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Abstract

This article begins with an introduction to the modeling of discrete event
systems, a class of dynamical systems with discrete states and event-driven
dynamics. It then focuses on logical discrete event models, primarily au-
tomata, and reviews observation and control problems and their solution
methodologies. Specifically, it discusses diagnosability and opacity in the
context of partially observed discrete event systems. It then discusses super-
visory control for both fully and partially observed systems. The emphasis is
on presenting fundamental results first, followed by a discussion of current
research directions.

141

https://doi.org/10.1146/annurev-control-053018-023659
https://doi.org/10.1146/annurev-control-053018-023659
https://www.annualreviews.org/doi/full/10.1146/annurev-control-053018-023659


AS02CH06_Lafortune ARI 27 March 2019 12:35

1. INTRODUCTION

Discrete event systems (DESs) are dynamic systems with two defining characteristics: Their state
spaces are discrete and potentially infinite, and their dynamics are event driven as opposed to time
driven. This means that there are no differential or difference equations in this class of systems.
Events that occur asynchronously (in general) cause a jump in the state space, from one state to
another. The set of events, denoted by E, is also a discrete set; the discussion that follows assumes
that E has finite cardinality.

There are dynamic systems that are inherently modeled as DESs; consider, for instance, model-
ing the rules of a communication protocol, the movement of parts in an automated manufacturing
system, or the automation logic in a process control system. However, DESs can also be obtained
by abstracting, in both space and time, the behavior of cyber-physical systems. For instance, one
can abstract the possible trajectories of a robot in physical space by constructing a discrete grid
over that space and defining events for transitions from one cell of the grid to an adjacent one.

The behavior of a DES is therefore captured by a discrete transition structure, where the
nodes represent the states and the arcs connecting the nodes represent all the possible transitions
between states that are caused by the occurrence of events. Such discrete transition structures
can take different forms, depending on what attributes are to be attached to them for logical
or quantitative analyses. This article focuses primarily on automata models of DESs but also
discusses labeled transition systems and Petri nets. After presenting these modeling formalisms, it
reviews observation and control problems for DESs and presents general solution methodologies.
Specifically, it reviews the properties of diagnosability and opacity in the context of partially
observed DESs. It then discusses supervisory control for both fully and partially observed systems,
when logical specifications are imposed on the controlled behavior. The emphasis is on reviewing
fundamental results first, followed by a discussion of current research directions.

2. MODELING OF DISCRETE EVENT SYSTEMS

This section contains introductory material that is necessary to make the review accessible to
nonexperts; more advanced topics are discussed in the subsequent sections on observation and
control. For more details on the topics covered in this section, see References 1–6.

2.1. Modeling Formalisms

Discrete event modeling formalisms must capture the event-triggered transitions between the
discrete states of a DES. The most common modeling formalism is that of automata, which has a
nice connection with formal language theory.

2.1.1. Automata. A deterministic automaton, denoted by G, is a six-tuple

G = (X , E, f , �, x0, Xm),

where X is the set of states, which could be infinite; E is the finite set of events associated with
the transitions in G; f : X × E → X is the transition function; f (x, e) = y means that there is
a transition labeled by event e from state x to state y (in general, f is a partial function on its
domain); � : X → 2E is the feasible event function; �(x) is the set of all events e for which f (x, e)
is defined; x0 is the initial state; and Xm ⊆ X is the set of marked states. (Given a set A, the notation
2A means the power set of A, i.e., the set of all subsets of A.) When discussing several automata,
we will index the various elements with the name of the automaton if needed to avoid confusion:
XG, EG, and so forth.
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A nondeterministic automaton is a six-tuple

G = (X , E ∪ {ε}, f , �, X0, Xm),

where these objects have the same interpretation as in the definition of a deterministic automaton,
with two changes (here, ε denotes the empty string): (a) f is a (partial) function f : X ×(E∪{ε}) →
2X , i.e., f (x, e) ⊆ X whenever it is defined, and (b) the initial state may itself be a set of states, i.e.,
X0 ⊆ X . (This abuses the notation slightly and uses the same symbol, f , for the transition function
of both a nondeterministic automaton and a deterministic one; unless specified otherwise, the
discussion below applies to both cases.)

Automata (deterministic or nondeterministic) are used to represent and manipulate formal
languages over event set E. Denote by E∗ the set of all finite strings of elements of E; this
operation is called the Kleene closure. The transition function f of a deterministic automaton
from domain X × E is extended to domain X × E∗ in the recursive manner:

f (x, ε) := x,

f (x, se) := f [ f (x, s ), e] for s ∈ E∗ and e ∈ E.

A similar extension is done for the transition function of a nondeterministic automaton, but the
details are omitted.

A DES is then modeled as an automaton G that represents two languages: L(G) and Lm(G).
Their definitions for a deterministic (X0 = {x0}, in this case) or nondeterministic G are as follows:
The language generated by G is defined as

L(G) :={s ∈ E∗ : (∃x0 ∈ X0) f (x0, s) is defined}

and the language marked by G is defined as

Lm(G) :={s ∈ L(G) : (∃x0 ∈ X0) f (x0, s) ∩ Xm 	= ∅}.

String s is in L(G) if and only if it corresponds to an admissible path in the transition structure of
G, starting at an initial state. L(G) is prefix-closed by definition, meaning that every prefix of every
string in L(G) is also in L(G). If f is a total function over its domain, then necessarily L(G) = E∗.
The set of states that can be reached from X0 by a string in L(G) is the set of accessible states of
G. In practice, we assume that all states in X are accessible (i.e., states that are not accessible are
removed at modeling time).

Language Lm(G) is the subset of L(G) consisting only of the strings s for which f (x0, s)∩Xm 	=
∅—i.e., these strings correspond to paths in the transition structure that end at a marked state (or
may end there, if G is nondeterministic). Language Lm(G) is not prefix-closed in general, unless
Xm = X .

Marking of states is used to study behavioral properties such as deadlock and livelock. A deadlock
state of deterministic automaton G is a state where �(x) = ∅ but x /∈ Xm; this means that the system
has no possible transition at the current state, and that state is not marked. A livelock occurs where
there is a strongly connected component containing at least two states, none of them marked, and
from which no marked state is reachable by following the transitions in G. The states of G that
can eventually reach a marked state are called coaccessible. The notion of nonblockingness is used
to formalize deadlock and livelock analysis. Automaton G is said to be blocking if Lm(G) ⊂ L(G),
where the set inclusion is proper, and nonblocking when Lm(G) = L(G). Thus, if an automaton
is blocking, deadlock and/or livelock can happen. In a nonblocking automaton, all states are
coaccessible and there are no deadlocks or livelocks.
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When using automaton models, we often exploit the duality between regular languages and
their finite-state automata representations. One can think of finite-state automata as a simple data
structure to represent regular languages. This duality is exemplified by stating properties of DESs
in terms of formal languages and then verifying them using automaton models.

2.1.2. Labeled transition systems. A modeling formalism that is widely used in formal methods
is that of labeled transition systems. A labeled transition system, denoted by T , is a discrete
transition structure that can be viewed as a generalization of an automaton with outputs (or
Moore automaton). We define a labeled transition system as a six-tuple T = (X , E, ft, X0, AP, L),
where X is the state set, X0 ⊆ X is the initial state set, and E is the event set. T is in general
nondeterministic, and ft : X × (E ∪ {ε}) → 2X is the corresponding partial transition function.
The transitions of T are labeled by events in the set E or by ε, according to the function ft, as in
an automaton; this labeling is the reason for the qualifier “labeled” in the term labeled transition
system. In many cases, the transitions of T are not labeled—i.e., the event set E is not used. In this
case, we drop the adjective “labeled” and refer to the model as a transition system. A feature that
differentiates transition systems from automata is the set AP, which is a set of atomic propositions
(or propositional symbols) to be associated with the states of T . Such atomic propositions are used
to express desired system properties as logical formulas in temporal logic, such as linear temporal
logic or computation tree logic. The function L is used to map the states of T to the set of atomic
propositions that hold true in each state—that is, L : X → 2AP is the labeling function of T .

When studying the dynamical behavior of a labeled transition system, the focus is typically not
on the string of events generated, but rather on the sequence of states and events generated, called
a run, along with the set of atomic propositions at each state of the run.

2.1.3. Petri nets. Another modeling formalism for DESs that is widely used is that of Petri nets.
Petri nets are also discrete structures, but unlike automata or labeled transition systems, they do
not explicitly represent each state of the system. Instead, they use a bipartite discrete structure
with place nodes and transition nodes to model pre- and postconditions on the execution of events,
using a token mechanism to capture these conditions. The transition nodes of the Petri net can be
labeled by events, leading to a labeled Petri net that will then generate a formal language. However,
the primary advantage of the Petri net modeling formalism is that the state of a Petri net (which
is the vector of token counts in each of the places) is numerical, as each entry takes nonnegative
integer values. One can then write a state update equation that depends on the incidence matrix
of the Petri net structure. Using this incidence matrix and the state vector, one can leverage linear
algebraic techniques to study properties of Petri nets. A recent review by Giua & Silva (7) provides
an overview of the historical development of the field of Petri nets from the perspective of systems
theory and automatic control.

2.2. Composition Operation

Models of DESs are rarely obtained in a monolithic manner. In practice, each system component
is modeled individually, and the overall DES is the composition of the individual models. This
section reviews the most common composition operation for automata.

2.2.1. Parallel composition of automata. Consider two (deterministic) automata G1 =
(X1, E1, f1, �1, x01, Xm1) and G2 = (X2, E2, f2, �2, x02, Xm2). G1 and G2 are assumed to be ac-
cessible (i.e., all states that are not reachable from their respective initial states have been deleted,
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as have the transitions attached to these states); this is the accessible operation, denoted by Ac. No
assumptions are made at this point about the two event sets E1 and E2.

The parallel composition of G1 and G2 is the automaton

G1||G2 := Ac[X1 × X2, E1 ∪ E2, f , �1||2, (x01, x02), Xm1 × Xm2],

where

f [(x1, x2), e] :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[ f1(x1, e), f2(x2, e)] if e ∈ �1(x1) ∩ �2(x2)
[ f1(x1, e), x2] if e ∈ �1(x1) \ E2

[x1, f2(x2, e)] if e ∈ �2(x2) \ E1

undefined otherwise

and thus �1||2(x1, x2) = [�1(x1) ∩ �2(x2)] ∪ [�1(x1) \ E2] ∪ [�2(x2) \ E1].
In the parallel composition, a common event (i.e., an event in E1 ∩ E2) can be executed only

if the two automata both execute it simultaneously. Thus, the two automata are synchronized on
the common events. The other, private events—namely, those in (E2 \ E1) ∪ (E1 \ E2)—are not
subject to such a constraint and can be executed whenever possible.

If E1 = E2, then all transitions are forced to be synchronized, yielding

L(G1||G2) = L(G1) ∩ L(G2),

Lm(G1||G2) = Lm(G1) ∩ Lm(G2).

If E1 ∩ E2 = ∅, then there are no synchronized transitions, and G1||G2 is the concurrent behavior
of G1 and G2. This is often termed the shuffle of G1 and G2.

In the general case,

L(G1||G2) = P−1
1 [L(G1)] ∩ P−1

2 [L(G2)],Lm(G1||G2) = P−1
1 [Lm(G1)] ∩ P−1

2 [Lm(G2)],

where we have used projection operations and their inverses. Specifically, the projection operation

Pi : (E1 ∪ E2)∗ → E∗
i for i = 1, 2

is defined as follows:

Pi (ε) := ε,

Pi (e) :=
{

e if e ∈ Ei ,
ε if e 	∈ Ei ,

Pi (se) := Pi (s)Pi (e) for s ∈ (E1 ∪ E2)∗, e ∈ (E1 ∪ E2).

The corresponding inverse projection P−1
i : E∗

i → 2(E1∪E2)∗ is obtained as follows: For a string
t ∈ E∗

i , we have that

P−1
i (t) :={s ∈ (E1 ∪ E2)∗ : Pi (s) = t};

that is, P−1
i (t) returns all the strings in the domain of Pi that are mapped to projected string t.

These definitions of projection and inverse projection are extended to sets of strings in the obvious
manner.

2.2.2. Composition of transition systems and Petri nets. Labeled transition systems and
Petri nets can also be composed by parallel composition or related operations. In the case of
Petri nets, composition of models can often be done by overlapping places that represent the
coupling between different components; when this is possible, we refer to the component models as
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place-bordered Petri nets. In this case, the size of the model (i.e., the Petri net structure) grows
linearly in the number of components.

2.3. Levels of Abstraction

The discussion in this article focuses on logical models of DESs, where the behavior is described
by strings of events. The ordering of these events is essential, but exact timing information is not
included, which is referred to as the logical level of abstraction. When timing information is added
to a logical DES model, we obtain a timed model, such as a timed automaton (8). The temporal
level of abstraction is needed when dealing with deadline constraints, for instance. By definition,
it is richer than the logical level. Finally, when statistical information about the occurrence of
events in a state is added to a logical or a timed DES model, we obtain a stochastic (timed) DES
model. There are a large variety of such models, depending on the statistical assumptions made
about the transition probabilities and about the time durations spent in states between transitions.
Stochastic or probabilistic automata are extensions of logical ones where transition probabilities
are included in the model but time durations in states are not explicitly accounted for. Generalized
semi-Markov processes are a general class of stochastic processes generated by stochastic timed
automata; continuous-time Markov chains are a widely studied special class of those (see, e.g., 1).
The stochastic level of abstraction is needed when quantitative performance criteria need to be
evaluated, in a probabilistic sense. The stochastic level is richer than the logical or temporal levels.
These levels of abstraction explain the large and often disparate literature on DESs.

At each level of abstraction, several classes of problems arise, such as behavior analysis (reach-
ability of states, state estimation, etc.), control to achieve a given specification, optimization of a
given performance criterion (qualitative or quantitative), and simulation. Discrete event simulation
has been studied for a long time, primarily in the operations research community.

The remainder of this review focuses on the logical level of abstraction and on specifications that
do not involve numerical quantities. We discuss observation problems that involve state estimation
and model-based inferencing, as well as supervisory control problems for logical specifications that
involve safety and nonblockingness.

3. OBSERVATION OF DISCRETE EVENT SYSTEMS

This section discusses two problems related to observing the behavior of a DES: event diagnosis
and opacity. It considers automaton models and assumes that the automaton under considera-
tion is either nondeterministic or partially observed. In a partially observed automaton, the set of
events E is partitioned as E = Eo ∪ Euo, where Eo is the set of observable events and Euo is the
set of unobservable events; these two sets are disjoint. The projection operation Po : E∗ → E∗

o is
defined similarly to the above Pi to erase unobservable events. In this context, the notion of an
observer automaton, or simply an observer, is central. The observer automaton of a nondetermin-
istic or partially observed automaton is a determinized version obtained by the standard subset
construction method (see, e.g., 1). In order to formalize this process, we define two operators.

The unobservable reach of the subset of states S ⊆ X is given by

UR(S) :={x ∈ X |(∃u ∈ S)(∃s ∈ E∗
uo) x = f (u, s)}. 1.

The observable reach (or next states) of the subset of states S ⊆ X given the execution of observable
event e ∈ Eo is defined as

NX (S, e) :={x ∈ X |(∃u ∈ S) x = f (u, e)}. 2.
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The observer of G, denoted by Obs(G), is the deterministic automaton Obs(G) =
(Xobs, Eo, fobs, xobs,0), where Xobs ⊆ 2X is the state space, Eo is the set of observable events, the
initial state is defined as xobs,0 = UR(X0), and the transition function fobs : Xobs × Eo → Xobs is
defined as fobs(S, e) = UR[NX (S, e)]. In practice, only the accessible part of the observer from its
initial state is constructed; thus, Xobs is the set of reachable states. By construction, L[Obs (G)]
equals Po[L(G)]. We call the state fobs[xobs,0, Po(s )] reached in the observer by string s ∈ L(G) the
current state estimate associated with string s, where we have extended the transition function of
the observer to strings.

3.1. Diagnosability

Event diagnosis is an important issue, not only for faults but also for attacks that may occur on
a given system. An unobservable event ed is diagnosable in language L(G) if every occurrence of
ed can be detected with certainty in a bounded number of events after its occurrence. To avoid
dealing with terminating traces, we assume that L(G) is live—i.e., (∀x ∈ X )�(x) 	= ∅. Formally,
ed ∈ Euo is diagnosable in live language L(G) with respect to projection Po if the following holds:

(∃n ∈ N)(∀s : ed ∈ s)(∀t ∈ L(G)/s)[||t|| ≥ n ⇒ D], 3.

where the diagnosability condition D is

ω ∈ P−1
o [Po(st)] ∩ L(G) ⇒ ed ∈ ω. 4.

In the above, ed ∈ s means that string s contains event ed, L(G)/s is the set of all strings t such
that st ∈ L(G), and ||t|| is the length (number of events) of t. The set P−1

o [Po(s t)] ∩ L(G) is the
best estimate of what the system could have done based on observing st.

This notion of diagnosability was introduced by Sampath et al. (9). It is a strong requirement,
as it invokes the universal quantifier twice: For every trace of events that ends with event ed and for
every continuation of that trace, the event in question must eventually be diagnosed—i.e., we are
sure that it did occur in the past. Since logical discrete event models are employed, “eventually”
is quantified by counting the number of events after ed; the existential quantifier captures the
existence of such a bound, denoted by n, over the entire system language.

Three problem domains pertain to event diagnosis: how to perform diagnosis online, how to
determine (offline) whether diagnosability holds for a given system, and how to enforce diagnos-
ability if it does not hold. Regarding the third domain, the two possible enforcement techniques
are to restrict the behavior of the system by supervisory control, in order to prevent event strings
where diagnosability is violated (this is a special instance of the problem discussed in Section 5),
and to dynamically adjust the observations emitted by the system by turning sensors on or off, in
order to guarantee diagnosability. The second is known as the problem of sensor activation.

An important concept used in solving the first two problems above is that of the diagnoser
automaton, or simply the diagnoser, denoted by Diag(G). The diagnoser is a refined version of the
observer, where labels are attached to system states as a way of memorizing the past occurrence of
the event ed to be diagnosed. Formally, Diag(G) equals Obs(G||Alabel), where Alabel is a two-state
automaton with state set {N , Y }. Label N represents that event ed has not occurred. Upon an
occurrence of ed, Alabel transitions to its state Y , which represents that ed has occurred, and then
it stays in that state.

The problems mentioned above have been investigated extensively in the literature over the
last 20 years for both automaton and Petri net models. Zaytoon & Lafortune (10) provided a
thorough survey of the state of the art as of 2013, Lafortune et al. (11) made historical remarks
on the development of diagnosability theory for DESs, and Sears & Rudie (12) reviewed sensor
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activation in general (not only for diagnosability). Here, we discuss some recent research trends
and challenges.

One research trend is to study the diagnosability properties of infinite-state systems, modeled
by unbounded Petri nets; a Petri net is unbounded if the token count in one or more places can grow
arbitrarily large. Several works have tackled this problem, using different approaches that either
adapt techniques developed for diagnosability analysis of automata or exploit the representation
of the Petri net state as a vector (see, e.g., 13–15). For infinite-state systems, the definition of
diagnosability needs to be adjusted. In Equation 3, the first two clauses are swapped, so that the
bound n may depend on the string s. This is because a uniform bound may not exist over all strings
that contain ed, unlike in the case of finite-state automata.

Quantifying the diagnosability properties of a system in terms of a probabilistic model is an
important problem that is receiving increasing attention. Thorsley & Teneketzis (16) published
an important paper that laid the groundwork in this area and developed two types of diagnosability
conditions. Recently, many groups have further developed this line of research (see, e.g., 17, 18).

Finally, some recent works have leveraged the theory of diagnosability to address the detec-
tion of attacks on sensors and actuators in feedback control loops in cyber-physical systems (see
Section 5.2). In this context, attacks on sensor readings that, for instance, erase a genuine event sent
from the sensor to the supervisory controller are modeled as unobservable events. The defender’s
goal is to make such events diagnosable, while the attacker’s goal is to keep its attack stealthy by
avoiding such diagnosis.

3.2. Opacity

Opacity is an information flow property that captures the ability to keep some information about
the system secret from an eavesdropper, termed an intruder, that knows the structure of the system
and monitors its observable behavior. The information is kept secret in the sense that it is never
known for sure by the intruder. Let us state the definition of current-state opacity. The context is
that we have a partially observed deterministic automaton G and a set of secret states Xsecret ⊂ X .
Current-state opacity holds if the following condition is true:

∀t ∈ L(G), ∃s ∈ L(G) : f (x0, t) ∈ Xsecret ⇒ [ f (x0, s) /∈ Xsecret and Po(s) = Po(t)]. 5.

In words, if string t reveals the secret (by ending in a secret state of G), then there must exist
a distinct string s that does not reveal the secret and is observationally equivalent. Hence, upon
observing string Po(t), the intruder’s estimate of the state of the system will contain both a secret
state [ f (x0, t)] and a nonsecret state [ f (x0, s )]. Indeed, the verification of current-state opacity is
easily done using Obs(G): It holds if no state of Obs(G) is contained in Xsecret.

By changing the form of the secret, other notions of opacity can be defined, such as initial-state
opacity (Xsecret is a subset of the set of initial states) and language-based opacity (there is a secret
language) (see 19, 20). Moreover, the inferences made by the intruder need not be only for the
current-state estimate; they might involve smoothing, i.e., inferences about past states using ob-
servations up to the present. The notions of K -step and infinite-step opacity fall into this category.

Opacity is an active research area in DESs. As it is a very general notion, opacity can be
adapted to model a variety of privacy and security issues that arise in modern technological systems.
Similarly to work on diagnosability, research efforts on opacity are centered around (a) the efficient
verification of various notions of opacity, both for finite-state automata and for Petri nets that
model DESs with infinite state spaces, and (b) the enforcement of opacity for nonopaque systems,
using a variety of techniques. Jacob et al. (21) provided an excellent overview of the research on
opacity up to 2016; the historical remarks by Lafortune et al. (11) also cover the emergence of this
avenue of research in DESs.
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4. CONTROL OF DISCRETE EVENT SYSTEMS: FULL OBSERVATION

The synthesis of a supervisor (or controller) for a DES whose transitions are fully observed is
a well-understood problem for a large class of specifications. This section briefly discusses the
salient features of two synthesis approaches, which in fact have much in common. The discussion
is at a conceptual level, and the reader is referred to the recent literature for formal presentations
of the topics discussed.

4.1. Supervisory Control Theory

In supervisory control theory, initiated in seminal work by Ramadge and Wonham (see 22–25),
the DES is modeled as a deterministic automaton, G, and the specification for the control problem
is expressed as another deterministic automaton, H, which is assumed to be trim (accessible and
coaccessible). The control mechanism involves a supervisor, denoted by S, that dynamically enables
or disables the controllable events of G. The set of controllable events Ec ⊆ E is identified at
modeling time and represents the available actuation capabilities of the system. The set Euc = E\Ec

is the set of uncontrollable events. The supervisor S is a function from strings in L(G) to control
actions (enabled events by convention) in the set 2E . The controlled system is denoted by S/G and
can be interpreted as another DES, whose languages generated [L(S/G)] and marked [Lm(S/G)]
are subsets of L(G) and Lm(G), respectively, due to the disablement of transitions of G.

In practice, the function S is encoded, or realized, as another (deterministic) automaton R,
where it is required that R be trim and that all its states be marked. Moreover, ER = E
by convention. The control actions of S are then effectively captured by the rules of paral-
lel composition R||G, subject to the controllability condition: S should never disable a fea-
sible uncontrollable event in G, i.e., if the composed system R||G is at state (xR, xG), then
�G(xG) ∩ Euc ⊆ �R(xR). Under these conditions, we have that L(S/G) = L(G) ∩L(R) and
Lm(S/G) = Lm(G) ∩L(R) = Lm(G) ∩L(S/G). Thus, one can think of the controlled system
S/G as the automaton R||G.

The language generated by H captures the desired safety specification for the controlled system.
Specifically, L(H) ⊆ L(G) is the set of legal behaviors imposed on the uncontrolled behavior
L(G). For the sake of simplicity, assume that EH = E and that all the states of H are marked.
The nonblocking specification is that the controlled system S/G should be nonblocking—i.e.,
R||G should be nonblocking. Observe that in our setup, marking of states of G is what matters
for nonblockingness, since all states of H are marked.

When both G and H have finite state spaces, effective algorithms exist to automatically syn-
thesize R from G and H. First, we must form the product system H||G in order to have the right
discrete structure over which state pruning can be done to obtain the answer. This is because we are
imposing a language specification L(H) onto G. Note that L(H||G) = L(H) since L(H) ⊆ L(G).
In the automaton H||G, state pairs are of the form (xH , xG), allowing us to identify the current
state of G for any string in L(H). Pruning of states (and associated transitions) is done on H||G
in order to satisfy the controllability condition mentioned above and the nonblockingness condi-
tion on the pruned structure. This pruning of states is an iterative process, as deletion of states
that violate controllability might cause blocking, and deletion of states to remove blocking might
induce violations of controllability. At convergence, the realization R of the desired supervisor S
is obtained, as a pruned version of H||G.

By construction, the controlled system S/G has four key properties: (a) controllability (S never
disables an uncontrollable event), (b) safety [S/G generates only legal strings, i.e.,L(S/G) ⊆ L(H)],
(c) nonblockingness [S/G is nonblocking, i.e., Lm(S/G) = L(S/G)], and (d ) maximal permissive-
ness [L(S/G) cannot be made any larger without violating one of the three preceding properties].
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Maximal permissiveness is an essential concept in supervisory control theory. A controlled
system that does nothing is safe but useless in practice. Hence, we are looking for solutions that
let the system G execute as much as possible. Since we are working with languages, the optimality
criterion used is set inclusion. A fundamental result of supervisory control theory is that there is a
unique largest solution satisfying all four conditions above. It is called the supremal controllable
sublanguage [of L(H) ∩Lm(G) in our setup] with respect to L(G) and Euc. This is the solution
returned by the above-described pruning procedure. The solution returned may be the empty set,
which means that no solution to the posed supervisory control problem exists; in this case, one
cannot even turn the system on, as it will uncontrollably transition to blocking states or to unsafe
states from the initial state even if all controllable events are disabled.

The theory of supervisory control in the framework of Ramadge and Wonham originated in
the 1980s, and in the 1990s and 2000s, researchers focused more on the development of the theory
than on applications. One important reason for that was the lack of software tools that could handle
the large state spaces in real applications. However, the current decade has seen an emergence of
new applications in a range of domains, from automated manufacturing to transportation, process
control, and software systems, to mention a few (see, e.g., 26–32).

Supervisory control theory is not the only (supervisory) control theory for DESs. For instance,
other works have considered supervisory control of Petri nets (33, 34).

4.2. Reactive Synthesis

There is considerable interest in control science and engineering in the use of methodologies
and computational techniques from formal methods (an area of computer science) to address the
synthesis of controllers with provable correctness guarantees. This is especially true for cyber-
physical systems with both logical and continuous variables (also known as hybrid systems), where
the correctness guarantees are captured not only in terms of traditional quantitative criteria (e.g.,
stability) but also in terms of logical and temporal constraints that are expressed in some type of
temporal logic (3). The area of formal methods in computer science encompasses not only veri-
fication problems (for hardware or software systems) but also synthesis problems (for controllers
that implement given specifications). When synthesizing a controller for a system that interacts
with its environment, the synthesis problem becomes one of reactive synthesis (for a rigorous
introduction to reactive synthesis, see part I of Reference 35). Reactive synthesis techniques from
formal methods in computer science are a key component of the work in formal methods in con-
trol science and engineering (see, e.g., 4, 36, 37). This work is closely related to work done in
supervisory control of DESs, with some notable differences.

In reactive synthesis, the model of the uncontrolled system (i.e., the plant) either is absent or, if
present, is captured in the form of temporal logic constraints on the environment or in the form of
an explicit (labeled) transition system. This transition system is often obtained by abstracting the
continuous dynamics and continuous states of the underlying cyber-physical system (38). Arguably,
the most significant difference between reactive synthesis and supervisory control is the way the
specifications on the controlled system are expressed. Most of supervisory control is concerned
with regular language specifications, whereas most of reactive synthesis is concerned with temporal
logic specifications. Linear temporal logic, computation tree logic, or some fragment of those are
usually employed to capture safety and liveness specifications.

The most common computational solution procedure in reactive synthesis is conceptually
related to the algorithm for the supremal controllable sublanguage discussed above. The temporal
logic formula is translated into an equivalent automaton on infinite strings (e.g., a Büchi or Rabin
automaton), the product of this automaton with the transition system is taken, and finally the
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winning region is extracted from the product structure (by fixpoint algorithms). The term winning
region comes from the fact that the product structure defines a game between the controller (to
be synthesized) and the environment (captured by the plant model and other assumptions) (see 4).

Regular language specifications are usually specified in terms of star languages (i.e., subsets of
E∗), while temporal logic specifications correspond to omega languages (i.e., languages of infinite
strings or subsets of Eω). Despite this difference, we can map the nonblockingness condition
of Section 4.1 to a temporal logic formula in computation tree logic as follows. If we associate
the propositional variable acc with the marked states of G, then nonblockingness corresponds to
declaring AGEF(acc), where A stands for the universal quantifier, G is the “globally” operator
in temporal logic, E stands for the existential quantifier, and F is the “eventually” operator in
temporal logic. Using this correspondence, one can map the supervisory control problem of the
preceding section to an instance of a specific type of reactive synthesis problem, captured by the
formula AGEF(acc); this was formally done by Ehlers et al. (39). A further connection between
the theory of supervisory control for infinite strings (not discussed in this article) and reactive
synthesis was presented by Schmuck et al. (40).

Much is to be gained by further bridging the gap between supervisory control and reactive
synthesis. On the one hand, the theory of supervisory control has identified several DES theoretic
properties and horizontal and vertical decomposition techniques that could be exploited in reactive
synthesis solution procedures. On the other hand, the research in reactive synthesis has led to the
development of efficient computational procedures for controller synthesis that could be leveraged
in supervisory control.

4.3. Challenges

It is fair to say that the primary challenge faced in the application of the theory of supervisory
control, and in fact in the application of reactive synthesis methodologies for discrete systems
in general, is one of computational scalability. Complex technological systems involve several
interacting components, and composition by parallel composition causes, in the worst case, an
exponential growth of the state space in the number of system components. The state space
explosion problem manifests itself not only in the offline synthesis of supervisors but also in their
online implementation. Below, we discuss three facets of this problem and highlight some recent
attempts at dealing with scalability. This is not meant to be an exhaustive list of the ways to
tackle the state space explosion problem; quite often, the best approach is problem dependent and
involves exploiting structural properties of the system at hand.

4.3.1. Modular control. In general, the model of a DES is obtained not in a monolithic manner,
but rather by modeling the system components individually and by capturing their coupling via
common events. Thus, G is of the form G = ||Ni=1Gi . Similarly, the safety specification is itself the
conjunction of a set of safety specifications, each modeled by an automaton; thus, H = ||M

i=1Hi .
There may then be a global condition of nonblockingness on the controlled system.

Researchers have investigated numerous approaches for exploiting the structure of G and H
in the verification of controllability and nonblockingness and in the synthesis of supervisors. One
key challenge in modular synthesis is to preserve maximal permissiveness. Another is to guarantee
nonblockingness, which is inherently a global property that cannot be modularized. It is possible
for two individually nonblocking supervisors to block when they are used in conjunction.

Many works have considered compositional approaches where the specifications are considered
one at a time and for part of the system components (to which they each pertain). Abstraction
methods are often used at each step to reduce the size of intermediate results at no loss of generality.
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This has given rise to the definition of several classes of abstractions that specialize or adapt the
well-known bisimulation and weak bisimulation relations (3).

There is a very large literature on modular and compositional approaches. For interested
readers, References 41–49 represent a sample of the work on this broad topic.

4.3.2. Supervisor representation. When a supervisor has been synthesized, feedback control
is done by updating the state of the supervisor upon each (observable) event occurrence by the
system. The active event set of the current supervisor state encodes the current control action
(i.e., set of enabled events). This means that the supervisor is essentially stored as a lookup table
that is queried at runtime. However, this table may be too large to be practically stored in a
given implementation. For this reason, researchers have looked at different ways of encoding
the control policy of a supervisor. One approach, which works for systems that possess certain
structural properties, is to use a classifier to separate the set of safe states from the set of unsafe
states, in a (possibly refined) state space representation of the system. In that case, at a given safe
state, the supervisor enables transitions only to other safe states. Under certain conditions, the
classifier can be a set of linear inequalities over a numerical representation of the state space, which
works well if the system model can be converted to a Petri net. This approach was exploited by
Nazeem et al. (50) and then generalized by Nazeem & Reveliotis (51).

4.3.3. Software tools. Several software tools are available for performing various calculations
regarding analysis and control of DESs. Most of these tools are academic and were developed
for educational purposes; examples include DESLAB (Federal University of Rio de Janeiro),
DESUMA (University of Michigan and Mount Allison University), DESpot (McMaster Univer-
sity), IDES (Integrated Discrete Event Systems; Queen’s University), libFAUDES (Friedrich-
Alexander University Discrete Event Systems library; University of Erlangen-Nuremberg),
Supremica (Chalmers University and University of Waikato), and TCT (University of Toronto).
Some of these tools, such as Supremica, employ symbolic methods—namely, binary decision di-
agrams (52)—to store the transition functions of automata. The use of binary decision diagrams
can lead to significant scalability gains (see 53, 54). Researchers have recently started to investigate
how to leverage SAT solvers—powerful tools developed in computer science to solve satisfiability
problems—to address DES analysis and synthesis problems (55, 56).

5. CONTROL OF DISCRETE EVENT SYSTEMS:
PARTIAL OBSERVATION

Section 3 considered partially observed DESs and reviewed the two properties of diagnosability
and opacity. This section presents the supervisory control problem for partially observed DESs
and concludes with a discussion of cyber-security and privacy.

5.1. Synthesis of Partial-Observation Supervisors

The generalization of the supervisory control problem discussed in Section 4.1 to the case of partial
observation was studied and its main features characterized soon after the original full-observation
case (57–59). As in Section 3, the event set of the system E is partitioned as E = Eo ∪ Euo, with
the associated projection Po. This time, the supervisor sees Po(s ) only when the system generates
string s, due to the sensing limitations captured by Euo. The controllability condition discussed
in Section 4.1 and imposed on a supervisor remains in force, but the supervisor must additionally
issue the same control decisions for events in Ec for two strings s and t that look the same to
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it—i.e., Po(s ) = Po(t). This requirement is known as the observability condition, a name that does
not fully capture its close connection to control in the context of supervisory control theory.

It was soon realized that the supremal controllable and observable sublanguage of a given
language L(H) with respect to L(G), Ec, and Eo need not exist in general, in contrast to the full-
observation case. However, under the condition Ec ⊆ Eo, the supremal controllable and observable
sublanguage does exist, and algorithms for its computation are available (but are not discussed
here; for further details, see the treatment of the supremal controllable normal sublanguage in
Reference 1). This means that, in the general case, there does not exist a unique solution that
is safe, nonblocking, and as permissive as any other safe and nonblocking solution. In that case,
it is often of interest to synthesize maximal solutions, under the partial order of set inclusion,
especially if there are problem-specific criteria that can guide the selection of one such maximal
element. While different methods were proposed for the synthesis of maximal safe supervisors
when nonblockingness is relaxed (see, e.g., 60), it was not until recently that the synthesis of
maximal safe and nonblocking supervisors was solved in full generality (see 61).

It is worth discussing the solution methodology of Yin & Lafortune (61), as it departs from
earlier attempts at solving this problem. Instead of a language-based approach to the problem,
as in the original work on observability and the recent work on a new, stronger condition called
relative observability (62), the approach adopted by Yin & Lafortune (61) consists of constructing a
discrete game structure that captures all possible control actions of a partial-observation supervisor
(on the one hand) and all possible system events under such control actions (on the other hand).
This game structure is essentially a bipartite graph and is often called a game graph (or arena);
work done in reactive synthesis under imperfect information follows a related approach (63). In the
methodology developed by Yin & Lafortune (61), there are S-nodes, where the supervisor selects
a control action, and E-nodes, where the system, acting as the environment, executes an enabled
event. For the purpose of this construction, it is assumed that the original automaton G (system)
and H (specification) are used to refine G and obtain Gr such that the refined state space, denoted
by Xr, can be partitioned into legal and illegal states: Xr = Xlegal ∪Xill, where Xlegal ∩ Xill = ∅. Such
preprocessing is commonly done to transform a language-based specification into a state-based
specification (see 59–61).

The definition of each node in the game structure is based on the notion of information state
in system theory—specifically, what necessary information about the past needs to be memorized
in a state. In the case of an S-state, the supervisor needs to know the best estimate of the current
state of the system on the basis of the past trajectory of control actions and events executed by
the system. Hence, an S-state is a subset IS of the set of system states Xr: IS ⊆ Xr. Transitions
from S-states to E-states are labeled by control actions that are admissible in the current S-state:
All uncontrollable events must be enabled, and a subset of Ec is enabled. Let γ denote such a
control action. We claim that the right information state for the resulting E-state upon transition
labeled γ from S-state IS is [URγ (I S), γ ], where EIS:=URγ (I S) is the unobservable reach of set
IS restricted to the unobservable events in the set γ (since only those are enabled). Note that
we must remember in the E-state what control action is in effect at that time, which is why γ is
included as the second component of the E-state. With such information, the transitions from
this E-state will be all the enabled feasible observable events in all the states in EIS; for each such
event, we obtain a new information state (i.e., a new S-state), as is done in the construction of
the observer automaton. Thus, the transitions from E-states to S-states are labeled by observable
events. Overall, the game graph so constructed will be deterministic.

In the above construction, we include for each “player” (supervisor and system) all their possible
“moves”: all possible control actions at an S-state and all possible events at an E-state. However, we
stop the construction at any E-state where EIS ∩ Xill 	= ∅ and flag that E-state as illegal. We then
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prune the resulting game graph to remove all illegal E-states, with two requirements: An S-state
must always have at least one successor, unless all the states in it are terminating in the system,
and there must be a transition for every feasible enabled event out of an E-state, as the supervisor
cannot prevent the system from executing an enabled event. The first requirement captures the
fact that the supervisor must always have a valid move in this game; S-states that violate this
condition must also be pruned. The resulting game graph after such iterative pruning is often
called the winning region of the game (recall the discussion in Section 4.2), as the supervisor has
at least one valid move at each time, for all possible moves of the system. In fact, all valid moves
of the supervisor at each S-state are included in the winning region obtained; for this reason, Yin
& Lafortune (61) called it the All Inclusive Controller (AIC).

The game construction procedure can be interpreted, from the viewpoint of the supervisor, as
a worst-case analysis, since it considers all system moves (under the current control action). While
it addresses the safety specification, through the set Xill, it does not explicitly address nonblocking-
ness, since marking of states in G has not been taken into account so far. The methodology of Yin
& Lafortune (61) proceeds by further pruning the AIC to obtain what is termed the Nonblocking
AIC (NB-AIC), which is such that each system state in an S-state has a path to a marked system
state in a future S-state. A safe and nonblocking supervisor can then be extracted from the NB-AIC
by a process that may require unfolding some cycles in the NB-AIC. Moreover, this extraction
process guarantees the maximality of the solution (in the language sense, with set inclusion as
partial order). The details are omitted here, since they are beyond the scope of the discussion.
The important point is that there is a finitely convergent algorithm that can extract a supervisor
from the NB-AIC that is provably safe, nonblocking, and maximally permissive, thereby solving
the supervisory control problem under partial observation when Ec 	⊆ Eo.

In the absence of a unique supremal solution, in general, one might ask which maximal solution
should be extracted from the NB-AIC, since maximal solutions are by definition not comparable.
This problem is application dependent, as application-specific considerations might dictate the
choice of a maximal solution. A generic approach to this problem is to consider a lower bound
for the controlled system behavior and extract a maximal solution that provably contains this
lower bound (if one exists). An algorithmic procedure for this approach was presented by Yin &
Lafortune (64).

Section 3 discussed the two properties of diagnosability and opacity for partially observed DESs.
Enforcing these properties by supervisory control is a viable strategy if restricting the behavior of
the system is allowed. Specifically, supervisory control can be used to delete strings that violate
diagnosability or opacity. Hence, these control problems fall in the class of problems discussed in
this section, and they can be approached by the methodology presented by Yin & Lafortune (65),
subject to technical details specific to each property. Specifically, the safety condition previously
captured by the set Xill is replaced by a condition on the first component of E-states that captures
either diagnosability or opacity. The case of opacity is straightforward: Illegal states are those that
reveal the secret, such that EIS contains only secret states. The case of diagnosability requires
fixing a priori the bound n in Section 3.1 and considering n-diagnosability, which is expressible in
terms of information states (for details, see 65). Nonblockingness is generally not a requirement
here, so the AIC (with safety changed to diagnosability or opacity) would suffice.

5.2. Cyber-Security and Privacy

Cyber-security and privacy are increasingly important problems in cyber-physical systems (66).
Attacks on control systems that can cause physical damage to a system have been demonstrated
in a range of applications, from industrial control systems to intelligent transportation systems
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(67, 68). At the same time, privacy considerations arise with the integration of cyber-physical
systems into our daily lives. Hence, there is a need to develop analytical frameworks to study
cyber-security and privacy in cyber-physical control systems (69, 70).

Researchers have started to investigate attacks on sensors and actuators at the supervisory layer
of cyber-physical control systems (see, e.g., 71–75). It is assumed that since sensors and actuators
operate in a networked environment, these devices may become compromised if an attacker can
infiltrate them and affect the sensor readings sent to a supervisor or affect the control actions sent
to actuators. Various approaches have been considered, such as looking at the robustness of a
supervisor in the presence of attacks or running online diagnostic tools to detect an attack. The
problem can also be investigated from the attacker’s viewpoint: how to manipulate sensor readings
or actuator commands in order to cause physical damage before being detected.

Discrete event modeling formalisms can capture attacks on sensors and actuators by incor-
porating suitably defined edit functions that alter the event stream in the channels from the
sensors to the supervisor and from the supervisor to the actuators. The theories of diagnosability
(Section 3.1) and supervisory control under partial observation (Section 5.1) can then be leveraged
to study the effect of such attacks on the controlled system. Edit functions can, for instance, erase
genuine sensor readings or actuator commands and/or insert fictitious ones. Hence, the system is
effectively controlled by a combination of the original supervisor and the actions of the attacker.
These problems are inherently control problems under partial observation, since unobservable
events are used to capture attack moves, which can be viewed as unobservable fault events. How-
ever, unlike passive diagnostics, the attacker is often strategic, and it may need to be explicitly
modeled as another supervisor acting on the system.

Regarding privacy, the notion of opacity (Section 3.2) provides a formal approach to tackle
certain kinds of privacy requirements, such as obfuscating the exact position or trajectory of a user
being tracked by location-based services. Here, the secret states would be certain locations, and
the user would want to hide visits to them. Obfuscation would be achieved by inserting fictitious
moves of the user to reveal an incorrect location to the eavesdropper, so that the secret locations
remain opaque (76).

We expect to see significant research activities on problems of cyber-security and privacy using
DES theoretic techniques in the coming years.

SUMMARY POINTS

1. Discrete event systems (DESs) arise in the modeling of dynamic systems that are inher-
ently discrete (e.g., discrete manufacturing processes, software execution, and computer
protocols) as well as when constructing discrete abstractions of cyber-physical systems
(e.g., transportation, process control, and autonomous systems).

2. DESs can be analyzed at different levels of abstraction (logical, temporal, and stochastic);
each level has its own set of modeling formalisms and associated analytical techniques.

3. The properties of diagnosability and opacity for partially observed or nondeterministic
DESs provide general frameworks for studying observation problems using model-based
inferencing.

4. Supervisory control of DESs in control engineering is related to reactive synthesis in
computer science, as both are formal, model-based approaches for the synthesis of con-
trollers that must provably satisfy various safety and liveness properties.
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5. The theory of supervisory control for partially observed DESs provides a general frame-
work for synthesis of supervisors that enforce safety, nonblockingness, diagnosability,
and opacity.

6. Studying privacy and security at the supervisory control layer of complex control sys-
tems for cyber-physical systems is an essential complement to other approaches to these
problems that explicitly consider continuous-variable and time-driven representations of
these systems.

FUTURE ISSUES

1. Additional research is needed on the scalability of algorithmic procedures in supervisory
control, exploiting system structure.

2. Software tools for supervisory control need to be developed that are both user-friendly
and scalable.

3. The supervisory layer of cyber-physical control systems requires security analysis.

4. The use of discrete event models and techniques for privacy analysis and enforcement
should be further developed.
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