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Abstract

Feedback is a key element of regulation, as it shapes the sensitivity of a pro-
cess to its environment. Positive feedback upregulates, and negative feed-
back downregulates. Many regulatory processes involve a mixture of both,
whether in nature or in engineering.This article revisits the mixed-feedback
paradigm, with the aim of investigating control across scales. We propose
that mixed feedback regulates excitability and that excitability plays a cen-
tral role in multiscale neuronal signaling.We analyze this role in a multiscale
network architecture inspired by neurophysiology. The nodal behavior de-
fines a mesoscale that connects actuation at the microscale to regulation at
the macroscale.We show that mixed-feedback nodal control provides regu-
latory principles at the network scale, with a nodal resolution. In this sense,
the mixed-feedback paradigm is a control principle across scales.
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1. INTRODUCTION

Control systems are increasingly multiscale. Cheaper sensing, cheaper actuation, and cheaper data
processing motivate control algorithms that feed back signals at a microscale to regulate an ob-
jective at a macroscale. Emblematic examples include traffic control (a population of individually
controlled cars determines the traffic of a road or a city), soft robotics (a population of microactu-
ators determines the behavior of a robot), and tissue engineering (a population of regulated cells
determines the properties of a tissue). This article is motivated by the brain control of neuronal
circuits, which involves reshaping the spatiotemporal electrical activity of neuronal populations
across a formidable range of scales.What is common to all the examples above is that variables at
a macroscale are regulated by a myriad of actuators at a microscale.

The increasing disparity of scales requires novel feedback control paradigms. In classical con-
trol, the distinction between noise and signal is based on a separation of scales in amplitude and
frequency. The noisy part of a signal is its small-scale component. This distinction must be recon-
sidered when the signal range of a single microscale actuator or sensor is well into the noise range
of the macroscale regulation objective.

In response to the multiscale challenge, the last two decades have witnessed a particular focus
on distributed control paradigms (see, e.g., 1 and references therein). In distributed control, the
global objective at the macroscale is reformulated as a local objective at the microscale. Local
feedback loops are designed at the microscale, and the local objective is made global through
diffusive mechanisms such as consensus or synchronization (2). This approach works best when
the macroscale is homogeneous—that is, the local control problem is the same everywhere, or,
equivalently, space and time invariant. Even in a perfectly homogeneous control problem, the
distributed paradigm faces limitations inherent to the disparity of scales between the microscale
of sensing and actuation and the macroscale of regulation (see, e.g., 3).

In heterogenous multiscale problems, the prevalent control architecture is hierarchical. The
control problem at the macroscale is decomposed into a sequence of nested control problems at
decreasing mesoscales. The amplitude, temporal, and spatial scales all obey the same hierarchy:
Signals of small amplitude and high frequency are modeled and controlled at finer scales, whereas
signals of larger amplitude and lower frequency are modeled and controlled at larger scales.
This nested architecture allows for a nested design of regulatory feedback loops. Outer feedback
loops regulate coarser scales, while inner feedback loops regulate finer scales. The nested feed-
back loops minimally interact with each other because they deal with distinct scales. Such control
architectures are common in engineering and widespread in complex control systems. However,
hierarchical constraints limit performance: Outer control loops are constrained to low-frequency
signals, which makes them sluggish with respect to the inner scales. Inner control loops are con-
strained to high-frequency signals, which makes them noisy with respect to the outer scales. This
performance limitation becomes problematic as the disparity of scales increases, and is perhaps
the most evident difference between the performance of robots and animals in comparable tasks:
Feedback regulation in biological systems does not seem to be constrained by a hierarchy of scales.
Feedback regulation seems to occur across scales at the temporal and spatial resolution of the tiny,
and feedback loops appear to be interlocked at all scales rather than nested from the tiny to the
large.We still lack a theory to analyze and design artificial control systems with such capabilities.

Inspired by the physiology of neuronal circuits, in this article we investigate the role of feed-
back at a cellular scale in shaping the spatiotemporal behavior of a neuronal network across scales.
We revisit the central biophysical model of cellular excitability as a particular regulation mech-
anism that requires both positive and negative feedback. We propose that this mixed-feedback
mechanism enables signaling across scales by converting specific tiny continuous variations of an
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input signal to discrete events that signal to specific larger scales. We provide several examples of
neurophysiological relevance where sensitivity at the circuit or network scale is shaped by feed-
back regulation of excitability at a cellular level. At an abstract level, our objective is to contrast the
role of nodal control and the role of network control. Here, nodal control refers to modulating
the nodal behavior, whereas network control refers to modulating the nodal interconnections, that
is, the network topology. In neurophysiology, nodal control refers to the modulation of cellular
excitability via the modulation of specific intrinsic ionic conductances, and network control refers
to the modulation of synaptic transmission via the control of synaptic conductances. In artificial
neural networks, much emphasis has been placed on network control and the learning perfor-
mance of feedforward networks via network control. Those models often neglect nodal control
and neuronal excitability. This article has a complementary focus: We model nodal excitability
and investigate how feedback regulation at a nodal scale can shape a network behavior even with
a fixed interconnection structure. Our examples suggest that nodal control is not subject to the
performance limitation of nested feedback architectures and that the nodal control of excitability
is a regulation principle across scales.

1.1. Positive and Negative Feedback

A feedback system is a system that admits the block-diagram representation shown in Figure 1.
It implies an input–output model of the open-loop system, that is, the system without feedback.
The open-loop system is modeled as an operator that transforms input signals into output sig-
nals. The feedback loop models the influence of the (past) output on the (future) input. Feedback
modeling is central to control theory because feedback is an essential component of regulation.
Feedback can upregulate or downregulate a process.We refer to upregulation as positive feedback
and downregulation as negative feedback. Positive feedback increases the sensitivity of the output
to an input perturbation: The feedback loop amplifies the disturbance and acts as a destabilizing
mechanism for the process. Negative feedback decreases the sensitivity of the output to an input
perturbation: The feedback counteracts the disturbance and acts as a stabilizing mechanism for
the process.
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Figure 1

(a) An open-loop input–output process (center), a positive feedback system (right), and a negative feedback system (left). (b) The distinct
roles of positive and negative feedback around a memoryless saturating process. Negative feedback downregulates and broadens the
linear range of the process. Positive feedback makes the feedback system ultrasensitive, promotes a discrete output readout, and creates
hysteresis (memory). Mixed feedback is sufficient to modulate a process among three distinct types of behavior: linear continuous,
ultrasensitive, and hysteretic discrete.
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Some key features of feedback can be understood from the elementary saturating static model

y = satg(u) =

⎧⎪⎨
⎪⎩

0, u ≤ 0
g v, 0 ≤ u ≤ 1

g

1, u ≥ 1
g

1.

in the feedback configuration shown in Figure 1. The parameter g is called the open-loop gain,
and the parameter k is called the feedback gain. The open-loop model is y = satg(u). It is a linear
model with gain δy

δu = gover the restricted range u ∈ [0, 1
g ].Away from this linear range, the process

saturates and the output is insensitive to input variations. The closed-loop model is defined by
the implicit relationship y = satg(±ky+ u). In a negative feedback configuration, the closed-loop
model rewrites as y = satg′ (u) with g′ = g

1+gk . The closed-loop model is like the open-loop model
but with a lower gain over a broader linear range. Instead, in a positive feedback configuration, the
linear range decreases and the gain increases. The linear range shrinks to zero for the critical value
k = 1

g , making the behavior ultrasensitive. For larger positive feedback gains k > 1
g , the closed-

loop model is multivalued over the range u ∈ [ 1
g − k, 0

]
. The output then has a binary readout for

every value of the input. A continuous variation of the input signal leads to discontinuous jumps of
the output signal between 0 and 1, with hysteresis. Positive feedback has converted an open-loop
memoryless process into a closed-loop binary memory.

In spite of its simplicity, the above model captures general features of positive and negative
feedback regulation:

� Feedback shapes sensitivity. It alters how a process interacts with its environment, that is,
how variations of the input signal affect the output signal.

� Negative feedback makes the output less sensitive to input variations and increases the
range of linear behavior. For large values of the open-loop gain g, the closed-loop gain
g′ = 1

g−1+k ≈ 1
k becomes almost independent of the open-loop gain, making the closed-loop

process robust to unmodeled variations of the open-loop gain.
� Positive feedback makes the output more sensitive to input variations and can be tuned to

make the process ultrasensitive.
� Beyond a critical gain, a positive feedback system exhibits memory and hysteresis.
� Saturating processes have a continuous or discrete readout. Negative feedback promotes

the continuous readout, whereas positive feedback promotes the discrete readout.

The properties above have a general conceptual value but assume a static model of the process.
When a process is dynamic, its gain is a function not only of the input amplitude but also of the
input history. The attempt to conceptualize the properties of feedback in dynamical models led to
the development of feedback theory. Early developments in engineering were driven by the use
of feedback in audio and electronic amplifiers. In the early days of electrical signal transmission,
engineers first concentrated on the potential of positive feedback to regenerate signals or to design
analog circuits with switching or oscillating behaviors (4). The potential of negative feedback to
make a device robust to uncertainty was discovered much later, with the invention of the negative
feedback amplifier (5). From then on, the use of negative feedback became much more prominent
in engineering than the use of positive feedback. Both the success of negative feedback and the
rise of digital technology wiped out the interest of engineers in positive feedback. The situation
is different in biology, where both positive and negative feedback have been continually reported
to play a prominent role in regulation. Homeostasis has been a central focus since the early days
of physiology, with an emphasis on negative feedback regulation. In the 1960s, autocatalysis, a
positive feedback mechanism, was discovered to be a fundamental element of gene expression
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regulation (6). More recently, the role of interlocked positive and negative feedback loops has
been repeatedly emphasized in systems biology (see, e.g., 7–9).

The success of feedback control theory owes much to the fact that many properties of neg-
ative feedback systems are well captured with a linear model (10). Following the invention of
the negative feedback amplifier, Bell Labs engineers developed the frequency-domain analysis of
feedback systems. Linear time-invariant systems can be represented by their frequency response
(the Fourier transform of their impulse response), which amounts to modeling the process with a
frequency-dependent complex gain. A central insight into the stability theory of feedback systems
came from the work of Nyquist (11), who studied the critical frequency at which the loop gain of
a process changes sign, turning a negative feedback loop into a positive feedback loop. Modern
linear robust control can be regarded as a theory of negative feedback. The feedback controller
is designed to ensure the equilibrium stability of the closed-loop system, increase the robustness
of the process against model uncertainties, decrease its sensitivity to external disturbances, and
increase the range of input signals over which the process behaves linearly. Those properties are
achieved by shaping the loop gain of the feedback system as a function of frequency.

The elementary example inFigure 1 illustrates that positive feedback is the source of nonlinear
phenomena (such as ultrasensitivity or hysteresis) and hence requires different analysis tools. For
this reason, the mathematical theory of positive feedback lags far behind the mathematical theory
of negative feedback. In this article, we concentrate on a very specific combination of positive and
negative feedback that is amenable to mathematical analysis. Our interest is in the ability of mixed
feedback to regulate ultrasensitivity and to shape the discrete readout of a continuous process.Our
approach is close in spirit to the loop-shaping paradigm of classical control theory. But to cope
with the nonlinearity of the feedback system, the loop gain is shaped as a function of amplitude
and time, rather than as a function of frequency.

1.2. A Modeling Framework for Control Across Scales

Inspired by the neurophysiology of neuronal circuits, we focus in this article on electrical be-
haviors. We consider a multiscale control problem defined by three distinct scales (Figure 2): a
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Figure 2

An electrical field modeled at three distinct scales. (a) The regulation macroscale, showing a controlled spatiotemporal electrical field
V (x, t ). (b) The behavioral mesoscale, where spatial discretization of the electrical field leads to a discrete network of interconnected
isopotential nodes Vi(t ). The nodal behavior is determined by Kirchhoff’s laws of electrical circuits: Currents Iχi into node k sum to
zero. (c) The actuation microscale, where each mesoscale current is modeled as an ohmic current. The voltage dependence of the
conductance models a mean-field control of the current by a population of discrete (on–off ) microactuators.

www.annualreviews.org • Control Across Scales 93



AS02CH04_Sepulchre ARjats.cls March 23, 2019 9:19

microscale of actuation, a macroscale of regulation, and a behavioral mesoscale that connects the
micro- and macroscales via dynamical relationships between voltages and currents.

The macroscale of regulation is a spatiotemporal electrical field V (x, t ), where x denotes the
spatial variable and t denotes the temporal variable (Figure 2b). The mesoscale is defined by a
spatial discretization of the electrical field, leading to a network ofN nodes with temporal voltage
Vi(t ), i = 1, . . . ,N (Figure 2c). The dynamical behavior of a nodal voltage is determined by the
laws of circuit theory. In the language of circuit theory, a node is a connector, that is, a multitermi-
nal isopotential circuit element determined by Kirchhoff’s law that all currents into the node sum
to zero. In this article, any current I into a node at potentialV is assumed to obey the ohmic law

I = g(·) (V − Ṽ ). 2.

The current results from a difference of potential with another terminal at potential Ṽ across
a circuit element of conductance g(·). The notation g(·) stresses that the conductance is not
constant. It is shaped by the microscale of actuation. The mean field of many actuators at the
microscale is modeled as a dependence of the conductances on the potential field (Figure 2a).

The spatial resolution of a node defines the mesoscale. A node is isopotential. It determines a
resolution of the electrical field at which differences of potentials are neglected. The mesoscale
is only constrained to be sufficiently separated from the microscale. It must involve a sufficiently
large population of actuators at the microscale to justify the mean-field model of the conductance.

Currents and voltages play a distinct role in a multiscale model. Voltage is a variable across,
while current is a variable into. Variables into are additive. They add to zero at a node. Currents
at broader scales are sums of currents at finer scales. Variables across are intensive, that is, inde-
pendent of size. A potential is independent of the spatial scale. A difference of potential can be
measured between any two terminals. Relationships between across and into variables are inherent
to multiscale modeling. They relate voltages and currents in electricity, or forces and velocities in
mechanics.

While this article focuses on electrical behaviors, that is, relationships between currents and
voltages, the multiscale nature of our model is general. For instance, a multiscale traffic model
can be conceived analogously: In a traffic problem, the variable into is the traffic flow, whereas
the variable across is the traffic mass. The analog of the ohmic law represented by Equation 2
is a relationship expressing traffic flow as the product of traffic mass and speed, the analog of
conductance. Microscale actuation would refer to the modulation of speed at a microscale (for
instance, through traffic lights), whereas the macroscale would be the traffic state of a road or a
city.

The proposedmultiscale model is directly inspired by the conductance-based modeling princi-
ples of neurophysiology (12). The mesoscale is the scale of cellular neurophysiology. The natural
resolution of a node is a single neuron. But a node can also be a patch of a neuron (at a finer spa-
tial scale) or a homogeneous population of neurons (at a coarser scale). A node is modeled with
a lumped nodal voltage V (t ). Each current into the node models a distinct flow of ions through
the cellular membrane. The microscale is the scale of molecular neurophysiology: Biochemical
reactions control the binding of receptors and the opening and closing of ion channels that gate
the flow of ions through the cellular membrane. The conductance of a current at the cellular scale
is a mean-field model of the actuation of a population of ions at a molecular scale. The macroscale
is the scale of circuit neurophysiology: The spatiotemporal electrical field models the activity of
heterogenous neuronal tissues composed of distinct subpopulations of neurons involved in a spe-
cific brain function of interest. Macroscale variables in neurophysiology are local field potentials,
inferred from the total current recorded by an extracellular electrode over a specific tissue area.
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1.3. Outline

The remainder of the article is organized in two sections. Section 2 revisits the central physi-
ological concept of excitability as a particular combination of positive and negative feedback at
the mesoscale of our network model. Section 3 illustrates the versatility of nodal control to shape
the behavior of the network model anywhere from the nodal scale to the entire network scale. The
exposition is deliberately nontechnical and omits a substantial amount of biological detail to con-
centrate on the regulation principles of the considered circuits. The interested reader is referred
to specific references cited in each section for more details about the circuits’ biological relevance.

2. MIXED-FEEDBACK AMPLIFICATION

2.1. Mean-Field Actuation Models

The conductance g(·) in the ohmic law represented by Equation 2models themean field, at a given
mesoscale, of a population of actuators at the microscale. By nature, such a model is empirical and
approximate. It is notmeant tomodel the details of themicroscale, but only to capture the extent to
which the microactuators influence the current–voltage relationship at the mesoscale of interest.
Wewrite g(·) = ḡS(·), where ḡ denotes themaximal conductance and S(·) is an adimensional model
of actuation with a normalized output range [0, 1]. We call S(·) an S-behavior. We briefly review
basic models of the voltage dependence of an S-behavior.

Figure 3 illustrates the static properties of an S-behavior:

� The S-behavior has two distinct readouts—a continuous readout and a discrete readout.The
continuous readout is a fine-grain readout, whereas the discrete readout is a coarse-grain
readout.

� The gain δg = dS
dV (V)δV is localized in amplitude—it vanishes away from a restricted am-

plitude range and has a unimodal shape.

The unimodal profile of the gain provides a statistical interpretation of the mean-field model:
Each actuator in the population contributes to the mean-field gain in an infinitesimal range δV .
The distribution of gains in the population is necessarily bell shaped for a large population. The
S-behavior is the cumulative distribution of the population. For a normally distributed population
centered atV = 0 and of variance σ , the cumulative distribution is theGauss error function S(V) =
erf (V) = 1

π

∫ V
−V e

−x2dx.

S(V)
dS
dV

(V)

V V
V0 V0

σ

a b

Figure 3

The static S-behavior of (a) a mean-field model of actuation and (b) its (differential) gain. The mean-field
behavior saturates away from a restricted amplitude range. It is the cumulative distribution of a population of
devices that are sensitive only in a microrange of amplitude. The unimodal gain models the first two
moments (mean and variance) of a statistical distribution.
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A step change from V to V + δV and the corresponding step response δI(t ). The temporal behavior of the differential conductance
δg(t ) = δI(t )

δV is approximated with three distinct snapshots: δI0 ≈ δg0(V)δV for the instantaneous behavior, δIf ≈ δgf (V)δV for the early
behavior, and δIs ≈ δgs(V)δV for the late behavior.

Static models of S-behaviors are pervasive in science and engineering. An early appearance is in
population studies, with the logistic model of Verhulst (13), which uses the sigmoid S(V) = 1

1+e−V .
In (bio)chemistry, S-behaviors include the Hill activation function S(V) = V α

Kα+V α . The parame-
ter K is the constant of half-activation, and the parameter α controls the variance of the gain. In
computer science, the hyperbolic tangent S(V) = tanh(V) is a frequent model of soft quantiza-
tion arising in a population of agents with binary output. In electronic engineering, S-behaviors
model amplifiers or transistors. In control theory, the piecewise-linear saturation models the finite
sensitivity range of an actuator or sensor.

The static model of an S-behavior captures the restricted amplitude input range of the dif-
ferential gain but does not capture its restricted temporal range. In nature and in engineering,
S-behaviors have a limited bandwidth and a fading memory. The temporal dependence of the
differential gain can be estimated empirically from the step response of the current to a voltage
step perturbation (Figure 4). A unimodal step response corresponds to the localization of the
differential gain in time, analogously to the localization in amplitude.

Modeling the fading property of a gain in both amplitude and temporal range is difficult. Static
models capture only the amplitude localization. Linear time-invariant models capture only the
temporal localization via the frequency dependence of the gain.Modeling the localization in both
time and amplitude requires nonlinear dynamical models, which is a source of intractability in
network models. This issue has been a pervasive challenge in amplifier modeling (see, e.g., 14).

In neurophysiology, conductance-based modeling was pioneered by Hodgkin & Huxley (15).
They designed a voltage-clamp experiment in which the voltage was clamped to a step change
�V from the resting potential V0, and the conductance g(t ) = �I(t )

�V was computed from the cor-
responding current response �I(t ). Based on those step responses, they fitted the experimental
data to a model that expresses the conductance as the product of an activation variable m and an
inactivation variable h:

g = g(m, n) = ḡmαhβ ,

τm(V)ṁ = m+m∞(V), 3.

τh(V)ḣ = −h+ h∞(V).
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The activation function m∞(V) is a static S-behavior with a positive bell-shaped gain m′
∞(V). The

inactivation function h∞(V) is the complement of an S-behavior—that is, 1 − h∞(V) is a static S-
behavior. The time constant τm(V) is significantly smaller than the time constant τh(V), meaning
that the conductance first activates and then inactivates. The exponents α and β are further pa-
rameters of the model. The dynamics of the activation and inactivation variables model the fast
and slow lags.

For the sake of mathematical tractability, we follow the approach described by Drion et al.
(16). We assume an infinitesimal step change δV around a fixed potential V and approximate
the temporal properties of the differential conductance by extracting three snapshot local gains
corresponding to the instantaneous response δI0, the early response δI f , and the late response δIs

(Figure 4). The differential conductance is decomposed accordingly as

δI = δg0δV + δgfδV + δgsδV. 4.

We assume a bell-shaped gain δgf (V) to model the early activation of the conductance and a bell-
shaped gain of opposite sign δgs(V) to model its late inactivation. This corresponds to a conduc-
tance model of the general form

g = g(V f ,V s ) = ḡSf (V f )[1 − Ss(V s )], 5.

where the two variables V f and V s are assumed to lag behind V with a fast and slow time lag,
respectively. The simplest lag model is of the form

τ fV̇ f = −V f +V ,
τ sV̇ s = −V s +V ,

6.

where τ f and τ s are the time constants of the fast and slow timescales, respectively (0 < τ f � τ s).
In a quasi-steady-state approximation, the conductance-based models represented by Equations 5
and 3 are equivalent via the identification Sf (V) = mα

∞(V) and Ss(V) = 1 − hβ
∞(V).

The conductance model of Hodgkin & Huxley (15) was purely empirical. Much later, with
the development of molecular biology, the model was related to a microscopic description of the
ion channel dynamics that gate the conductance. The model represented by Equation 3 was then
interpreted as the mean-field evolution of a large population of discrete actuators modeled by a
Markov process that flips their binary state with a voltage-dependent probability (17).

2.2. Nodal and Network Currents

We consider ohmic currents of four distinct types (Table 1). A first distinction is between passive
and active currents. A current is said to be passive if its conductance is independent of the electrical
field. The conductance of a passive current is a parameter g(·) = ḡ. A current is said to be active if
its conductance is voltage dependent. A second distinction is between nodal and network currents.
A current into a node is said to be nodal if it depends only on the nodal potential. It is called a
network current if it depends on two distinct nodal potentials. With the reverse sign convention

Table 1 The four distinct types of ohmic currents into node k

Current type Nodal Network
Passive ḡ (Vk − E ) ḡ (Vk −Vl )
Active g(V f

k ,V
s
k ) (Vk − E ) g(V f

l ,V
s
l ) (Vk − E )

The parameter E denotes an external constant potential (battery).
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I = −g(·).(V − Ṽ ) for every network current into node V , the total nodal current into a node is
equal to the total network current:

Inod = Inet. 7.

This equation rephrases Kirchhoff’s law that the total current Inod − Inet into the node is zero. It
also has the interpretation of a nodal balance between the internal and external flows.

Conductances are assumed to be localized in a given amplitude and temporal range, as ex-
plained in Section 2.1.Nodal conductances are the conductances of nodal currents.Nodal control
shapes the nodal behavior by modulating the maximal conductance of a nodal current. Network
conductances are the conductances of network currents. Network control shapes the nodal inter-
actions by modulating the maximal conductance of a network current.

2.3. Excitability: A Mixed-Feedback Principle for Signaling Across Scales

In this section, we revisit the basic property that a mixed-feedback structure is necessary and suf-
ficient to make a node excitable. We show that excitability makes the nodal scale sensitive to the
microscale and enables signaling to the macroscale via a discrete event.

We consider a single node of voltageV with three nodal currents: a passive current Ip that de-
termines the passive behavior of the node and two active currents I1 and I2 that shape the behavior
with a mixture of positive and negative feedback:

Ip = gp (V − Ep),
I1 = g1(V f ,V s ) (V − Emax),
I2 = g2(V s ) (V − Emin).

8.

The nodal behavior determines a one-port circuit with external current Inet and voltageV. Kirch-
hoff’s law Inet = Inod = Ip + I1 + I2 rewrites as

gnodV = gpEp + g1Emax + g2Emin + Inet, 9.

with gnod = gp + g1 + g2. In the absence of a network current, the voltage is a convex combination
of the three parameters Ep, Emin, and Emax at any time. We assume Emin < Ep < Emax, meaning
that the current I1 is always negative and the current I2 is always positive. In the terminology of
electrophysiology, I1 is an inward current, whereas I2 is an outward current.

To determine how the nodal currents contribute to the feedback properties of the system, we
linearize the circuit equations around a given voltage V and separate the contributions of the
circuit conductance in each timescale:

δInet = δI0nod + δI fnod + δIsnod

= ∂Inod
∂V

δV + ∂Inod
∂V f

δV + ∂Inod
∂V s

δV

= gnodδV + δgf (V)δV + δgs(V)δV ,

10.

with

δgf (V) = ∂g1
∂V f

(V ,V) (V − Emax) ≤ 0,

δgs(V) = ∂g1
∂V s

(V ,V) (V − Emax) + g′
2(V) (V − Emin) ≥ 0.

11.

The local circuit behavior has a specific mixed-feedback structure (Figure 5): an open-loop pro-
cess in the instantaneous timescale, a positive feedback system in the fast timescale, and a negative
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Figure 5

An excitable behavior with two active nodal currents. Panel a shows the passive behavior in the absence of active currents. The fast
negative conductance acts as a positive feedback (panel b), and the slow positive conductance acts as a negative feedback (panel c). The
input–output behavior of an excitable system is upregulated in the fast timescale and downregulated in the slow timescale.

feedback system in the slow timescale. The positive feedback is provided by the activation of an
inward current. It is a synonym of a negative conductance, or, equivalently, a variation δI f of sign
opposite to the variation δV in the step response shown in Figure 4. The negative feedback is
provided by the inactivation of the inward current and the activation of an outward current. Both
contribute to a positive conductance, or, equivalently, a variation δIs of the same sign as the vari-
ation δV in the step response shown in Figure 4. The mixed feedback is first positive and then
negative. This specific feedback structure makes the node excitable. An excitable behavior outputs
discrete events, called spikes or action potentials, in response to continuous-time variations of the
input signal (Figure 6). (For a detailed discussion of excitable behaviors, see Reference 18.)

25 ms

V (mV)

I (nA)

I

V

Figure 6

Input–output trajectories of an excitable system. The system converts the small variations of a continuous
input signal into a sequence of discrete events with a specific amplitude and temporal signature.
Ultrasensitivity in the fast timescale endows the mesoscale with a threshold with respect to continuous
variations at the microscale. Discrete events at the mesoscale are the atoms of signaling at the macroscale.
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The positive feedback in the fast timescale is responsible for a threshold around which the
behavior is ultrasensitive. For subthreshold variations of the input current, the voltage response is
passive, but beyond the threshold, the voltage jumps to a value close to Emax. The nodal behavior is
all or none in the fast timescale: suprathreshold input variations trigger an output discrete switch.
For an equilibrium behavior close toEmin, the voltage switch spans almost the entire output voltage
range [Emin,Emax] of the circuit.

The negative feedback in the slow timescale is responsible for a refractory time interval follow-
ing the switch. The voltage variable returns to equilibrium with a negative overshoot. During the
refractory time interval, the nodal behavior is infrasensitive—that is, its sensitivity to an external
perturbation is lower than the sensitivity of the open-loop behavior. The negative feedback turns
the switch into a discrete event of finite duration. It is the slow timescale of the feedback system
that controls the duration of the spike.

The excitable behavior that results from fast positive feedback and slow negative feedback is
robust, tunable, and tractable. Those three properties are grounded in a sufficient separation of
scales. The behavior is robust in that it depends only on qualitative properties of the actuation
model, that is, the existence of a fine-scale amplitude and temporal voltage range where the posi-
tive feedback gain dominates and a coarse-scale amplitude and temporal voltage range where the
negative feedback gain dominates. The behavior is tunable in that the two qualitative properties of
excitability—the threshold and the refractoriness—can be tuned by independent parameters. The
maximal gain of the positive feedback loop determines the threshold. It is tuned by the maximal
conductance of the inward current. The maximal gain of the negative feedback loop determines
the refractoriness. It is tuned by the maximal conductance of the outward current. Finally, the
behavior is tractable, in spite of being nonlinear and dynamic. Thanks to the timescale separation,
the fast switch and the slow refractoriness can be analyzed separately, for instance, through fast–
slow-phase portrait analysis. In the absence of the timescale separation, excitability is lost. The
robustness, tunability, and tractability of the behavior progressively deteriorate as the timescale
separation decreases. In neurophysiology, the ratio between fast and slow timescales is rarely be-
low 5:1 to 10:1. This separation is also remarkably stable across different types of neurons.

The significance of excitability for this article is that an excitable node signals across scales.
Near the threshold, the mesoscale behavior is ultrasensitive, that is, sensitive to smaller scales.
This ultrasensitivity is localized in a narrow amplitude and temporal range of the input signal.
Away from this specific range, signals from the microscale are in the noise range of the passive
node. But within the ultrasensitive range, signals from the microscale trigger a discrete event
in the mesoscale. Excitability makes the mesoscale selectively sensitive to specific signals or an
ensemble of signals from the microscale. Likewise, the output signal of an excitable node is a se-
quence of discrete events. Those discrete events can serve as the microactuators of a mean-field
conductance at a larger scale. Collectively, many spikes control the mean-field gain of a macro-
conductance. Because spikes have a specific amplitude and temporal range, the mean-field gain is
necessarily localized in amplitude and temporal range. A population of spikes determines a mean-
field conductance at themacroscale. As a mean field of discrete events, the mean-field conductance
defines an S-behavior for the next scale.

The role of mixed feedback as the fundamental mechanism of excitability was first discovered
by Hodgkin & Huxley (15). In their seminal work, they modeled excitability as the property of
an electrical circuit consisting of a passive membrane, an inward (sodium) current with fast acti-
vation and slow inactivation, and an outward (potassium) current. (Their model differs from the
structure represented by Equation 8 only in an additional capacitive current that is inessential for
the message of the present article.) FitzHugh (19) and Nagumo et al. (20) later showed that their
model shares the properties of negative resistance oscillators studied earlier by Van der Pol. A
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1
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Figure 7

The three types of network currents. The resistor symbol denotes a passive current between nodes 1 and 2.
The arrow symbol denotes an excitatory current into node 3, with a conductance controlled by V1. The
circle symbol denotes an inhibitory current into node 3, with a conductance controlled by V2.

negative resistance device is an ohmic element with a negative gain over some voltage range. The
terminology is sometimes a source of confusion because it is not the resistance (or conductance)
itself that is negative, but only its gain. The inward current I1 in Equation 8 has the interpretation
of a negative resistance device when the fast timescale merges with the instantaneous timescale—
that is,V f = V—and when the inactivation of the inward current is neglected (or merged with the
activation of the outward current). The model of Hodgkin & Huxley is discussed in any textbook
of neurophysiology (see, e.g., 21). The presentation here leaves aside many physiological details
in order to concentrate on the role of mixed feedback in shaping the sensitivity properties of a
passive node.

2.4. A Network of Mixed-Feedback Amplifiers

An excitable nodal behavior is determined by three distinct types of nodal currents: a passive cur-
rent and active currents that either upregulate or downregulate the passive behavior. In the same
way, the nodal interactions are determined by three types of network currents: passive network
currents and active network currents that are either excitatory or inhibitory.

In Figure 7, the resistive link between nodes 1 and 2 denotes a network passive current:

I12,p = −I21,p = −ḡ12(V2 −V1). 12.

The arrow link between nodes 1 and 3 denotes an excitatory current into node 3 with a conduc-
tance that depends on the nodal potential V1:

I13,E = −gsyn(V f
1 ,V

s
1 )(V3 − Esyn,+ ). 13.

The current is called excitatory because the potentialEsyn,+ is higher than the excitability threshold
of node 3. For instance, the current is necessarily excitatory if Esyn,+ = Emax: A spike at node 1 will
necessarily generate a positive current I13,E that will depolarize node 3 and therefore facilitate a
spike at node 3.

In Figure 7, the link between nodes 2 and 3 with the circle on one end denotes an inhibitory
current into node 3 with a conductance that depends on the nodal potential V2:

I23,I = −gsyn(V f
2 ,V

s
2 )(V3 − Esyn,− ). 14.

The current is called inhibitory because the potential Esyn,− is lower than the excitability threshold
of node 3. For instance, the current is necessarily inhibitory if Esyn,− = Emin: A spike at node 2 will
necessarily generate a negative current I13,E that will hyperpolarize node 3.
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Passive network currents model diffusion between the nodes. In neurophysiology, they model
gap junctions between neurons.Active network currentsmodel synaptic interconnections between
neurons. A frequent assumption in neuroscience is that the excitatory or inhibitory nature of a
synaptic current is a property of the presynaptic node. Nodes are called excitatory when they
control excitatory synaptic currents and inhibitory when they control inhibitory synaptic currents.
In Figure 7, node 1 is excitatory, whereas node 2 is inhibitory.

The network currents above complete the description of a networkmodel that includes the four
distinct types of currents in Table 1. It is the presence of active nodal currents that distinguishes
this model from many other models in the literature. The nodal active currents are essential to
shape the nodal excitability.

In the systems and control literature, most dynamical network models include only the passive
currents of Table 1. They consider passive nodal behaviors and passive interconnections. Here,
passivity must be understood in the generalized system-theoretic sense of behaviors that can only
dissipate energy (22). The study of passive networks is a major topic of system theory (23). It
focuses on equilibrium behaviors and the diffusive properties of passive interconnections, and
these networks are a core concept of the distributed control paradigm. Passive networks have a
limited sensitivity across scales. The input–output sensitivity is expected to decrease with the size
of the network, which limits the controllability properties at the network scale. Such limitations
have become the focus of recent studies (see, e.g., 24).

In computational neuroscience, the important class of rate models includes active network
currents but does not include active nodal currents. Neural networks with passive nodes and ac-
tive interconnections originated in the seminal work of Wilson & Cowan (25), Amari (26), and
Hopfield (27). The nodal behavior in those models is passive and has the interpretation of a mean-
field behavior of the cellular activity. The nodal dynamics model not the spiking behavior of a
single neuron but rather the mean-field spiking activity of a population of neurons. Rate neural
network models have been seminal in identifying the network properties of specific network ar-
chitectures encountered in neurophysiology. Rate models do not include the nodal feedback of
nodal currents but do include the network feedback of any network loop of network currents.
The network feedback can shape the sensitivity of a node very much like the nodal feedback. Our
motivation to include nodal active currents in the network architecture is to highlight the distinct
role of nodal control and network control in a multiscale model.

The parallel types of nodal and network currents in our network architecturemake it multiscale
andmultiresolution in nature: Network currents at a finer scale become nodal currents at a coarser
scale. In the same way, network conductances at the nodal scale become nodal conductances at the
network scale. At the nodal scale, the behavior is an input–output relationship between Inet andV.
This input–output behavior is shaped by the nodal conductance, which acts as a feedback control.
The input Inet is shaped by the network conductance, which acts as a feedforward control.

3. SHAPING BEHAVIORS ACROSS SCALES

Mixed feedback that is first positive and then negative provides a basic feedback structure for
signaling across scales. This section illustrates how controlling the nodal scale with this feedback
structure can shape the network behavior at broader scales.

3.1. Shaping a Nodal Behavior

The mixed-feedback structure discussed in Section 2.3 endows the nodal behavior with a specific
scale of excitability: The spike is a discrete event with a specific amplitude and temporal sensitivity
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Figure 8

Two interlocked mixed-feedback loops and the resulting bursting behavior. The equilibrium value of the node determines the
excitability mode: The node is spike excitable around the equilibrium potential V = Ehigh and burst excitable around the equilibrium
potential V = Elow. Each mixed-feedback loop endows the nodal behavior with a distinct scale of memory and signaling.

range determined by the active nodal currents. A two-scale nodal behavior is obtained simply by
duplicating the mixed-feedback structure. We consider a node with one passive current and four
distinct active currents to shape two distinct mixed-feedback loops:

Ip = gp.(V − Ep),
I1 = g1(V f ,V s ).(V − Emax),
I2 = g2(V s ).(V − Emin),
I3 = g3(V s,V us ).(V − Emax),
I4 = g4(V us ).(V − Emin).

15.

The nodal circuit now has two distinct sources of positive feedback, each of which can create a
distinct threshold. We assume that the activation ranges of the two inward currents I1 and I3 are
distinct and overlapping in both amplitude and time: The activation range of I3 is slower and lower
than the activation range of I1. The two outward currents I2 and I4 balance the two distinct ranges
of positive feedback with two distinct ranges of negative feedback. They provide refractoriness in
two distinct but overlapping ranges in amplitude and time.Together, the four nodal currents shape
the interlocked mixed feedback of two distinct scales of excitability, with overlapping amplitude
and temporal ranges. The resulting discrete event is a burst, which can be regarded as a spike of
spikes (Figure 8).

Bursting is central to cellular neurophysiology. The four distinct types of nodal conductances
can be identified in most neurons. Sodium and calcium currents are inward currents. The ac-
tivation range of most calcium currents is slow and low with respect to the activation range of
most sodium currents. Therefore, sodium activation is the most common source of fast positive
feedback, and calcium activation is a common source of slow positive feedback. Potassium and
chloride currents provide most of the outward currents. Their activation ranges are widespread
in amplitude and time, providing negative feedback in a continuum of ranges. Sometimes, it is the
inactivation of an outward current that provides the slow positive feedback. A notable example is
the A-type potassium current, which plays an important role in slow excitability (28).

The particular significance of bursting in the context of this article is that it endows the nodal
behavior with two distinct modes of excitability, each associated with a distinct scale. Spike ex-
citability signals only in the high amplitude and frequency ranges; burst excitability signals si-
multaneously in high and low amplitude and frequency ranges. The modulation between spike
and burst excitability is central to the examples of multiscale control given in the sections below.
This modulation can take many different forms, but the basic property is illustrated in Figure 8.
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The excitability mode drastically alters the input–output behavior of the node. The same input
disturbance might trigger a spike or a burst—that is, generate a discrete event in two distinct
scales—because of the distinct activation ranges of the two inward currents. The trajectories il-
lustrated in Figure 8 are the result of a fast inward current that activates near Ehigh and a slow
inward current that activates near Elow. Spike excitability occurs when the slow inward current is
inactivated, whereas burst excitability occurs when the slow inward current is activated. A burst re-
sponse occurs only when the voltage has remained low for long enough. The modulation between
spike and burst excitability is central to the control of the nodal behavior. It can be achieved either
by modulating the polarization of the node (that is, the balance of inward and outward currents
at steady state) or by modulating the maximal conductance of the slow inward current.

The behavior that results from two interlocked mixed-feedback loops is robust, tunable, and
tractable (for a detailed analysis of those properties, see Reference 29). These properties are
rooted in a sufficient separation of the amplitude and temporal ranges of the feedback gains: a
fast timescale and high voltage range where positive feedback dominates, an ultraslow and low
voltage range where negative feedback dominates, and an intermediate slow timescale and middle
voltage range where the instantaneous sign of the feedback loop depends on a balance between
the negative feedback following the fast positive feedback and the positive feedback preceding the
ultraslow negative feedback. The fast/high positive feedback determines the threshold of spike ex-
citability. The ultraslow/low negative feedback determines the refractoriness of burst excitability.
The intermediate balance of positive and negative feedback determines the threshold of burst ex-
citability and the refractoriness of spike excitability. The behavior is robust to the modeling details
of the activation and inactivation properties because only the balance of feedback loops in a given
timescale and amplitude range determines the qualitative properties (threshold and refractoriness)
of the two excitability modes. The behavior is tunable because the activation range and maximal
conductances of each current can be tuned to shape the bursting waveform in a broad range of
amplitudes and frequencies. The behavior is tractable because the attractor properties of a burster
can be dissected in distinct timescales. Singular perturbation analysis and singularity theory pro-
vide a complete classification of the possible combinations of spike and burst excitability that obey
the hierarchy of the two mixed-feedback loops (30).

The regulation of the balance of positive and negative feedback in the intermediate scale of the
behavior is of particular significance to shape the input–output sensitivity of the nodal behavior in
distinct timescales. The continuous modulation between spiking and bursting is a core signaling
mechanism in cellular neurophysiology (31, 32). It is important to note that such regulation is
not possible in the absence of a nodal conductance that provides positive feedback in the inter-
mediate voltage amplitude and temporal ranges. In Reference 29, we showed the critical role of
this distinct positive feedback in the robustness and tunability of a bursting behavior. Surprisingly,
ionic currents that provide slow positive feedback are often omitted in mathematical treatments
of bursting (e.g., in 33, 34).

3.2. Shaping a Motif Behavior

Modulating the excitability of a node has a profound influence on the behavior not only at the
nodal scale but also across scales. This is best exemplified in two interconnection motifs that have
been extensively studied in the literature: the I–I motif and the E–I motif. The I–I motif is a
symmetric inhibitory interconnection between two nodes, each controlling a network inhibitory
current into the other node:

I12,I = g12(V s
1 )(V2 − Emin),

I21,I = g21(V s
2 )(V1 − Emin).

16.
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Figure 9

The influence of the nodal mode of excitability on two basic interconnection motifs. Both the I–I and E–I motifs define a behavior at
the circuit scale distinct from the behavior at a nodal scale. The circuit behaviors are turned on and off by the modulation of the
excitability mode of the nodes.

The E–I motif is an asymmetric excitatory–inhibitory interconnection between two nodes, each
controlling a network current of opposite sign into the other node:

I12,E = g12(V f
1 )(V2 − Emax),

I21,I = g12(V s
2 )(V1 − Emin).

17.

The I–I motif is central to the circuit neurophysiology of central pattern generators (35). It is a
basic mechanism to generate autonomous circuit rhythms by interconnecting nodes that are burst
excitable but do not necessarily oscillate in isolation.Themechanism is simple to understand from
the input–output nodal behavior shown inFigure 8: A burst in neuron 1 induces a hyperpolarizing
network current into node 2. As a consequence, the termination of a burst in neuron 1 triggers a
burst in neuron 2. The symmetric interconnection from neuron 2 to neuron 1 closes a network
loop that can sustain an autonomous antiphase rhythm in the circuit (Figure 9).

The E–I motif is central to the circuit neurophysiology of transient slow rhythms. The mecha-
nism is again a simple consequence of the input–output nodal behavior shown in Figure 8. In the
spike excitability mode, the two nodes do not interact and behave independently of each other. In
Figure 9, one node is repeatedly spiking, whereas the other node is silent; in the burst excitability
mode, the two nodes interact, triggering a new rhythm for the circuit.

The significance of both motifs for this article is that the nodal modulation of excitability con-
trols the circuit behavior. In both motifs, the circuit rhythm is turned on and off by the excitability
mode of the nodes: The circuit rhythm is on when the nodes are burst excitable and off when
the nodes are spike excitable. The resulting behavior is multiscale because it can be modulated
between a behavior at the nodal scale and a behavior at the motif scale. The control is at a nodal
resolution, because the nodal excitability can be modulated locally, through local modulation of
the maximal conductance of specific nodal currents.
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The scale of the motif is, of course, not restricted to the interconnection of two cells. The
interconnections can be between a population of excitatory nodes and a population of inhibitory
nodes.

The multiscale behavior of the elementary motifs discussed above is again robust, tunable,
and tractable. (For detailed analyses of the I–I and E–I motifs, see References 36 and 37, respec-
tively.) Those properties are rooted in the separation of amplitude, temporal, and spatial scales.
The separation of spatial scales is ensured by the assumption of weak nodal interconnection. The
interconnection is weak if the nodal behavior is dominated by the feedback properties of nodal
conductances. The nodal behavior of each neuron in Figure 9 is a sequence of spikes and bursts.
These spikes and bursts are shaped by the nodal conductance, regardless of the interconnection
topology. They define an input–output nodal behavior for each node that is independent of the
network arrangement.What differs in the I–I andE–Imotifs is only the sequence of discrete events
in each node and the relative phase of similar events in the distinct nodes. Those properties are
shaped by the network conductances. The separation of scales is fundamental to the multiscale
nature of the behavior. The behavior at a broader scale is a particular temporal arrangement of
the discrete events that define the behavior at a finer scale.

The behavior of the motif is robust to the modeling details of the nodal and network conduc-
tances. This property is of fundamental importance to make the motif robust to the heterogeneity
of the population when it designates the interconnection of populations rather than isolated nodes.
The analyses by Dethier et al. (36) (for the I–I motif) and Drion et al. (37) (for the E–I motif) show
that the behavior illustrated in Figure 9 persists over a broad range of modeling parameters. Both
papers highlight the critical role of the nodal slow positive feedback for this robustness. The two
distinct positive feedbacks of each node determine two distinct types of discrete events, one for
each mode of excitability. This discrete classification of the nodal behaviors is essential to the
robustness of behaviors at a larger scale. The behavior of the motif is also tunable, precisely be-
cause the discrete classification of nodal behaviors persists over a broad range of parameters. Both
the I–I and E–I circuit rhythms have properties that are distinct from the nodal behaviors. Those
properties are determined by the phase relationships between the nodal discrete events. Those
phase relationships can be tuned by modulating the activation ranges of the network currents in
both amplitude and time. Finally, the behavior of the motif is tractable because it can be inferred
from the behavior of the nodes and from the circuit topology. The nodal behavior defines the dis-
crete events that compose the network behavior. The nodal interconnections constrain the phase
relationships between the discrete events of interconnected nodes.

3.3. Shaping a Circuit Behavior

The nodal control of the I–I motif provides a shaping principle for circuits composed of excitable
nodes interconnected by inhibitory synaptic currents. In neurophysiology, such circuits have long
been associated with rhythmic functions such as breathing, chewing, swallowing, walking, and
heartbeats (38–41). Here, we briefly illustrate how nodal control shapes the behavior of the five-
node circuit illustrated in Figure 10. (For a detailed analysis of the circuit, see Reference 42.) The
circuit architecture is inspired by the neuronal topology of the crab somatogastric ganglion, which
has served as a key experimental model in studies of the neuromodulation of rhythmic circuits
over the past 40 years (43). In experiments, two different rhythms coexist within the somatogas-
tric ganglion circuit: One corresponds to the fast pyloric rhythm, which is constantly active, and
the other corresponds to the slow gastric mill rhythm, which can be turned on and off by afferent
neuromodulatory inputs and neuromodulators. Each node in the circuit is a conductance-based
model that includes seven different types of nodal currents. We do not discuss those currents
in detail here, but their conductances can be shown to shape the four distinct types of feedback
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discussed in Section 3.1.They endow each node with the two distinct excitability modes of a burst-
ing node. In particular, the model includes two calcium currents that provide the critical source of
slow/intermediate positive feedback necessary for burst excitability. Our local control parameter
is the maximal conductance of those two currents, which can modulate the nodal excitability of
each node between the two modes of excitability.

1

2 3 4

5

No rhythm

Coexistence of fast (1, 2, 3) and slow (3, 4, 5) rhythms

Slow triphasic rhythm (3, 4, 5)

Fast triphasic rhythm (1, 2, 3)

Global rhythm (1, 2, 3, 4, 5)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Modulated
neuron

1

2 4

5

1

2 4

5

1

2 4

5

1

2 4

5

1

2 4

5

a  Circuit configuration b  Circuit rhythms c  Functional connectivity

3

3

3

3

3

(Caption appears on following page)

www.annualreviews.org • Control Across Scales 107



AS02CH04_Sepulchre ARjats.cls March 23, 2019 9:19

Figure 10 (Figure appears on preceding page)

Nodal control of a circuit behavior with a fixed synaptic connectivity. (a) Circuit connectivity diagrams. The filled circles represent
neurons, which are numbered from 1 to 5. Neurons with thick orange edges are controlled by neuromodulatory inputs that increase the
maximal conductance of calcium currents. A resistor symbol denotes a passive current between nodes, an arrow symbol denotes an
excitatory current into a node, and a circle symbol denotes an inhibitory current into a node. (b) Membrane potential variations over
time for neurons 1–5 in the different control configurations. Synaptic connections are identical in all cases. Neurons are shown in blue
when they participate in the fast rhythm, in red when they participate in the slow rhythm, in purple when they participate in a global
rhythm, and in black when they do not participate in the circuit rhythm. (c) Functional connectomes in the different control
configurations. The line thickness suggests the functional strength of the different interconnection links. Figure adapted from
Reference 42 with permission.

Figure 10 shows the topology of the network. It includes passive currents between nodes 2, 3,
and 4 and several inhibitory network currents. Reciprocal inhibitory connections between nodes 1
and 2 and between nodes 4 and 5 define two elementary I–Imotifs: one for the fast rhythmbetween
nodes 1 and 2 and one for the slow rhythm between nodes 4 and 5. The two distinct I–I motifs
interact through the central node 3.

Figure 10 illustrates the different rhythms that can coexist in the circuit by controlling the
excitability mode of the nodes. The significance of this nodal control is that the interconnection
gains (and, in particular, the maximal conductances of the synaptic currents) remain unchanged
in the five circuit rhythms shown in the figure. The circuit behavior is modulated by nodal con-
trol rather than by network control. Nodal control modulates the functional connectivity of the
network without changing the synaptic connectivity. Our message is that nodal control makes the
circuit behavior robust, tunable, and tractable. The circuit behavior is easily inferred from the I–
I motif behavior because the circuit topology only orchestrates the phase relationships between
discrete events defined at a smaller scale. Those properties are difficult to achieve when the circuit
behavior is tuned only by the synaptic currents.

This example illustrates the role of nodal excitability in shaping a behavior across scales. This
control principle is relevant to neurophysiology and illustrates the important function of neuro-
modulation as a complement to synaptic plasticity.

3.4. Shaping a Network Behavior

The control of the E–I motif provides a shaping principle for network states. Network states des-
ignate the spatiotemporal mean-field signature of specific discrete events at the network scale.
In neuroscience, specific network states signal specific brain functions. Rapid control of network
states has been reported to affect spatial attention in cortical circuits (44, 45), attention and arousal
in the thalamus, andmovement initiation in the subthalamic nucleus (46).Themost studied exam-
ple is probably the thalamocortical circuitry. The thalamus acts as a plastic relay between sensory
systems, different subcortical areas, and the cerebral cortex by gating and modulating neuronal
signal flow under the modulatory effect of cortical feedback (47, 48).

Figure 11 illustrates how nodal control shapes the spatiotemporal behavior of an E–I network.
(For a detailed analysis of this model and its properties, see Reference 37.) Each node in the net-
work again contains the four distinct types of feedback necessary to modulate the nodal behavior
between spike excitability and burst excitability. The nodal control occurs through a neuromod-
ulator that switches the node between its two modes of excitability by hyperpolarization.

The network currents are of three distinct types:

IEI = gE (V f
E )(VI − Emax),

IIE,1 = gI,1(V s
I )(VE − E1

min),
IIE,2 = gI,2(V us

I )(VE − Emin).

18.
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(a) Sketch of a spatial network of 160 cells. A one-dimensional array of 80 excitatory (E) cells is connected to a one-dimensional array of
80 inhibitory (I) cells; excitatory currents are shown as green arrows, and inhibitory currents are shown as red lines with bars on the
ends. Inhibitory currents connect I cells to E cells and are of two types, GABAA and GABAB. Network currents are all to all from one
population to the other population, with maximal conductances randomly distributed in a fixed range for each type of current. The
nodal modulatory control (MOD) can be activated independently in eight distinct spatial clusters. (b) Spectrograms of the local field
potentials (LFPs) of E cells (top) and I cells (middle), with independent nodal control of eight distinct spatial clusters. The blue traces at
the bottom indicate the period during which the fast neuromodulator is active in a given cluster. The spatial localization of the nodal
control affects the temporal frequency and amplitude ranges of the mean-field spectral power. (c) Sketch of a spatial network of 40 cells.
A one-dimensional array of 20 E cells is connected to a one-dimensional array of 20 I cells. Here, GABAB connections are spatially
localized via a maximal conductance that decays exponentially along the spatial dimension. The nodal MOD is activated independently
in four distinct spatial clusters. (d) Spectrograms of the LFPs of the four independently controlled spatial clusters of E cells (top) and I
cells (middle). The blue traces at the bottom indicate the period during which the fast neuromodulator is active in a given cluster. The
spatial localization of the nodal control and of the GABAB currents enables only spatial tuning of the network mean field, even though
the AMPA and GABAA connections are all to all. Figure adapted from Reference 37 under the Creative Commons Attribution 4.0
International license (https://creativecommons.org/licenses/by/4.0).
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The excitatory current IEI models AMPA synaptic currents controlled by the excitatory neurons
into the inhibitory neurons. The inhibitory currents IIE,1 and IIE,2 model GABAA and GABAB

synaptic currents controlled by the inhibitory neurons into the excitatory neurons. GABAB

synapses are slower than GABAA synapses, and GABAA synapses have a reversal potential E1
min

slightly higher than Emin. The difference between the two types of inhibitory currents is physio-
logical but nonessential for this article. Each pair of excitatory and inhibitory cells and the entire
populations of excitatory and inhibitory cells form an E–I motif with a qualitative behavior similar
to the one discussed in Section 3.2.

Figure 11 illustrates how the nodal control of excitability can shape the spatiotemporal prop-
erties of the network. As in the rhythmic circuit discussed in Section 3.3, nodal control spatially
modulates the functional connectivity of the network without changing the synaptic connectiv-
ity. Our message is that nodal control makes the network behavior robust, tunable, and tractable,
at a nodal resolution. The network behavior is easily inferred from the E–I motif behavior be-
cause the nodal interconnections only orchestrate the spatial spread of localized nodal discrete
events.

4. CLOSING REMARKS

A central paradigm of control theory is that feedback shapes sensitivity. How to extend this
principle from a monoscale feedback control loop to a multiscale network control architecture
remains a puzzle. This article has focused on the role of nodal feedback control for network
regulation. Nodal feedback control regulates nodal excitability, which is a specific type of ultra-
sensitivity resulting from a combination of positive and negative feedback. We have shown that
modulating nodal excitability can reconfigure a behavior at the large scale of a network with the
tiny resolution of a node. This control principle is flexible, robust, and tractable provided that
the actuation of each conductance is localized in the proper amplitude, temporal, and spatial
ranges.

The material in this article was inspired primarily by questions in neurophysiology. How neu-
romodulators can reconfigure the behavior of a neuronal circuit without altering its anatomy re-
mains a central question in the analysis of brain functions. We have put aside many physiological
details to concentrate on control principles that have generality beyond the applications of neuro-
science. We hope that the potential of those principles across science and engineering stimulates
novel developments in control theory. In particular, novel analysis and design tools are needed to
cope with mixed-feedback control systems that behave away from equilibrium.

SUMMARY POINTS

1. Feedback shapes the sensitivity of an input–output behavior. Positive feedback is a source
of ultrasensitvity, memory, and discrete signaling. Negative feedback is a source of in-
frasensitivity, linearity, and continuous signaling.

2. Excitability is a mixed-feedback mechanism. Excitability at a mesoscale shapes the (con-
tinuous) input sensitivity to finer scales and the (discrete) output signaling to coarser
scales.

3. Nodal control of excitability is a versatile regulation mechanism across scales. It shapes
the network scale of a spatiotemporal behavior at the resolution of the nodal scale.
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FUTURE ISSUES

1. What is the potential of nodal feedback control in multiscale control problems, such as
traffic control and artificial neural network regulation?

2. Linear control theory is a theory of sensitivity for negative feedback regulation of equi-
librium behaviors. Is it possible to generalize linear control theory to a multiscale theory
of sensitivity for mixed-feedback regulation of excitable behaviors?

3. Can nodal control advance the control principles of recurrent neural networks?

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

Some of the research described in this article was funded by the European Research Council under
Advanced ERC Grant Agreement Switchlet n.670645 and by the Dirección General de Asuntos
del Personal Académico (DGAPA) and the National Autonomous University of Mexico under
grant PAPIIT RA105518.

LITERATURE CITED

1. Olfati-Saber R, Murray RM. 2004. Consensus problems in networks of agents with switching topology
and time-delays. IEEE Trans. Autom. Control 49:1520–33

2. Sepulchre R. 2011. Consensus on nonlinear spaces. Annu. Rev. Control 35:56–64
3. Sarlette A, Sepulchre R. 2014. Control limitations from distributed sensing: theory and extremely large

telescope application. Automatica 50:421–30
4. Tucker G. 1972. The history of positive feedback: the oscillating audion, the regenerative receiver, and

other applications up to around 1923. Radio Electron. Eng. 42:69–80
5. Black H. 1934. Stabilised feedback amplifiers. Bell Labs Tech. J. 13:69–80
6. Thomas R. 1981. On the relation between the logical structure of systems and their ability to generate

multiple steady states or sustained oscillation. In Numerical Methods in the Study of Critical Phenomena, ed.
J Della Dora, J Demongeot, B Lacolle, pp. 180–93. Berlin: Springer

7. Tsai TYC, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE. 2008. Robust, tunable biological oscil-
lations from interlinked positive and negative feedback loops. Science 321:126–29

8. Mitrophanov AY, Groisman E. 2008. Positive feedback in cellular control systems. BioEssays 30:542–55
9. Smolen P,BaxterD,Byrne J. 2001.Modeling circadian oscillations with interlocking positive and negative

feedback loops. J. Neurosci. 21:6644–56
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