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Abstract

This article surveys reinforcement learning from the perspective of op-
timization and control, with a focus on continuous control applications.
It reviews the general formulation, terminology, and typical experimental
implementations of reinforcement learning as well as competing solution
paradigms. In order to compare the relative merits of various techniques,
it presents a case study of the linear quadratic regulator (LQR) with un-
known dynamics, perhaps the simplest and best-studied problem in optimal
control. It also describes how merging techniques from learning theory and
control can provide nonasymptotic characterizations of LQR performance
and shows that these characterizations tend to match experimental behavior.
In turn, when revisiting more complex applications, many of the observed
phenomena in LQR persist. In particular, theory and experiment demon-
strate the role and importance of models and the cost of generality in re-
inforcement learning algorithms. The article concludes with a discussion of
some of the challenges in designing learning systems that safely and reli-
ably interact with complex and uncertain environments and how tools from
reinforcement learning and control might be combined to approach these
challenges.
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1. INTRODUCTION

Reinforcement learning (RL) is the subfield of machine learning that studies how to use past data
to enhance the future manipulation of a dynamical system. A control engineer might be puzzled
by such a definition and interject that this is precisely the scope of control theory.That the RL and
control communities remain practically disjoint has led to the codevelopment of vastly different
approaches to the same problems. However, it should be impossible for a control engineer not to
be impressed by the recent successes of the RL community, such as solving Go (1).

Indeed, given this dramatic recent progress in RL, a tremendous opportunity lies in deploy-
ing its data-driven systems in more demanding interactive tasks, including self-driving vehicles,
distributed sensor networks, and agile robotic systems. For RL to expand into such technologies,
however, the methods must be both safe and reliable—the failure of such systems can have severe
societal and economic consequences, including the loss of human life. How can we guarantee that
our new data-driven automated systems are robust? These types of reliability concerns are at the
core of control engineering, and RL practitioners might be able to make their methods robust by
applying appropriate control tools for engineering systems to match prescribed safety guarantees.

This survey aims to provide a language for the control and reinforcement learning communities
to begin communicating, highlighting what each can learn from the other.Control is the theory of
designing complex actions from well-specified models, while reinforcement learning often makes
intricate, model-free predictions from data alone. Yet both RL and control aim to design systems
that use richly structured perception, perform planning and control that adequately adapt to en-
vironmental changes, and exploit safeguards when surprised by a new scenario. Understanding
how to properly analyze, predict, and certify such systems requires insights from current machine
learning practice and from the applied mathematics of optimization, statistics, and control theory.
With a focus on problems in continuous control, I will try to disentangle the similarities and dif-
ferences of methods of the complementary perspectives and present a set of challenging problems
whose solution will require significant input from both sets of practitioners.

I focus first on casting RL problems in an optimization framework, establishing the sorts of
methodological tools brought to bear in contemporary RL. I then lay out the main solution tech-
niques of RL, including the dichotomy between the model-free and model-based methodologies.
Next, I try to put RL and control techniques on the same footing through a case study of the
linear quadratic regulator (LQR) with unknown dynamics. This baseline will illuminate the vari-
ous trade-offs associated with techniques from RL and control. In particular, we will see that the
so-called model-free methods popular in deep RL are considerably less effective in both theory
and practice than simple model-based schemes when applied to LQR. Perhaps surprisingly, I also
show cases where these observations continue to hold onmore challenging nonlinear applications.
I then argue that model-free and model-based perspectives can be unified, combining their rel-
ative merits. This leads to a concluding discussion of some of the challenges at the interface of
control and learning that must be solved before we can build robust, safe learning systems that
interact with an uncertain physical environment, which will surely require tools from both the
machine learning and control communities.

2. WHAT IS REINFORCEMENT LEARNING?

Reinforcement learning is the study of how to use past data to enhance the future manipulation
of a dynamical system. How does this differ from ordinary machine learning? The main view of
this survey is of RL as optimal control when the dynamics are unknown. Our goal will be to find
a sequence of inputs that drives a dynamical system to maximize some objective, beginning with
minimal knowledge of how the system responds to inputs.
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In the classic optimal control problem, we begin with a dynamical system governed by the
difference equation xt+1 = ft (xt , ut , et ), where xt is the state of the system, ut is the control action,
and et is a random disturbance; ft is the rule that maps the current state, control action, and
disturbance at time t to a new state. Assume that at every time,we receive some reward R(xt , ut ) for
our current xt and ut . The goal is to maximize this reward. In terms of mathematical optimization,
we aim to solve the problem

maximize Eet

[
N∑
t=0

Rt (xt , ut )
]

subject to xt+1 = ft (xt , ut , et )
(x0 given).

1.

That is, we aim to maximize the expected reward over N time steps with respect to the control
sequence ut , subject to the dynamics specified by the state-transition rule ft . The expected value
is over the disturbance and assumes that ut is to be chosen having seen only the states x0 through
xt and previous inputs u0 through ut−1.Rt is the reward gained at each time step and is determined
by the state and control action. Note that xt is not really a decision variable in the optimization
problem; it is determined entirely by the previous state, control action, and disturbance. I will refer
to a trajectory, τt , as a sequence of states and control actions generated by a dynamical system:

τt = (u1, . . . , ut−1, x0, . . . , xt ) . 2.

Since the dynamics are stochastic, the optimal control problem typically allows a controller
to observe the state before deciding upon the next action (2). This allows a controller to contin-
ually mitigate uncertainty through feedback. Hence, rather than optimizing over deterministic
sequences of controls ut , we instead optimize over policies. A control policy (or simply “a policy”)
is a function, π , that takes a trajectory from a dynamical system and outputs a new control action.
Note that π has access only to previous states and control actions.

To slightly lower the notational burden, I will work with the time-invariant version of
Problem 1, assuming that the dynamical update rule is constant over time and that the rewards
for state–action pairs are also constant:

maximize Eet

[
N∑
t=0

R(xt , ut )
]

subject to xt+1 = f (xt , ut , et ), ut = πt (τt )
(x0 given).

3.

The policies πt are the decision variables of the problem.
Let us now directly bring machine learning into the picture. What happens when we do not

know the state-transition rule f ? There are a variety of commonly occurring scenarios when
we might lack such knowledge. We may have unknown relationships between control forces and
torques in amechanical system.Or we could have a considerably more complicated system, such as
a massive data center with complex heat-transfer interactions between the servers and the cooling
systems. Can we still solve Problem 3 well without a precise model of the dynamics? Some lines of
work even assume that we do not know the reward function R, but for the purpose of this survey, it
makes no difference whether R is known or unknown.The important point is that we cannot solve
this optimization problem using standard optimizationmethods unless we know the dynamics.We
must learn something about the dynamical system and subsequently choose the best policy based
on our knowledge.
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2.1. The Episodic Oracle Model

The main paradigm in contemporary RL is to play the following game. We decide on a policy π

and horizon length L. We then pass this policy either to a simulation engine or to a real physical
system,which returns a trajectory τL and a sequence of rewards {R(xt , ut )}.We want to find a policy
that maximizes the reward with the fewest total number of samples computed by the oracle, and
we are allowed to do whatever we would like with the previously observed trajectories and reward
information when computing a new policy. If we were to run m queries with horizon length L, we
would pay a total cost ofmL.However, we are free to vary our horizon length for each experiment.
This is our oracle model and is called episodic RL (see, for example, chapter 3 of Reference 3,
chapter 2 of Reference 4, or Reference 5).We want the expected reward to be high for our derived
policy, but we also need the number of oracle queries to be small.

This oracle model is considerably more complicated than those typically considered in oracle
models for optimization (6). Each episode returns a complex feedback signal of states and rewards.
What is the best way to tie this information together in order to improve performance? What is
the best way to query and probe a system to achieve high-quality control with as few interventions
as possible? Here, “best” is also not clearly defined. Do we decide an algorithm is best if it crosses
some reward threshold in the fewest number of samples? Or is it best if it achieves the highest
reward given a fixed budget of samples? Or maybe there is a middle ground? This oracle provides
a rich and complex model for interacting with a system and brings with it considerably more
complexity than exists in standard stochastic optimization settings.What is the most efficient way
to use all of the collected data in order to improve future performance?

2.2. Connections to Supervised Learning

The predominant paradigm of machine learning is supervised learning or prediction. In predic-
tion, the goal is to predict the variable y from a vector of features x such that, on new data, you
are predicting y from x with high accuracy. This form of machine learning includes classification
and regression as special cases. Most of the time, when experts use the term machine learning
colloquially, they are referring to this sort of prediction. From this perspective, niche topics like
semisupervised learning (7) and matrix completion (8) are prediction tasks as well.

By contrast, there are two special variables in RL: u and r. The goal now is to analyze the
features x and then subsequently choose a policy that emits u so that r is large.1 There are an
endless number of problems where this formulation is applied (3, 9, 10), from online decision-
making in games (1, 11–13) to engagement maximization on Internet platforms (14, 15). A key
distinguishing aspect of RL is the control action u. Unlike in prediction, the practitioner can vary
u, which has implications both for learning (e.g., designing experiments to learn about a given
system) and for control (e.g., choosing inputs to maximize reward).

RL is clearly more challenging than supervised learning, but, at the same time, it can be con-
siderably more valuable. RL provides a useful framework to conceptualize interaction in machine
learning and promises to help mitigate changing distributions, gaming, adversarial behavior, and
unexpected amplification. There is a precarious trade-off that must be carefully considered: RL
demands interventions with the promise that these actions will directly lead to valuable returns,
but the resulting complicated feedback loops are hard to study in theory, and failures can have
catastrophic consequences.

1To achieve notational consistency, I am adopting the control-centric notation of denoting state–action pairs
as (x, u) rather than (s, a), as is commonly used in RL.
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3. STRATEGIES FOR SOLVING REINFORCEMENT
LEARNING PROBLEMS

Let us now turn to a taxonomy of the varied algorithmic frameworks for RL, focused on solv-
ing Problem 3 when the state-transition function is unknown. Model-based RL fits a model to
previously observed data and then uses this model in some fashion to approximate the solution
to Problem 3. Model-free RL eschews the need for a system model, directly seeking a map from
observations to actions.

The role of models in RL remains hotly debated.Model-free methods, as discussed below, aim
to solve optimal control problems only by probing the system and improving strategies based on
past rewards and states. Many researchers argue for algorithms that can innately learn to control
without access to the complex details required to simulate a dynamical system. They argue that
it is often easier to find a policy for a task than it is to fit a general-purpose model of the system
dynamics (see, for example, the discussion in chapter 3 of Reference 16). Model-free methods
are primarily divided into two approaches: policy search and approximate dynamic programming.
Policy search directly searches for policies by using data from previous episodes in order to im-
prove the reward. Approximate dynamic programming uses Bellman’s principle of optimality to
approximate Problem 3 using previously observed data.

Throughout,my aim will be to highlight the main conceptual ideas of different approaches and
to avoid embroiling myself in a thorough discussion of the myriad of technical details required to
make all of the statements crisply precise.What is important is that all of the approaches surveyed
reduce to some sort of function fitting from noisy observations of the dynamical system, though
performance can be drastically different depending on how you fit this function. In model-based
RL, we fit a model of the state transitions to best match observed trajectories. In approximate
dynamic programming, we estimate a function that best characterizes the cost to go for exper-
imentally observed states. And in direct policy search, we attempt to find a policy that directly
maximizes the optimal control problem using only input–output data. The main questions are
which of these approaches makes the best use of samples and how quickly the derived policies
converge to optimality.

3.1. Model-Based Reinforcement Learning

One of the simplest and perhaps most obvious strategies to solve Problem 3 is to estimate a pre-
dictive model for the dynamical process and then use it in a dynamic programming solution to
the prescribed control problem.The estimated model is called the nominal model, and I will refer
to control design that assumes the estimated model is true as nominal control. Nominal control
serves as a useful baseline algorithm.

Estimation of dynamical systems is called system identification in the control community (17).
System identification differs from conventional estimation because one needs to carefully choose
the right inputs to excite various degrees of freedom and because dynamical outputs are correlated
over time with the parameters we hope to estimate, the inputs we feed to the system, and the
stochastic disturbances. Once data are collected, however, conventional machine learning tools
can be used to find the system that best agrees with the data and can be applied to analyze the
number of samples required to yield accurate models (18, 19).

Suppose we want to build a predictor of xt+1 from the trajectory history. A simple, classic strat-
egy is to inject a random probing sequence ut for control and thenmeasure how the state responds.
Up to stochastic noise, we should have that

xt+1 ≈ ϕ(xt , ut ) , 4.
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where ϕ is some model aiming to approximate the true dynamics; ϕ might arise from a first-
principles physical model or might be a nonparametric approximation by a neural network. The
state-transition function can then be fit using supervised learning. For instance, a model can be fit
by solving the least squares problem

minimizeϕ

N−1∑
t=0
||xt+1 − ϕ(xt , ut )||2 .

Let ϕ̂ denote the function fit to the collected data to model the dynamics. Let ωt denote a
random variable that we will use as a model for the noise process. With such a point estimate for
the model, we might solve the optimal control problem

maximize Eωt

[
N∑
t=0

R(xt , ut )
]

subject to xt+1 = ϕ̂(xt , ut )+ ωt , ut = πt (τt ) .

In this case, we are solving the wrong problem to get our control policies πt .Not only is the model
incorrect, but this formulation requires some plausible model of the noise process. But if ϕ̂ and f
are close, this approach might work well in practice.

3.2. Approximate Dynamic Programming

Approximate dynamic programming approaches the RL problem by directly approximating the
optimal control cost and then solving the resulting approximation with techniques from dynamic
programming. The dynamic programming solution to Problem 3 is based on the principle of
optimality: If you have found an optimal control policy for a time horizon of lengthN ,π1, . . . ,πN ,
and you want to know the optimal strategy starting at state x at time t, then you just have to take
the optimal policy starting at time t, πt , . . . ,πN . Dynamic programming then lets us recursively
find a control policy by starting at the final time and recursively solving for policies at earlier times.

Define the Q-function for Problem 3 to be the mapping

Q(x, u) = max

{
Eet

[
N∑
t=0

R(xt , ut )

]
: xt+1 = f (xt , ut , et ), (x0, u0) = (x, u)

}
. 5.

TheQ-function determines the value of the optimal control problem that is attained when the first
action is set to be u and the initial condition is x. Note that it then trivially follows that the optimal
value of Problem 3 is maxuQ(x0, u), and the optimal policy is π (x0) = argmaxuQ(x0, u). If we had
access to the Q-function, we would have everything we need to know to take the first step in the
optimal control problem.We can use dynamic programming to compute this Q-function and the
Q-function associated with every subsequent action. That is, we define the terminal Q-function
to be

QN (x, u) = R(x, u)

and then define recursively

Qk(x, u) = R(x, u)+ Ee

{
max
u′

Qk+1[ f (x, u, e), u′]
}

. 6.

This is the dynamic programing algorithm in a nutshell:We can recursively define theQ-functions
by passing backward in time, and then compute the optimal controls from any starting x0 by
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applying the policy that maximizes the right-hand side of Equation 6 at each time step. Equation 6
is known as Bellman’s equation.Note that for all time, the optimal policy is uk = argmaxuQk(xk, u)
and depends only on the current state.

Approximate dynamic programmingmethods typically try to compute these action-value func-
tions from data. They do so by assuming that the Q-function is stationary [i.e.,Qk(x, u) = Q(x, u)
for all k and some functionQ]. Such stationarity indeed arises assuming the time horizon is infinite.
Consider the limit:

maximize limN→∞ Eet

[
1
N

N∑
t=0

R(xt , ut )
]

subject to xt+1 = f (xt , ut , et ), ut = πt (τt )
(x0 given).

7.

And we define the Q-function Q(x0, u0) to be the average reward accrued running from state x0
with initial action u0. Unfortunately, Equation 7 is not directly amenable to dynamic program-
ming without introducing further technicalities. For mathematical convenience and to connect to
common practice in RL, it is useful to instead consider the discounted reward problem

maximize (1− γ )Eet

[ ∞∑
t=0

γ tR(xt , ut )
]

subject to xt+1 = f (xt , ut , et ), ut = πt (τt )
(x0 given),

8.

where γ is a scalar in (0, 1) called the discount factor. For γ close to 1, the discounted reward is
approximately equal to the average reward (16). The discounted cost has particularly clean opti-
mality conditions that make it amenable to estimation. If we defineQγ (x, u) to be the Q-function
obtained from solving Problem 8 with initial condition x, then we have a discounted version of
dynamic programming, now with the same Q-functions on the left- and right-hand sides:

Qγ (x, u) = R(x, u)+ γEe

{
max
u′

Qγ [ f (x, u, e), u′]
}

.

The optimal policy is now for all times to let

ut = argmax
u

Qγ (xt , u) . 9.

This is a remarkably simple formula,which is part of whatmakesQ-learningmethods so attractive.
We can try to solve for the Q-function using stochastic approximation. If we draw a sam-

ple trajectory using the policy given by Equation 9, then we should have (approximately and in
expectation)

Qγ (xk, uk ) ≈ R(xk, uk )+ γ max
u′

Qγ (xk+1, u′ ) .

Thus, beginning with some initial guess Q(old)
γ for the Q-function, we can update

Q(new)
γ (xk, uk ) = (1− η)Q(old)

γ (xk, uk )+ η

[
R(xk, uk )+ γ max

u′
Q(old)

γ (xk+1, u′ )
]
, 10.

where η is a step size or learning rate. Equation 10 forms the basis of Q-learning algorithms
(20, 21).
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Surveying approximate dynamic programming using only Q-functions is somewhat unortho-
dox. Most introductions to approximate dynamic programming instead focus on value functions,
where

V (x) = max
u

Q(x, u) .

Methods for estimating value functions are also widely used in RL and developed through
the perspective of estimation and stochastic approximation. In particular, temporal difference
algorithms are derived from the value-function-centric perspective (22–26).

Note that in all cases here, though we have switched away from models, there is no free lunch.
We are still estimating functions, and we need to assume that the functions have some reasonable
structure, or we cannot learn them. Choosing a parameterization of the Q-function is a modeling
assumption. The term model free, when casually claimed in RL research, almost always means
that there is no model of the state-transition function. However, this does not mean that mod-
eling is not heavily built into the assumptions of model-free RL algorithms. Moreover, for con-
tinuous control problems, these methods appear to make an inefficient use of samples. Suppose
the internal state of the system is of dimension d. When modeling the state-transition function,
Equation 4 provides d equations per time step. By contrast, we are using only one equation per
time step in approximate dynamic programming. Such inefficiency is certainly seen in practice
below. Also troubling is the fact that we had to introduce the discount factor in order to get a
simple Bellman equation. One can avoid discount factors, but this requires considerably more so-
phisticated analysis. Large discount factors do in practice lead to brittle methods, and the discount
becomes a hyperparameter that must be tuned to stabilize performance.We illustrate below when
and how these issues arise in practice in control.

3.3. Direct Policy Search

The most ambitious form of control without models attempts to directly learn a policy function
from episodic experiences without ever building a model or appealing to the Bellman equation.
From the oracle perspective, these policy-driven methods turn the problem of RL into derivative-
free optimization.

3.3.1. A generic algorithm for sampling to optimize. Let us begin with a review of a general
paradigm for leveraging random sampling to solve optimization problems. Consider the general
unconstrained optimization problem

maximizez∈Rd R(z) . 11.

Any optimization problem like this is equivalent to an optimization over probability distributions
on z:

maximizep(z) Ep[R(z)] .

If z� is the optimal solution, then we get the same value if we put a δ-function around z�. Moreover,
if p is a probability distribution, it is clear that the expected value of the reward function can never
be larger than the maximal reward achievable by a fixed z. So we can either optimize over z or
optimize over distributions over z.

Since optimizing over the space of all probability densities is intractable, we must restrict the
class of densities over which we optimize. For example, we can consider a family parameterized
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by a parameter vector ϑ : p(u;ϑ ) and attempt to optimize

maximizeϑ Ep(z;ϑ )[R(z)]. 12.

If this family of distributions contains all of the δ-functions, then the optimal value will coincide
with the nonrandom optimization problem. But if the family does not contain δ-functions, the
resulting optimization problem only provides a lower bound on the optimal value no matter how
good of a probability distribution we find.

That said, this reparameterization provides a powerful and general algorithmic framework for
optimization. In particular, we can compute the derivative of J(ϑ ) := Ep(z;ϑ )[R(z)] using the fol-
lowing calculation (called the log-likelihood trick):

∇ϑJ(ϑ )=
∫
R(z)∇ϑ p(z;ϑ )dz

=
∫
R(z)

[∇ϑ p(z;ϑ )
p(z;ϑ )

]
p(z;ϑ )dz

=
∫ [

R(z)∇ϑ log p(z;ϑ )
]
p(z;ϑ )dz

=Ep(z;ϑ )
[
R(z)∇ϑ log p(z;ϑ )

]
.

This derivation reveals that the gradient of Jwith respect toϑ is the expected value of the function

G(z,ϑ ) = R(z)∇ϑ log p(z;ϑ ). 13.

Hence, if we sample z from the distribution defined by p(z;ϑ ), we can compute G(z,ϑ ) and will
have an unbiased estimate of the gradient of J. We can follow this direction and will be running
stochastic gradient descent on J, defining Algorithm 1.

Algorithm 1 (REINFORCE).
Hyperparameters: step sizes α j > 0.
Initialize: ϑ0 and k = 0.
while ending condition not satisfied do

Sample zk ∼ p(z;ϑk ).
Set ϑk+1 = ϑk + αkR(zk )∇ϑ log p(zk;ϑk ).
k← k+ 1.

end while

Algorithm 1 is typically called REINFORCE (27), and its main appeal is that it is trivial to
implement. If you can efficiently sample from p(z;ϑ ), you can run this algorithm on essentially any
problem. But such generality comes with a significant cost. The algorithm operates on stochastic
gradients of the sampling distribution, but the function we cared about optimizing (R) is accessed
only through function evaluations. Direct search methods that use the log-likelihood trick are
necessarily derivative-free optimization methods and, in turn, are necessarily less effective than
methods that compute actual gradients, especially when the function evaluations are noisy (28).
Another significant concern is that the choice of distribution can lead to very high variance in the
stochastic gradients. Such high variance in turn implies that many samples need to be drawn to
find a stationary point.

That said, the ease of implementation should not be readily discounted.Direct search methods
are trivial to implement, and oftentimes reasonable results can be achieved with considerably less
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effort than custom solvers tailored to the structure of the optimization problem. There are two
primary ways that this sort of stochastic search arises in RL: policy gradient and pure random
search.

3.3.2. Policy gradient. As seen from Bellman’s equation, the optimal policy for Problem 3 is
always deterministic. Nonetheless, the main idea behind policy gradient is to use probabilistic
policies. Probabilistic policies are optimal for other optimization-based control problems, such as
control of partially observed Markov decision processes (29, 30) or in zero-sum games. Hence,
exploring their value for the RL problems studied in this survey does not appear too outlandish
at first glance.

We fix our attention on parametric, randomized policies such that ut is sampled from a dis-
tribution p(u|τt;ϑ ) that is a function only of the currently observed trajectory and a parameter
vector ϑ . A probabilistic policy induces a probability distribution over trajectories:

p(τ ;ϑ ) =
L−1∏
t=0

p(xt+1|xt , ut )p(ut |τt;ϑ ). 14.

Moreover, we can overload the notation and define the reward of a trajectory to be

R(τ ) =
N∑
t=0

Rt (xt , ut ).

Then our optimization problem for RL tidily takes the form of Equation 12. Policy gradient
thus proceeds by sampling a trajectory using the probabilistic policy with parameters ϑk and then
updating using REINFORCE.

Using the log-likelihood trick and Equation 14, it is straightforward to verify that the gradient
of J with respect to ϑ is not an explicit function of the underlying dynamics. However, at this
point this should not be surprising: By shifting to distributions over policies, we push the burden
of optimization onto the sampling procedure.

3.3.3. Pure random search. An older and more widely applied method to solve Problem 11
is to directly perturb the current decision variable z by random noise and then update the model
based on the received reward at this perturbed value. That is, we apply Algorithm 1 with sampling
distribution p(z;ϑ ) = p0(z− ϑ ) for some distribution p0. The simplest examples for p0 would be
the uniform distribution on a sphere or a normal distribution. Perhaps less surprisingly here, RE-
INFORCE can again be run without any knowledge of the underlying dynamics.Note that in this
case, the REINFORCE algorithm has a simple interpretation in terms of gradient approximation.
Indeed, REINFORCE is equivalent to approximate gradient ascent of R

ϑt+1 = ϑt + αgσ (ϑk )

with the gradient approximation

gσ (ϑ ) = R(ϑ + σε )− R(ϑ − σε )
2σ

ε .

This update says to compute a finite-difference approximation to the gradient along the direction
ε and move along the gradient. One can reduce the variance of such a finite-difference estimate
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by sampling along multiple random directions and averaging:

g(m)
σ (ϑ ) = 1

m

m∑
i=1

R(ϑ + σεi )− R(ϑ − σεi )
2σ

εi .

This is akin to approximating the gradient in the random subspace spanned by the εi.
This particular algorithm and its generalizations go by many different names. Probably the

earliest proposal for this method was made by Rastrigin (31). In an unexpected historical surprise,
Rastrigin initially developed this method to solve RL problems! His main motivating example
was an inverted pendulum. A rigorous analysis using contemporary techniques was provided by
Nesterov & Spokoiny (32). Random search was also discovered by the evolutionary algorithms
community, where it is called the (μ, λ)-evolution strategy (33, 34). Random search has also been
studied in the context of stochastic approximation (35) and bandits (36, 37). Algorithms that are
invented independently by four different communities probably have something good going for
them.

The random search method is considerably simpler than the policy gradient algorithm, but it
uses much less structure from the problem as well. Since RL problems tend to be nonconvex, it
is not clear which of these approaches is better unless we focus on specific instances. In light of
this, in the next section we turn to a set of instances where we may be able to glean more insights
about the relative merits of all of the approaches to RL covered in this section.

3.4. Deep Reinforcement Learning

Note that in this section I have spent no time discussing deep reinforcement learning. That is
because there is nothing conceptually different other than the use of neural networks for function
approximation. That is, if you want to take any of the described methods and make them deep,
you simply need to add a neural network. In model-based RL, ϕ is parameterized as a neural net-
work; in approximate dynamic programming, the Q-functions or value functions are assumed to
be well approximated by neural networks; and in policy search, the policies are set to be neural
networks. The algorithmic concepts themselves do not change. However, convergence analysis
certainly will change, and algorithms like Q-learning might not even converge. The classic text
Neuro-Dynamic Programming by Bertsekas & Tsitsiklis (9) discusses the adaptations needed to ad-
mit function approximation. By eliminating the complicating variable of function approximation,
we can get better insights into the relative merits of these methods, especially when focusing on a
simple set of instances of optimal control, namely, the linear quadratic regulator.

4. SIMPLIFYING THEME: THE LINEAR QUADRATIC REGULATOR

With this varied list of approaches to reinforcement learning, it is difficult from afar to judge
which method fares better on which problems. It is likely best to start simple and small and
find the simplest nontrivial problem that can assist in distinguishing the various approaches to
control. Though simple models are not the end of the story in analysis, it tends to be the case
that if a complicated method fails to perform on a simple problem, then there is a flaw in the
method.

I would argue that in control, the simplest nontrivial class of instances of optimal control
is those with convex quadratic rewards and linear dynamics—that is, the problem of the linear
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quadratic regulator:

minimize Eet

(
1
2

N∑
t=0

xTt Qxt + uTt Rut +
1
2
xTN+1SxN+1

)
,

subject to xt+1 = Axt + But + et , ut = πt (τt )
(x0 given).

15.

Here,Q, R, and S are positive semidefinite matrices. Note that we have switched to minimization
from maximization, as is conventional in optimal control. The state transitions are governed by a
linear update rule with A and B appropriately sized matrices.

A few words are in order to defend this baseline as instructive for general problems in contin-
uous control and RL. Though linear dynamics are somewhat restrictive, many systems are linear
over the range we would like them to operate. Indeed, enormous engineering effort goes into
designing systems so that their responses are as close to linear as possible. From an optimization
perspective, linear dynamics are the only class where we are guaranteed that our constraint set is
convex, which is another appealing feature for analysis.

What about cost functions?Whereas dynamics are typically handed to the engineer, cost func-
tions are completely at their discretion. Designing and refining cost functions are part of optimal
control design, and different characteristics can be extracted by iteratively refining cost functions
to meet specifications. This is no different in machine learning, where, for example, combinatorial
losses in classification are replaced with smooth losses like logistic or squared loss. Designing cost
functions is a major challenge and tends to be an art form in engineering. But since we are design-
ing our cost functions, we should focus our attention on costs that are easier to solve. Quadratic
cost is particularly attractive not only because it is convex, but also because of how it interacts with
noise. The cost of the stochastic problem is equal to that of the noiseless problem plus a constant
that is independent of the choice of ut . The noise will degrade the achievable cost, but it will not
affect how control actions are chosen.

Note that when the parameters of the dynamical system are known, the standard LQR problem
admits an elegant dynamic programming solution (38). The control action is a linear function of
the state

ut = −Ktxt
for some matrix Kt that can be computed via a simple linear algebraic recursion with only knowl-
edge of A, B,Q, and R.

In the limit as the time horizon tends to infinity, the optimal control policy is static, linear state
feedback:

ut = −Kxt ,

where K is a fixed matrix defined by

K = (R+ BTMB)−1BTMA

andM is a solution to the discrete algebraic Riccati equation

M = Q+ ATMA− (ATMB)(R+ BTMB)−1(BTMA) . 16.

That is, for LQR on an infinite time horizon, πt (xt ) = −Kxt . Here,M is the unique solution of
the Riccati equation where all of the eigenvalues of A− BK have magnitude less than 1. Finding
this specific solution is relatively easy using standard linear algebraic techniques (38).
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There are a variety of ways to derive these formulae. In particular, one can use dynamic pro-
gramming as in Section 3.2. In this case, one can check that theQ-function on a finite time horizon
satisfies a recursion

Qk(x, u) = xTQx+ uTRu+ (Ax+ Bu)TMk+1(Ax+ Bu)+ ck

for some positive definitematrixMk+1.The limits of thesematrices are the solution of Equation 16.
Though LQR cannot capture every interesting optimal control problem, it has many of the

salient features of the generic optimal control problem. Dynamic programming recursion lets us
compute the control actions efficiently, and for long time horizons, a static policy is nearly optimal.

Now the main question to consider in the context of RL:What happens when we do not know
A and B? What is the right way to interact with the dynamical system in order to quickly and
efficiently get it under control? Let us now dive into the different styles of RL and connect them
to ideas in control, using LQR as a guiding baseline.

4.1. The Sample Complexity of Model-Based Reinforcement Learning
for the Linear Quadratic Regulator

For LQR, maximum likelihood estimation of a nominal model is a least squares problem:

minimizeA,B
N−1∑
t=0
||xt+1 − Axt − But ||2 .

How well do these model estimates work for the LQR problem? Suppose we treat the estimates
as true and use them to compute a state feedback control from a Riccati equation.While we might
expect this to work well in practice, how can we verify the performance? As a simple case, suppose
that the true dynamics are slightly unstable, so that A has at least one eigenvalue of magnitude
larger than 1. It is fully possible that the least squares estimate of one of the diagonal entries will
be less than 1, and, consequently, the optimal control strategy using the estimate will fail to account
for the poorly estimated unstable mode.How can we include the knowledge that our model is just
an estimate and not accurate with a small sample count? One possible solution is to use tools from
robust control to mitigate this uncertainty.

My collaborators and I have been considering an approach to merge robust control and high-
dimensional statistics dubbed coarse-ID control. The general framework consists of the following
three steps:

1. Use supervised learning to learn a coarse model of the dynamical system to be controlled. I
will refer to the system estimate as the nominal system.

2. Using either prior knowledge or statistical tools like the bootstrap, build probabilistic guar-
antees about the distance between the nominal system and the true, unknown dynamics.

3. Solve a robust optimization problem that optimizes control of the nominal system
while penalizing signals with respect to the estimated uncertainty, ensuring stable, robust
execution.

As long as the true system behavior lies in the estimated uncertainty set, we are guaranteed to
find a performant controller. The key here is that we are using machine learning to identify not
only the plant to be controlled, but also the uncertainty. Indeed, the main advances in the past two
decades of estimation theory consist of providing reasonable estimates of such uncertainty sets
with guaranteed bounds on their errors as a function of the number of observed samples. Taking
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these new tools and merging them with old and new ideas from robust control allows us to bound
the end-to-end performance of a controller in terms of the number of observations.

The coarse-ID procedure is well illustrated through the case study of LQR (39).We can guar-
antee the accuracy of the least squares estimates for A and B using novel probabilistic analysis (40).
With the estimate of model error in hand, one can pose a robust variant of the standard LQR op-
timal control problem that computes a robustly stabilizing controller seeking to minimize the
worst-case performance of the system given the (high-probability) norm bounds on our modeling
errors.

To design a good control policy, we here turn to state-of-the-art tools from robust control.We
leverage the recently developed system-level synthesis framework (41, 42) to solve this robust op-
timization problem. System-level synthesis lifts the system description into a higher-dimensional
space that enables efficient search for controllers.The proposed approach provides nonasymptotic
bounds that guarantee finite performance on the infinite time horizon and quantitatively bound
the gap between the computed solution and the true optimal controller.

Suppose in LQR that we have a state dimension d and a control dimension p. Denote the mini-
mum cost achievable by the optimal controller as J∗.Our analysis guarantees that, after a observing
a trajectory of lengthT , we can design a controller that will have infinite-time-horizon cost Ĵ with

Ĵ− J�

J�

= Õ

(√
d + p
T

)
.

Here, the notation Õ(·) suppresses logarithmic factors and instance-dependent constants. In
particular, we can guarantee that we stabilize the system after seeing only a finite amount of data.

Where coarse-ID control differs from nominal control is that it explicitly accounts for the
uncertainty in the least squares point estimate. By appending this uncertainty to the original LQR
optimization problem, we can circumvent the need to study perturbations of Riccati equations.
Moreover, since the approach is optimization based, it can be readily applied to other optimal
control problems beyond the LQR baseline.

4.2. The Sample Complexity of Model-Free Reinforcement Learning
for the Linear Quadratic Regulator

Since we know that the Q-function for LQR is quadratic, we can try to estimate it by dynamic
programming. Such a method was probably first proposed by Bradtke et al. (43). More recently,
Tu & Recht (44) showed that the least squares temporal differencing algorithm, first developed
by Bradtke & Barto (24), could estimate the value function of LQR to low error with Õ

(√
d2/T

)
samples. This estimator can then be combined with a method to improve the estimated policy
over time.

Note that the bound on the efficiency of the estimator here is worse than the error obtained
for estimating the model of the dynamical system. While comparing worst-case upper bounds is
certainly not valid, it is suggestive that, as mentioned above, temporal differencing methods use
only one defining equation per time step, whereas model estimation uses d equations per time
step. So while the conventional wisdom suggests that estimating Q-functions for specific tasks
should be simpler than estimating models, the current methods appear to be less efficient with
aggregated data than system identification methods are.
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With regard to direct search methods, we can already see variance issues enter the picture even
for small LQR instances. Consider the most trivial example of LQR:

R(u) = ||u||2.

Let p(u;ϑ ) be a multivariate Gaussian with mean ϑ and variance σ 2I. Then

Ep(u;ϑ )[R(u)] = ‖ϑ‖2 + σ 2d.

Obviously, the best thing to do would be to set ϑ = 0. Note that the expected reward is off by σ 2d
at this point, but at least this would be finding a good guess for u. Also, as a function of ϑ , the cost
is strongly convex, and the most important thing to know is the expected norm of the gradient, as
this will control the number of iterations. Now, after sampling u from a Gaussian with mean ϑ0

and variance σ 2I and using Equation 13, the first gradient will be

g = −||ω − ϑ0||2ω
σ 2

,

whereω is a normally distributed random vector withmean zero and covariance σ 2I.The expected
norm of this stochastic gradient is on the order of

O
(
σd1.5 + σ−1d0.5‖ϑ0‖

)
,

which indicates a significant scaling with dimension.
Several works have analyzed the complexity of this method (28, 36, 37), and the upper and

lower bounds strongly depend on the dimension of the search space. The upper bounds also typ-
ically depend on the largest magnitude reward B. If the function values are noisy, even for convex
functions, the convergence rate isO[(d2B2/T )−1/3], and this assumes you get the algorithm param-
eters exactly right. For strongly convex functions, this can be reduced toO[(d2B2/T )−1/2] function
evaluations, but this result is also rather fragile to the choice of parameters. Finally, note that just
adding a constant offset to the reward dramatically slows down the algorithm. If you start with
a reward function whose values are in [0,1] and subtract one million from each reward, this will
increase the running time of the algorithm by a factor of one million, even though the ordering
of the rewards among parameter values remains the same.

5. NUMERICAL COMPARISONS

The preceding analyses of the RL paradigms when applied to LQR are striking. A model-based
approach combining supervised learning and robust control achieves nearly optimal performance
given its sampling budget. Approximate dynamic programming appears to fare worse in terms
of worst-case performance. And direct policy search seems to be of too high variance to work in
practice. In this section, we implement these various methods and test them on some simple LQR
instances to see how these theoretical predictions reflect practice.

5.1. A Double Integrator

As a simple test case, consider the classic problem of a discrete-time double integrator with the
dynamical model

xt+1 =
[
1 1
0 1

]
xt +

[
0
1

]
ut . 17.
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Such a system could model, say, the position (first state) and velocity (second state) of a unit mass
object under force u.

As an instance of LQR, we can try to steer this system to reach point 0 from initial condition
x0 = [−1, 0] without expending much force:

Q =
[
1 0
0 0

]
, R = r0 18.

for some scalar r0. Note that even in this simple instance there is an element of design: Changing
the value of r0 changes the character of the control law, allowing one to weigh the importance of
expending control energy against the time required to reach the destination.

To compare the different approaches, I ran experiments on this instance with a small amount
of noise (et zero mean with covariance 10−4I) and training episode length L = 10. The goal was
to design a controller that works on an arbitrarily long time horizon using the fewest number of
simulations of length L.

With one simulation (10 samples), using a white noise input with unit variance, the nominal
estimate is correct to three digits of precision. And, not surprisingly, this returns a nearly opti-
mal control policy. Right out of the box, this nominal control strategy works well on this simple
example. Note that using a least squares estimator makes the nominal controller’s life hard here
because all prior information about sparsity on the state-transitionmatrices is discarded. In a more
realistic situation, the only parameter that would need to be estimated would be the (2,1) entry
in B, which governs how much force is put out by the actuator and how much mass the system
has.

Now, let us compare this approach with approximate dynamic programming and policy search
methods. For policy search, let us restrict to policies that use a static, linear gain, as would be
optimal on an infinite time horizon. Note that a static linear policy works almost as well as a
time-varying policy for this simple LQR problem with two state dimensions. Moreover, there
are only two decision variables for this simple problem. For policy gradient, I used the Adam
algorithm to shape the iterates (45). I also subtracted the mean reward of previous iterates, a
popular baseline subtraction heuristic to reduce variance [Dayan (46) attributes this heuristic to
Sutton (47) and Williams (48)]. I was unable to get policy gradient to converge without these
additional algorithmic ornamentations. I also compared against a simple approximate dynamic
programming method called least squares policy iteration (LSPI), proposed by Lagoudakis &
Parr (49). I ran each of these methods using 10 different random seeds. Figure 1 plots the median
performance of the various methods with error bars encompassing the maximum and minimum
over all trials. Both nominal control and LSPI are able to find high-quality controllers with only
10 observations. Direct policy methods, on the other hand, require many times as many samples.
Policy gradient, in particular, requires thousands of times as many samples as simple nominal
control.

5.2. Unstable Laplacian Dynamics

As an illustrative example of the power of LQR as a baseline, let us now move to a considerably
harder instance of LQR and show how it highlights issues of robustness and safety. Consider an
idealized instance of data center cooling, a popular application of RL (50).

Define the model to have three heat sources coupled to their own cooling devices. Each com-
ponent of the state x is the internal temperature of one heat source, and the sources heat up under
a constant load. They also shed heat to their neighbors. This can be approximately modeled by a
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Figure 1

Cost for the double-integrator model for various reinforcement learning algorithms. The solid plots denote
the median performance, and the shaded regions capture the maximum and minimum performance.
Nominal control and least squares policy iteration are indistinguishable from the optimal controller in this
experiment and hence are omitted.

linear dynamical system with state-transition matrices

A =

⎡
⎢⎣1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

⎤
⎥⎦, B = I .

Note that the open loop system here is unstable: With any nonzero initial condition, the state
vector will blow up because the limit of Ak is infinite. Moreover, if a method estimates one of the
diagonal entries of A to be less than 1, we might guess that this mode is actually stable and put
less effort into cooling that source. So it is imperative to obtain a high-quality estimate of the
system’s true behavior for near-optimal control. Or, rather, we must be able to ascertain whether
our current policy is safe, or the consequences can be disastrous.

Let us try to solve the LQR problem with the settings Q = I and R = 1,000I. This models a
high relative cost for power consumption and hencemay encourage small control inputs onmodes
that are estimated as stable. What happens for our RL methods in this instance?

Figure 2 compares nominal control to two versions of the robust LQR problem described in
Section 4.1. To solve the robust LQR problem, we end up solving a small semidefinite program-
ming problem as described by Dean et al. (39). These semidefinite programs are solved on my
laptop in well under a second. Note that estimating the error from data only yields slightly worse
LQR performance than exactly knowing the true model error.

Note also that the nominal controller does tend to frequently find controllers that fail to stabi-
lize the true system. A necessary and sufficient condition for stabilization is for the matrix A+ BK
to have all of its eigenvalues be less than 1. We can plot how frequently the various search meth-
ods find stabilizing control policies when looking at a finite horizon in Figure 2b. The robust
optimization really helps here to provide controllers that are guaranteed to find a stabilizing so-
lution. On the other hand, in industrial practice, nominal control does seem to work quite well.
A great open problem is to find reasonable assumptions under which the nominal controller is
stabilizing.

Figure 3 additionally compares the performance to model-free methods in this instance.Here
we again see that they are indeed far off from their model-based counterparts. The x axis has
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Figure 2

(a) Cost for the Laplacian model for varied models. The blue curve shows the performance of a robust LQR when it is provided with
the true distance between the estimate and model. The green curve shows the performance when the uncertainty is learned from data
using a bootstrap simulation (51, 52). (b) The fraction of the time that the synthesized control strategy returns a stabilizing controller.
Abbreviation: LQR, linear quadratic regulator.

increased by a factor of 10, and yet even the approximate dynamic programming approach does
not find a decent solution. Surprisingly, LSPI, which worked very well on the double integrator,
now performs worse than random search. This is likely because the LSPI subroutine requires a
stabilizing controller for all iterations and also requires careful tuning of the discount factor. Not
only are model-free methods sample hungry, but they fail to be safe. And safety is much more
critical than sample complexity.

6. BEYOND THE LINEAR QUADRATIC REGULATOR

Studying simple baselines such as LQR often provides insights into how to approach more chal-
lenging problems. In this section, we explore some directions inspired by our analysis of LQR.
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Figure 3

(a) Cost for the Laplacian model for varied models over 5,000 iterations. (b) The fraction of the time that the synthesized control
strategy returns a stabilizing controller. Abbreviations: LQR, linear quadratic regulator; LSPI, least squares policy iteration.
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6.1. Derivative-Free Methods for Optimal Control

Random search works well on simple linear problems and appears to be better than more com-
plex methods like policy gradient. Does simple random search work less well on more difficult
problems?

The answer, it turns out, is yes. The deep RL community has recently been using a suite
of benchmarks to compare methods, maintained by OpenAI (https://gym.openai.com/envs/
#mujoco) and based on the MuJoCo simulator (53). Here, the optimal control problem is to get
the simulation of a legged robot to walk as far and quickly as possible in one direction. Some of the
tasks are very simple, but some are quite difficult, like the complicated humanoid models with 22
degrees of freedom.The dynamics of legged robots are well specified by Lagrange’s equations (54),
but planning locomotion from thesemodels is challenging because it is not clear how to best design
the objective function and because the model is piecewise linear. The model changes whenever
part of the robot comes into contact with a solid object, and hence a normal force is introduced
that was not previously acting upon the robot. Hence, getting robots to work without having to
deal with complicated nonconvex nonlinear models seems like a solid and interesting challenge for
the RL paradigm. Moreover, seminal work by Tedrake et al. (55) demonstrated that direct policy
search could rapidly find feedback control policies for certain constrained legged robot designs.

Levine & Koltun (56) were among the first to use MuJoCo as a test bed for learning-based
control, and they were able to achieve walking in complex simulators without special-purpose
techniques. Since then, these techniques have become standard continuous control benchmarks
for RL (see, for example, 57–61). Recently, Salimans and his collaborators at OpenAI (62) showed
that random search worked quite well on these benchmarks. In particular, they fit neural network
controllers using random search with a few algorithmic enhancements.Random search had indeed
enjoyed significant success in some corners of the robotics community, and others had noted that
in their applications, random search outperformed policy gradient (63). In another piece of great
work, Rajeswaran et al. (64) showed that natural policy gradient could learn linear policies that
could complete these benchmarks. That is, they showed that static linear state feedback, like the
kind we use in LQR,was also sufficient to control these complex robotic simulators.This of course
left an open question: Can simple random search find linear controllers for these MuJoCo tasks?

Mania et al. (65) tested this out, coding up a rather simple version of random search with a
couple of small algorithmic enhancements.Many RL papers were using statistics of the states and
whitening the states before passing them into the neural network mapping from state to action.
This study found that when random search performed the same whitening with linear controls,
this algorithm was able to get state-of-the-art results on all of the MuJoCo benchmark tasks.

There are a few of important takeaways from this study. On the one hand, the results suggest
that these MuJoCo demos are easy, or at least considerably easier than they were believed to be.
Benchmarking is difficult, and having only a few simulation benchmarks encourages overfitting to
these benchmarks. Indeed, it does seem like these benchmarks are more about taking advantage
of simulation approximations in MuJoCo than they are about learning reasonable policies for
walking. In terms of benchmarking, this is what makes LQR so attractive: LQR with unknown
dynamics is a reasonable task to master, as it is easy to specify new instances, and it is relatively
easy to understand the limits of achievable performance.

Second, note that since our random search method is fast, we can evaluate its performance on
many random seeds. All model-free methods exhibit alarmingly high variance on these bench-
marks. For instance, on the humanoid task, the model is slow to train almost a quarter of the time
even when supplied with what we thought were good parameters (see Figure 4b). And, for those
random seeds, we found that the method returned rather peculiar gaits. Henderson et al. (66)
and Islam et al. (67) observed this phenomenon with deep RL methods, but our results on linear
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(a) Sample frame of the MuJoCo humanoid. (b) Variance of learning performance on 100 runs of random search on the humanoid
model. Note that though high rewards are often achieved, it is more common to observe poor control performance from a random
initialization. (c) Using model predictive control and a poor model, complex actions with humanoid simulations can be executed, such as
climbing into a vehicle. Panel b adapted from Reference 65; panel c adapted with permission from a supplementary video from
Reference 68.

controllers suggest that such high variability will be a symptom of all model-freemethods.Though
direct policy search methods are easy to code up, their reliability on any reasonable control task
remains in question.

6.2. Receding Horizon Control

Approximate dynamic programming is closely related to canonical receding horizon control
(RHC), also known as model predictive control. In RHC, an agent makes a plan based on a simu-
lation from the present until a short time into the future. The agent then executes one step of this
plan, and based on what it observes after taking this action, it returns to short-time simulation to
plan the next action. This feedback loop allows the agent to link the actual impact of its choice of
action with what was simulated, and hence it can correct for model mismatch, noise realizations,
and other unexpected errors.

To relate RHC to approximate dynamic programming, note that the discounted problem

maximize (1− γ )Eet

[
N−1∑
t=0

γ tR(xt , ut )+ γ NQγ (xN+1, uT+1)
]

subject to xt+1 = f (xt , ut , et )
(x0 given)

is equivalent to Problem 8. Here, we have just unrolled the cost beyond one step. Though this is
trivial, it is again incredibly powerful: The longer we make the time horizon, the less we need to
worry about the Q-function being accurate. Of course, now we need to worry about the accuracy
of the state-transition map, f . But, especially in problems with continuous variables, it is not at all
obvious which accuracy is more important in terms of finding algorithms with fast learning rates
and short computation times. There is a trade-off between learning models and learning value
functions, and this is a trade-off that needs to be better understood.

Though RHC methods appear fragile to model mismatch, the repeated feedback inside RHC
can correct for many modeling errors. As an example, it is worth revisiting the robotic locomotion
tasks inside the MuJoCo framework. These tasks were actually designed to test the power of a
nonlinear RHC algorithm developed by Tassa et al. (69). The receding horizon controller works
to keep the robot upright even when the model is poorly specified.Moreover, the RHC approach
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to humanoid control solved for the controller in 7× real time in 2012. In 2013, the same research
group published a cruder version of their controller that they used during the DARPA Robotics
Challenge (68). All these behaviors are generated by RHC in real time. Though the resulting
walking is not of the same quality as what can be obtained from computationally intensive long-
horizon trajectory optimization, it does look considerably better than the sort of gaits typically
obtained by popular RL methods.

Is there a middle ground between expensive offline trajectory optimization and real-time
RHC? I think the answer is yes, in the same way that there is a middle ground between learn-
ing dynamical models and learning Q-functions. The performance of an RHC system can be im-
proved by better modeling of the Q-function that defines the terminal cost: The better a model
you make of the Q-function, the shorter a time horizon you need for simulation, and the closer
you get to real-time operation. Of course, if you had a perfect model of the Q-function, you could
just solve the Bellman equation, and you would then have the optimal control policy. But by having
an approximation to the Q-function, you can still extract high performance in real time.

So what if we learn to iteratively improve the Q-function while running RHC? This idea has
been explored in a project by Rosolia &Borrelli (70). In their approach, the terminal cost is learned
by a method akin to nearest neighbors. The terminal cost of a state is the value obtained the last
time that state was tried. If that state has not been visited, the cost is infinite. This formulation
constrains the terminal condition to be in a state observed before. It enables the control system
to explore new ways to decrease cost as long as it maintains the ability to reach a state that has
already been demonstrated to be safe. This nearest-neighbors approach works surprisingly well
in practice: In radio-controlled car demonstrations, the learned controller works better than a
human operator after only a few laps around a fixed track.

Another reason to like this blended RHC approach to learning to control is that one can hard
code in constraints on controls and states and easily incorporate models of disturbance directly
into the optimization problem. Some of the most challenging problems in control are how to
execute safely while continuing to learn more about a system’s capability, and an RHC approach
provides a direct route toward balancing safety and performance. Indeed, an interesting direction
of future work would be merging the robust learning of coarse-ID control with RHC.

7. CHALLENGES AT THE CONTROL–LEARNING INTERFACE

We have set out to bridge the gap between the learning-centric views of RL and the model-centric
views of control. Perhaps surprisingly, we found that for continuous control problems, machine
learning seems best suited for model fitting rather than for direct control. Moreover, perhaps less
surprisingly, we could seamlessly merge learned models and control action by accounting for the
uncertainty in our model fits. We also showed that value functions and models could be learned
in chorus and could provide impressive results on real embodied agents. These distinctions and
connections are merely the beginning of what the machine learning and control communities
can learn from each other. Let me close by discussing three particularly exciting and important
research challenges that may be best solved with input from both perspectives.

7.1. Merging Perception and Control

One of the grand aspirations of RL is end-to-end control, mapping directly from sensors (e.g.,
pixels) to actions. Computer vision has made major advances by adopting an all-convolutional-
network end-to-end approach in the research area, and many studies, including industrial research
at NVIDIA (71), suggest that the same can be done for complex control tasks.
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In general, this problem gets into very old intractability issues of nonlinear output feedback
in control (72) and partially observed Markov decision processes in RL (73). Nonetheless, some
early results in RL have shown promise in training optimal controllers directly from pixels (12,
58). Of course, these results have even worse sample complexity than the same methods trained
from states, but they are making progress.

In my opinion, the most promising approaches in this space follow the ideas of guided policy
search, which bootstraps standard state feedback to provide training data for a map from sensors
directly to optimal action (56, 74). That is, a mapping from sensor to action can be learned itera-
tively by first finding the optimal action and then finding a map to that control setting. A coupling
along these lines,where reliance on a precise state estimator is reduced over time, could potentially
provide a reasonably efficient method for learning to control from sensors.

However, these problems remain daunting. Moving from fully observed scenarios to partially
observed scenarios makes the control problem exponentially more difficult. How to use diverse
sensor measurements in a safe and reliable manner remains an active and increasingly important
research challenge (75–77).

7.2. Rethinking Adaptive Control

This survey has focused on episodic RL and has steered clear of a much harder problem: adaptive
control. In the adaptive setting, we want to learn the policy online. We only get one trajectory,
and the goal is, after a few steps, to have a model whose reward from here to eternity will be large.
This is very different, and much harder, than what people are doing in RL. In episodic RL, you
get endless access to a simulator. In adaptive control, you get one go.

Even for LQR, the best approach to adaptive control is not settled. Pioneering work in the
1980s used stochastic gradient-like techniques to find adaptive controls, but the guarantees for
these schemes are all asymptotic (78). More recently, there has been a groundswell of activity in
trying to understand this problem from the perspective of online learning.Beginning with work by
Abbasi-Yadkori & Szepesvári (79), a variety of approaches have been devised to provide efficient
schemes that yield near-optimal control cost. Abbasi-Yadkori & Szepesvári’s approach achieves
an optimal reward, building on techniques that give optimal algorithms for the multiarmed ban-
dit (80, 81). But their method requires solving a hard nonconvex optimization problem as a sub-
routine. Follow-up work has proposed methods using Thompson sampling (82–84), approximate
dynamic programming (85), and even coarse-ID control (86), though no method has been found
that is efficiently implementable and achieves optimal cost. Again, this emphasizes that even the
simple LQR problem is not at all simple. New techniques must be developed to fully understand
this baseline problem, but it is clear that insights from both machine learning and control will be
necessary to develop efficient adaptive control that can cope with an ever-evolving world.

7.3. Humans in the Loop

One final important problem, which might be the most daunting of all, is how machines should
learn when humans are in the loop.What can humans who are interacting with the robots do, and
how can we model human actions? Though economists may have a different opinion, humans are
challenging to model.

One popular approach to modeling human–robot interaction is game theoretic. Humans can
be modeled as solving their own optimal control problem, and then the human’s actions enter
as a disturbance in the optimal control problem (87). In this way, modeling humans is similar to
modeling uncertain dynamic environments. But thinking of the humans as optimizers means that
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their behavior is constrained. If we know the cost, then we get a complex game-theoretic version of
RHC (88, 89). But, as is usually the case, humans are bad at specifying their objectives, and hence
what they are optimizing must be learned.This becomes a problem of inverse optimal control (90)
or inverse RL (91), where we must estimate the reward functions of the human and understand
the loss accrued for crudely modeling these rewards.

7.4. Toward Actionable Intelligence

As expressed above, I think that all of the daunting problems inmachine learning are nowRLprob-
lems.Whether they be autonomous transportation systems or seemingly mundane social network
engagement systems, actively interacting with reality has high stakes. Indeed, as soon as a machine
learning system is unleashed in feedback with humans, that system is an RL system. The broad
engineering community must take responsibility for the now ubiquitous machine learning systems
and understand what happens when we set them loose on the world.

Solving these problems will require advances in both machine learning and control. Perhaps
this intersection needs a new name, so that researchers can stop arguing about territory. I person-
ally am fond of the term actionable intelligence, as it sums up not only robotics but smarter, safer
analytics. But regardless of what we call it, the point is that there is a large community spanning
multiple disciplines that is invested in making progress on these problems.Hopefully this tour has
set the stage for a lot of great research at the intersection of machine learning and control, and I
am excited to see what progress the communities can make working together.

DISCLOSURE STATEMENT

The author received a 2018 Amazon AWS Machine Learning Research Award, was a consultant
at Google from 2015 to 2017, and is a member of the Berkeley DeepDrive Consortium (sponsors
listed at https://deepdrive.berkeley.edu) and Berkeley Artificial Intelligence Research (sponsors
listed at https://bair.berkeley.edu/sponsor.html).

ACKNOWLEDGMENTS

Countless individuals have helped to shape the content of this review. First, this work was gener-
ously supported in part by two forward-looking programs at the US Department of Defense: the
Mathematical Data Science program at the Office of Naval Research and the Foundations and
Limits of Learning program at DARPA. Second, this article was distilled from a series on my blog
at http://argmin.net. I greatly appreciated the lively debates on Twitter, and I hope that even
those who disagree with my perspectives find their input incorporated into this survey.

I thank Chris Wiggins for sharing his taxonomy on machine learning, Roy Frostig for shaping
Section 3.3, Pavel Pravdin for consulting on how to get policy gradient methods up and run-
ning, and Max Raginsky for perspectives on adaptive control and translations of Russian. I also
thank Moritz Hardt, Eric Jonas, and Ali Rahimi for helping to shape the language, rhetoric, and
focus of the blog series and this survey, and Nevena Lazic and Gergely Neu for many helpful
suggestions for improving the article’s readability and accuracy. Additionally, I thank my other
colleagues in machine learning and control for many helpful conversations and pointers about
this material: Murat Arcak, Karl Astrom, Francesco Borrelli, John Doyle, Andy Packard, Anders
Rantzer, Lorenzo Rosasco, Shankar Sastry, Yoram Singer, Csaba Szepesvari, Claire Tomlin, and
Stephen Wright. I also thank my colleagues in robotics—Anca Dragan, Leslie Kaebling, Sergey
Levine, Pierre-Yves Oudeyer, Olivier Sigaud, Russ Tedrake, and Emo Todorov—for sharing their

www.annualreviews.org • A Tour of Reinforcement Learning 275

https://deepdrive.berkeley.edu
https://bair.berkeley.edu/sponsor.html
http://argmin.net


AS02CH11_Recht ARjats.cls March 13, 2019 10:37

perspectives on the RL and optimization technologies that work for them and the challenges they
face in their research.

I thank everyone who took CS281B with me in the spring of 2017, where I first tried to make
sense of the problems in learning to control. And most importantly, a big thanks to everyone in
my research group, who have been wrestling with these ideas with me for the past several years
and who have done much of the research that shaped my views on this space, particularly Ross
Boczar, Nick Boyd, Sarah Dean, Animesh Garg, Aurelia Guy, Qingqing Huang, Kevin Jamieson,
Sanjay Krishnan, Laurent Lessard,Horia Mania, Nik Matni, Becca Roelofs, Ugo Rosolia, Ludwig
Schmidt, Max Simchowitz, Stephen Tu, and Ashia Wilson.

Finally, special thanks to Camon Coffee in Berlin for letting me haunt their shop while writing.

LITERATURE CITED

1. Silver D,Huang A,Maddison CJ,Guez A, Sifre L, et al. 2016.Mastering the game of Go with deep neural
networks and tree search.Nature 529:484–89

2. Bertsekas DP. 2017.Dynamic Programming and Optimal Control, Vol. 1. Nashua, NH: Athena Sci. 4th ed.
3. Sutton RS, Barto AG. 1998. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press
4. Puterman ML. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Hoboken, NJ:

Wiley-Interscience
5. Dann C, Brunskill E. 2015. Sample complexity of episodic fixed-horizon reinforcement learning. In Ad-

vances in Neural Information Processing Systems 28, ed. C Cortes, ND Lawrence, DD Lee, M Sugiyama,
R Garnett, pp. 2818–26. Red Hook, NY: Curran

6. Nemirovski A, Yudin D. 1983. Problem Complexity and Method Efficiency in Optimization. New York: Wiley
7. Zhu X. 2005. Semi-supervised learning literature survey. Tech. Rep. 1530, Dep. Comput. Sci., Univ. Wisc.,

Madison
8. Hazan E, Kale S, Shalev-Shwartz S. 2012. Near-optimal algorithms for online matrix prediction. In

Proceedings of the 25th Annual Conference on Learning Theory, ed. S Mannor, N Srebro, RC Williamson,
pp. 38.1–13. Proc. Mach. Learn. Res. 23. N.p.: PMLR

9. Bertsekas DP, Tsitsiklis JN. 1996.Neuro-Dynamic Programming. Belmont, MA: Athena Sci.
10. Kaelbling LP, Littman ML, Moore AW. 1996. Reinforcement learning: a survey. J. Artif. Intell. Res. 4:

237–85
11. Bowling M, Burch N, Johanson M, Tammelin O. 2015. Heads-up limit hold’em poker is solved. Science

347:145–49
12. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, et al. 2015. Human-level control through deep

reinforcement learning.Nature 518:529–33
13. Tesauro G. 1995.TD-Gammon: a self-teaching backgammon program. In Applications of Neural Networks,

ed. AF Murray, pp. 267–85. Boston, MA: Springer
14. Bottou L, Peters J, Quiñonero-Candela J, Charles DX, Chickering DM, et al. 2013. Counterfactual rea-

soning and learning systems: the example of computational advertising. J. Mach. Learn. Res. 14:3207–
60

15. Strehl A, Langford J, Li L,Kakade SM. 2010. Learning from logged implicit exploration data. In Advances
in Neural Information Processing Systems 23, ed. JD Lafferty, CKI Williams, J Shawe-Taylor, RS Zemel,
A Culotta, pp. 2217–25. Red Hook, NY: Curran

16. Bertsekas DP. 2012.Dynamic Programming and Optimal Control, Vol. 2. Nashua, NH: Athena Sci. 4th ed.
17. Ljung L. 1998. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice Hall. 2nd ed.
18. CampiMC,Weyer E. 2002.Finite sample properties of system identificationmethods. IEEETrans.Autom.

Control 47:1329–34
19. Vidyasagar M, Karandikar RL. 2008. A learning theory approach to system identification and stochastic

adaptive control. J. Process Control 18:421–30
20. Tsitsiklis JN. 1994. Asynchronous stochastic approximation and Q-learning.Mach. Learn. 16:185–202
21. Watkins CJ, Dayan P. 1992. Q-learning.Mach. Learn. 8:279–92

276 Recht



AS02CH11_Recht ARjats.cls March 13, 2019 10:37

22. Sutton RS. 1988. Learning to predict by the method of temporal differences.Mach. Learn. 3:9–44
23. Dayan P. 1992. The convergence of TD(λ) for general λ.Mach. Learn. 8:341–62
24. Bradtke SJ,Barto AG.1996.Linear least-squares algorithms for temporal difference learning.Mach.Learn.

22:33–57
25. Bertsekas DP, Ioffe S. 1996. Temporal differences-based policy iteration and applications in neuro-dynamic pro-

gramming. Tech. Rep. LIDS-P-2349, Lab. Inf. Decis. Syst., Mass. Inst. Technol., Cambridge, MA
26. Yu H, Bertsekas DP. 2009. Convergence results for some temporal difference methods based on least

squares. IEEE Trans. Autom. Control 54:1515–31
27. Williams RJ. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement

learning.Mach. Learn. 8:229–56
28. Jamieson KG, Nowak RD, Recht B. 2012. Query complexity of derivative-free optimization. In Ad-

vances in Neural Information Processing Systems 25, ed. F Pereira, CJC Burges, L Bottou, KQ Weinberger,
pp. 2672–80. Red Hook, NY: Curran
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