocation motion to the right, as shown in Figure 7d. However,
the bonds that cross the glide plane push the dislocation in the opposite direction (as shown in
Figure 7e). These two effects are in competition with each other. The effect of the bonds that
do not cross the glide plane can be captured by a continuum notion known as the Peach–Koehler
force, FPK

i = −bkσ (pre)
k j ϵ ji, where bk is the Burgers vector (102, 312–314), and σ

(pre)
i j = τ (pre)ϵi j is

the torque density induced by microscopic transverse forces (149, 197, 238). The contribution
from the bonds that cross the glide plane evades a continuum explanation, because it arises from a
difference in forces separated by one lattice spacing a. Nonetheless, this small length-scale effect
can be captured by a microscopic core force F core = 1

a

∫
C F (r) · dr, where F (r) is the microscopic

interaction, and C is an integration contour defined by microscopic particle trajectories (197).
When the transverse forces are strong enough, the defects can spontaneously glide in a direction
determined by the stronger of the two forces FPK or F core. More generally, the interactions
between topological defects (mediated by elastic strains) do not fall within the typical paradigm of
conservative field theories (see also the sidebar titled Nonvariational Dynamics of Order Param-
eters). An open question, relevant for systems ranging from skyrmion lattices (257) to complex
fluids (148, 149), is how modified defects dynamics affect the nature of plastic deformation and
melting.

3.5.2. Topological waves. Nonconservative forces can be useful for constructing mechani-
cal systems with nontrivial band topology (see References 58, 59, and 199 for introductions to
topological waves). Networks of bonds obeying Equation 42 can behave as so-called Chern in-
sulators (194, 195, 316), where unidirectional edge modes can propagate at the boundary of the
system (see Figure 7b). Because the forces are nonconservative, the dynamical matrix governing
the linear waves is in general non-Hermitian, leading to features such as the non-Hermitian skin
effect, in which the bulk modes are localized at one edge of a 1D system, and exceptional points,
in which the eigenvectors of the dynamical matrix do not span the Hilbert space (58, 199). For
instance, unidirectionally amplified waves arising from the non-Hermitian skin effect have been
observed in the beam in Figure 6j (219) and in 1D chains of the active hinges in Figure 6i (220).
We refer to Reference 196, and references therein, for more details.

3.5.3. Nonlinearities and noise. In solids with energy injection, instabilities are generic.
For example, when ρ ̸= 0 and Ko is sufficiently large, the linear odd elastic waves described by
Equation 32 become unstable (194; see Figure 7a). Either a linear instability results in the
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Odd viscoelastic
modulus: an
antisymmetric
component of the
linear response tensor
Mijkℓ

destruction of solid material or it must be stabilized by nonlinearities, leading to nonlinear
dynamical structures such as limit cycles and chaotic attractors. For example, consider a single
particle attached to the origin by a force law of the form of Equation 42:

γ

[
u̇x
u̇y

]
= −

[
k ka

−ka k

][
ux
uy

]
− k′∥u∥2

[
ux
uy

]
, 51.

where u = (ux, uy ) is the displacement of the particle from the origin, γ > 0 is a damping rate,
k is the normal spring constant, ka is the odd spring constant, and k′ > 0 is a nonlinear spring
constant. When k changes from positive to negative, the system bifurcates from having a stable
fixed point to a stable limit cycle through a Hopf bifurcation (see, e.g., 317), after which the
displacement rotates at a fixed frequency in the plane.

Limit cycles and other attractors can prove useful, for instance, to realize locomotion (318). For
example, in Reference 220, when the active hinges from Section 3.4.4 are put on a ring, the force
law and dissipation create a limit cycle of shear deformations.When the ring is placed on a ramp,
the limit cycle causes repeated contact with the surface, allowing the ring to propel itself, even
against gravity (see Figure 7c). In References 315 and 319 the active hinge is immersed in a viscous
fluid, and the limit cycle results in swimming behavior (see Figure 7f ). The interplay between
nonconservative forces and noise has also been studied (320, 321). In the context of the swimming
hinges, it is shown that random fluctuations give rise (on average) to persistent motion (315, 319).

3.5.4. Odd viscoelasticity. The linear response of a material need not be instantaneous in time.
To take a finite-time response into account, the mechanical response of a material to deformations
can be captured by the equation

σi j (t ) =
∫ ∞

−∞
Mi jkℓ(τ )∂ℓu̇k(t − τ )dτ , 52.

in which a finite-time response kernelMijkℓ(t) has been introduced, in a way similar to electrody-
namics in materials (32, 322, 323). Viscosity and elasticity are special cases withMijkℓ(τ ) = ηijkℓδ(τ )
andMijkℓ(τ ) = Cijkℓ2(τ ), where 2(τ ) is a Heaviside step function. In the same way as for viscosity
and elasticity, a medium is called odd viscoelastic when

Mi jkℓ ̸= Mkℓi j . 53.

A coefficient in the antisymmetric part ofMi jkℓ is termed an odd viscoelastic modulus. The work
done over a closed cycle of deformation of period T is given by18

1W =
∫ T

0
σi j∂ j u̇i(t )dt = −i

∑
ω

ωσi j (ω)∂ j ūi(ω) = −
∑

ω

ω2∂ j ūi(ω)Mi jkℓ(ω)∂ℓuk(ω), 54.

where the sum is over ω = 2πn/T for integer n, and the overline represents complex conjuga-
tion (149, 196, 219, 324). When the material is passive, the work must be nonpositive for all
possible cycles, which implies that Mijkℓ(ω) (viewed as a linear operator on rank two tensors, for
instance, using the matrix representation of Sections 2.1.1 and 3.2.1) must be positive semidefinite
for all frequencies ω (325–327). In rheology,Mijkℓ(ω) is often written as

iωMi jkℓ(ω) = G′
i jkℓ(ω) + iG′′

i jkℓ(ω), 55.

where the storage modulus G′
i jkℓ contains (odd and even) elasticity, and the loss modulus G′′

i jkℓ
contains (odd and even) viscosity. The adjectives “loss” and “storage” are misnomers when

18For simplicity, we are ignoring the distinction between the Piola–Kirchhoff and the Cauchy stresses in this
discussion.
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Figure 8

Fluctuating hydrodynamics of odd viscoelastic fluids. (a) A collection of dumbbells subject to active torques interacting with each other
and (b) a collection of spinning granular particles interacting with each other; each forms a chiral active fluid. (c) The evolution of the
fluctuating space-averaged stress in the system of panel b can be described as a chiral random walk in the space of shear stresses, whose
correlations contain normal and odd shear viscosities. (d) Stress–stress correlations in the system of panel a. The viscosities are related
to the stress–stress correlations through a Green–Kubo formula (see Section 2.3.1). Here, the component ηxxyx is considered. (e, f ) The
Fourier-Laplace-transformed stress–stress correlations of the system of panel b can be seen as complex-valued frequency-dependent
viscoelastic moduli η̃(ω) and η̃o(ω). Here, ω0 is a characteristic frequency related to the tumbling time required for a particle to
randomize its direction (6). Panels d–f show that the systems described in panels a and b exhibit an odd viscoelastic response. The
complex shear viscosity η(ω) = η′(ω) − iη′′(ω) is related to the (complex) dynamic shear modulus G(ω) = G′(ω) + iG′′( f ) through
η′ = G′′/ω and η′′ = G′/ω, where ω is the angular frequency (322). Panels a and d adapted with permission from Reference 82. Panels b,
c, e, and f are adapted with permission from Reference 6, copyright 2021 Springer Nature.

antisymmetric terms are present: The antisymmetric part of G′′
i jkℓ does not contribute to dissipa-

tion, and the antisymmetric part of G′
i jkℓ is capable of injecting or dissipating energy. Importantly,

at finite frequency, passive materials can still have an antisymmetric component of G′
i jkℓ so long as

Mijkℓ remains positive-definite.
Odd viscoelasticity has been considered in the context of minimal spring-dashpotmodels (328),

instabilities in chiral crystals (149), and quantum Hall effects with a tilted magnetic field (85), and
in simplified models of muscles (196, 280). The competition between viscosity and elasticity has
been suggested as a mechanism for wavelength selection at the onset of instability (149, 194).
Notably, the frequency dependence ofG′

i jkℓ andG
′′
i jkℓ has been measured in numerical simulations

of chiral active fluids (see Figure 8 and References 6 and 82), where it can be captured by simple
analytical models (6).

4. CONCLUSION

In this review, we have explored fluid and solid mechanics in which viscosity does not dissipate
energy and elasticity does not store it. Realistic models of complex media will almost always in-
volve additional effects, e.g., antisymmetric stress, other active stresses, coupled fields, and strong
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nonlinearities. From the point of view of phenomenological modeling, the virtues of the odd vis-
cosity and odd elasticity formulations lie in their simplicity: They only require deformations as a
degree of freedom, and momentum conservation. By combining advances in statistical mechanics,
hydrodynamics, dynamical systems, and experimental methods, odd viscosity and odd elasticity
may provide a window into the universal behavior of matter at long length scales.
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