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Abstract

The Kalman filter—or, more precisely, the extended Kalman filter (EKF)—
is a fundamental engineering tool that is pervasively used in control and
robotics and for various estimation tasks in autonomous systems. The re-
cently developed field of invariant extended Kalman filtering uses the geo-
metric structure of the state space and the dynamics to improve the EKF,
notably in terms of mathematical guarantees. The methodology essentially
applies in the fields of localization, navigation, and simultaneous localization
and mapping (SLAM). Although it was created only recently, its remarkable
robustness properties have already motivated a real industrial implementa-
tion in the aerospace field. This review aims to provide an accessible in-
troduction to the methodology of invariant Kalman filtering and to allow
readers to gain insight into the relevance of the method as well as its impor-
tant differences with the conventional EKF. This should be of interest to
readers intrigued by the practical application of mathematical theories and
those interested in finding robust, simple-to-implement filters for localiza-
tion, navigation, and SLAM, notably for autonomous vehicle guidance.
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1. INTRODUCTION

The goal of a filter is to estimate the state of a dynamical system by combining an evolution model
and some sensor measurements that bring partial information about the state. Unfortunately,
models are inherently inaccurate, and sensors are subject to noise that corrupts the measurements.
The idea of filtering is to explicitly include both sources of uncertainty in the model and compute
the best estimates of the state that can be inferred from the available information.

Even though the mathematical theory is now well understood, it is still challenging to design
filters in practice for control, robotics, and autonomous systems. The extended Kalman filter
(EKF) appeared in the 1960s with the advent of computers and was first implemented by NASA
in the Apollo program to estimate the trajectory of the space capsule in real time. The past
two decades have also witnessed the development of particle filters, with great advances in both
theory and practice. However, these filters rely on extensive numerical computations that are not
always suited to real-time onboard implementations, and there are theoretical caveats, especially
when process noise is low (typically for static parameter estimation). The robotics community has
also more recently turned to optimization-based techniques for filtering (the problem is typically
formulated as nonlinear least squares), but the computational demands are extensive, and their
robustness to erroneous initializations is not yet clearly established. Because robots and many
control systems are real-time systems, the amount of computation is limited, and the EKF is still a
widespread tool in control and robotics, along with its more recent variant, the unscented Kalman
filter (UKF). In the aerospace industry, the EKF remains the reference filter.

1.1. Extended Kalman Filtering

Consider a general dynamical system in discrete time whose state is described by the vector variable
X, € RY. We associate a sequence of observations (¥,,),>¢ € R?, which are measurement data
returned by sensors. The trusted evolution model is

Xn = f(Xn—la”m wn)’ L.

where f is the function encoding the evolution of the system; w,, is the (unknown) process noise,
which is a centered random variable with covariance matrix Q,; the vector #, € R™ is a control
input; and the observation consists of partial measurements of the state at time 7:

Yn =b()(n)+V,,, 2.

with /# the observation function and ¥, the (unknown) measurement noise that accounts for
sensors’ limitations.

The EKF computes in real time an approximation XM to the best state estimate given the
observations. Let Y7, denote the collection of past measurements Y7, Y5,...,Y,, and let #;,, be
similarly defined. To be more precise, the EKF represents the belief P(X, | #.,, Y1.,), which
assigns a probability to each possible value of the true state in light of all the information collected
so far, by a mean }A(m,, and covariance matrix P,,. Indeed, the rationale is to use the following
Gaussian approximation: P(X,, | #1.,, V1.,) & N ()A(mﬂ, P,1»). To compute the mean and covariance,
the EKF uses a two-step procedure:

1. Propagation: The estimate Xn_1|n_1 obtained after the observation Y,,_; is propagated through
the deterministic part of Equation 1:

Xnm—l = f(Xn—l\n—l,uny 0) 3.
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To compute the associated covariance, introduce the estimation errors defined as

Cn—ln—1 = }(n—l _Xz—l\n—ly Culn—1 = )(n _}(mn—l-

The key idea underlying the EKF is to linearize the error system through a first-order
Taylor expansion of the nonlinear functions f and 5 at the estimate )A(n_l‘n_l. Indeed, using
the Jacobians F, = 2£(X,_1,_1,4,,0), G, = 2L(X,_1,-1,1,,0), and H, = 22(X,;,_,), the
combination of Equations 1-3 yields the following first-order expansion of the error system:

Cnln—1 = Fnen—1|n—1 + anin

Y, - b(lenfl) = Hnen\ﬂ—l + an;

where the second-order terms—that is, terms of order O (|le||?,||w]|?, [le]|[lw||)—have
been removed (see, e.g., Reference 1). P,_j,—; is an approximation to the true covari-
ance E(e,_1,-1¢,_;,,_;), and it is propagated through the linearized model Equation 5 so
1), and we have

that Py, = FnP,,_”,,_IFnT + G,Q, GZ is an approximation of E(e,,_e
P()(n | Ulp,y Yl:nfl) ~ N(Xz\n—lypn\n—l)-

T
nin—

2. Measurement update: To account for the measurement ¥, we let z, = ¥, — h(X,,_1), and
z, is called the innovation. Assuming that e,,—; ~ N(0, P,},—1) and that the approximation
from Equation 6 is exact, the linear Kalman filter equations ensure that the updated error

en\n = )(n — Xﬂl” satisﬁes E,,|n ~ N(O, Pn\n), Where
}A(n‘n = An|n—1 —{—KZZ” and Pn|n = [I - Kan]Pn\n—la

with K, called the Kalman gain, computed in Algorithm 1. Of course, the belief after
update N (X}, Pyj») is only an approximation to P(X,, | #1.,, Y1.,) owing to the linearizations.
In practice, those linearizations may lead the filter to inconsistencies and sometimes even

divergence.

Algorithm 1 (extended Kalman filter). Choose an initial estimate Xp|o and uncertainty matrix Poyo.
loop

Define F,,, G,, and H, through Equations 5 and 6

Define Q, as Cov(w,) and R,, as Cov(};;)

Propagation

Xyt = fKo—tn—1, tn, 0)

Pyt = FyPy_1jy—1F! + G, Q,GI

Measurement update

Compute z, = ¥, — hXpu_1), Sy = HyPupy 1HL + R, and

K, = Pyt H'S; !

}311\71 = [AI - Kan]Pn\an

Xon = Xupn—1 + Knzn
end loop

1.2. Motivation for the Use of Geometry

Users who are facing the filtering problem defined by the system of Equations 1 and 2, with f
and 4 two nonlinear maps, are free to choose a different coordinate system to design an EKF.
For instance, in radar tracking, one can choose not only a frame attached to the target or to the
radar, but also range and bearing as an alternative to Cartesian coordinates. In general, it is unclear
what the best coordinates for EKF design are. However, some systems have a natural choice of
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coordinates. For instance, when facing a linear Gaussian system, the EKF boils down to the linear
Kalman filter, which is optimal, and it would be nonsense to work with alternative coordinates
that would make the system nonlinear. In this article, we advocate that, for a large class of systems
defined on matrix Lie groups, the machinery of geometry provides coordinates that are unarguably
more suited to the problem. In those cases, the invariant extended Kalman filter IEKF) theory is
useful, as the original problem is often formulated using coordinates that do not match the group
structure, leading to degraded performance of the conventional EKF.

For systems on Lie groups, the IEKF was originally introduced in Reference 2 and continued
in References 3-7. Reference 7 recently described the complete methodology along with the
convergence properties of the IEKF. More generally, the use of Lie groups for state estimation
dates back to the 1970s (8-10) and has recently spanned a range of applications and a rich stream
of theoretical results (see, e.g., 6, 11-16).

Following the work of, among others, Chirikjian (17), the robotics community has increasingly
recognized that using probability distributions properly defined on Lie groups is important, no-
tably for pose estimation (see, e.g., 17-22). Moreover, Reference 23 recently showed that the use of
the IEKF over the conventional EKF solves the inconsistency issues of EKF-based simultaneous
localization and mapping (SLAM).

1.3. Outline

Section 2 consists of geometry preliminaries. Section 3 reviews the methodology of invariant
Kalman filtering. Section 4 is concerned with the mathematical guarantees that come with the
IEKF. Section 5 presents some real industrial applications in the field of inertial navigation.
Section 6 reviews the inconsistency of EKF-based SLAM and the interest of IEKF-based SLAM.
The presentation of the present article is freely inspired by a tutorial article that uses methods
rooted in differential geometry to improve Monte Carlo schemes (24).

2. LIE GROUPS AND PROBABILITY
2.1. Matrix Lie Groups!

In this section, we provide readers with the bare minimum of Lie group theory that is required
to introduce the IEKF methodology. A matrix Lie group G is a subset of square invertible N x N
matrices My(R) verifying the following properties:

IN € G’ VX € G, X_l € G, VXlsXZ € G’ X1X2 € G7

where Iy is the identity matrix of RY. The subset G is generally not a vector space and can thus be
viewed as a curved space (see Figure 1). To every point x € G, one can associate a vector space
T, G that s called the tangent space at x and is defined as all the matrices that write %y(O), where
y : R — G is a smooth curve of G that satisfies y(0) = x. The elements of this space are called
tangent vectors.

The tangent space 77, G at the identity Iy is called the Lie algebra and plays a very specific
role. It is denoted g, and its dimension d defines a dimension for the group G itself, where 4
is generally much smaller than the dimension N? of the ambient space. We have g ¢ My(R),

'All of the results carry over to general abstract Lie groups, but the (less general) matrix Lie groups are well suited to tutorial
and computational purposes and encompass all of the applications discussed.

Barrau o Bonnabel



Figure 1

G is a curved space. Left and right multiplications offer two ways to identify the tangent space T, G at x with
the tangent space at identity 77, G, called the Lie algebra g. In turn, the application & + &” provides a linear
bijection between the Euclidean space RY and g. (Lie groups are homogeneous spaces, which somehow “look
the same everywhere.” As such, the figure may be slightly misleading, since the curved surface representing
G seems irregular. Yet it seems to us that representing a Lie group by, e.g., a sphere would be an
oversimplification and to some extent equally misleading.)

but there is always an invertible map RY — g that allows identifying g to R?. For £ € R, we
denote £ € g the corresponding element of g, and we recall that £ — £ is a linear map. There
are then two canonical ways to identify RY and the tangent space 7, G at any x € G: through
left and right multiplications, which are generally different. Indeed, for any & € R?, the vectors
x(&") and (§")x are both tangent vectors at x. Of course, they are generally different owing to
the noncommutativity of matrix multiplication.

The usual matrix exponential map exp,, : g — G constitutes a bijection from a neighborhood
V' C gof0toaneighborhood of the identity Iy in G. In this article, we call the Lie exponential map
the map exp : RY — G, defined by exp(§) = exp,,(§"), which is a bijection in a neighborhood of
0 € RY, with exp(")™! = exp(—&"). Moreover, x exp(-) and exp(-)x provide two distinct bijections
between a neighborhood of 0 in R? and a neighborhood of x in G.

The Baker-Campbell-Hausdorff (BCH) formula gives a series expansion for the image in g
of the product on G: BCH(E, ¢) = exp~!(exp(§) exp(¢)). In particular, it ensures exp(§) exp(¢) =
exp(§ + ¢ + T'), where T is of the order O(I£1%, IS11, €111 1)-

Example 1. Consider the group of rotation matrices G = SO(3), which describes the
orientation (attitude) of a body in space. It is the subset of matrices R of M;(R) such that
RRT = [; and det(R) = 1. Each R € G can be viewed as the rotation that maps vectors
expressed in the body frame to vectors expressed in the earth-fixed frame. We have
d =3, and for any &£ € R?, " € R is the skew symmetric matrix associated with the
cross-product operator { — & x ¢. The Lie algebra is the set of skew symmetric matrices.
Any tangent vector U € TG at R represents an infinitesimal shift of R in SO(3). It can
be written as U = R&” for some vector & € R? or, alternatively, as U = ¢” R for some
¢ € R’ Both & and ¢ can be seen as angular velocity vectors that represent the same
infinitesimal rotation, but £ is a vector of the body frame, whereas ¢ is expressed in the
earth-fixed frame. It is easy to prove that indeed { = RE&.

2.2. Uncertainty Representation on Matrix Lie Groups

To define random variables on Lie groups, we cannot apply the usual approach of additive noise
for x € G because G is not a vector space. By contrast, we define the probability distribution
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x ~ NL(X, P) as the probability law of the random variable x € G defined as
x =xexp(§), £E~N(O,P), 8.

where N(.,.) is the classical Gaussian distribution in Euclidean space R? identified to the Lie
algebra g, and P € R?*? is a covariance matrix. In Equation 8, the original Gaussian vector & of
the Lie algebra is moved over by left multiplication to be centered at ¥ € G, and we similarly
define the distribution x ~ N(x, P) for right multiplication of x through the random variable

x=exp@®)x, §~NOP). 9.

In Equations 8 and 9, x is deterministic and can take any value, whereas P is the covariance of
the small, noisy perturbation . We stress that we have defined these probability density functions
directly in the vector space R? and that both A7, (.,.) and Nk (.,.) are not Gaussian distributions.
These kinds of distributions, introduced to the best of our knowledge in References 17, 20, and
21, were advocated and studied in Reference 18 for pose estimation and leveraged for Kalman
filtering in References 6, 7, and 25. They are sometimes referred to as concentrated Gaussians on
Lie groups. Note that x in Equations 8 and 9 is a well-defined random variable of G. Computing
its distribution on G is not trivial, but for the purposes we pursue in invariant filtering, it is not
necessary.

Several approaches to filtering for systems possessing a geometric structure have been devel-
oped in the literature. For stochastic processes on Riemannian manifolds (26), some results have
been derived (see, e.g., 27). The specific situation where the process evolves in a vector space but
the observations belong to a manifold has also been considered (see, e.g., 10, 28, and more recently
29). For systems on Lie groups, powerful tools to study the filtering equations—such as harmonic
analysis (30-32)—have been used, notably in the case of bilinear systems (9) and estimation of
the initial condition of a Brownian motion (33). A somewhat different but related approach to
filtering consists of finding the path that best fits the data in a deterministic setting. This approach
is thus related to optimal control theory, where geometric methods have long played an important
role (8). A certain class of least squares problems on the Euclidean group has been tackled in
Reference 34 (see also 35).

3. INVARIANT KALMAN FILTERING

In invariant Kalman filtering, the state space is assumed to be a matrix Lie group. As a result, it
comes with the nonlinear machinery of Section 2.1. However, we emphasize that it is the coupling
of the choice of the Lie group structure and the dynamical model used in Equation 1 that allows
the derivation of properties of the filter. Originally, only dynamics that were invariant to the group
action were considered—hence, the name IEKF is rooted in References 36 and 37—and the class
of dynamics to be considered has recently been much extended, as presented in Section 3.1. The
remainder of this section is as follows: Section 3.2 is devoted to the methodology of the IEKF,
Section 3.3 to the geometric vision that underlies it, and Section 3.4 to its recent unscented version.

3.1. Group Affine Systems

This section reviews some results from Reference 7, which are derived in the continuous-time
context, and we present here their discrete-time counterpart. Consider a deterministic dynamical
system on a matrix Lie group G:

Xn = f(Xn—l,”n), 10.
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with f a smooth map on the group and %, € R”, or possibly #, € G (in which case we use a capital
U,). In invariant Kalman filtering, function f is required to verify

VX,UEG,VM, f(XU9u):f(X?u)f(IN,”)_lf(v7”)' 1.

Systems that satisfy this condition are called group affine systems in Reference 7. Indeed, if the
group is merely a vector space with addition as the group composition law, we recover the affine
functions, as Equation 11 then becomes f(z + b,u) = f(a,u) — f(0,u) + f(&,u), which implies
f(x,u) is necessarily affine if it is smooth. Note that the continuous version of Equation 11
introduced in Reference 7 is similar to the notion of linearity on a group defined in a different
context in Reference 38.

Theorem 1 (fundamental property of invariant filtering). We have the following
equivalence:

satisfies Equation 11 < There exists a map g such that Vx, v, u,
q P8
f,w)™" flx,u) = g™ x, ).

Moreover, in this case, for each # € R” there exists F € R?*? such that V& €
RY, g(exp(€),u) = exp(F&); that is, the function g(-,#) is wholly encoded in a simple
matrix F.

This result s pivotal, as will be explained in Section 4. The fact that g(-, #) may be described by
a mere matrix F is not a first-order approximation; it is true at all orders, which is a quite surprising
result.

Example 2. Let us continue our simple example of rotation matrices. Consider a motion
Ry, Ry, ... on SO3) with R, = R,_;U,. The matrix U, € SO(3) represents the relative
rotation undergone by a body in space between time steps # — 1 and # and can be
measured by (flawless) gyroscopes; it can thus be viewed as an input. The dynamics can
be cast into the form of Equation 10, letting f(R, U) = RU. Thus, f(xv,U) = xvU =
£, U) f(I;, U)~! f(v, U), so Equation 11 is satisfied, and we have

fO,U0 fOm) =00 xU=U"v"xU=U"0"0U.

We see that the last term is indeed a function of v=! x and U, as predicted by the theorem
(take indeed g(x,U) = U~'xU). This has been long known in the SO(3) case and
was heavily exploited for attitude observer design (see, e.g., 6, 11-16, 37). Moreover,
it is well known from Lie group theory (see, e.g., 18) that for any & € R?, we have
U-lexp()U = exp(Ady &), where Ady & = U§ in the SO(3) case. Letting F = U, we
see that this agrees again with the second part of Theorem 1.

3.2. Invariant Extended Kalman Filter Methodology

This section summarizes the IEKF methodology described in Reference 7. Consider a general
dynamical system y, € G associated with a sequence of observations (¥},),>0 € R? as follows:

Xn = f(Xn—lv ”n) eXp(wn), 12.
Y. =hb(x) + Vo, 13.
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where #, € R? is a control input, w, € R? is an unknown vector encoding the process noise,
V, € R? is the (unknown) measurement noise, and f satisfies Equation 11. The (left) IEKF?
computes in real time an approximation to the posterior using the uncertainty representation
Equation 8; that is, it computes at each step two parameters, %, € G and P,, € R**? and makes
the approximation P(x, | #1., Y1.,) & NL(Rujns Pun)- The two-step procedure is then as follows:

1. Propagation: The IEKF propagates an estimate obtained after the previous observation V,,_;
through the deterministic part of Equation 12, i.e., by setting w, = 0:

)?n\n—l = f()%n—lm—l,un)' 14.

To compute the associated covariance, introduce the left-invariant estimation errors defined
as

Mn—1jn—1 = X;;,ll)%n—l\n—l) NMajn—1 = X;;l)%n\n—l- 15.
This error is indeed invariant to left multiplications (x, ¥) + (I'x,['%) for any group
element I" € G, and right-invariant errors can be analogously defined. This is a natural way
of measuring the discrepancy between the true state x and the estimate § in a Lie group
context where the usual linear error ¥ — x is not even an element of G. Because f satisfies
Equation 11, Theorem 1 yields

Nujn—1 = [f(X?szuﬂ) eXp(wn)]ilf()%nfllnfly”n) = eXp(_wn)g(nnfl\nfl)”ﬂ), 16

where we have also used the fact that exp(w,)™! = exp(—w,). Along the lines of the EKF, we
want to linearize the error system through a first-order Taylor expansion of the nonlinear
functions f and 4 at the estimate §¥. However, in contrast to Equation 4, the estimation
errors defined in Equation 15 are elements of G, that is, square matrices rather than vectors.
But when x and % are close, the invariant error n = x ' % is close to the identity matrix Iy.
Using the fact that the Lie exponential map provides a bijection between a neighborhood
of R? and a neighborhood of Iy, the estimation error can be locally approximated by an
element of R?; that is, we let Entn—1,Enm—1 € R? be defined by

Nu—1n—1 = exp(%‘nfl\nfl)’ Mnln—1 = exp@mn—l)- 17.

Let F, € R¥ be defined by V& € RY, g(exp(§),u,) = exp(F,&). This matrix exists thanks
to Theorem 1, and it is not defined through first-order approximation, as in the conven-
tional EKF case. According to the BCH formula, we have exp(—w,)g(exp(&,—1jn—1), #») =
exp(F,&,_1j,—1 —w,) up to terms of order |&,_ 1,1 1%, | w, 1, 1€,—11—1 |l w, ||. Recalling Equa-
tions 16 and 17, this means that, up to the first order, exp(§,,—1) = exp(F,&s—1js—1 — Wy), SO
we get the following linearized equation, which is the Lie group counterpart of Equation 5:

En\n—l = Fné:n—l\n—l — Wy. 18.

We have exp(&,u—1) = Nam—1 = X Rum—1, which implies that x, = X1 eXp(—Eppn_i)-
Resorting to the uncertainty representation of Equation 8 and using Equation 18, we
have just proved that if P(x,—1 | #1m-1, Viw1) = Ni(Zu-t1jn—1, Po—1a-1), then we have
approximately the propagated distribution P(x, | %1, Yim-1) = NL(Ruin—1, Puin—1), Where
Pyu1 = FnPnfuanF,,T + Q, and Q, = Cov(w,) = Cov(—w,).

2For simplicity of exposure, the IEKF theory is presented using the left-invariant error n = x~'% and the uncertainty
representation shown in Equation 8. Swapping the role of left and right multiplications, we can similarly define an alternative
filter, the right-invariant EKF.
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Remark 1. Even though the state belongs to a nonlinear space and is a matrix
and not a vector, the Lie exponential map allows us to linearize the error system
in R? as in the conventional EKF methodology. Moreover, note that F, depends
on u, but not on X,_ij,—1, which is in contrast to the conventional EKF, where
F, in Equation 5 depends on Xn_1|n_1. This is a consequence of Equation 11 and
Theorem 1 and will play an important role in Section 4.

2. Measurement update: 'T'o account for the new measurement, we let z, = ¥, — h({,.—1) be the
innovation. Itisavector of R?. Wehave z, = h(x,) —b(Ruju-1) + Vi = b(Rujn—1 expEnn—1)) —
b(Run—1) + Vi As &1 is assumed to be small, and as exp(0) = Iy, a first-order Taylor
expansion in £ € R? arbitrary allows defining H,, as

b()?nm—l eXP(E)) - b(in\n—l) = Hns + O(”%-“Z) 19.

Now that we have obtained a linearized system in R? akin to Equations 5 and 6, the conven-
tional Kalman theory can be applied to derive the Kalman gain K, and the updated covariance
matrix P,,. The term K, z, is a corrective shift computed on the linearized system. Thus, it
should act on the linearized error &,,—;. As our estimation errors on the group are of the
form exp(€§) = x~'f—thatis, x = % exp(£)—an approximation to the best estimate of
after observation Y, that is consistent with Equation 15 is obtained through the Lie group
counterpart £, = Xun—1 €xp(K,2,) of the linear update shown in Equation 7. The equations
of the filter are detailed in Algorithm 2.

Algorithm 2 (invariant extended Kalman filter). Choose initial o0 € G and Pyjg € RIxd —
Cov(&oj)-
loop
Define H, as in Equation 19 and I, through the expansion g(exp(§), u,) = exp(I",€)
Define Q, as Cov(w,) and R, as Cov(V,)
Propagation
Znin—1 = [QRu—1n—1,n)
Pupn—1 = FaPy_1jp—1F; 1+ Qy
Measurement update
Compute z, =1V, — b ()A(mn_l), S, = Hﬂan_lH,zT + R, and
K, = Pyy_1 HL'S;!
Pujw = I — KyHy|Pyjn—1
Xn\n = )A(n\n—l exp(ann)
end loop

Remark 2. Many systems of interest are such that Equation 13 is of the form Y, =
K%n(b + V), where b € RY is a known vector. Indeed, this means that one measures some
combination of the matrix entries, i.e., partial measurements of the state. In this case, we
use an alternative innovation z, = )2,;71_ Y, —b, which is equal to ’7;\;11_117 —b+V,. Then,
since 7);\},7117 = exp(—&u»—1)b, the linearized output H, corresponding to innovation z,
is defined similarly to Equation 19, through the first-order expansion 2, = exp(—£)~'b —
b := H,& + O(||]1*). We then see that, along the lines of Remark 1, the matrix H, does
not depend on j,,— either. Note that the choice of the alternative innovation above is
mostly tutorial; a rigorous application of Algorithm 2 to the present case would in fact
lead to entirely identical estimates.
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Table 1

Differences between a conventional extended Kalman filter (EKF) and an invariant extended Kalman filter (IEKF)

EKF IEKF

Expression Nature Expression Nature
State X, Vector of R? Rn Matrix of G ¢ RN *N
Uncertainty representation N, P) Gaussian in R? NL(X, P) Random matrix (see Equation 8)
Linearized error Cnln Vector of R? Enln Vector of R?
Nonlinear error Cnln Vector of R? Nnpn = exp(Enn) Matrix of G ¢ RN *N
Covariance matrix P Matrix of R?*4 P Matrix of R4*4
Correction term K,z, Shift in R? K,z, Shift in R?

3.3. Geometric Insight

Table 1 compares the main features of both EKF and IEKF methodologies. The IEKF features
admit a geometric interpretation illustrated by Figure 2.

3.4. Unscented Version

When applying Algorithm 2 to a particular system, matrices F,, H, must be computed, which
might prove a little difficult to some practitioners. This is one of the main reasons why the UKF
of Reference 39 has become a popular alternative to the EKF. Brossard et al. (25) proposed an
unscented version of the IEKF that spares practitioners a computation of the Jacobians for systems
modeled using discrete-time dynamics.

There have been other attempts to use (partially) the Lie group structure for UKF design.
Condomines et al. (40, 41) presented a symmetry-preserving observer design based on the un-
scented transform, Loianno etal. (22) used the Lie group structure of SE(3) for a drone navigation
application, and Forbes & Zotnik (42) exploited related ideas.

4. THEORETICAL CONVERGENCE GUARANTEES

Opver the past decade, a large body of literature has been devoted to deterministic nonlinear ob-
server design on Lie groups in the control community. We partially review this field in Section 4.2.

Figure 2

In the invariant extended Kalman filter methodology, the covariance matrix P represents a dispersion in R? (illustrated by the red 99%
confidence ellipsoid in the lef? plot). In turn, using the bijection & +— £”, P corresponds to a dispersion in the Lie algebra 77, G = g
(central plot). By adopting the uncertainty representation of Equation 8, we implicitly posit that the left-invariant error x ~' % is the
exponential of a Gaussian. This means that we implicitly use left multiplication to move the ellipsoid over from Ty G to T, G (right
plot). Thus, the choice of a particular nonlinear estimation error rules the way that confidence ellipsoids “turn” when moved over in G.
Using Equation 9 instead—that is, right-invariant errors (and thus right multiplication & + £ X,,) or, more generally, the original
coordinates in which the system is modeled—we would get a quite different ellipsoid in 77, G.
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Figure 3

Architecture of the extended Kalman filter (Algorithm 1). The gain depends on the estimated state.

But first, we review the convergence properties of the IEKF when itis used as a candidate nonlinear
observer.

4.1. The Invariant Extended Kalman Filter as a Stable Nonlinear Observer

Consider the model of Equations 1 and 2 and turn the noise off. This yields a deterministic system
of the form X, = f(X,_1,u,), ¥, = h(X,). A stable nonlinear observer is a dynamical system of
the form X, = f (Xl_l,u,,, Y,), where f is designed to achieve asymptotic convergence of the
estimation error; that is, X, — X, - 0when#n — oo. Although no noise perturbs the system,
the state X, is assumed to be unknown, and the system’s equations yield only partial information
about it. As a result, designing stable nonlinear observers is often a great challenge.

4.1.1. The conventional extended Kalman filter as a nonlinear observer. When facing a
nonlinear observer problem, any EKF can readily be used as a candidate asymptotic observer by
choosing arbitrary matrices Q,, R,, which are then viewed as tuning parameters. Unfortunately,
there are not many guarantees that the EKF will asymptotically converge when used as an ob-
server. The main results (43, 44) rely on strong assumptions about the filter’s behavior, and the
EKF can actually fail to converge sometimes, even for small initial estimation errors. To under-
stand why, consider the block diagram of Figure 3, which illustrates the architecture of the EKF
(Algorithm 1).

The important point is that the computation of the gain K, relies on the matrices F,, H,
introduced at Equations 5 and 6, since the system is linearized at the estimate. This creates a
loop between the estimate and the gain computation that can destabilize the filter. Indeed, if the
estimate is not sufficiently close to the true state, the gain will be erroneous, and the correction
applied by the filter Equation 7 will amplify the estimation error. This positive feedback may lead
to divergence.

4.1.2. The invariant extended Kalman filter as a nonlinear observer. The IEKF does
not suffer from this drawback. Consider Equation 12 with the noise turned off—that is, x, =
f(Xu—1,u,)—and assume that f satisfies Equation 11. As in Remark 2, also assume that the ob-
servation (with the noise turned off) writes ¥, = h(x,) = x.b, with & € RY a known vector. As
emphasized by Remarks 1 and 2, neither F, nor H, then depends on the estimates. This makes the
gain computation independent from the estimate and spares the filter potentially harmful positive
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Input u, Measurement Y,
System

Alternative innovation z,=X,"'Y,— b

X h()zn\nf 1)

Xn|n—1
Invariant extended Kalman filter * Output map

Kn Does not exist anymore

Gain computation [« e

Figure 4

Architecture of the invariant extended Kalman filter (Algorithm 2). The gain does not depend on the
estimates.

feedback. Indeed, as illustrated by the block diagram of Figure 4, the inner loop of the EKF has
disappeared.’

The independence of the gain computation to the trajectory means that if the system were
linearized at the (unknown) true state, the gain K, would be identical to the one obtained by
linearizing at the estimate. Thanks to this strong property, the stability of the IEKF as an observer
could be proved in Reference 7. Although the guaranteed convergence properties are only local,
this is in sharp contrast to the conventional EKF, where no such guarantees exist.

4.2. Nonlinear Observers on Lie Groups

There has been a huge body of research devoted to nonlinear observers on Lie groups over the
past decade, especially for attitude estimation. Although the literature is too broad to be covered
here, we can point to a few significant references. Early developments in estimation on Lie groups
were covered in Section 2.2. In the early 2000s, there were essentially two streams of research
that bolstered the development of observers on Lie groups. The first was initiated by Aghannan
& Rouchon (45) and seeks to design nonlinear observers that share the symmetries of the original
system. The theory was formalized and developed in Reference 36 and applied to estimation on
Lie groups in Reference 37. At the same time, the complementary filter on SO(3) for attitude
estimation was introduced in Reference 11. This filter makes extensive use of left-invariant errors
on SO(3) and the autonomy properties of the error equation. Owing to its simplicity and global
convergence guarantees, it has become a renowned attitude estimator and has proved useful for
quadrotor unmanned aerial vehicle (UAV) control. Papers that study observers that are akin to
the complementary filter on SO(3) for attitude estimation include References 6 and 12-16, and
similar ideas have been applied to pose estimation (e.g., in 46). The idea to use similar techniques
for noisy (instead of deterministic) systems on Lie groups and the subsequent theory of invariant
Kalman filtering is slightly more recent (see, e.g., 2, 4-7, 40).

5. INDUSTRIAL APPLICATION: DRONE NAVIGATION

Hybrid inertial navigation was among the first applications of the EKF in the 1960s and a driver
for scientific breakthroughs and reformulations that led from the original work of Kalman to a

3In the general IEKF theory of Reference 7, there are in fact situations where the gain may partially depend on the trajectory,
but in a way that proves to be harmless.
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Figure 5

The Euroflir 410 (/eft), the last generation of ultra-long-range electro-optical system commercialized by Safran. Its navigation system
includes the first commercial implementation of an invariant extended Kalman filter. It is embedded in particular in the Patroller drone

(right).

widespread industrial tool (see, e.g., 47). The company Safran Electronics & Defense (formerly
known as Sagem), which is the largest European manufacturer of inertial navigation systems
(INSs), chose to invest in invariant filtering. The Euroflir 410 (Figure 5) is the first commercial
product implementing invariant Kalman filtering. It is notably embedded in the recently devel-
oped Patroller drone, which is a long-endurance UAV used for military purposes (the French
army recently purchased 14 Patroller drones) and various other tasks, such as detection of forest
fires.

Figure 6 was created from real in-flight experimental data for Global Positioning System/INS
(GPS/INS) hybrid navigation. The initial heading error was deliberately set to an extreme value
(90°) to obtain experimental confirmation that the convergence is not affected regardless of the

a In-flight alignment b Trajectory

100 T T T T T T T T

= == Reference heading
—— Estimated heading

v
o
T
1

o

Heading (degrees)
|
g 5

-150

—200 1 1 1 1 1 1 1 1
720 740 760 780 800 820 840 860 880 900

Time (s)

Figure 6

Heading estimated by an invariant extended Kalman filter—based inertial navigation system started in flight with an extremely large
initial error (90°) (panel z). Owing to the properties highlighted in Section 4, convergence is not perturbed despite a large initial error

and complicated trajectory (panel 5).
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Figure 7

Heading error for an invariant extended Kalman filter TEKF) (/ef?) and a conventional extended Kalman filter (EKF) (right) for Global
Positioning System/inertial navigation system (GPS/INS) hybrid navigation. The filters have identical performance for very small
initial estimation errors (5°). However, much larger initial estimation errors (90°) completely degrade the time required by the EKF to
converge, whereas they only marginally degrade the IEKE’s performance. The small-angles hypothesis thus seems to be crucial to the
EKF but not to the IEKF.

actual trajectory followed (a fact that agrees with the insights of Section 4). The situation is entirely
different when using a conventional EKF, as shown in Figure 7, which was also created from real
experimental data. The conventional EKF and IEKF indeed share similar behavior for small angles
(around 5°), but the EKF rapidly deteriorates for larger angles, while the IEKF keeps converging
almost as fast.

Remark 3. Commercial navigation systems such as the one equipping the Euroflir 410
have to model a very high-dimensional state that includes sensor bias, scale factors, and
several other uncertainty sources, so that the state space is not a Lie group and the
dynamics are not strictly group affine. However, the IEKF methodology can easily be
adapted and used by appending the other variables to the state and treating them along
the lines of the EKF methodology. The success of this approach stems from the fact
that navigation systems are clearly much closer to group affine systems than to linear
systems, as assumed by the conventional EKF methodology.

6. APPLICATION TO SIMULTANEOUS LOCALIZATION AND MAPPING

The SLAM problem has a rich history in robotics and autonomous navigation over the past two
decades (see, e.g., 48, 49). It can be posed as a filtering problem, and EKF-based SLAM (EKF-
SLAM) was one of the first algorithms used in this field. It was mostly abandoned, though, owing to
the inconsistencies of its estimates. However, it was recently proved in Reference 23 that invariant
Kalman filtering resolves the inconsistency issues of the EKF.

The IEKF-based SLAM (IEKF-SLAM) algorithm was introduced and studied in 2015 (23),
and preliminary ideas date back to 2012 (50). Zhang et al. (51) derived some complementary
properties of the IEKF-SLAM algorithm and successfully applied them to visual-inertial SLAM
(52).
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Figure 8

(#) In the simultaneous localization and mapping (SLAM) problem, a robot (triangle) is moving and makes
measurements relative to some landmarks (circles). The goal is to simultaneously estimate the robot’s
trajectory and the position of the landmarks, i.e., the map. (b)) The problem is unobservable because a global
rotation of the robot and the landmarks is impossible to observe; the robot makes only relative measurements
of landmarks and thus cannot distinguish between the left and right configurations shown in this panel.

6.1. The Inconsistency of Extended Kalman Filter-Based Simultaneous
Localization and Mapping and Benefits of the Invariant Extended Kalman Filter

The issue of EKF-SLAM inconsistency has been the subject of many papers (see, e.g., 53-55),
which have accumulated empirical evidence and theoretical explanations in particular situations.
In this context, inconsistency refers to the inability of the filter’s output covariance matrix P,, to
correctly reflect the true error dispersion E(X,, — )A(,Z‘,,)(Xn - }A(,HH)T. In particular, it was proved
that the orientation uncertainty is a key feature in the inconsistency and that this derives from
the linearization process. A little later, Huang et al. (56, 57) provided a complementary sound
theoretical analysis of EKF-SLAM inconsistency, insisting on the EKF’s inability to correctly
reflect the unobservabilities inherent to the SLAM problem.

Although all of the results below carry over to three-dimensional SLAM, we focus on the
two-dimensional case for simplicity. In the SLAM problem in two dimensions, a robot moves
and observes some fixed features (or landmarks) of the environment. At time #, let x, € R’
be the position of the robot, let 6, be its orientation with respect to a global frame, and let
P1, P2, -5 px € R? be the positions of the K landmarks in the global frame (see Figure 8). The
state is the vector X, = (x,,6,, p1,- .., px), and the goal is to estimate it from observations of
landmarks relative to the robot’s frame through sensors (lidars or cameras) attached to the robot.
The collection of landmarks py, pa,..., px constitutes the map (hence the term SLAM). Let
R(«) denote a planar rotation of angle & and consider the transformation on the state space W, :
X, Oy 1y -+ -5 pr) > (R(@)xy, 6, +0t, R(@)p1, . .., R(a) pk)- As simply illustrated in Figure 8, the
state X, = (x, 6y, p1,- - -, px) and the state W, (X,) are indistinguishable; that is, when departing
from either configuration, regardless of the motions of the robot, it is impossible for the robot
to tell that its own position and orientation and the landmarks’ positions are actually different in
both cases.

The main source of the inconsistency of the EKF-SLAM algorithm derives from this unob-
servability, as illustrated by Figure 9. The linearity of the update step Equation 7 in the original
variables combined with the uncertainty representation N (an, P,j,—1) results in a mere transla-
tion of the confidence ellipsoid at the update step, which does not match with unobservabilities
of the system. By contrast, the SLAM state space can be endowed with a Lie group structure, as
first noted in Reference 50. As proved in Reference 23, this defines local coordinates such that
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Figure 9

Difference between the conventional extended Kalman filter (EKF) and invariant extended Kalman filter
(IEKF) update steps with respect to unobservable directions. (#) EKF-based simultaneous localization and
mapping (SLAM). W, (X,»—1) and Xj,j,—1 correspond to the two undistinguishable configurations of
Figure 85, so {¥, ()A(,,‘,,,l), a € R} defines a continuous curve of states undlstmgulshable from X,,m 1 in the
state space. In terms of a linearized model, this means that ¥/, (X,,) := da W, (X,) defines a direction in the
state space at X, along which no information can ever be gained through measurement data. The problem
with the EKF is as follows. The covariance Py, is computed with local information (i.e., the linearized
model) at the propagated step X, 1. Even if the updated belief correctly reflects the unobservability
there—i.e., the confidence ellipsoid defined by Pn|,, is very elongated in the unobservable direction ¥},
(Xn|,z 1)—1t is then moved over to updated state Xnm through a simple translation. But ¥, (an 1) # ¥,
(X,,|,1), which means that the updated belief N (X, Py is elongated in the direction ¥, (Xn\n—l)7 which
does not match with the actual unobservable direction W, ()2'"|n) at )A(,,‘,,. (b) IEKF-based SLAM. In the
coordinates induced by the Lie group structure of the state space, the unobservable directions W/, (X) become

independent of X. The effect, back in the original variables, is that confidence ellipsoids “turn” in a way that
matches with unobservable directions.

the unobservable directions become independent of the linearization point. As a result, an EKF-
SLAM algorithm based on those coordinates—namely, an IEKF-SLAM algorithm—computes
beliefs that always match with the unobservable directions, which is what allowed the consistency
properties to be proven in Reference 23.

6.2. Experimental Results

The incremental smoothing and mapping (iSAM) algorithm presented in Reference 58 can be
implemented using the package available at https://svn.csail.mit.edu/isam. The method finds
its roots in work by Thrun & Montemerlo (59). At each time step, it returns the maximum
likelihood value of the state given all past measurements. When it converges, iSAM can be viewed
as optimal and provides a reference estimate. This is why, over the past few years, the SLAM
community has gradually turned to optimization-based techniques.

The conventional EKF, described in Algorithm 1; the IEKF, which is a right-multiplication-
based version of Algorithm 2; and the iSAM algorithm have been tested on the publicly available
real Victoria Park data set described by Guivant et al. (60). This data set resulted from a large-
scale experiment in which a vehicle drove through a park, where hundreds of trees constituted
the landmarks. Figure 10 shows the estimated trajectories from different SLAM algorithms along
with the actual GPS-measured trajectory. The algorithms use the odometers, steering angle, and
laser sensors’ measurements, and the GPS measurements are used solely for evaluation. Table 2
shows the error with respect to the GPS measurements for various tunings of covariance matrices
(because the noise characteristics are not precisely known, various choices are possible).

The table is instructive regarding the robustness of the filters: The results of the IEKF and
iSAM are almost insensitive to retained tuning parameters [root-mean-square error (RMSE) stays
between 5 and 11 m], while the conventional EKF shows erratic performance when parameter
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(@) The utility car used for the experiment that generated the Victoria Park data set. The vehicle was equipped with a SICK laser range
and bearing sensor, a linear variable differential transformer sensor for the steering, and a back-wheel odometer. Image courtesy of

J. Guivant and E. Nebot, Australian Centre for Field Robotics. (5) The trajectory of the car estimated by several simultaneous
localization and mapping (SLAM) algorithms along with Global Positioning System (GPS) measurements. Algorithm abbreviations:
EKF, extended Kalman filter; IEKF, invariant extended Kalman filter; iSAM, incremental smoothing and mapping.

tuning is not optimized (RMSE increases up to 123 m). Moreover, the IEKF and iSAM results are
always very close to each other. This is interesting, as there is already a large corpus of experience
and method in the industry for EKF implementation in the field of navigation, which is not yet
the case for optimization-based filtering techniques. In particular, the IEKF has already been
industrially implemented on a flying device (as mentioned in Section 5), and invariant Kalman
filtering may thus open up for novel, robust industrial SLAM algorithms.

Table2 Root-mean-square position errors on the Victoria Park data set for several noise-tuning

parameters
o
1% 4% 8%

oy EKF

1m 6.54 m 123.01 m 34.5m
10 m 6.32 m 10.04 m 13.2 m
oy IEKF

1m 6.50 m 9.07 m 10.84 m
10 m 595m 6.42 m 6.45 m
oy iSAM

Im 6.56 m 9.61 m 10.50 m
10 m 5.52m 5.99m 6.29 m

Parameter o encodes model noise, and parameter o encodes observation noise. The trajectories returned by the filters
were rotated and translated to best match the Global Positioning System (GPS) measurements, and the residual root-mean-
square errors are reported. Note that the results achieved by the IEKF and iSAM algorithms are very close and are weakly
sensitive to (large) variations in the tuning parameters, in contrast to the results of the conventional EKF. This is another
argument in favor of the robustness of invariant Kalman filtering. Algorithm abbreviations: EKF, extended Kalman filter;
IEKF, invariant extended Kalman filter; iSAM, incremental smoothing and mapping.
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7. CONCLUSION

The use of differential geometry and, more precisely, continuous symmetries for estimation
emerged in the nonlinear automatic control field decades ago. Attitude estimation, essentially
for the control of UAVs, has been a strong driver for the development of Lie group-based estima-
tors over the past 10 years, with the most popular attitude estimator probably being the nonlinear
complementary filter described by Mahony et al. (11).

Invariant Kalman filtering was introduced a decade ago in Reference 2 and has motivated many
developments. Since then, the IEKF has been mathematically shown to come with convergence
properties, has been implemented industrially for drone navigation, and has been shown to resolve
a major issue of the EKF when applied to SLAM. SLAM is an important application that is
sometimes considered the holy grail of robotics, as it enables a robot to be truly autonomous
(49). Invariant Kalman filtering opens the way to novel implementations, as the EKF is a proven
algorithm in terms of implementation and validation, but previous attempts to apply the EKF to
SLAM were not satisfactory.

This review has aimed to provide an accessible introduction to the methodology of invariant
Kalman filtering and to allow readers to gain insight into the relevance of the method and the
important differences with conventional extended Kalman filtering. This should be of interest to
readers intrigued by the application of mathematical theories to practical applications and those
interested in finding robust, simple-to-implement filters for localization, navigation, and SLAM,
notably for autonomous vehicle guidance.

SUMMARY POINTS

1. Invariant Kalman filtering is a recent methodology to design extended Kalman filters
(EKFs) based on alternative coordinates dictated by geometry.

2. The invariant extended Kalman filter (IEKF) comes with convergence, stability, and
robustness properties that the conventional EKF lacks. Itis, however, reserved for a class
of systems on Lie groups or systems that are close to this class.

3. The IEKF is particularly well suited to the localization and navigation of autonomous
vehicles and has been successfully implemented in an industrial product of Safran Elec-
tronics & Defense, which is the largest European manufacturer of inertial navigation
systems.

4. The IEKF has recently been proved to resolve the inconsistencies of the EKF for the
important application of simultaneous localization and mapping (SLAM) in robotics.
Although the standard EKF is the traditional algorithm for SLAM, it had been largely
abandoned because of its inconsistencies.
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