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Abstract

In control theory, complicated dynamics such as systems of (nonlinear) dif-
ferential equations are controlled mostly to achieve stability. This funda-
mental property, which can be with respect to a desired operating point or
a prescribed trajectory, is often linked with optimality, which requires min-
imizing a certain cost along the trajectories of a stable system. In formal
verification (model checking), simple systems, such as finite-state transition
graphs that model computer programs or digital circuits, are checked against
rich specifications given as formulas of temporal logics. The formal synthe-
sis problem, in which the goal is to synthesize or control a finite system
from a temporal logic specification, has recently received increased inter-
est. In this article, we review some recent results on the connection between
optimal control and formal synthesis. Specifically, we focus on the follow-
ing problem: Given a cost and a correctness temporal logic specification for
a dynamical system, generate an optimal control strategy that satisfies the
specification.We first provide a short overview of automata-based methods,
in which the dynamics of the system are mapped to a finite abstraction that is
then controlled using an automaton corresponding to the specification.We
then provide a detailed overview of a class of methods that rely on mapping
the specification and the dynamics to constraints of an optimization prob-
lem.We discuss advantages and limitations of these two types of approaches
and suggest directions for future research.
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1. INTRODUCTION

Temporal logics, such as computation tree logic and linear temporal logic (LTL), have custom-
arily been used to specify the correctness of computer programs and digital circuits modeled as
finite-state transition systems (1). The problem of analyzing such a model against a temporal logic
formula, known as formal analysis or model checking, has received significant attention during
the past 40 years, and several efficient algorithms and software tools are available (2, 3). The
formal synthesis problem, in which the goal is to design or control a system from a temporal logic
specification, was not studied extensively until a few years ago. Recent results include the use of
model checking algorithms to control deterministic systems (4), automata games for controlling
nondeterministic systems (5), and linear programming and value iteration for the synthesis of
control policies for Markov decision processes (1, 6). Through the use of abstractions, such
techniques have also been used for infinite systems, such as continuous- and discrete-time linear
systems (7–12).

Optimal control is a mature research area and a well-used technique in applications. For a
finite (weighted) deterministic transition system (i.e., a graph for which available transitions can
be deterministically chosen at every node), the classical control problem is finding a shortest
path between two nodes, for which there are efficient algorithms (13). For a finite purely non-
deterministic system (i.e., one in which an action at a state enables several transitions, and their
probabilities are not known), a controller optimizing a cost expressed using transition weights can
be found through fix-point techniques (14). For finite Markov decision processes, the classical
control problem is the stochastic shortest-path problem, where an optimal policy minimizing the
expected value of a cumulative discounted cost is minimized by using value iteration or linear
programming (15). For systems with infinite state and control sets, optimal control problems
usually involve costs that penalize the deviation of the state from a reference trajectory and the
control effort. For linear systems and quadratic costs, the problem involves solving a Riccati
equation. For all the control problems enumerated above, there exist receding-horizon [also
called model predictive control (MPC)] versions (16, 17). To account for time-varying objectives,
in MPC, the optimal control problem is solved at every time step over a finite horizon, and the
optimal action is applied only at the current time.

The connection between optimal and temporal logic control is an intriguing problem with a
potentially high impact in several applications. The goal of combining these two seemingly unre-
lated areas is to optimize the behavior of a system subject to correctness constraints. Consider, for
example, an autonomous vehicle involved in a persistent surveillancemission in a disaster relief ap-
plication, where dynamic service requests can only be sensed locally in a neighborhood around the
vehicle (see Figure 1). The goal is to accomplish the mission while maximizing the likelihood of
servicing the local requests, and possiblyminimizing the energy spent during themotion.The cor-
rectness requirement can be expressed as a temporal logic formula (see the caption of Figure 1),
while the resource constraints translate to minimizing a cost over the feasible trajectories of the
robot.

Current works on combining optimality and correctness can be roughly divided into two main
classes: automata-based methods and optimization-based methods. Automata-based methods are
based on the observation that an LTL formula can be mapped to an automaton in such a way that
the language accepted by the automaton is exactly the language satisfying the formula.Depending
on the desired expressivity of the specification language, these automata can be well-known finite-
state automata (the acceptance condition is reaching a set of final states), Büchi automata (the
acceptance condition is reaching a set of final states infinitely often), or, in the most general case,
Rabin automata (the acceptance condition is to visit a set of good states infinitely often and a set
of bad states finitely many times) (1). The control problem reduces to a game on the product
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Figure 1

(a) An autonomous air vehicle is deployed from a high-level, temporal logic global specification over a set of static, known requests
(“photo” and “upload”) occurring at the regions of a known environment—e.g., “keep taking photos and upload the current photo
before taking another photo.” This specification translates to the following LTL formula: GF photo ∧ G (photo →
(photoU(¬photoU upload))), where G, F, and U are the temporal operators “globally” (always), “future” (eventually), and “until,” and
∧, →, and ¬ are Boolean operators for conjunction, implication, and negation, respectively. While moving in the environment, the
vehicle can locally sense dynamically changing events such as survivors and fires, which generate (local) service requests, and unsafe
areas, which need to be avoided. The goal is to accomplish the global mission while maximizing the likelihood of servicing the local
requests and staying away from unsafe areas. (b) Through the use of an accurate quadrotor kinematic model, input–output linearizations
or flat outputs, precise state information from a motion capture system, and control-to-facet results for linear and multiaffine systems,
this problem can be (conservatively) mapped to a control problem for a finite transition system. This system can be deterministic or
nondeterministic if single- or multiple-facet controllers in the output space are used, respectively. Figure adapted from Reference 18.

between a finite system, such as a transition system or Markov decision process, which can be the
abstraction of an infinite deterministic or stochastic system, and the automaton obtained from
the specification. The winning condition, which ensures correctness, is the Rabin (Büchi, finite-
state automaton) acceptance condition of the automaton. For finite systems, the cost can be the
average reward or cost per stage and adapted objectives that reflect the semantics of the temporal
logic, such as the average reward or cost per cycle. For infinite systems, current works consider
costs that penalize the deviation of the states and controls from desired reference trajectories. The
main limitation of automata-based methods is the prohibitive computational complexity, which
stems from the complexity of the game for the finite systems and the exponential blowup of the
partition-based abstraction for infinite systems. In addition, due to the partition-based abstraction,
such methods are, in general, conservative for infinite systems. In this article, we provide only a
short review of these methods in Section 2.

Central to optimization-based methods are temporal logics with semantics over finite-time
signals, such as signal temporal logic (STL) (19) and metric temporal logic (20). In addition to
Boolean semantics, in which signals either satisfy or violate a formula, such logics have quanti-
tative semantics, which allow one to assess the robustness of satisfaction. The starting point for
this class of methods is the observation that Boolean satisfaction can be mapped to the feasibility
part of an optimization problem. A cost that penalizes the deviation from a desired system tra-
jectory of energy consumption can be combined with the robustness of satisfaction to obtain the
overall objective of the optimization. Therefore, the main advantage of these types of methods
is the seamless combination of correctness and optimality, with the added feature of robustness
to satisfaction. The second advantage is scalability. We provide a detailed review of this class of
methods in Section 5.
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Throughout this article, we assume that the state of the system is fully observable. Even though
most of the results in this article are valid for both discrete- and continuous-time dynamical sys-
tems, we restrict our attention to discrete-time systems.

2. AUTOMATA-BASED TEMPORAL LOGIC OPTIMAL CONTROL

2.1. Finite Systems

For weighted deterministic transition systems and specifications given as LTL formulas over a set
of propositions labeling the states of the system, Smith et al. (4) considered a cost function quanti-
fying the time between satisfying instances of a single proposition. This cost function is motivated
by problems in monitoring and data gathering, such as the one described in Figure 1. The solu-
tion starts with converting the LTL specification to a Büchi automaton. The transition system is
then synchronized with the Büchi automaton to create a product automaton. In this automaton,
a satisfying run is any run that visits a set of accepting states infinitely often. It can be shown that
there exists an optimal run that is in a prefix–suffix structure, implying that it is enough to search
for runs with a finite transient state followed by a periodic steady state. A polynomial-time graph
algorithm based on solutions of bottleneck shortest-path problems is used to find an optimal cycle
containing an accepting state. Jing et al. (21) considered a related version of this problem, with
particular application to robot motion planning in adversarial environments. Svorenova et al. (22)
showed that this problem can also be solved for the case in which the deterministic transition
system incurs time-varying penalties modeled as Markov chains. The cost was the expected aver-
age cumulative penalty incurred between consecutive satisfactions of a desired property, and the
specification was a general LTL formula.

Ding et al. (6) considered a probabilistic version of this optimal synthesis problem. The speci-
fications were given as LTL formulas over a set of propositions assigned to the states of a Markov
decision process, and a control policy that minimized the expected cost between satisfying in-
stances of an optimizing proposition over all policies that maximize the probability of satisfying
the given LTL specification was derived. The Markov-decision-process optimization problem
was formulated in terms of minimizing the average cost per cycle, where cycles are defined by
successive satisfactions of the optimizing proposition. A connection was established between this
problem and the well-known average-cost-per-stage problem, and it was shown that a dynamic
programming algorithm can be used to produce provably correct, optimal solutions.

Ding et al. (23) established a connection between temporal logic control synthesis and
receding-horizon optimal control for finite deterministic systems. The authors assumed that the
specification was given as an LTL formula and that deterministic rewards could be sensed locally
around the current state during the execution of the system. They then derived a control strategy
in the form of an infinite iteration of a receding-horizon controller, which they computed based
on local reward information. One limitation of this approach is that once an optimal sequence
of controls over a finite horizon was chosen, it was applied at every time step to the end of the
horizon. This issue was later addressed by Ding et al. (24) in a paper that developed a truly MPC
strategy—i.e., only the first action in the sequence was applied. In addition to proving the correct-
ness of the control strategy, this paper established some interesting automata-theoretic equivalents
of basic concepts from MPC, such as recursive feasibility and terminal constraints.

2.2. Infinite Systems

Automata-based approaches for temporal logic optimal control of systems with infinite sets of
states and/or controls are, in general, hierarchical, two-level methods. The bottom level is a
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continuous-to-continuous abstraction procedure, in which the possibly large state space and com-
plex dynamics are mapped to a low-dimensional output space with simple dynamics. The most
used techniques are input–output linearization and differential flatness. For a differentially flat
system, its state and control variables can be expressed as a function of its outputs and its deriva-
tives. The top level is a partition-based, continuous-to-discrete abstraction procedure, in which
the output and control spaces are partitioned. The partition is driven by the specification (25)
or by a prescribed accuracy of the approximation (26). The quotient of the partition is a finite
system that is in some way equivalent to the original, infinite system. The most used notion of
equivalence is bisimulation. Figure 1 provides an example. The 12-dimensional quad-rotor dy-
namics of the quad-rotor shown in Figure 1a are differentially flat with four flat outputs (position
and yaw), and up to four derivatives of the flat output are necessary to compute the original state
and input. Figure 1b shows a two-dimensional section of the partition of the four-dimensional
output space, together with the assignment of a vector field in two adjacent cells. Note that the
dynamics corresponding to these vector fields treat all the states in a cell in the same way: In the
cell in Figure 1a, all the states will leave in finite time through the right facet, and in the cell in
Figure 1b, all states will stay inside for all times. Informally, these examples correspond to the
bisimilarity equivalence mentioned above. The quotient of the partition is a finite transition sys-
tem that is controlled from the temporal logic specification. The cost can penalize the execution
time (as in 14) or traveled distance (as in 10, 18).

Themethod described above is conservative. If a solution (of the automaton game) is not found
at the top level, this does not mean that a controller does not exist for the original continuous
system. Intuitively, the partition, and therefore the abstraction, might be too rough. Conserva-
tiveness can be reduced by refining the partition. Rungger & Reissig (27) showed that optimality
can made arbitrarily precise by refining the state partition and proved optimality bounds. Gol
et al. (25) took this approach for discrete-time linear systems, specifications given as syntactically
cosafe LTL formulas over linear predicates in the state of the system, and quadratic costs penaliz-
ing the Euclidean distance from desired trajectories. Figure 2 shows an example illustrating the
compromise between correctness and optimality.

The expensive process of constructing the abstraction was avoided by Papusha et al. (28) for
deterministic systems and by Horowitz et al. (29) for stochastic systems. Specifically, Papusha
et al. (28) formulated a dynamic programming problem over the product of the continuous-
time, continuous-state system and the specification automaton. They proposed an approximate-
dynamic-programming approach for controller synthesis for both linear and nonlinear systems.
Wolff et al. (30) used a similar approach for autonomous driving and robotic surveillance tasks.
Li & Fu (31) considered a sampling-based policy iteration for optimal planning for a subclass of
LTL specifications.

3. SPECIFICATIONS

STL was originally introduced by Maler & Nickovic (19) to reason about continuous-time real
signals, and it can be viewed as a version of metric temporal logic (20) specifically tailored for
real signals. An n-dimensional real signal is s : T → R

n, where T is the time domain: R+ for
continuous-time signals or N for discrete-time signals. We use st to refer to the value at time
t ∈ T, and (s, [t1 : t2]) to refer the portion of s in [t1, t2], t1, t2 ∈ T, t2 ≥ t1. We use the shorthand
notation (s, t) := (s, [t,∞)) for a signal suffix. The syntax of STL is defined as

ϕ ::= π | ¬ϕ |ϕ1 ∧ ϕ2 |ϕ|ϕ1U[t1,t2]ϕ2, 1.
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A planar discrete-time double-integrator system is required to satisfy the correctness specification “visit region A or region B and then
the target region T, while always avoiding obstacles O1 and O2 and staying inside the safe region X (the bounding box),” which
translates to the syntactically cosafe linear temporal logic formula ((¬O1 ∧ ¬O2 ∧ X)UT) ∧ (¬TU (A ∨ B)). At the same time, the
system should follow a desired reference-state trajectory that is available to the system over a short finite-time horizon N . The
reference trajectory is shown in green (satisfying the correctness specification in panels a and b, and violating it in panel c),
and the trajectory of the controlled system is shown in red. Pairs of points on the reference and controlled trajectories corresponding to
the same time are connected. The cases shown in panels a and b correspond to increasing values of the horizon N for the same
reference trajectory. Note that, in the situation shown in panel c, where the reference trajectory violates the correctness specification,
the controller tries to compromise between correctness and optimality. Figure adapted from Reference 25.

where π is a predicate in the form π = (p(s) ≥ c) or π = (p(s) ≤ c), where p : Rn → R and
c ∈ R; ¬ and ∧ denote Boolean negation and conjunction connectives, respectively; and U[t1,t2]

is a bounded temporal “until” operator with t1 ≥ t2. Other Boolean operators are defined in
the usual way. Additional temporal logic operators can be constructed: temporal “eventually” is
F[t1,t2]ϕ := TrueU[t1,t2]ϕ, and temporal “always” is G[t1,t2]ϕ := ¬(F[t1,t2]¬ϕ). STL semantics is de-
fined over suffixes of signals as follows.

Definition 1. The STL semantics is recursively defined as follows:

� (s, t) |	 (p(s) ≥ c) ⇔ p(st) ≥ c, (s, t) |	 (p(s) ≤ c) ⇔ p(st) ≤ c;
� (s, t) |	 ¬ϕ ⇔ (s, t) �|	 ϕ;
� (s, t) |	 ϕ1 ∧ ϕ2 ⇔ (s, t) |	 ϕ1 ∧ (s, t) |	 ϕ2;
� (s, t) |	 ϕ1 ∨ ϕ2 ⇔ (s, t) |	 ϕ1 ∨ (s, t) |	 ϕ2;
� (s, t) |	 ϕ1U[t1,t2]ϕ2 ⇔ ∃t ′ ∈ [t1, t2], (s, t ′ ) |	 ϕ2 ∧ ∀t ′′ ∈ [t1, t ′](s, t ′′ ) |	 ϕ1;
� (s, t) |	 F[t1,t2]ϕ ⇔ ∃t ′ ∈ [t1, t2], (s, t ′ ) |	 ϕ; and
� (s, t) |	 G[t1,t2]ϕ ⇔ ∀t ′ ∈ [t1, t2], (s, t ′ ) |	 ϕ,

where (s, t) |	 ϕ is read as “signal suffix (s, t) satisfies STL formula ϕ.”

Definition 2 (from Reference 32). The STL score, also known as the STL robustness
degree (19), of a signal suffix (s, t) with respect to an STL formula ϕ is recursively defined
as follows:

� ρ(s, (p(s) ≥ c), t) = p(st) − c, ρ(s, (p(s) ≤ c), t) = c − p(st);
� ρ(s,¬ϕ, t) = −ρ(s,ϕ, t);
� ρ(s,ϕ1 ∧ ϕ2, t) = min (ρ(s,ϕ1, t), ρ(s,ϕ2, t));
� ρ(s,ϕ1 ∨ ϕ2, t) = max (ρ(s,ϕ1, t), ρ(s,ϕ2, t));
� ρ(s,F[t1,t2]ϕ, t) = maxk∈[t1,t2] ρ(s,ϕ, t);
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� ρ(s,G[t1,t2]ϕ, t) = mink∈[t1,t2] ρ(s,ϕ, t); and
� ρ(s,ϕ1U[t1,t2]ϕ2, t) = maxt ′∈[t1,t2] min

{
ρ(s,ϕ, t ′ ),mint ′′∈[t1,t) ρ(s,ϕ, t

′′ )
}
.

The STL score is a measure of how strongly a formula is satisfied by a signal. Positive ro-
bustness indicates satisfaction, and negative robustness indicates violation. It is straightforward to
show that any temporal logic formula can be brought into the negation normal form (1), where
all negation connectives appear immediately before a predicate.We can further remove the nega-
tions of predicates by simply reversing the inequalities—e.g., ¬(p(s) ≥ c) = (p(s) ≤ c). Note that
we do not consider strict inequalities when performing computations for verification or synthesis.
For the case that the formula is negation free, we simply consider a zero score to be satisfaction.

Definition 3 (from Reference 33). The bound (also known as the horizon) of an STL
formula ϕ, denoted by bϕ , is the time length required to evaluate the satisfaction of ϕ and is
recursively computed as follows:

� bπ = 0;
� b¬ϕ = bϕ ;
� bϕ1∧ϕ2 = bϕ1∨ϕ2 = max(bϕ1 , bϕ2);
� bF[t1,t2]ϕ = bG[t1,t2]

ϕ = t2 + bϕ ; and
� bϕ1U[t1,t2]

ϕ2 = t2 + max(bϕ1 , bϕ2),

where π is a predicate and φ, φ1, and φ2 are STL formulas.

The satisfaction of ϕ by (s, t) is decided only by (s, [t : t + bϕ]), and the rest of the signal is
irrelevant. Thus, instead of (s, t) |	 ϕ, we can write (s, [t : t + bϕ]) |	 ϕ.

Example 1. Consider a discrete-time signal s : N → R, where st = t, t ∈ N. Let ϕ =
G[0,3]F[0,2](s2 ≤ 10). We have bϕ = 3 + 2 = 5. We have ρ(s,ϕ, 0) = min (max(10−0,
10−1, 10−4),max(10−1, 10−4, 10−9),max(10−4, 10−9, 10−16),max(10−9, 10−16,
10−25)) = min(10, 9, 6, 1) = 1 (satisfaction), but we have ρ(s,ϕ, 1) = min(9, 6, 1,−6) =
−6 (violation).

Definition 4. The language of an STL formula ϕ is defined as L(ϕ) := {s|(s, [0, bϕ]) |	 ϕ}.
Definition 5. An STL formula ϕ is bounded if bϕ < ∞.

Definition 6 (from Reference 34). A safety STL formula is one in which, when it is writ-
ten in the negation normal form, all of its “until” and “eventually” operators are bounded.

Safety formulas can be satisfied by infinite-time signals and violated by finite-time signals (34).
Safety formulas are ubiquitous in applications. Moreover, any nonsafety STL formula ϕ in the
negation normal form that contains unbounded “eventually” or “until” operators can be approxi-
mated by a safety STL formula ϕsafe by replacing the unbounded intervals with bounded intervals
while maintaining L(ϕsafe ) ⊂ L(ϕ). However, underapproximation of the unbounded “always” op-
erator with a bounded one does not satisfy this property.

There are several methods for efficiently computing the STL score (35, 36). Computations
are effectively performed for discrete-time signals. Given assumptions on signal continuity and
Lipschitz constants, bounds for the difference between the score evaluated in discrete time and
the actual one in continuous time can be provided (37). For verification and synthesis purposes, we
generally need to discretize time to obtain a finite number of decision variables. In the remainder
of this article, we focus on discrete-time signals and systems.
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4. SYSTEMS

In this section, we introduce a broad class of discrete-time hybrid models and revisit the classical
result of Heemels et al. (38) on the equivalence of them.We consider discrete-time systems as

xt+1 = F (xt , ut ,wt), 2.

where t, t ∈ N is time; xt ∈ X is the state, X ⊂ R
nr × {0, 1}nb ; ut ∈U is the control input, U ⊂

R
mr × {0, 1}mb ; and wt ∈W is the disturbance (environment input),W ⊂ R

qr × {0, 1}qb .Note that
bothX andU may include real and binary values. For example, the set of controls in a traffic signal
ismodeled as binary: 0 for a red light, and 1 for a green light.The system represented byEquation 2
is deterministic ifW is a singleton (typicallyW = {0}).

4.1. Hybrid Models

In this section, we provide definitions for multiple families of hybrid systems.

Definition 7 (from Reference 39). The system represented by Equation 2 is in piecewise
affine (PWA) form if

xt+1 = Aixt + Biut + ci + wt , (xt , ut ,wt) ∈ Hi, i = 1, . . . ,HnM, 3.

where nM is the number of modes;Hi’s are interior-disjoint polyhedral sets,
⋃nM

i=1 Hi = X ×
U ×W ; and Ai,Bi, ci, i = 1, . . . , nM are constant matrices with appropriate dimensions.

PWA models with additive disturbances are able to capture all the behaviors of any nonlinear
system. In order to reduce conservativeness, the number of modes is increased. If nM = 1, then
the system represented by Equation 3 is reduced to a linear system with additive disturbances.

Definition 8 (from Reference 40). A max-min-plus-scaling (MMPS) system has the fol-
lowing syntax:

F ::= Faffine|max(F1,F2)|min(F1,F2)|F1 + F2|αF , 4.

where Faffine stands for linear systems of the form xt+1 = Axt + Buut + Bwwt + c, α ∈ R, and
F1 and F2 are MMPS systems.

Using min and max operators, MMPS systems can handle discontinuities. MMPS models are
common in systems with saturation constraints, such as traffic networks.

Definition 9 (from Reference 41). Linear complementarity (LC) systems are of the fol-
lowing form:

xt+1 = Axt + Buut + Bwwt + Brrt , 5a.

yt = (Exxt + Euut + Ewwt + Errt + e), yTt rt = 0, yt , rt ≥ 0, 5b.

where yt , rt ∈ R
na are auxiliary variables, and A, Bu, Bw, Br , Ex, Eu, Ew, Er , and e are appro-

priately defined constant matrices such that Equation 5 is well posed. All inequalities in this
article are interpreted element-wise.

LC systems are useful in modeling systems in which phenomena of active/nonactive behaviors
exist. For example, LC systems can model robots with mechanical contacts r in Equation 5 rep-
resenting contact force, which is nonzero when only object penetrations exist, which corresponds
to a y = 0 hyperplane (see, e.g., 42).
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Definition 10 (from Reference 17). A mixed-logical dynamical (MLD) system is in the
following form:

xt+1 = Axt + Buut + Bwwt + Bδδt + Brrt , 6a.

Eδδt + Errt ≤ Exxt + Euut + Ewwt + e, 6b.

where δt ∈ {0, 1}nδ and rt ∈ R
nr are auxiliary variables andA,Bu,Bw,Bδ ,Br ,Eδ ,Er ,Ex,Eu,Ew,

and e are appropriately defined constant matrices such that Equation 6 is well posed in the
sense that, given xt , ut , and wt , the feasible set for xt+1 is a single point equal to F (xt , ut ,wt)
in Equation 2. The inequality is interpreted element-wise.

Auxiliary variables δ and r, which are constrained by Equation 6b, allow xt+1 to behave in a
very nonlinear manner in x, u, and w. The MLD form is very general and can be viewed simply
as a set of mixed-integer constraints, making it amenable to mixed-integer programming.

4.2. The Equivalence of Hybrid Models

Heemels et al. (38) showed that PWA, MMPS, LC, and MLD systems are, under mild assump-
tions, equivalent. They also showed that extended LC systems (43)—a more general version of
LC systems—also belong to this equivalency class, and the proofs and the underlying assump-
tions were well documented in their paper (38). The MLD form is the most preferred one, as
its optimal control is easily cast as a mixed-integer programming problem. Below are two simple
examples of converting a PWA system and an LC system into their MLD forms. MLD forms are
often not unique. We remark on their efficiency in Section 5.2.2. Note that it is straightforward
to write an MMPS system in PWA form.

Example 2 (PWA to MLD). Consider the following discrete-time switched PWA system
with two modes. Let X ⊂ R be bounded,U = {0, 1} (H1 = X × {0},H2 = X × {1}):

xt+1 =
{
a1xt + c, ut = 0,
a2xt + c, ut = 1,

7.

where a1, a2, c ∈ R are constants. Using the big-M method, M ≥ supx∈X |(a2 − a1)x|,
Equation 7 can be translated into the following MLD system:

xt+1 = a1xt + c + rt ,
(a2 − a1)xt −M(1 − ut) ≤ rt ≤ (a2 − a1)xt +M(1 − ut),−Mut ≤ rt ≤ Mut .

8.

It is straightforward to verify that Equations 7 and 8 are equivalent.

Example 3 (LC to MLD). Consider the following LC system with bounded X ,U ⊂ R:

xt+1 = axt + but + rt , rtxt = 0, xt , rt ≥ 0, 9.

where a, b ∈ R are constants. Note that rt is nonzero only when axt + but < 0. Using
M ≥ maxx∈X ,u∈U |ax+ bu|, one can translate the system represented by Equation 9 into the
following MLD system:

xt+1 = axt + but + rt ,
0 ≤ rt ≤ Mδt , axt + but ≥ −Mδt , 0 ≤ axt + but+rt ≤ M(1 − δt), δt ∈ {0, 1}. 10.
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5. OPEN-LOOP CONTROL: TEMPORAL LOGIC
TRAJECTORY OPTIMIZATION

In this section, we review the techniques for trajectory optimization from STL specifications. The
goal is to find a trajectory that satisfies an STL formula by solving an optimization problem. The
core technique is translating the STL formula into an appropriate form of constraints that can be
handled by standard optimization solvers.The cost is ad hoc, but a natural candidate is maximizing
the STL score. Throughout this section, we assume the system is deterministic and therefore deal
with a single trajectory. Trajectory optimization is an open-loop control algorithm, as it provides
the schedule of control inputs for a certain initial condition. We discuss feedback strategies in
Section 6.

5.1. Problem Statement

A trajectory is a real-valued signal s : N → X ×U ⊂ R
n+m, n = nr + nb,m = mr +mb, where st is

the vector obtained by stacking the values in state and control inputs in a single vector.We slightly
abuse the notation to write st = (xt , ut), while noting that st is a real vector, not a tuple.While defin-
ing a signal, we treat existing binary values in state or controls in the same way as reals.We assume
all predicates in the STL formula are linear in state and controls [a predicate (p(s) ≤ c) is linear if
p is a linear function]. Piecewise linear predicates can be encoded using Boolean connectives. For
example, (|x| ≤ c) is equivalent to (x ≤ c) ∨ (−x ≤ c). However, general nonlinear predicates can-
not be handled within a mixed-integer linear/quadratic programming (MILP/MIQP) framework.
Therefore, the assumption of linear predicates is necessary, unless one is willing to use nonconvex
nonlinear optimization solvers.We are given a cost function J : S → R, where S is the set of all sig-
nals.We assume that J is piecewise linear or quadratic. A natural candidate for J is ρ(s,ϕ, 0), which
itself is a piecewise linear function of s since the predicates are linear and the pieces correspond
to the min and max operators in Definition 2.

Problem 1. Given Equation 2 as one of the forms in Section 4.1, the initial state xinitial,
an STL formula ϕ over linear predicates in state or controls, and a cost J : S → R, find the
optimal trajectory s such that J is minimized, x0 = xinitial, and (s, 0) |	 ϕ. If such a trajectory
does not exist, find s such that ρ(s,ϕ, 0) is maximized (so ϕ is minimally violated).

5.2. Mixed-Integer Formulation

As mentioned above, the main challenge is capturing the STL formula in the optimization
problem. This is achieved by translating STL formulas into mixed-integer linear constraints. In
conjunction with transforming the system represented by Equation 2 into mixed-integer linear
constraints (MLD), the trajectory optimization problem becomes an MILP/MIQP problem.
Trajectory optimization using MILP/MIQP methods is a very powerful technique, as it is able to
capture a broad range of constraints, and it has been extensively studied in the robotics literature
(44–47). Similar methods were developed to find high-level plans for robotic swarms (48–51)
subject to spatial-temporal logic specifications (52).

There are alternatives to MILP/MIQP for temporal logic trajectory optimization. Shoukry
et al. (53, 54) used satisfiability module theories (SMTs) for temporal logic control. SMT solvers
provide only a feasible solution, not necessarily the optimal one. One may perform an exhaustive
binary search to find an overapproximate of the cost.More recently, Shoukry et al. (55) developed
a method called satisfiability modulo convex (SMC) optimization to combine the benefits of
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SMT solvers and convex optimization. It is also possible to completely circumvent mixed-integer
optimization by employing gradient descent techniques. Abbas et al. (56) and Pant et al. (57) used
the gradient of the STL score, which is approximated by smooth functions (58), for optimization.
While this approach can handle smooth nonlinear systems and nonlinear predicates, gradient
descent is not a complete algorithm for problems of a nonconvex nature. There is no guarantee
that the gradient descent can find the global optimal trajectory or even a feasible one (i.e., a
positive STL score) when one exists.

In this section,we review themain procedure for encoding STL requirements as mixed-integer
constraints. The framework was developed by Karaman et al. (59) for bounded LTL formulas and
was extended to STL specifications by Raman et al. (60), whose paper also included encoding
STL score. There are many variations of encoding techniques. The key differentiating factor is
the number of variables, particularly binary variables, and the number of constraints they require.

5.2.1. Predicate-based encoding. Here, we explain the method we described in Reference 61,
which is a more efficient version of the method of Raman et al. (60). Throughout this section, we
assume that the STL formulas do not contain negation.Asmentioned in Section 3, this assumption
is not restrictive, as any STL formula can be written without negation.

For each predicate π = (y ≥ 0), define a binary variable zπt ∈ {0, 1} such that, at time t, 1 stands
for true and 0 stands for false. The relation between zπt , the robustness margin ρ (which is closely
connected to STL score, as will be shown shortly), and y is encoded as

yt +M(1 − zπt ) ≥ ρ, yt −Mzπt ≤ ρ. 11.

The constant M is a sufficiently large number such that for all times, M ≥ max yi, i = 1, . . . , ny.
Note that the largest ρ for which zπt = 1 is y, which is equal to the robustness score of π . Disjunc-
tions and conjunctions are captured by the following constraints:

z =
nz∧
i=1

zi ⇒ z ≤ zi, i = 1, . . . , nz, z =
nz∨
i=1

zi ⇒ z ≤
nz∑
i=1

zi, 12.

where z ∈ [0, 1] is declared as a continuous variable. However, it can take only binary values, as is
evident from Equation 12. Note the one-way (sufficiency) implications in Equation 13. The for-
mulations of Karaman et al. (59) and Raman et al. (60) establish necessity and sufficiency by adding
upper-bounding constraints as follows: z = ∧nz

i=1 zi ⇔ z ≥ ∑nz
i=1 zi − nz + 1, z ≤ zi, i = 1, . . . , nz,

and z = ∨nz
i=1 zi ⇔ z ≥ zi, i = 1, . . . , nz, z ≤ ∑nz

i=1 zi. However, the upper-bound constraints are
necessary only when the negation operator is present in the STL formula. Hence, they are safely
removed in a negation-free setting, which reduces constraint redundancy and degeneracy in the
optimization problem.Define zϕt ∈ [0, 1] as the variable that indicates whether (x, t) |	 ϕ. An STL
formula is recursively translated as

ϕ = ∧nϕ
i=1 ϕi ⇒ zϕt = ∧nϕ

i=1 z
ϕi
k ; ϕ = ∨nϕ

i=1 ϕi ⇒ zϕt = ∨nϕ
i=1 z

ϕi
t ;

ϕ = GIψ ⇒ zϕt = ∧
t ′∈I z

ψ

t ′ ; ϕ = FIψ ⇒ zϕt = ∨
t ′∈I z

ψ

t ′ ;
ϕ = ψ1UIψ2 ⇒ zϕt = ∨

t ′∈I
(
zψ2
t ′ ∧∧t ′′∈[t,t ′] z

ψ1
t ′′

)
.

13.

Given ϕ, denote the set of constraints recursively constructed by Equations 11–13 as Cϕ .
Theorem 1. The following properties hold: (a) We have (s, t) |	 ϕ if adding zϕt = 1, ρ ≥ 0
makes Cϕ feasible; (b) we have (s, t) �|	 ϕ if zϕt = 1, ρ ≥ 0 makes Cϕ infeasible; and (c) the
largest ρ such that zϕt = 1 and Cϕ is feasible is equal to ρ(s,ϕ, t).
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Raman et al. (60) encoded min and max operators in Definition 2 using a separate set of binary
variables. In almost all problems, the objective is either maximizing the STL score or declaring a
constraint that sets a lower bound for it.The third property in Theorem 1 indicates that additional
binaries are not required to capture the STL score. The advantage of the formulation of Raman
et al. (60) is that it does not require preprocessing to remove negation operators; it also encodes
the STL score directly so that one can, for example, minimize the STL score, which is of interest
in falsification problems (62, 63).

5.2.2. Encoding with the tightest relaxations. The efficiency of MILP/MIQP problems
depends greatly on the tightness of the constraints if binary variables are relaxed to continuous
variables in [0, 1]. One drawback of big-M methods is their potentially very loose relaxations,
particularly when very large big-M constants are chosen. One way to deal with this issue is
precomputing minimum big-M constants for each constraint. An alternative that does not use
the big-M method is encoding a mixed-integer linear constraint based on convex hull relaxations
(64). Here, we briefly explain this method.

Let Pi = {y|Hiy ≤ hi}, i = 1, . . . , np, be a set of polytopes, where Hi and hi are appropriately
sized matrices. Let z ∈ {0, 1} be such that y ∈ ⋃np

i=1 Pi implies z = 1 and otherwise implies z = 0.
Instead of using a big-M method and treating the set of polytopes as a disjunction over conjunc-
tions of half-space predicates, the relation can be encoded as

Hiyi ≤ hizi, zi ∈ {0, 1}, i = 1, . . . , np, z =
np∑
i=1

zi, y =
np∑
i=1

yi. 14.

It can be shown that relaxing zi ∈ {0, 1} to zi ∈ [0, 1], z = 1 is equivalent to y ∈
Convexhull(

⋃np
i=1 Pi ), which is the tightest convex relaxation of

⋃np
i=1 Pi. The formulation in

Equation 14 introduces fewer binary variables than predicate-based encoding, but it also in-
troduces additional continuous variables. Wolff & Murray (65) studied encoding based on
Equation 14 for LTL optimal control and found that the computation times are sometimes
greater than those of the big-M method, which is attributed to the additional continuous vari-
ables. The efficiency of encoding STL and MLD constraints based on Equation 14 has not been
thoroughly studied yet.

5.3. Trajectory Optimization

The method to generate the trajectory is dependent on whether ϕ is bounded or not. The follow-
ing cases are considered.

5.3.1. Bounded formulas. If ϕ is bounded, then we only need to consider (s, [0, bϕ]) for the sake
of STL correctness. It is also common to assume that the cost function is defined over (s, [0, bϕ]),
and the rest of the signal is irrelevant. We solve the following optimization problem:

u∗
0, u

∗
1, . . . , u

∗
bϕ = argmin J((s[0, bϕ])) + 1

2M(|ρ| − ρ )
subject to xτ+1 = F (xτ , uτ ), τ = 0, 1, . . . , bϕ ,

x0 = xinitial, Cϕ , zϕ0 = 1,
15.

where M is a sufficiently large number. Equation 15 is an MILP/MIQP problem, depending on
the structure of J. The solution to Equation 15 has the following properties: (a) If (s, 0) |	 ϕ is
possible, then J((s, [0, bϕ])) is minimized (optimal control), and (b) if (s, 0) |	 ϕ is impossible, then
ρ(s,ϕ, 0) is maximized (minimal STL violation). Note that if ρ ≥ 0 is feasible, then 1

2M(|ρ| − ρ )
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equals zero and the original cost J is minimized. If ρ ≥ 0 is infeasible, then 1
2M(|ρ| − ρ ) becomes

−Mρ. Since M is a very large positive number, effectively ρ is maximized, which by virtue of
Theorem 1 is equivalent to ρ(s,ϕ, 0).

Problem 15 is solved to global optimality. Since there is no conservativeness introduced,
Equation 15 is a complete method: A solution is found if it exists. Completeness and global opti-
mality are rarely achieved in automata-based approaches, as conservativeness is often introduced
in finite-state abstractions, and optimality is as good as the resolution of partitions.

The complexity ofMILP/MIQP problems grows exponentially (in the worst case) with respect
to the number of binary variables and polynomially with the number of continuous variables and
constraints. The number of binaries grows linearly with the number of predicates and the horizon
of the formula. Therefore, the optimization runtime increases rapidly when the STL formula is
more intricate. Exponential complexity also exists in automata-based approaches. However, there
is an important difference in the complexity source. While the size of finite-state automata that
capture temporal logic formulas also increases exponentially with the complexity of the formula,
the main bottleneck often lies in the finite-state abstraction itself. For a fixed partitioning mesh
size, the number of partitions is exponential in the state-control dimensions (66). However, there
is no direct exponential growth in the number of states in optimization-based synthesis. There-
fore, it is possible to solve very large formal synthesis problems (see Example 5 in Section 6.3)—
optimization-based methods may be surprisingly fast. However, the runtimes are generally unre-
liable, and MILP/MIQP may be too slow for seemingly benign problems.

Example 4 (from Reference 67). We consider a two-dimensional PWA system with four
modes:

A1 =
(

1 1
−0.7 1

)
,A2 =

(
1.3 1.3
0 1.3

)
,A3 =

(
0.7 0.7

−0.3 0.7

)
,A4 =

(
1.3 1
0.3 0.7

)
, 16a.

B1 = B2 = B4 = −B3 =
(
0
1

)
, c1 = −c3 =

(
−5
0

)
, c2 =

(
0
0

)
, c4 =

(
1
0

)
. 16b.

Let X = [−20, 20] andU = [−10, 10]. We are interested in the following specification:

ϕ = F[0,15]G[0,2]ψ1 ∧ F[15,30]ψ2 ∧ G[0,30]¬ψ3, 17.

where ψ1 = (x[1] ≥ −15) ∧ (x[2] ≥ −15) ∧ (x[1] ≤ −10) ∧ (x[2] ≤ −10), ψ2 = (x[1] ≥ 10) ∧
(x[2] ≥ 10)∧ (x[1] ≤ 15)∧ (x[2] ≤ 15), and ψ3 = (x[1] ≥ 0)∧ (x[2] ≥ 2)∧ (x[1] ≤ 15)∧ (x[2] ≤
8). Subspecifications ψ1, ψ2, and ψ3 correspond to rectangular regions in X . Figure 3
shows the workspace with the vector fields in each region. In plain English, Equation 17
states that ψ1 is satisfied for three consecutive time steps between [0, 15], ψ2 is satisfied
at least once in [15, 30], and ψ3 is never satisfied between [0, 30]. The cost function is
considered the l2 norm of controls J = ∑30

t=0 u
2
t . The initial condition is x0 = (−10, 15)T .

Figure 3 shows three possible example trajectories: a control-effort-optimal satisfying tra-
jectory (Figure 3a), a maximally satisfying trajectory (Figure 3b), and a minimally violating
trajectory withU = [−2, 2] (Figure 3c).

5.3.2. Unbounded safety formulas. We consider formulas of the following form:

φ = ϕb ∧ G[
,∞)ϕg, 18.
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Figure 3

The three trajectories from Example 4. (a) A control-effort-optimal satisfying trajectory, with a signal temporal logic (STL) score of 0.
This trajectory touches the boundaries of the rectangles, as getting further distance into ψ1 and ψ2 and getting away from ψ3 increases
control effort. (b) A maximally satisfying trajectory, with the maximum possible STL score of 2.5. This trajectory visits the centers of ψ1
and ψ2 and keeps a notable distance from ψ3. (c) A minimally violating trajectory. To obtain a trajectory with violation, we first shrank
U to [−2, 2] to tighten the constraints. To obtain the trajectory shown here, we then multiplied the predicates of ψ3 by 10 to further
penalize violating trajectories entering ψ3. The result is a maximally satisfying trajectory from x0 = (−10, 5)T , with ρ(ζ ,ϕ, 0) = −3.9.
Note that all three trajectories are synthesized and verified in discrete time; the lines connecting the circles are included solely to
illustrate the time progression. Figure adapted from Reference 67.

where 
 ∈ N, and ϕb and ϕg are bounded negation-free STL formulas.We also consider the case
that ϕb is true, which reduces Equation 18 to G[
,∞)ϕg; we refer to these as global STL formulas.
We call the formulas in the form of Equation 18 bounded-global STL formulas. In Reference 61,
we showed that almost all common STL formulas can be written as disjunctions of a finite num-
ber of bounded-global STL formulas. The interpretation of the requirement in bounded-global
formulas is straightforward: First, the signal must satisfy ϕb in finite time, and after 
, all signal
suffixes are required to satisfy ϕg.

We cannot use Equation 15 to synthesize an infinite-time trajectory, as it introduces an infinite
number of variables. To find a trajectory that satisfies Equation 18, the idea is to impose a peri-
odic suffix for s. This idea was implemented in optimization-based LTL synthesis of infinite-time
trajectories by Wolff et al. (68) and was also used by Raman et al. (60) for STL control of global
formulas. Prefix-periodic suffix trajectories are well known, and it can be shown that their exis-
tence is necessary for any temporal logic formula in the case of a finite system (1). However, for
infinite systems, their existence is only sufficient. The following periodicity relation is imposed:

sT0+kT = st0 , k ∈ N, 19.

where T0 and T are the lengths of the prefix and the period of the suffix, respectively. The decision
variables are in s0, s1, . . . , sT0+T , which map to finding T0 + T + 1 control inputs. Without loss of
generality, let T0 ≥ 
. Then (s, 0) |	 φ is equivalent to

(s, [0,T0]) |	 ϕb ∧ G[
,T0]ϕg, (s, [T0 + k,T0 + k+ bϕg ]) |	 ϕg, k = 0, . . . ,T − 1. 20.

It is easy to show that Equation 20 enforces (s, 0) |	 ϕb ∧ G[
,∞)ϕg. Thus, trajectory optimization
for this class of specifications can also be cast as an optimization problem, similar to Equation 15,
with additional constraints enforcing periodic suffixes. There is no straightforward way to choose
T0 and T . One must exhaustively try different numbers until feasibility or desirable optimality is
achieved. The completeness property is also lost.
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5.3.3. Other formulas. If ϕ is unbounded but does not belong to the safety class, we need to
replace ϕ with a safety ϕ′ such that L(ϕ′ ) ⊂ L(ϕ). Thus, by successful trajectory optimization for
ϕ′, we have obtained a trajectory satisfying ϕ. For example, let ϕ = F[0,∞)ψ , where ψ is a bounded
STL formula. We can replace ϕ with ϕ′ = F[0,T ]ψ , where T is a user-chosen positive integer.
Larger T is less conservative but results in higher computational expense. The conservativeness
introduced in replacing the formula removes the completeness property.

6. CLOSED-LOOP CONTROL: FEEDBACK STRATEGIES
AND DISTURBANCE REJECTION

As mentioned above, trajectory optimization is an open-loop control strategy. Challenges rise
when the system is nondeterministic, so it may not produce a single trajectory. Moreover, even
if the system is deterministic, unmodeled phenomena may cause the system to deviate from the
planned trajectory. Therefore, feedback mechanisms are necessary in practice. In this section, we
review the current literature on optimization-based-feedback temporal logic control. Unfortu-
nately, in our opinion, no satisfying solution has been provided in the literature so far. We re-
mind the reader that automata-based synthesis provides feedback strategies and the set of (all)
admissible initial conditions. A competitive technique is regrettably lacking here. The reason is
the formidable complexity. Even finding the right structure for the control policy is challenging.
We know from explicit MILP/MIQP solutions that the optimal controller has a PWA structure
(69). However, obtaining the PWA solutions of Equation 15 requires multiparametric program-
ming and enumerating a large number of binary combinations, which is intractable even for small
problems.

6.1. Problem Statement

Recall the problem from Section 5. Here, we drop the assumption that the system is determin-
istic. The goal is to design a control policy valid for a set of states instead of a single trajectory.
The control policy μ gives the input at time t by ut = μ(x0, . . . , xt , u0, . . . , ut−1). Temporal logic
controllers are seldom memoryless. Given the system represented by Equation 2, control policy
μ, and a set of initial conditions Xinitial ⊆ X , the set of all closed-loop trajectories is

L(Xinitial,μ) :=
{
s ∈ S

∣∣∣st = (xt , ut), x0 ∈ Xinitial, ut = μ(x0, . . . , xt , u0, . . . , ut−1),

xt+1 = F (xt , ut ,wt),wt ∈W , t ∈ N

}
.

Problem 2. Design Xinitial and μ such that L(Xinitial,μ) ⊆ L(ϕ) (all the closed-loop trajec-
tories satisfy ϕ). If L(Xinitial,μ) ⊆ L(ϕ) is not possible, provide a lower-bound certificate for
the STL score of all closed-loop trajectories by maximizing mins∈L(Xinitial ,μ) ρ(s,ϕ, 0).

We are also interested in having a large set for Xinitial. Even for singleton Xinitial, L(Xinitial,μ)
is usually not a singleton, as disturbances are present. It should be decided which trajectory in
L(Xinitial,μ) is optimized. In a probabilistic setting, the common approach is to optimize the ex-
pected value of the cost, given the knowledge of the underlying distributions. In the nondeter-
ministic case, a common approach is minimizing the cost of the trajectory in L(Xinitial,μ) that has
the maximum cost. This approach is known as minimax robust optimal control (70), and it was
adopted by Farahani et al. (71) for robust STL control. In Reference 72, we took a simpler ap-
proach in which J(s̄) is optimized, where s̄ is the nominal trajectory with zero disturbances. For
generality, we let J : 2S → R denote the cost function that maps a set of trajectories into a real
value.
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6.2. Real-Time Robust Trajectory Optimization

The leading effort to obtain closed-loop optimization-based policies has been real-time trajectory
optimization: At each time, given the history of the trajectory, a new trajectory suffix (beginning
from the current time) is optimized. Only the control input corresponding to the current time is
implemented, and the procedure is repeated at subsequent times. This scheme is similar to MPC,
with considerations that we highlight below, and is effectively closed loop. This approach was
adopted in References 71–73 for STL control of MLD or linear systems with additive distur-
bances. The same idea has been implemented in probabilistic scenarios where STL requirements
were formulated as chance constraints (74–76).

6.2.1. Bounded formulas. Let ϕ be a bounded formula. The control input ut = μ(x0, . . . ,
xt , u0, . . . , ut−1) is computed through the following robust optimization problem:

ut = argminu′
t
J ({s′[0, bϕ]}) + 1

2M(|ρmin| − ρmin)
subject to Cϕ , zϕ0 = 1, ρmin ≤ ρ(s′,ϕ, 0),

∀s′ such that s′τ = (xτ , uτ ), τ = 0, . . . , t − 1, x′
t = xt ,

x′
τ+1 = F (x′

τ , u
′
τ ,w

′
τ ),w

′
τ ∈W , τ = t, . . . , bϕ − 1, s′t = (xt , u′

t),

21.

where x′, u′, and w′ are variables but x and u are constants; note that xt = x′
t . Equation 21 does

not provide a closed-form function for μ, but given values for its arguments, the optimization
problem returns the function value. As mentioned above, finding the closed form for μ using
parametric programming is often intractable. Also note that the history of the trajectory up to
time t is taken into account in Equation 21, which is a shrinking-horizon problem, as the number
of decision variables decreases as time proceeds. By construction, if ρmin is positive at any time in
Equation 21, then it is guaranteed that (s, 0) |	 ϕ. The reason is that the STL constraints are
enforced for all possible future disturbances. Furthermore, by virtue of the same argument, ρmin

cannot decrease while time progresses. Despite its soundness, the method in Equation 21 is ex-
tremely conservative because it looks for a sequence of control inputs that provide robustness
against all disturbances instead of a policy that is reactive to future disturbances.

6.2.2. Global formulas. For a global formula ϕ = G[0,∞)ψ , whereψ is a bounded STL formula,
the method becomes similar to traditionalMPC; we described this method in Reference 72.LetH
be the MPC horizon. Recall that we need to enforce (s, τ ) |	 ψ ,∀τ ∈ N. At time t, the trajectory
portion (s, [t, t +H]) is optimized, and its values are required for deciding about ρ(s,ψ , τ ) for τ =
t − bϕ , . . . , t +H − bϕ . Therefore, at each time, only the recent bϕ step of the history is required:
ut = μ((s, [t − bϕ , t − 1]), xt), where

ut = argminu′
t
J ({s′[t, t +H]}) + 1

2M(|ρmin| − ρmin),
subject to Cψ , zψτ = 1, τ = t − bϕ , . . . , t +H − bϕ , ρmin ≤ ρ(s′,ϕ, τ ), x′

t = xt ,

∀s′ such that s′τ = (xτ ′ , uτ ′ ), τ ′ = t − bϕ , . . . , t − 1, s′t = (xt , u′
t),

x′
τ+1 = F (x′

τ , u
′
τ ,w

′
τ ),w

′
τ ∈W , τ = t, . . . , bϕ − 1, s′t = (xt , u′

t).

22.

The synthesis method in Equation 22 successfully establishes (s, 0) |	 ϕ if and only if the solution
for Equation 22 at all times has ρmin ≥ 0. Besides excessive conservativeness, the paradigm used in
References 71–76, reflected in Equation 21 and in Equation 22 and its variations, has multiple seri-
ous drawbacks. First, the characterization of all signals in Equations 21 and 22 is hard. Raman et al.
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(73) used an iterative counterexample-guided approach to generate the worst-case s′. However,
iterations may not terminate, and the size of Equation 22 becomes larger as the iterations proceed.
Farahani et al. (71) exploited the duality of MILPs to solve the minimax problem,which is compu-
tationally expensive. The work in Reference 72 generates a bound for the worst-case scenario in
advance and is computationally faster but conservative. Second, no means is provided to compute
Xinitial. One can only conservatively check x0 ∈ Xinitial for a given x0 and a bounded STL formula.
Third,MILP/MIQP approaches are computationally expensive. In many applications with a small
timescale, solving Equation 21 or Equation 22 is not possible in real time. There has been some
work on improving the runtime of STL MPC using MILP/MIQP approaches (77, 78), which
provide faster solutions for specific types of formulas. Finally, and theoretically most importantly,
there is no guarantee for persistent feasibility for global optimal control. Therefore, it is neces-
sary that Equation 22 treats the STL constraints in a soft manner: Satisfy the constraints whenever
possible and minimally violate them otherwise. Ghosh et al. (79) took a similar approach, where
instead of maximizing the STL score, the STL formula itself was minimally changed (including
changing the temporal structure).

6.3. Global Formulas: Set-Invariance Control

In this section, we focus on global STL formulas, which are common in applications (71–73, 78).
There is a seldom-exploited close connection between global STL control and set-invariance
theories (80). Recall that

(s, 0) |	 G[0,∞)ψ ⇔ (s, τ ) |	 ψ ,∀τ ∈ N ⇔ (s, [τ , τ + bψ ]) ∈ L(ψ ),∀τ ∈ N, 23.

where bψ < ∞. Define ζt ∈ (X ×U )bψ+1, which is obtained by stacking values in (s, [t − bϕ , t])
into a single vector. Then ζt+1 corresponds to (s, [t − bϕ + 1, t + 1]), which, in comparison with ζt ,
depends on wt and ut+1, as st+1 = (F (xt , ut), ut+1). Define ξt := ut+1 as the new control input. The
evolution of ζ is then given by the following discrete-time system:

ζt+1 = F (ζt , ξt ,wt), 24.

where ζt ∈ (X ×U )bψ+1 and ξt ∈U ,wt ∈W . The language L(ψ ) can also be written as a subset
of (X ×U )bψ+1, denoted by L(ψ ), for which ζt ∈ L(ψ ) if and only if (s, [t − bϕ , t]) |	 ψ . There-
fore, Equation 23 is equivalent to ζt ∈ L(ψ ), t = bψ , bψ + 1, . . . , which is a forward set-invariance
condition. The control problem of (s, 0) |	 G[0,∞)ψ then becomes equivalent to finding a robust
control invariant (RCI) set 
 ⊆ L(ψ ) such that

∀ζ ∈ 
, ∃ξ ∈U , such thatF (ζ , ξ ,w) ∈ 
,∀w ∈W. 25.

There is a substantial literature on the computation of RCI sets for hybrid systems (81, 82).Unlike
traditional RCI sets, which are in the state space, 
 is constructed in the language space and is
high dimensional and often nonconvex (unless ψ does not include any disjunctions or temporal
“eventually” or “until” operators). Computing such RCI sets is computationally prohibitive. If one
can compute the maximal RCI set, then a complete solution to global STL control is obtained:
The largest set of initial conditions corresponds to the maximal RCI set, and any memoryless (in
the language space) invariance-inducing controller, ut = ξt−1 = μ(ζt−1) (a function of the recent
bψ-step history), is a valid control policy. One can use any RCI set 
 as the terminal constraint of
Equation 22 to guarantee MPC recursive feasibility.
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Figure 4

Traffic network from Example 5. (a) The traffic network. Each link is shown as a directed edge between
nodes (intersections), which are shown as squares. (b) The number of vehicles on each link versus time.
(c) Traffic lights versus time for links 12, 46, 54, and 28. Figure adapted from Reference 83.

For special classes of systems, RCI sets can be efficiently computed. RCI sets in the language
space can be computed using a singlemixed-integer program for positivemonotoneMLD systems
and ordered STL requirements (61, 83; the formal definitions and technical details are omitted
here). Example 5 is based on this result. For linear systems with additive disturbances, Rungger &
Tabuada (84) introduced a method to compute arbitrarily precise under- or overapproximations
of the maximal RCI set.

Example 5 (from Reference 83). Figure 4 shows a traffic network with 84 links;
the details of the model were described by Sadraddini et al. (83). The number of
vehicles on link l ∈ {1, . . . , 84} and the traffic light facing it are denoted xl ∈ R+ and
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ul ∈ {0, 1}, where 1 stands for a green light and 0 stands for a red light. We consider
the global STL formula G[0,∞)ψ , ψ = ∧

i=1,...,5 ψi, where ψ1 = (x, u) ∈ �, � ⊂ X ×U
is a set that characterizes congestion-free flow in which the monotonicity holds (83);
ψ2 = F[0,6) ((u12 = 0) ∧ (u46 = 0) ∧ (u54 = 0)), which states that “within 6 time units, all
the traffic lights of links heading toward the intersection in the middle southern area
turn red (hence pedestrians can cross the intersection in diagonal directions)”; ψ3 =
¬ ((u28 = 0) ∧ F[1,1](u28 = 1) ∧ F[2,2](u28 = 0)

)
, which means that “the traffic light of link

28 cannot be green for exactly 1 time step”; ψ4 = (x59 + x60 + x65 + x66 ≤ 100), which
states that “the total volume of the vehicles on the eastern bridge is less than 100”;
and ψ5 = (x73 ≤ 5) ∨ F[0,4)(u73 = 1), which translates to “if the volume of vehicles on
link 73 exceeds 5, its traffic light eventually turns green within 4 time units.” Note that
bψ = 6.

Themethod of Sadraddini et al. (83) solves anMILP problemwith 5,981 variables (1,236
binary) and 2,902 constraints in 8.6 seconds to find an RCI set in L(ψ ), which lies in R

420
+ ×

{0, 1}384. An MPC algorithm (which was shown to be distributable) synthesizes controls,
while the RCI set acts as the MPC terminal constraint. Thus,MPC recursive feasibility and
specification correctness are guaranteed. This fact is verified by simulations, where it was
observed that all MPC problems with ρmin ≥ 0 were feasible. Trajectories always remain
in the congestion-free set, and all the subspecifications are always met. Figure 4 shows
the traffic lights corresponding to ψ2 and ψ3 and the vehicular volumes over time. The
number of vehicles on the eastern bridge never exceeds 100 (ψ4). Only once did x73 exceed
5, whereupon u73 turned green immediately (ψ5).

6.4. Robust Model Predictive Control: Tubes and Disturbance Rejection

Here, we discuss the connection between feedback-optimization-based STL control and trajec-
tory tracking. The idea is to compute a nominal trajectory in advance and use simple feedback
policies to track the trajectory. The STL score can be exploited to characterize the tracking error.
Lindemann and colleagues (85, 86) explored this idea for nonlinear continuous-time systems with
unbounded control authority and a restricted class of STL specifications, and Jha et al. (87) did so
for linear systems. Xu et al. (88) used a data-driven approach to design tubes robust against faulty
behavior. In Reference 89, we developed a robust STL control method to deal with PWA systems
with additive disturbances, which has provable guarantees.

In this section, we explain the method described in Reference 89. Assume X ⊂ R
n,U ⊂ R

m.
The idea is to propose the following form for the control policy:

μ(x0, x1 . . . , xt , u0, u1, . . . ut−1) = μnom(x0, t) + μfb(xt), 26.

where μnom : X × N →U is an open-loop control policy and μfb : Rn → R
m is a state-feedback

control policy. Basically, μnom(x0, t) results from trajectory optimization for the nominal system
(a system without disturbances) and is computed offline, while μfb is the ancillary controller that
corrects the deviations from the nominal trajectory in an online manner. Let snom be the nominal
trajectory.The goal is to keep all the closed-loop trajectories close to snom. Let
 ∈ R

n and � ∈ R
m

be such that for all x ∈ X , u ∈U , we have

∀δx ∈ 
, ∃δu ∈ �, such thatF (x+ δx, u+ δu,w) − F (x, u, 0) ∈ 
,∀w ∈W , 27.
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which is stating that it is always possible to keep the disturbed state within the
 neighborhood of
the nominal state using controls in the � neighborhood of the nominal controls. This scheme is
known as tube-based (or funnel-based) feedback design (90, 91); when implemented in an MPC
framework, it is called tube MPC (92–95). The following is the core result in the connection
between tube MPC and STL correctness.

Theorem 2 (from Reference 89). Given the system represented by Equation 2; an STL
formula ϕ with linear predicates over state or controls; sets 
 and �; μtube : 
 → � such
that ∀x ∈ X , ∀u ∈U , ∀δx ∈ 
, F (x+ δx, μtube(u+ δu,w)) − F (x, u, 0) ∈ 
, and ∀w ∈W ; a
nominal trajectory snom for the system withW = {0} such that {xnomt } ⊕
 ⊆ X , {unomt } ⊕
� ⊆U , t ∈ [0, bϕ] (bounded ϕ), or t ∈ N (unbounded ϕ); and the control policy μ(x, t) =
unomt + μtube(x− xnomt ), the following guarantee holds:

min ({ρ(s,ϕ, 0)|s ∈ L(xnom0 ⊕
,μ)}) ≥ ρ(snom,ϕ, 0) − max
δx∈
,δu∈�

‖Cxδx+Cuδu‖∞, 28.

where ⊕ stands for the Minkowski sum and Cx and Cu are matrices obtained by vertically
stacking the linear coefficients of x and u in the predicates of ϕ, respectively.

Theorem 2 encourages finding thin tubes, i.e., small
 and �. In words, one first computes the
RCI set and evaluates ε := maxδx∈
,δu∈� ‖Cxδx+Cuδu‖∞, which is the largest possible change in
the left-hand side of a linear predicate.Next, a nominal trajectory with an STL score greater than ε
is computed to obtain the certificate that all closed-loop trajectories satisfy the STL specification.
If this is not possible, then the worst-case violation is minimized.

Computing
 and � such that Equation 27 holds is difficult for most hybrid systems. For linear
systems, F (x+ δx, u+ δu,w) − F (x, u, 0) equals Aδx+ Bδu+ w, which means that Equation 27
maps to finding an RCI set. Various results exist for computing RCI sets for linear systems.
The methods of Raković and colleagues (96, 97) in particular provide parameterized families
of RCI sets in such a way that the best parameters are obtained by convex optimization. The
invariance-inducing control policy also maps to a convex program. In Reference 89, we intro-
duced a method of obtaining RCI sets for switching disturbed linear systems such that invariance
holds regardless of how the switches occur. Similarly to RCI sets for tube MPC of linear sys-
tems, these switch-agnostic RCI sets were used for tube STL MPC of PWA systems (for the
technical details, see Reference 89). Example 6 demonstrates the usefulness of this method. Im-
plementing μtube, which is online, requires a convex program. The main disadvantage of this
method is its conservativeness in the design of the tube policy. For many PWA systems, such
RCI sets that are robust to all mode switches may not exist. A potential direction that has not yet
been studied is the simultaneous design of nominal trajectories and time-varying tubes around
them.

Example 6 (from Reference 67). Consider the system in Example 4 with additive distur-
bances inW = [−0.2, 0.2]2 for all modes. The method described in Reference 89 is em-
ployed. The largest STL violation permitted by the tube is ε = 1.14. Let x0 = (−15, 10)T .
We design a nominal trajectory with an STL score of 1.14, and hence all disturbed trajec-
tories are guaranteed to satisfy ϕ. The nominal trajectory has a maximum STL score of
2.5. For this trajectory, the tube policy for disturbed trajectories yields STL scores lower
bounded by 2.5 − 1.14 = 1.36. Figure 5 shows sample trajectories.
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Sample trajectories from Example 6: tube-based design for a disturbed piecewise affine system. All
trajectories are guaranteed to have a signal temporal logic score greater than (a) 0 or (b) 1.36. The
robust-control-invariant set 
 is the purple polytope. As in Figure 3, the trajectories are synthesized and
verified in discrete time, and the lines connecting the circles are included solely to illustrate the time
progression. Figure adapted from Reference 67.

SUMMARY POINTS

1. Controllers for complex systems and specifications can be formally synthesized using
mathematical optimization. In contrast to automata-based synthesis, optimization does
not require finite-state abstractions and is applicable to higher dimensions.

2. For a broad range of problems, optimization-based synthesis is complete and achieves
global optimality, whereas these problems are often approximate in automata-based syn-
thesis depending on the resolution of the finite-state abstraction.

FUTURE ISSUES

1. Trajectory optimization using mixed-integer convex programming is a powerful tool for
temporal logic control. However, it is too slow for online implementation. Improving
the optimization formulation is a potential research direction.

2. Unlike automata-based approaches, the current optimization-based techniques are not
as powerful in finding robust feedback policies and the set of admissible initial conditions.
This is an important issue that must be addressed.

3. Robust trajectory tracking methods such as tube model predictive control are promising
for robust signal temporal logic (STL) control, as there is a connection between STL
quantitative semantics and the size of the tube. Efficient methods for computing the best
tubes for various classes of STL control problems are open to further investigation.
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