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Abstract

Autonomous systems are becoming pervasive in everyday life, and many of
these systems are complex and safety-critical. Formal verification is impor-
tant for providing performance and safety guarantees for these systems. In
particular, Hamilton–Jacobi (HJ) reachability is a formal verification tool
for nonlinear and hybrid systems; however, it is computationally intractable
for analyzing complex systems, and computational burden is in general a
difficult challenge in formal verification. In this review, we begin by briefly
presenting background on reachability analysis with an emphasis on the HJ
formulation. We then present recent work showing how high-dimensional
reachability verification can be made more tractable by focusing on two areas
of development: system decomposition for general nonlinear systems, and
traffic protocols for unmanned airspace management. By tackling the curse
of dimensionality, tractable verification of practical systems is becoming a
reality, paving the way for more pervasive and safer automation.
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1. INTRODUCTION

Autonomous systems have become increasingly pervasive in everyday life. These systems include
unmanned aerial systems, self-driving cars, and many other types of robots. By now, it goes without
saying that they have many potential applications, limited only by our imagination. In recent years,
a tremendous amount of progress has been made in autonomous systems research in areas such
as modeling, planning, sensing, and perception. In addition, the availability of computing power
and hardware platforms has helped bridge the gap between theory and practical implementation.

Despite the recent successes in automation, the use of robots and interactions with robots
remain quite limited. For example, one of the current uses of unmanned aerial vehicles (UAVs)
is surveying areas with few people and no other air traffic. In general, robotic operations are
restricted to controlled environments and involve either a single robot or a few robots. These
robots also have limited interactions with other robotic agents and humans. There are likely many
reasons for this, one of which is simple: If we put many robots close to each other and to humans,
we would not know for sure whether they would harm each other or those humans.

Safety is crucial for enabling more effective use of autonomous systems, many of which are
safety-critical systems—that is, systems in which failure is extremely costly or even fatal. Formal
safety analysis will allow autonomous systems to become provably robust to changes in the envi-
ronment and to other agents, as well as enable them to operate in much denser configurations.
This would mean, for example, that thousands of UAVs could fly in an urban area. Safety analysis
is also essential for allowing autonomous systems to interact closely and physically with humans.

1.1. Safety-Critical Autonomous Systems

On an intuitive level, maintaining safety could mean simply avoiding an obstacle, such as a tree.
Sometimes the obstacle may be an agent that can also control the way it moves, like an aircraft.
On a broader level, maintaining safety means keeping within a set of safe operating conditions.
Staying away from obstacles is one specific example, but this concept is quite general. For example,
safe operating conditions can be defined in terms of not only position but also any other variables
of interest, such as velocity and angle, or even voltage, chemical concentration, human comfort,
and degree of trust in automation.

Verification of systems is challenging for many reasons. First, all possible system behaviors
need to be accounted for, which makes most simulation-based approaches insufficient and raises
the need for formal verification methods. In addition, many practical systems operate in complex
environments and are affected by disturbances such as weather conditions; the environments can
be unpredictable and may even contain adversarial agents. The systems also evolve in continuous
time with complex, nonlinear dynamics.

Perhaps the most difficult challenge of all is that these systems often have high-dimensional
configuration spaces. High dimensionality means that many variables are needed to describe the
state of a system; this could occur if the system of interest is highly complex and/or if there are
many agents in the system.

1.2. Hamilton–Jacobi Reachability as a Safety Analysis Tool

The focus of this review is Hamilton–Jacobi (HJ) reachability analysis, one of the most powerful
formal verification tools for guaranteeing the performance and safety properties of systems. The
idea is quite simple. Imagine someone riding a bicycle toward a tree (see Figure 1a). Obviously,
the rider does not want to run into the tree. To avoid doing so, the rider must change the bicycle’s
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Figure 1
Two examples of reachability analysis. (a) A person riding a bicycle toward a tree (interior of the red circle).
Reachability analysis quantifies when the rider needs to steer the bicycle away to avoid the tree, and the
reachable tube represents the unsafe area that the rider must stay out of. (b) A more general example, in
which a system needs to take action to avoid dangerous configurations (area outside of the red square). Here,
the reachable tube represents the safe area—a region of sufficient distance (by some suitable metric) from the
unsafe conditions.

direction of travel early enough while taking into account variables such as the bicycle’s momentum
and steering capabilities and any disturbances that might affect steering, such as rough terrain.

Reachability analysis quantifies exactly what it means to steer away early enough. This is
done by computing the backward reachable tube (BRT) or (in some cases) a backward reachable
set (BRS)—in this example, the region that the rider must stay out of in order to avoid the
obstacle. In a more generalized setting, where we would like to keep a system within safe operating
conditions, reachability analysis tells us the distance (with respect to a suitable metric) from the
unsafe conditions the system needs to maintain (see Figure 1b).

Besides the HJ formulation, there are many other methods related to reachability analysis.
In general, none of the current methods, including the HJ formulation, simultaneously address
all of the challenges that need to be overcome. For example, dReach (1) and C2E2 (2) excel in
determining whether system trajectories from a small set of initial conditions could potentially
enter a set of unsafe states, but they do not provide the BRS or BRT—the set of all initial states from
which entering some target set is inevitable. Owing to the challenges of computing BRSs and BRTs,
the state-of-the-art methods need to make trade-offs on different axes of considerations, such as
computational scalability, generality of system dynamics, existence of control and/or disturbance
variables, and flexibility in the representation of sets.

For example, the methods presented in References 3–7 have had success in analyzing relatively
high-dimensional affine systems using sets of prespecified shapes, such as polytopes or hyperplanes.
Other, potentially less scalable methods are able to handle systems with more complex dynamics
(4, 8–11). Computational scalability varies among these different methods, with the most scalable
methods requiring that the system dynamics do not involve control and disturbance variables.
The work in Reference 12 accounts for both control and disturbances but is only applicable to
linear systems. Methods that can account for general nonlinear systems (e.g., 13) also sometimes
represent sets using simple shapes, such as polytopes, potentially sacrificing representation fidelity
in favor of the other aspects mentioned earlier. HJ formulations (14–17) excel in handling general
nonlinear dynamics, control and disturbance variables, and flexible set representations via a grid-
based approach; however, these methods are the least computationally scalable. Still other methods
make a variety of other assumptions in order to make desirable trade-offs (18–20). In addition,
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Figure 2
The computational complexity of Hamilton–Jacobi reachability.

under some special scenarios, it may be possible to obtain small computational benefits while
minimizing trade-offs in other axes of consideration by exploiting system structure (21–26).

This review focuses on recent developments of the HJ formulation of reachability. It is applica-
ble to general controlled nonlinear systems that involve disturbances or adversarial behaviors and,
despite the presence of these factors, computes the exact reachable set rather than approximations.
The trade-off is that HJ reachability is the most computationally expensive method. As with every
other formal verification method, the computational burden makes HJ reachability intractable
for high-dimensional systems. This review presents recently developed methods to alleviate this
difficulty, which is referred to as the curse of dimensionality.

In the case of HJ reachability, the computational complexity is exponential with respect to the
number of system dimensions (see Figure 2). With HJ reachability, 1-D and 2-D reachable sets
can be computed very quickly and do not use much RAM, 3-D reachable sets can take minutes to
hours to compute and require hundreds of megabytes of RAM, and 4-D reachable sets typically take
many hours to days to compute and require many gigabytes of RAM. Owing to computation time
and memory limitations, reachable sets of 5 or more dimensions have been considered intractable
to compute via the HJ formulation; the work presented in this review has begun to address this
challenge.

Unfortunately, high-dimensional systems are the systems for which performance and safety
guarantees are most urgently needed, given the recent developments in automation and systems
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modeling. In this review, we present progress toward tractable formal verification of complex,
high-dimensional systems via reachability analysis. The solutions presented involve two broad,
complementary approaches:

1. Structural solutions: The behavior of multiagent systems can be nonintuitive and difficult
to monitor. In these cases, imposing various structural assumptions (such as having air
highways) on the system can significantly reduce problem complexity while allowing intuitive
human participation.

2. System decomposition: For general high-dimensional systems, this review presents recently
developed techniques to decompose a full dynamical system into multiple subsystems, reduc-
ing the computation cost by many orders of magnitude and enabling previously intractable
analyses.

Before diving into the specifics of the recent work, we first summarize some research done on
HJ reachability in the last decade to provide the background on which the more recent works
build.

2. BACKGROUND

HJ reachability analysis falls under the umbrella of optimal control problems and differential
games, which are important and powerful theoretical tools for analyzing a wide variety of systems,
particularly in safety-critical scenarios. They have been extensively studied in the past several
decades (14, 15, 22, 27–30) and have been successfully applied to practical problems such as pairwise
collision avoidance (15), aircraft in-flight refueling (31), vehicle platooning (32), and many others
(33, 34). With the recent growing interest in using safety-critical autonomous systems such as
autonomous cars and UAVs for civil purposes (35–39), the need for flexible tools that can provide
safety guarantees has substantially increased.

Intuitively, in an optimal control problem, one seeks to find the cheapest way a system described
by an ordinary differential equation model can perform a certain task. In a differential game, a
system is controlled by two adversarial agents competing to respectively minimize and maximize a
joint cost function. HJ reachability is a common and effective way to analyze both optimal control
problems and differential games because of the guarantees that it provides and its flexibility with
respect to the system dynamics.

In a reachability problem, one is given some system dynamics described by an ordinary dif-
ferential equation and a target set that describes the set of final conditions under consideration.
Depending on the application, the target set can represent a set of either desired or undesired
states. The goal in reachability analysis is to compute various definitions of the BRS, BRT, forward
reachable set, or forward reachable tube. This review focuses mainly on backward reachability.
When the target set is a set of desired states, the BRS or BRT represents the set of states from which
the system can be guaranteed to be driven to the target set despite the worst-case disturbance.
By contrast, when the target set is a set of undesired states, the BRS or BRT represents the set
of states from which the system may be driven into the target set under some disturbance despite
its best control efforts to remain outside. Because of the theoretical guarantees that reachability
analysis provides, it is ideal for analyzing the newest problems involving autonomous systems. We
define several frequently used formal definitions of BRSs and BRTs in Section 2.2.1.

In addition, HJ reachability is a powerful tool because BRSs and BRTs can be used for syn-
thesizing controllers that steer the system away from a set of unsafe states (safety controllers) in
order to guarantee safety as well as controllers that steer the system into a set of goal states (goal
satisfaction controllers) to guarantee goal satisfaction. Unlike many formulations of reachability,
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the HJ formulations are flexible in terms of system dynamics, enabling the analysis of controlled
nonlinear systems under disturbances. Furthermore, HJ reachability analysis is complemented
by many numerical tools that are readily available to solve the associated HJ partial differential
equation (40–42). However, the computation is typically done on a grid, making the problem com-
plexity scale exponentially with the number of states and therefore with the number of vehicles.
Consequently, HJ reachability computations are intractable for large numbers of vehicles.

We now formalize the above notions and describe the HJ formulation more specifically, al-
though much of the content in the following sections is agnostic to the reachability formulation.

2.1. System Dynamics

Let s ∈ [−∞, 0] be the time and z ∈ R
n be the system state, which evolves according to the

ordinary differential equation

dz(s )
ds

= ż(s ) = f (z(s ), u(s ), d (s )), u(s ) ∈ U , d (s ) ∈ D. 1.

In general, the theory we present is applicable when some states are periodic dimensions (such
as angles), but for simplicity we will consider R

n. The control and disturbance are respectively
denoted by u(s ) and d (s ), with the control function u(·) and disturbance function d (·) respectively
drawn from the following set of measurable functions:

u(·) ∈ U(t) = {φ : [t, 0] → U : φ(·) is measurable},
d (·) ∈ D(t) = {φ : [t, 0] → D : φ(·) is measurable},

where U ⊂ R
nu and D ⊂ R

nd are compact and t < 0. The system dynamics, or flow field,
f : R

n ×U ×D → R
n is assumed to be uniformly continuous, bounded, and Lipschitz continuous

in z for fixed u and d .1 Therefore, given u(·) ∈ U, d (·) ∈ D, there exists a unique trajectory solving
Equation 1 (43). We will denote solutions, or trajectories, of Equation 1 starting from state z
at time t under control u(·) and disturbance d (·) as ζ (s; z, t, u(·), d (·)) : [t, 0] → R

n. ζ satisfies
Equation 1 with an initial condition almost everywhere:

d
ds

ζ (s; z, t, u(·), d (·)) = f (ζ (s; z, t, u(·), d (·)), u(s ), d (s )), 2.

ζ (t; z, t, u(·), d (·)) = z.

For time-invariant system dynamics, the time variables in trajectories can be shifted by any constant
τ :

ζ (s; z, t, u(·), d (·)) = ζ (s + τ; z, t + τ , u(·), d (·)), ∀z ∈ R
n. 3.

The interaction between disturbance and control is modeled using a differential game, as
described by Mitchell et al. (15). We define a strategy for the disturbance as the mapping γ : U → D
that determines a disturbance signal that reacts to the control signal based on the state. The
mapping γ is drawn from only nonanticipative strategies γ ∈ �(t), and we write d (·) = γ [u](·).
Nonanticipative strategies are defined as follows:

γ ∈ �(t) := {K : U(t) → D(t), u(r) = û(r) for almost every r ∈ [t, s]

⇒ K[u](r) = K[û](r) for almost every r ∈ [t, s]}. 4.

1When the context is clear, we omit the notation “(s )” from variables such as z and u referring to function values.
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Roughly speaking, this means that the disturbance may react only to current and past control
signals. Mitchell et al. (15) provided a detailed discussion of this information pattern.

2.2. Hamilton–Jacobi Reachability Analysis

In HJ reachability, we begin with the system dynamics given by an ordinary differential equation
and a target set that represents the set of unsafe states. We then solve the HJ equation to obtain
various desired forms of reachable sets or tubes, which could represent states leading to danger. To
avoid danger, the system may apply any control until it reaches the boundary of a reachable set. At
the boundary, applying the optimal safety controller would guarantee avoidance. We present the
most commonly used definitions in this section and more specialized definitions in their respective
sections below.

2.2.1. Backward reachable sets and tubes. We consider two different definitions of the BRS
and two different definitions of the BRT.

Intuitively, a BRS represents the set of states z ∈ R
n from which the system can be driven into

some set T ⊆ R
n at the end of a time horizon of duration |t|. We call T the target set. First, we

define the maximal BRS; in this case, the system seeks to enter T using some control function.
We can think of T as a set of goal states. The maximal BRS represents the set of states from which
the system is guaranteed to reach T . The second definition is for the minimal BRS; in this case,
the BRS is the set of states that will lead to T for all possible controls. Here, we often consider T
to be an unsafe set, such as an obstacle. The minimal BRS represents the set of states that leads to
violation of safety requirements. The formal definitions of the two BRSs are given below.2

Definition 1. The maximal BRS is defined as

R(t) = {z : ∀γ ∈ �(t), ∃u(·) ∈ U, ζ (0; z, t, u(·), γ [u](·)) ∈ T }.

Definition 2. The minimal BRS is defined as

A(t) = {z : ∃γ ∈ �(t), ∀u(·) ∈ U, ζ (0; z, t, u(·), γ [u](·)) ∈ T }.

Whereas BRSs indicate whether a system can be driven into T at the end of a time horizon,
BRTs indicate whether a system can be driven into T at any time during the time horizon of
duration |t|. Figure 3 demonstrates the difference. BRTs are important notions, especially in
safety-critical applications, in which we are interested in determining the minimal BRT—the
set of states that could lead to danger at any time within a specified time horizon. The formal
definitions of the two BRTs are given below.

Definition 3. The maximal BRT is defined as

R̄(t) = {z : ∀γ ∈ �(t), ∃u(·) ∈ U, ∃s ∈ [t, 0], ζ (s ; z, t, u(·), γ [u](·)) ∈ T }.

Definition 4. The minimal BRT is defined as

Ā(t) = {z : ∃γ ∈ �(t), ∀u(·) ∈ U, ∃s ∈ [t, 0], ζ (s ; z, t, u(·), γ [u](·)) ∈ T }.

2In the literature, the argument of R, A, R̄, or Ā is sometimes some nonnegative number τ = −t; however, for simplicity,
we will use the nonpositive number t to refer to the time horizon of the BRS and BRT.
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z2

ζ(0; z1, t, u (˙))

ζ(0; z2, t, u (˙))

T

Figure 3
The difference between a backward reachable set (BRS) and a backward reachable tube (BRT). State z1 is in
the BRT but not in the BRS; state z2 is in both the BRS and the BRT.

The terms maximal and minimal refer to the role of the optimal control (44). In the maximal
(or minimal) case, the control causes the BRS or BRT to contain as many (or as few) states as
possible, in order to have maximal (or minimal) size.

2.2.2. Computing reachable sets and tubes. HJ formulations such as those described in
References 14, 15, 17, and 27 cast the reachability problem as an optimal control or differen-
tial game problem and directly compute BRSs and BRTs in the full state space of the system. The
numerical methods (e.g., 44) for obtaining the optimal solution all involve solving an HJ partial
differential equation on a grid that represents a discretization of the state space. For the time-
invariant case, we now summarize necessary details related to the HJ partial differential equations
and what their solutions represent in terms of the cost function of the corresponding optimization
problem. Reference 22 presents a recent time-varying formulation.

Let the target set T ⊆ R
n be represented by the implicit surface function V0(z) as T = {z :

V0(z) ≤ 0}. Such a function always exists since we can choose V0(·) to be the signed distance
function from T . Consider the optimization problem

VR(t, z) = sup
γ [u](·)∈�(t)

inf
u(·)∈U

V0(ζ (0; z, t, u(·), γ [u](·))) subject to Equation 2, 5.

with the optimal control given by

u∗
R(·) = arg sup

γ [u](·)∈�(t)
inf

u(·)∈U

V0(ζ (0; z, t, u(·), γ [u](·))). 6.

The value function VR(t, z) is the implicit surface function representing the maximal BRS: R(t) =
{z : VR(t, z) ≤ 0}.

Similarly, consider the optimization problem

VA(t, z) = inf
γ [u](·)∈�(t)

sup
u(·)∈U

V0(ζ (0; z, t, u(·), γ [u](·))) subject to Equation 2, 7.

with optimal control

u∗
A(·) = arg inf

γ [u](·)∈�(t)
sup

u(·)∈U

V0(ζ (0; z, t, u(·), γ [u](·))). 8.
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Figure 4
An illustration of Hamilton–Jacobi reachability for a 2-D state space. The zero-sublevel set of V (0, z)
represents the target set (boundary in solid black line), and the zero-sublevel set of V (t, z) represents the
backward reachable set (BRS) (boundary in dashed black line). The system of interest can reach the target set
within time t if it starts inside the BRS.

Analogously, we also have A(t) = {z : VA(t, z) ≤ 0}. Figure 4 provides a simple 2-D example
demonstrating the relationships among the target set, implicit surface function, BRS, and value
function.

The value functions VR(t, z) and VA(t, z) are the viscosity solution (45, 46) of the HJ partial
differential equation

Ds V (s, z) + H(z, ∇V (s, z)) = 0, s ∈ [t, 0],

V (0, z) = V0(z). 9.

The Hamiltonian H(z, λ) depends on the system dynamics and on the optimal control problem.
For example, for the optimal control problem represented by Equation 5, the Hamiltonian is given
by

H(z, λ) = min
u∈U

max
d∈D

λ · f (z, u, d ). 10.

Once the value function VR is computed, the optimal control problem represented by Equation 6
can be obtained by the expression

u∗
R(s ) = arg min

u∈U
max
d∈D

∇VR(s, z) · f (z, u, d ). 11.

Similarly, for the optimal control problem represented by Equation 7, the Hamiltonian is given
by

H(s, z, λ) = max
u∈U

min
d∈D

λ · f (z, u, d ), 12.

and the optimal control is given by

u∗
A(s ) = arg max

u∈U
min
d∈D

∇VA(s, z) · f (z, u, d ). 13.
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Furthermore, by the dynamic programming principle, the optimal value on optimal trajectories
must be constant:

VR(s, ζ (s; z, τ, u∗
R(·)) = VR(τ, z) ∀τ, s ∈ [t, 0],

VA(s, ζ (s; z, τ, u∗
A(·)) = VA(τ, z) ∀τ, s ∈ [t, 0]. 14.

For the BRT, several equivalent formulations have been proposed. For example, one can
modify the value function to keep track of the minimum value of the function V0(·) that the system
trajectory achieves over some time horizon, so that Equations 5 and 7 respectively become

V̄R(t, z) = sup
γ [u](·)∈�(t)

inf
u(·)∈U

min
s ∈[t,0]

V0(ζ (0; z, t, u(·), γ [u](·))),

V̄A(t, z) = inf
γ [u](·)∈�(t)

sup
u(·)∈U

min
s ∈[t,0]

V0(ζ (0; z, t, u(·), γ [u](·))). 15.

We encourage reading the details of this formulation given in Reference 22 (which contains a
very general time-varying reach–avoid framework) or of other formulations, such as those given
in References 14–17. However, for this review, it suffices to note that V̄R and V̄A are the viscosity
solution of the following HJ variational inequality:

min{Ds V̄ (s, z) + H(z, ∇V̄ (s, z)), V0(z) − V̄ (s, z)} = 0, s ∈ [t, 0],

V̄ (0, z) = V0(z), 16.

where H(z, λ) is given by Equations 10 and 12 for V̄R and V̄A, respectively.

3. SYSTEM DECOMPOSITION

There are several drawbacks to using reachability analysis on large systems, whether one is using
the HJ or other formulations. In this section, we briefly introduce several methods that alleviate the
computational burden in the HJ context by exploiting system structure. In particular, we introduce
in detail a new method for decomposing a system into smaller, self-contained subsystems. This
method, presented in Section 3.1, is based on the new concept of self-contained subsystems
commonly found in vehicle dynamics and mechanical systems. Section 3.2 briefly outlines various
other methods that exploit system structure.

3.1. Decomposition via Self-Contained Subsystems

In this section, we present a system decomposition method for computing BRSs and BRTs of
a class of nonlinear systems. The method is applicable when self-contained subsystems can be
defined as in Equation 17. It drastically reduces dimensionality without making any other trade-
offs by first computing BRSs for lower-dimensional subsystems and then reconstructing the full-
dimensional BRS. When reconstructing the minimal BRS A by taking the intersection of lower-
dimensional minimal BRSs Ai , and when reconstructing the maximal BRS R by taking the union
of lower-dimensional maximal BRSs Ri , any approximation errors present arise only from the
lower-dimensional computations; no additional approximation errors are incurred. Crucially, the
subsystems can be coupled through common states, controls, and disturbances. The treatment of
this coupling distinguishes this work from others that consider completely decoupled subsystems,
potentially obtained through transformations (47, 48).

The theory summarized in this section is compatible with any methods that compute BRSs
and BRTs (e.g., 4, 8, 9, 21, 24). In addition, combining different decomposition methods can
achieve even more dimensionality reduction. Reference 49 presents a more detailed account of
the material presented in this section.
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3.1.1. Summary of formulation and definitions. In this section, we seek to obtain the BRSs and
BRTs in Definitions 1–4 (given in Section 2.2.1) via computations in lower-dimensional subspaces
under the assumption that Equation 1 can be decomposed into self-contained subsystems repre-
sented by Equation 17. Such a decomposition is common, since many systems involve components
that are loosely coupled. In particular, the evolution of position variables in vehicle dynamics is
often weakly coupled through other variables, such as heading.

Let the state z ∈ R
n be partitioned as z = (z1, z2, zc), with z1 ∈ R

n1 ; z2 ∈ R
n2 ; zc ∈ R

nc ; n1, n2 >

0; nc ≥ 0; and n1 + n2 + nc = n. Note that nc could be zero. These states are grouped into
subsystems by defining the self-contained subsystem states x1 = (z1, zc) ∈ R

n1+nc and x2 = (z2, zc) ∈
R

n2+nc , where x1 and x2 in general share the common states in zc.

Definition 5 (self-contained subsystem). Consider the following form of system
dynamics:

ż1 = f1(z1, zc, u),

ż2 = f2(z2, zc, u), 17.

żc = fc(zc, u).

Each of the subsystems with states defined as xi = (zi , zc) is called a self-contained
subsystem:

ż1 = f1(z1, zc, u) ż2 = f2(z2, zc, u)

żc = fc(zc, u) żc = fc(zc, u)

(subsystem 1) (subsystem 2).

Note that the two subsystems are coupled through the common state partition zc and control
u. When the subsystems are coupled through u, the subsystems have shared control. An example
of a system that can be decomposed into self-contained subsystems is the Dubins car with constant
speed v: ⎡

⎢⎣ ṗx

ṗ y

θ̇

⎤
⎥⎦ =

⎡
⎢⎣v cos θ

v sin θ

ω

⎤
⎥⎦ , ω ∈ U , 18.

with state z = (px , py , θ ) representing the x position, y position, and heading, and control u = ω

representing the turn rate. This system can be decomposed into self-contained subsystems as
follows:

ẋ1 =
[

ż1

żc

]
=

[
ṗx

θ̇

]
=

[
v cos θ

ω

]
,

ẋ2 =
[

ż2

żc

]
=

[
ṗ y

θ̇

]
=

[
v sin θ

ω

]
,

u = ω, 19.

where the overlapping state is θ , and the subsystem controls and their shared component is the
control u itself.

Projection operations are defined for a state and for a set. The projection of a state z = (z1, z2, zc)
onto a subsystem state space R

ni +nc is given by

proji (z) = xi = (zi , zc). 20.
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Figure 5
Comparison of the Dubins car backward reachable set (BRS) A(t = −0.5) computed using the full
formulation and via decomposition. (a) BRSs in the lower-dimensional subspaces (green and magenta) and
how they are combined to form the full-dimensional BRS (black). (b) The BRS computed via decomposition
shown by itself. (c) The BRSs computed using decomposition (black) and the full formulation (red)
superimposed on each other, showing that they are indistinguishable. (d ) The BRS computed using the full
formulation shown by itself. Figure adapted from Reference 49.

The back-projection operator applied to a point or a set is defined as

proj−1(xi ) = {z ∈ R
n : (zi , zc) = xi }, 21.

proj−1(Si ) = {z ∈ R
n : ∃xi ∈ Si , (zi , zc) = xi },

where Si is some set in R
ni +nc .

Chen et al. (49) assumed that the full system target set T is representable in terms of the
subsystem target sets T1 ⊆ R

n1+nc and T2 ⊆ R
n2+nc in one of the following ways:

T = proj−1(T1) ∩ proj−1(T2), 22.

T = proj−1(T1) ∪ proj−1(T2).

Although it is more restrictive than a purely grid-based representation in the full-dimensional
space, this decomposition of sets can still yield relatively complex shapes (e.g., those shown in
Figures 5 and 8 below).

Next, we define the subsystem BRSs Ri and Ai the same way as in Definitions 1 and 2 but with
the subsystems and subsystem target sets Ti , i = 1, 2, respectively:

Ri (t) = {xi : ∃u(·), ξi (0; xi , t, u(·)) ∈ Ti }, 23.

Ai (t) = {xi : ∀u(·), ξi (0; xi , t, u(·)) ∈ Ti }.
Given the above definitions, the authors of Reference 49 achieved the following:

� Decomposition of BRSs: Full-dimensional BRSs are efficiently computed by performing
computations in lower-dimensional subspaces. Specifically, subsystem BRSs Ri (t) or Ai (t)
are computed, and then the full system BRS R(t) or A(t) is reconstructed by taking the
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union or intersection of back-projections of subsystem BRSs. This process greatly reduces
the computational burden by decomposing the full system into two lower-dimensional
subsystems.

� Decomposition of BRTs: BRTs are useful since they provide guarantees over a time horizon
as opposed to at a particular time. However, often BRTs cannot be decomposed the same
way as BRSs; instead, BRTs can be reconstructed from BRSs.

� Treatment of disturbances: The theoretical framework is modified to incorporate the pres-
ence of disturbances. Slightly conservative BRSs and BRTs can still be obtained in this
case.

3.1.2. Numerical examples. We now provide two numerical examples to illustrate decomposi-
tion into self-contained subsystems—the Dubins car for comparison with computations without
decomposition, and the 6-D acrobatic quadrotor to show computation of a BRS that was previously
intractable using HJ reachability.

3.1.2.1. The Dubins car. The Dubins car is a well-known system whose dynamics are given
by Equation 18. This system is only 3-D, and its BRS can be tractably computed in the full-
dimensional space, so it is used to compare the full formulation with our decomposition method.
The Dubins car dynamics can be decomposed according to Equation 19. For this example, Chen
et al. (49) computed the BRS from the target set representing positions near the origin in both
the px and py dimensions:

T = {(px , py , θ ) : |px |, |py | ≤ 0.5}. 24.

Such a target set T can be used to model an obstacle that the vehicle must avoid. Given T , the
interpretation of the BRS A(t) is the set of states from which a collision with the obstacle will
occur after a duration of |t|. From T , the BRS A(t) at t = −0.5 is computed. Figure 5c,d shows
the resulting full-formulation BRS. To compute the BRS using the decomposition method, the
unsafe set T is written as

T1 = {(px , θ ) : |px | ≤ 0.5}, T2 = {(py , θ ) : |py | ≤ 0.5}, 25.

T = proj−1(T1) ∩ proj−1(T2).

From T1 and T2, the lower-dimensional BRSs A1(t) and A2(t) are computed and then used to
reconstruct the full-dimensional BRS A(t): A(t) = proj−1(A1(t))∩proj−1(A2(t)). Figure 5a shows
the subsystem BRSs and their back-projections, and Figure 5a–c shows the reconstructed BRS.

Figure 6 illustrates the computation benefits of using the decomposition method. One can see
that the direct computation of the BRS in 3-D becomes very time-consuming as the number of
grid points per dimension increases; the computation via decomposition takes hardly any time in
comparison. Directly computing the BRS with 251 grid points per dimension in 3-D took approx-
imately 80 minutes, while computing the BRS via decomposition in 2-D took only approximately
30 seconds.

Figure 7 compares the BRT Ā(t), t = −0.5 computed directly from the target set in
Equation 24 and using the decomposition technique from the subsystem target sets in Equation 25.
For this computation, there is a large disturbance applied to all three components of the system
dynamics. Thus, the BRT computed using the decomposition technique becomes an overapprox-
imation of the true BRT, as shown in Figure 7.

3.1.2.2. The 6-D acrobatic quadrotor. The real utility of decomposition methods in general is to
make previously intractable BRS and BRT computations tractable. As described here, BRTs for
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Times for direct computation in 3-D and decomposition in 2-D for the Dubins car, shown on a log scale. The
direct computation times in 3-D increase rapidly with the number of grid points per dimension; the com-
putation times in 2-D using decomposition are negligible in comparison. Figure adapted from Reference 49.

the previously intractable 6-D acrobatic quadrotor (50) were computed using the HJ formulation
for the first time in Reference 49. The quadrotor has state z = (px , vx , py , vy , φ, ω) and dynamics⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ṗx

v̇x

ṗ y

v̇y

φ̇

ω̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vx

− 1
m Cv

Dvx − T1
m sin φ − T2

m sin φ

vy

− 1
m

(
mg + Cv

Dvy
) + T1

m cos φ + T2
m cos φ

ω

− 1
Iyy

Cφ

Dω − l
Iyy

T1 + l
Iyy

T2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, 26.
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Minimal backward reachable tubes (BRTs) computed directly in 3-D and via decomposition in 2-D for the Dubins car under
disturbances with shared components. The reconstructed BRT is an overapproximation of the true BRT, which one can see by noting
that the black set is not flush against the red set. The overapproximated regions of the reconstruction are indicated by the arrows. An
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from Reference 49.
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where x, y , and φ represent the quadrotor’s horizontal, vertical, and rotational positions, respec-
tively. Their time derivatives represent the velocity with respect to each state. The control inputs
T1 and T2 represent the thrust exerted on either end of the quadrotor, and the constant system
parameters are m for mass, Cv

D for translational drag, Cφ

D for rotational drag, g for acceleration due
to gravity, l for the length from the quadrotor’s center to an edge, and Iyy for moment of inertia.

The system can be decomposed into two 4-D subsystems:

x1 = (px , vx , φ, ω), x2 = (py , vy , φ, ω). 27.

For this example, Chen et al. (49) computed A(t) and Ā(t), which describe the set of initial
conditions from which the system may enter the target set despite the best possible control to
avoid the target. The target set is defined as a square of length 2 centered at (px , py ) = (0, 0) and
described by T = {(px , vx , py , vy , φ, ω) : |px |, |py | ≤ 1}. This can be interpreted as a positional
box centered at the origin that must be avoided for all angles and velocities. From the target set,
define V0(z) such that V0(z) ≤ 0 ⇔ z ∈ T . This target set is then decomposed as follows:

T1 = {(px , vx , φ, ω) : |px | ≤ 1},
T2 = {(py , vy , φ, ω) : |py | ≤ 1}.

The BRS of each 4-D subsystem is computed and then recombined into the 6-D BRS. To visually
depict the 6-D BRS, 3-D slices of the BRS along the positional and pitch axes were computed and
are shown in Figure 8a; 3-D slices along the velocity and pitch rate axes are shown in Figure 8b.

3.2. Other Decomposition Techniques

The decomposition technique highlighted above is applicable to general nonlinear systems.
In the context of HJ reachability, decomposition techniques for other specific forms of system
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(a) 3-D positional slices of reconstructed 6-D backward reachable sets (BRSs) and the backward reachable tube (BRT) in (px , py , φ)
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dynamics also exist. Kaynama & Oishi (51) proposed a Schur-based decomposition technique for
computing reachable sets and synthesizing safety-preserving controllers for linear time-invariant
systems. Similar to the work on self-contained subsystems, lower-dimensional reachable sets
of subsystems are back-projected and intersected to construct an overapproximation of the
reachable set. Kaynama & Oishi (26) used a similar approach for linear time-invariant systems
based on a modified Riccati transformation. This method performs decentralized computations in
transformed coordinates of subspaces; the result is an approximation of the viability kernel, which
is the complement of the minimal reachable set. Figure 9 shows the conservative approximations
obtained from these decomposition techniques.

For systems of general nonlinear dynamics, approximate methods tend to be more conservative
in comparison to linear systems. For example, the approximate system decoupling technique de-
scribed by Chen et al. (24) can be used to simplify system dynamics by treating key state couplings
as virtual disturbances. Conservative guarantees on system performance can still be guaranteed; in
addition, the idea of disturbance splitting allows a trade-off between the amount of computation
and the degree of conservatism. In a similar fashion, the projection-based technique described by
Mitchell & Tomlin (23) reduces dimensionality by using virtual disturbances to directly compute
projections of reachable sets. Figure 10 shows computation results from References 23 and 24.

4. UNMANNED AERIAL SYSTEM TRAFFIC MANAGEMENT

UAVs have been used mainly for military operations (52, 53); however, recently there has been an
immense surge of interest in their civil applications, and their use is likely to become increasingly
prevalent. As a result, government agencies such as the Federal Aviation Administration (FAA) and

348 Chen · Tomlin



AS01CH14_Tomlin ARI 10 April 2018 17:37

2

0

0
5

15x1

x 3

6

0

–5

10

–5

a

20
–10

0

5

10

x2

0

–0.4

0
0ψ

p y

40

px

–40

40

b

Figure 10
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National Aeronautics and Space Administration (NASA) are also investigating unmanned aerial
system traffic management in order to prevent collisions among potentially numerous UAVs
(35, 39). In this section, we present recently developed HJ-based approaches for managing the
airspace. We first focus on the concept of air highways and unmanned aerial platoons and then
briefly summarize several other approaches for addressing the complexity of multiagent systems.

4.1. Air Highways and Unmanned Aerial Platoons

To accommodate potentially thousands of vehicles simultaneously flying in the air, additional
structure is needed to allow for tractable analysis and intuitive monitoring by humans. An air
highway system on which platoons of vehicles travel accomplishes both goals. In the first part of this
section, we propose a flexible and computationally efficient method based on work by Sethian (42)
to perform optimal air highway placement given an arbitrary cost map that captures the desirability
of having UAVs fly over any geographical location. We demonstrate our method using the San
Francisco Bay Area as an example. Once air highways are in place, platoons of UAVs can then
fly in fixed formations along the highway to get from their origins to their destinations. The air
highway structure greatly simplifies safety analysis while allowing intuitive human participation in
unmanned airspace management. Chen et al. (54) provide a more detailed account of the material
in this section.

4.1.1. Air highways. Chen et al. (54) proposed the concept of air highways—virtual highways in
the airspace in which UAV platoons may be present. UAVs seek to travel from their origins to
destinations along a sequence of these air highways. Air highways are intended to be the common
pathways for many UAV platoons, whose members may have different origins and destinations.
By routing platoons of UAVs onto a few common pathways, the airspace becomes more tractable
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Geographic map Cost map Optimal paths Air highways

Figure 11
Automatic placement of air highways in the San Francisco Bay Area. In the two center panels, the area enclosed by the black line
represents regions around airports, which have the highest cost; the dark blue, yellow, and light blue regions represent cities, water, and
other regions, respectively. The origin city was assumed to be Concord, and several other major cities were chosen as destinations.
Figure adapted from Reference 54.

to analyze and intuitive to monitor. The authors also proposed the concept of UAV platooning
through a hybrid systems approach.

Air highways must account for potential costs, such as people, assets on the ground, and
manned aviation—the entities to which UAVs pose the biggest risks (39). Thus, given an origin–
destination pair (e.g., two cities), air highways must connect the two points while potentially
satisfying other criteria. In addition, ideally it should be possible to recompute optimal air highway
locations in real time when necessary in order to update airspace constraints on the fly—in case,
for example, airport configurations change or certain airspaces have to be closed (39). With this
in mind, Chen et al. (54) defined the air highway placement problem and proposed a fast, simple
way to approximate its solution that allows for real-time recomputation. The solution is based
on solving the Eikonal equation, which is a specific instance of an HJ equation. The entire air
highway placement process can be thought of as converting a cost map over a geographic area in
continuous space into a discrete graph whose nodes are waypoints joined by edges, which are the air
highways.

Using the San Francisco Bay Area as an example, Chen et al. (54) classified each point on the
map into four different regions with descending costs: regions around airports, highly populated
cities, water, and other regions. The associated cost of each region reflects the desirability of flying
a vehicle over an area in the region. In general, these costs can be arbitrary and determined by
government regulation agencies. Figure 11 shows a San Francisco Bay Area geographic map and
cost map along with the optimal (cost-minimizing) paths and resulting air highways.

In general, the cost-minimizing paths to the various destinations overlap and only split up
when they are very close to entering their destination cities. This intuitive placement of highways
mimics highway networks designed by humans. In addition, since the computation is done on a
2-D domain, the placement of air highways can be done in real time if the cost map changes at a
particular time.

4.1.2. Unmanned aerial platoons. Air highways exhibiting trunk routes that separate near des-
tinations motivate the use of platoons that fly on these highways. Together, the air highway
structure and the UAV platooning concept enable the use of reachability to analyze safety and
goal satisfaction properties. The structure reduces the likelihood of multiple-way conflicts and
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Figure 12
Hybrid modes for vehicles in platoons. Vehicles are in the Free mode before they enter the highway. Figure
adapted from Reference 54.

makes pairwise analysis more indicative of the joint safety of all UAVs. In addition to reducing
complexity, the proposed structure is intuitive and allows human participation in the monitoring
and management of the unmanned airspace.

Organizing UAVs into platoons implies that the UAVs cannot fly in an unstructured way
and must have a restricted set of controllers or maneuvers depending on each UAV’s role in the
airspace. To model UAVs flying in platoons on air highways, we propose a hybrid system whose
modes of operations describe a UAV’s role in the highway structure. For the hybrid system model,
reachability analysis is used to enable successful and safe operation and mode transitions.

In general, the problem of collision avoidance among N vehicles cannot be tractably solved
using traditional dynamic programming approaches, such as HJ reachability. Instead, the structure
imposed by air highways and platooning enables analysis of the safety and goal satisfaction prop-
erties of the vehicles in a tractable manner. From the perspective of each vehicle, the allowable
maneuvers become restricted; Chen et al. (54) used a hybrid system model to capture this concept.
Figure 12 summarizes the available maneuvers and associated mode transitions.

Given the above modeling assumptions, Chen et al. (54) provided control strategies to guarantee
the success and safety of all mode transitions. The theoretical tool used to provide the safety and
goal satisfaction guarantees is HJ reachability. The BRTs computed allow each vehicle to perform
complex actions, such as merging onto a highway to form a platoon, joining a new platoon, leaving
a platoon to create a new one, or reacting to malfunctioning or intruder vehicles. Several basic
controllers are used to perform other, simpler actions, such as following the highway at a constant
altitude at a specified speed or maintaining a constant relative position and velocity with respect
to the leader of a platoon.
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In general, the control strategy of each vehicle has a safety component, which specifies a set
of states that it must avoid, and a goal satisfaction component, which specifies a set of states that
the vehicle aims to reach. Together, the safety and goal satisfaction controllers guarantee the
safety and success of a vehicle in the airspace making any desired mode transition. By combining
HJ reachability with a hybrid system structure, the multi-UAV system is able to perform joint
maneuvers essential to maintaining structure in the airspace.

4.1.2.1. Reachability-based controllers. Reachability analysis is useful for constructing controllers
in a wide variety of situations. To construct different controllers, an appropriate target set needs
to be defined depending on the goal of the controller. If one defines the target set to be a set of
desired states, then the BRS would represent the states that a system needs to first arrive at in
order to reach the desired states. On the other hand, if the target set represents a set of undesirable
states, then the BRS would indicate the region of the state space that the system needs to avoid.
In addition, the system dynamics with which the BRS is computed provide additional flexibility
when using reachability to construct controllers.

Using different target sets and dynamics, the reachability-based controllers for vehicle mode
transitions are as follows:

� Getting to a target state: The controller used by a vehicle to reach a target state is important
in two situations in the platooning context. First, a vehicle in the Free mode can use the
controller to merge onto a highway, forming a platoon and changing to the Leader mode.
Second, a vehicle in either the Leader mode or the Follower mode can use this controller
to change to a different highway, becoming a Leader vehicle.

� Getting to a state relative to another vehicle: In the platooning context, being able to get to
a state relative to another moving vehicle is important for forming and joining platoons. For
example, a vehicle in the Free mode may join an existing platoon on a highway and change to
the Follower mode. Also, vehicles in the Leader or Follower mode may join another platoon
and subsequently change to the Follower mode.

� Avoiding collisions: A vehicle can use one of the goal satisfaction controllers described
in the two items above when it is not in any danger of colliding with other vehicles. If
the vehicle could potentially be involved in a collision within a short period of time, it
must switch to a safety controller. The safety controller is available in every mode, and
executing the safety controller to perform an avoidance maneuver does not change a vehicle’s
mode.

In the context of platooning, an unsafe configuration can be defined as follows: A vehicle either
is within a minimum separation distance to a reference vehicle in both the x and y directions or is
traveling with a speed above the speed limit in either the x or y direction. From this specification,
a minimal BRT can be computed to provide a guaranteed-safe controller.

4.1.2.2. Other controllers. HJ reachability is used for relatively complex maneuvers that require
safety and goal satisfaction guarantees. For the simpler maneuvers of traveling along a highway and
following a platoon, many other well-known methods, such as proportional–integral–derivative
(PID) control or model predictive control, would suffice.

4.1.2.3. Numerical simulations. Chen et al. (54) considered several situations that vehicles in a
platoon on an air highway may commonly encounter and showed via simulations the behaviors
that emerge from the proposed controllers. Figure 13 shows the results. Figure 13a illustrates a
scenario in which vehicles in the Free mode merge onto an initially unoccupied highway, showing
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Simulations showing the emerging behavior of the proposed hybrid system framework. (a) Vehicles merging onto an air highway, with
the goal satisfaction reachable set (purple dotted line) and safety reachable sets (purple dashed lines) shown for the purple vehicle. (b) Safety
controllers causing vehicles to respond to an intruder (yellow). Figure adapted from Reference 54.

the relevant BRTs for both goal satisfaction and safety. All five vehicles eventually form a single
platoon and travel along the highway together.

Figure 13b illustrates a platoon’s automatic response to an intruder. To avoid collisions, each
vehicle checks for safety with respect to the intruder and any vehicles in front of or behind it
in the platoon. When the intruder comes in close proximity, the other vehicles spread out to
avoid collision. After the danger has passed, the vehicles in the platoon resume normal operation
according to the hybrid system model.

4.2. Multiagent Analysis Based on Hamilton–Jacobi Reachability

An air highway network alone is likely not sufficient for UAVs to travel to a final postal address.
In References 55 and 56, the authors proposed a sequential trajectory planning scheme. Although
HJ reachability is well suited for the robustness requirements needed for the airspace, simulta-
neous analysis of all vehicles is intractable. Therefore, in Reference 55, the authors assigned a
strict priority ordering, with lower-priority vehicles treating higher-priority vehicles as moving
obstacles, which allows the reservation of space–time in the airspace for each vehicle. The space–
time reservation is dynamically feasible to track when the vehicle experiences disturbances (56)
and even in the presence of a single adversarial intruder vehicle under certain assumptions (57).
Chen et al. (57) performed a simulation study to demonstrate space–time reservation variants
with different assumptions; Figure 14 shows a simulation involving one adversarial intruder is
shown.

An air highway structure and robust routing of UAVs are useful as a first level of safety; addi-
tional levels can be provided by last-resort collision avoidance. Mitchell et al. (15) demonstrated
guaranteed-safe pairwise collision avoidance, and Chen et al. (58, 59) alleviated the scalability lim-
itations of HJ reachability using a mixed-integer program that exploits the properties of pairwise
HJ solutions to provide higher-level control logic. Safety guarantees for three-vehicle collision
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Figure 14
Robust space–time reservations allow multiple unmanned aerial vehicles to arrive at their destinations while
avoiding an intruder. (a) Two vehicles (green and red ) significantly deviating from their nominal positions to
avoid an intruder (black). (b) Actual and nominal trajectories of the red (Q2) and green (Q3) vehicles. Figure
adapted from Reference 57.

avoidance—a previously intractable task for HJ reachability—were proved without incurring sig-
nificant additional computation costs (58). The collision avoidance protocol can also be applied
to systems involving more than three vehicles, although no theoretical guarantees can be made.
Figure 15a shows an eight-vehicle collision avoidance simulation.

Rogue UAVs that are unregistered or unauthorized will potentially need to be monitored and
captured. Pierson et al. (60) formulated and solved such a multivehicle capture–avoid problem
for vehicles of holonomic dynamics; Figure 15b illustrates their Voronoi cell–based method.
To incorporate nonlinear dynamics, a reach–avoid game between a team of attackers and a
team of defenders can be solved using HJ reachability combined with maximum matching (59);
Figure 15c shows an example of this man-to-man defense solution.
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Figure 15
Multivehicle analysis using Hamilton–Jacobi reachability and higher-level logic. (a) Simulation of eight-vehicle collision avoidance. A
series of pairwise collision avoidance is performed, with the pairs chosen using an integer program. (b) Simulation of Voronoi
cell–based rogue vehicle capture. Capture is guaranteed through minimization of evaders’ safe reachable area. (c) The maximum
matching process for the interception of a rogue unmanned aerial vehicle. The team of pursuers perform man-to-man defense against a
team of evaders. Panel a adapted from Reference 58; panel b adapted from Reference 60; panel c adapted from Reference 59.

5. CONCLUSION

Autonomous systems research has been tremendously successful recently, and safety is now be-
coming very important, despite the difficulties of safety analysis. With the recent progress in
high-dimensional verification via HJ reachability and a combination of low-dimensional verifica-
tion and higher-level logic, we have made a good start on the path toward more pervasive and
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verified automation. If large-scale safety analysis could be combined with previous successes in
the field in a modular way, we could have safe system design, planning, sensing, and learning; safe
large-scale autonomous systems; and safe human–automation interaction in the near future.
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