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Abstract

We review the problem of defining and inferring a state for a control sys-
tem based on complex, high-dimensional, highly uncertain measurement
streams, such as videos. Such a state, or representation, should contain all
and only the information needed for control and discount nuisance vari-
ability in the data. It should also have finite complexity, ideally modulated
depending on available resources. This representation is what we want to
store in memory in lieu of the data, as it separates the control task from the
measurement process. For the trivial case with no dynamics, a representation
can be inferred by minimizing the information bottleneck Lagrangian in a
function class realized by deep neural networks. The resulting representa-
tion has much higher dimension than the data (already in the millions) but
is smaller in the sense of information content, retaining only what is needed
for the task. This process also yields representations that are invariant to
nuisance factors and have maximally independent components. We extend
these ideas to the dynamic case, where the representation is the posterior
density of the task variable given the measurements up to the current time,
which is in general much simpler than the prediction density maintained
by the classical Bayesian filter. Again, this can be finitely parameterized us-
ing a deep neural network, and some applications are already beginning to
emerge. No explicit assumption of Markovianity is needed; instead, com-
plexity trades off approximation of an optimal representation, including the
degree of Markovianity.
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1. INTRODUCTION

Say you have a time series of data and wish to store a function of it that has constant complexity,
which we call a representation, that is useful for a prediction or control task. Here, useful means
that the representation retains the same amount of information about the task as the original data.1

For example, if yt is the output of a linear time-invariant system with true finite-dimensional
state xt , driven by white, zero-mean Gaussian noise, then a sufficient representation x̂t of the data
yt := {y0, . . . , yt} for the task zt—for instance, prediction zt = yt+1—is the mean and covariance
of the posterior density p(xt |yt) (1) or, equivalently, the posterior itself (we further discuss this
equivalence below). This representation summarizes all past history of the data for the purpose
of the task (in this case, predicting its future).2 In other words, given the representation, past data
are independent of future data. Such independence makes it possible to separate the inference of
the state given the measurements from the control design given the estimated state (5).

Such a separation principle has served the practitioner well over the years but has left us with
few tools for cases when the underlying assumptions are not satisfied: What if noise is not additive
or Gaussian? What if the true state is high dimensional or even infinite dimensional? What if the
data are also high dimensional, and almost all of the data are irrelevant for the control task?

Unfortunately, these are conditions that the practitioner of robotics and autonomous systems
faces routinely: The task may include navigation in an unknown environment populated by objects
whose shape is described by (infinite-dimensional) surfaces and reflectance functions; the data
may include images with millions of channels (pixels), predicting most of which is irrelevant to
the navigation task; and nuisance factors may include occlusion and changes of illumination and
pose, which are far from white, zero-mean Gaussian noise. Does a separation principle exist for
this kind of scenario? Is it still possible to infer a bounded-complexity function of the data that
can be stored in memory in lieu of the data, with no information loss?

To be sure, there have been many attempts to answer these questions. In sufficient dimen-
sionality reduction (6, 7), one aims to identify small-dimensional statistics (e.g., projections) that
summarize the data. Similarly, the classical use of invariants in image analysis is to remove re-
dundancy from the data by mapping it to the quotient space, which for images can be a thin set
(8). These approaches have had limited impact in robotics and autonomous systems. Sufficient
reductions are either too restrictive (linear projections) or too hard to compute and difficult to
use. But what if we go the opposite way of dimensionality reduction? What if we instead increase
the dimensionality beyond that of the data, already in the millions? What if, instead of computing
statistics (deterministic functions of the data), we allow representations to be arbitrary stochastic
functions?

At least for simpler tasks, such as classification (9) or control in a finite setting, deep neural
networks (DNNs) with hundreds of millions of parameters have shown remarkable empirical
success. Can we leverage this success to infer representations of time series specifically for filtering
and control tasks? Is there a theoretical framework that explains why large networks would work
well for control?

Using a large network seems ill advised at first: The bias-variance dilemma (10) states that as
we increase the complexity of a model inferred from finitely sampled data, the model’s ability

1For such a representation to exist, we must assume that the data satisfy a Markov model, an assumption to which we return
below.
2If the model is not known, then the representation includes a constant component that belongs to an equivalence class of
realizations (2), and there is an elegant geometry that is exploited in subspace system identification (3). Even if there is no
true finite-dimensional state, under the Markovian assumption with Gaussian inputs of known dimension, one can infer a
finite-dimensional predictor along with the state and model parameters (4).
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to capture the underlying distribution degrades, a phenomenon referred to as overfitting, which
seems at odds with the empirical success of DNNs (11). However, if the network complexity is
measured by information content, rather than dimension, a well-trained DNN for classification
faithfully obeys the bias-variance trade-off (12), and relaxing representations to be stochastic
functions has the double advantage of simplifying the computation of information quantities and
analyzing the properties of the resulting representations.

In this article, we study representations for robotics and autonomous systems using tools from
statistics and information theory and using DNNs as the class of functions implementing them
(realizations). We first review the simple case of a model with trivial dynamics, to introduce the
machinery of DNNs, and then extend it to the dynamic case.

1.1. Outline of the Review

In Section 2, we introduce the defining properties of representations and formalize the notions
of sufficiency, minimality, invariance, and separation. Since representations that are minimal and
sufficient do not exist in general in finite dimensions (13), we start from the posterior, which is
minimal sufficient (14) but infinite dimensional, and frame the problem of learning representa-
tions as an approximation problem where complexity is modulated explicitly in the information
bottleneck Lagrangian (IBL). This is a cost functional to be minimized with respect to a class of
functions in a sufficiently rich set.

Like many other function classes, DNNs are universal approximants in the limit where the
number of parameters goes to infinity. However, they enjoy a peculiar coupling between the model
parameters and the properties of the learned representation that make them better than most when
we want the representation to be invariant to nuisance variability and to have components that are
maximally independent (disentanglement). Section 4 provides a succinct introduction to DNNs,
to the extent needed to follow the rest of the article.

Section 3 presents a series of core results that explain in what sense deep networks are approx-
imations of optimal representations for static systems (15). Specifically, through the use of the
IBL, we formalize the trade-off between the complexity of the data representation and the error
we commit when we use this representation to solve the task in lieu of the original data.

However, at first sight the IBL does not address two important properties of a representation,
invariance and disentanglement, which we should then deal with separately. Instead, we show that,
given sufficiency, invariance is equivalent to minimality. We also show that the IBL is equivalent
to the cross-entropy loss typically used for classification tasks in deep learning except for an
added regularizer, thus creating an important link between the (information-theoretic) optimal
representations and the deep learning practice. Furthermore, some heuristic methods used in
optimizing deep networks [stochastic gradient descent (SGD), dropout, and variants of dropout]
approximate this regularizer (12). We then show that, somewhat counterintuitively, stacking layers
of neural networks increases the minimality of the representation and therefore its invariance. This
is tied to the architecture of deep networks and partly explains their success.

Architecture design is also critical in coupling the optimization process, where the IBL is
minimized with respect to the parameters of the network (weights), with the desirable properties of
the resulting representations (activations), which we outline in Section 2. Specifically, in Section 5,
we describe an inequality that links the activations of a deep network (a representation of the test
datum) and its weights (a representation of the training set). This duality also sheds light on the
generalization properties of DNNs.

Section 6 extends the model to dynamical systems. By explicitly introducing a task variable,
which is in general separate from the data, we open the possibility of drastically more efficient
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representations than those sufficient for future data prediction, while still learning end to end with
a simple filter.

In Section 8, we discuss some properties and limitations of the representation proposed. Specif-
ically, we discuss the limitations of the Markovianity assumptions in classical models and how the
proposed model partially overcomes them by trading them off against complexity costs.

1.2. Related Work

Deep learning is impacting many areas of engineering and science, including time-series fore-
casting (16); it shows promise especially when some of the most common hypotheses underlying
conventional methods, such as Markovianity, are not satisfied (17). Several studies have examined
extensions of classical Bayesian filtering, including using neural networks, but the resulting ap-
proaches had drawbacks. First, the complexity of the update rule, which in the classical Bayesian
setting requires computing the posterior of the data given the hidden state, is problematic for
high-dimensional data types such as images. Second, the only task considered is prediction of the
data, which is usually overkill when the actual task is, say, control: One does not need to model the
complex reflectance properties of the world or predict the color of each pixel to decide whether
to steer a vehicle to the right. Finally, existing methods do not allow an explicit trade-off between
the complexity of the hidden state and the quality of the prediction error. Notice, however, that
variational Bayesian methods can be used as a partial solution to the first problem (18, 19), as long
as the function class covers the underlying data distribution, which remains an open problem for
natural images.

Among other methods, the deep Kalman filter (18) assumes the existence of a Gaussian latent
state and nonlinear transformations that explain the observations and use a variational autoencoder
to infer such a model. This choice is restrictive, as the only task allowed is the reconstruction of the
measurements. Also, the method focuses on batch system identification, whereas we are interested
in a causal, online scheme.

In a study more directly related to our approach, Langford et al. (20) suggested that, rather
than finding a (generally complex) hidden state, we could focus on finding a statistic xt of the past
data yt that separates past data from future predictions. Such a statistic can be learned and updated
without using Bayes’s rule, thereby avoiding the complex computations of the data posterior
p(yt |xt). However, their analysis is restricted to linear models, and the task is restricted to the
prediction of future data.

Constructing deterministic functions of the data (statistics) that separate the past from the future
requires N+N 2 (embedding) dimensions [the mean and covariance maintained by a Kalman filter
(21), where N is the dimension of the state space]; however, as we show below, a stochastic repre-
sentation can make do with N dimensions, at the cost of maintaining samples from the distribution,
as in a particle filter. Sigma-point filters (22) are deterministic sample-based representations that
fall between these two cases. In this case as well, the task is prediction of the measurements. We
allow the task to be more general, including the case where one does not care about being able to re-
produce every channel of the measurements (e.g., the color of every pixel in the image) but instead
cares only about a small projection or quotient of the data with respect to the action of nuisances.
Our model also allows even more flexibility relative to the strong assumption of Markovianity im-
plicit in the classical filtering equations. The inferred state can be thought of as a separator but only
for the measurements, as opposed to a more general task, which makes the problem less tractable
than in our case, because the statistics that matter for control typically have far less complexity
than the data. Also, the proofs provided apply only to minimal realizations. In our model, we trade
off Markovianity and complexity, which is not contemplated in the classical filtering equations.
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The trade-off we seek between the complexity of the representation and sufficiency for future
prediction is also closely related to the minimum-information linear-quadratic Gaussian (LQG)
control of Fox & Tishby (23), which explicitly accounts for the agent having a representation
of bounded complexity. They address only the LQG case but give a complete account of it.
Similarly, Tiomkin et al. (24) and Rubin et al. (25) deal with capacity costs but in continuous time.
The general principles were laid out by Fox et al. (26).

The theory we describe here emphasizes that, in order to obtain efficient representations of the
data, we should focus on a specific task, such as control, rather than predicting high-dimensional
future data. Following a related idea, Dosovitskiy & Koltun (27) assumed that there is a low-
dimensional vector of measurements separate from the actual measured data that can be easily
obtained and on which the control loss depends linearly. In our parlance, predicting the future is
a task sufficient for control and therefore allows us to learn a sufficient representation for control.
In particular, optimal control reduces to minimum-prediction error, and one can simply train
a network to predict future measurements conditioned on the current policy and given what
control action is going to be taken at the current time. Using this technique for control shows
state-of-the-art performance on video games.

Finally, we study the quantity of information that the observed data contain about the pa-
rameters of the system plays. This quantity was considered by Houthooft et al. (28), who used a
variational approximation similar to ours to measure the information content in the data using
a neural network, which then learned a control policy for exploration that maximized this infor-
mation quantity. In this case, the model is a constant parameter, akin to an assumption of time
invariance and equivalent to Markovianity.

1.3. Preliminaries

We denote the history of a process from time t0 to t by yt
t0 ={yt0+1, . . . , yt}, where we omit

the subscript when t0= 0. Thus, yt denotes the measured data up to time t, while zt denotes
the quantity of interest (task) at that time, which could be the value of the measurements at a
future time, zt = yt+τ . We consider trivial dynamics at first, with each (yt , zt) ∼ pθ (y , z) sampled
independently and identically distributed (i.i.d.) from an unknown density pθ .

For random variables y , z, x, we denote the expectation of y with respect to the mea-
sure p(y) by Ep [y], the (differential) Shannon’s entropy by H(y) = Ep [− log p(y)], con-
ditional entropy by H(y |z) := EyEx[− log p(x|y)] = H(y , z) − H(z), (conditional) mutual
information by I (y ; z|x) = H(y |x) − H(y |z, x), Kullback–Leibler (KL) divergence by
KL(p(y) ‖ q (y)) = Ey∼p(y)[log p(y)/q (y)], and cross-entropy by Hp ,q (y) = Ey∼p(y)[− log q (y)].
The total correlation of x, denoted by TC(x), is defined as

TC(x) := KL(p(x) ‖
∏

i
p(xi )),

where p(xi ) are the marginal distributions of the components of x. Notice that TC(x), also known
as multi-information or multivariate mutual information, is zero if and only if the components of x
are independent, in which case we say that z is disentangled. We make use of the following identity:

I (x; y) = Ey∼p(y)KL(p(x|y) ‖ p(x)).

We say that y , x, z form a Markov chain, indicated with z→ x → y , if p(z|y , x) = p(z|x). The
data-processing inequality for a Markov chain y → x→ z ensures that I (y ; x) ≥ I (y ; z).

We define a nuisance to be any random variable that affects the observed data y but is not
related to the task, z ⊥⊥ n, or, equivalently, I (z; n) = 0. Similarly, we say that the representation
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x is invariant to the nuisance n if x ⊥⊥ n, or I (x; n) = 0. When x is not strictly invariant but
minimizes I (x; n) among all sufficient representations, we say that it is maximally insensitive to n.

For instance, to recognize the same object in two views, both vantage point and illumination
are nuisances: They affect the data but do not inform the task variable z. On the other hand, to
navigate, vantage point is the variable of interest, whereas the visual appearance of surrounding
objects is a nuisance.

The data can always be written as a function of the task and of all nuisances affecting it (12).
Specifically, given a joint distribution p(y , z), where z is a discrete random variable, we can always
find a random variable n independent of z such that y = f (z, n) for some deterministic function f .

Given random variables y , z, and x with joint density p(y , z, x), we say that x is sufficient of y
for the task z if we have the Markov chain y → x → z, i.e., if p(z|y , x) = p(z|y). We say instead
that the posterior of x, p(x|y), is sufficient of y for z if p(z|y) = ∫

p(z|x)p(x|y)dx. Notice that the
posterior of a sufficient representation is in turn always sufficient, since p(z|y) = ∫

p(z, x|y)dx =∫
p(z|x, y)p(x|y)dx = ∫

p(z|x)p(x|y)dx. The converse does not hold in general but holds in the
important case in which x is a deterministic function of y .

For example, in visual correspondence, the (test) datum yt is an image (or a part of an image,
such as a patch or bounding box around a feature point), while the task z ∈ {0, 1} is a binary
decision as to whether the image portrays the same scene as a previously seen (training) image
yt−τ for some τ > 0. Under the admittedly restrictive assumptions of corresponding images
being related by a similarity transformation of the domain (translation, rotation, and scaling of the
image) and a similarity transformation of its range (contrast transformations), a sufficient invariant
representation can be formally computed in closed form and approximated numerically, as done
by Dong & Soatto (29). In particular, the domain-size pooling–scale-invariant feature transform
(DSP-SIFT) consists of a histogram of gradient orientations, which are invariant to contrast, with
translation and scale locally marginalized (averaged) and orientation selected according to a data-
dependent criterion (direction of maximum average gradient norm). In this case, vantage point,
modeled simplistically as a similarity transformation of the image domain, is a nuisance to which
the representation is invariant.

On the other hand, in vision-based navigation or simultaneous localization and mapping
(SLAM), the vantage point zt ∈ SE(3), i.e., the position and orientation of the sensor platform
relative to an inertial reference frame, is the task. The data yt = {y0, . . . , yt} represent the history
of images measured up to the current time. While the posterior density p(zt |yt) appears sufficient
for zt , since it contains all information we have about zt up to the present, as we show below,
it is not sufficient to update the representation given future measurements. Rather, a sufficient
representation must include the approximate speed and position of the sensor and the position
of observed feature points in the global reference frame. Consequently, most SLAM systems
maintain an approximation of the joint posterior of a sparse attributed point cloud and the sen-
sor pose—for instance, using an extended Kalman filter or a particle filter. The attribute of each
point—for instance, a DSP-SIFT descriptor—must be sufficient to establish correspondence, and
the positions of the points serve as a reference for camera pose. The number of points in the
representation must be sufficient to define a reference frame visible with high probability at any
future time.

In this article, we focus on the general case of sufficient posteriors and abuse the notation to
refer to both the random variable x and the posterior p(x|y) as being sufficient.3

3An equivalent characterization using conditional expectations is to say that x is sufficient of y for z if E[ f (z)|y , x] = E[ f (z)|x]
for any measurable function f and, similarly, that the posterior is sufficient if E[E[ f (z)|x]|y] = E[ f (z)|y] for any f .
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2. DESIDERATA FOR REPRESENTATIONS

We call a representation x of the data y any stochastic function x ∼ p(x|y) of y . Ideally, we would
like x to be sufficient for the task z; that is, all the information that y contains about the task should
also be contained in x, or I (x; z) = I (y ; z). To avoid squandering resources, the representation x
should also be minimal; that is, I (y ; x) should be smallest among all sufficient representations x.
Note that we are defining “small” in terms of the information content, not the dimension, of x.
Moreover, we would like x to be invariant to a nuisance n, I (x; n) = 0, or, if that is not possible,
at least maximally insensitive to it—i.e., I (x; n) is minimized. Note that we require invariants to
be uninformative, not constant, with respect to nuisance variability. We impose no requirement
on identifiability and harbor no hope of uniqueness of representations. However, to facilitate
their use, we do wish for the components of x to be maximally disentangled; that is, we want
TC(x) = KL(p(x) ‖ ∏

i p(xi )) to be minimized.
The first two properties are satisfied by any minimal sufficient representation, which can be

found by solving

minp(x|y) I (y ; x)

subject to H(z|x) = H(z|y)

with respect to the class of posteriors p(x|y), or minimizing the corresponding IBL (30):

L = H(z|x)︸ ︷︷ ︸
cross-entropy

+ β I (x; y)︸ ︷︷ ︸
regularizer

. 1.

The IBL trades off sufficiency and minimality, regulated by β, and can be optimized efficiently
when the x is parameterized by a neural network (15, 31). However, we are also interested in the
two other properties, invariance and disentanglement, that are not explicit in the IBL and are the
focus of the next section.

3. LEARNING INVARIANT AND DISENTANGLED REPRESENTATIONS

The following key result from Achille & Soatto (12) connects the minimality of a representation
to its invariance to nuisances.

Proposition 1. Let n be a nuisance affecting the data y . Then, for any representation x
of y , we have

I (x; n)︸ ︷︷ ︸
invariance

≤ I (x; y)︸ ︷︷ ︸
minimality

− I (y ; z)︸ ︷︷ ︸
constant

,

where the right-hand side is minimized when x is minimal. Moreover, there always exists
a particular nuisance n such that equality holds up to a (generally small) residual ε, that
is,

I (x; n) = I (x; y)− I (y ; z)− ε,

where ε := I (x; z|n) − I (y ; z). In particular, 0 ≤ ε ≤ H(z|y),4 and ε = 0 whenever x is
a deterministic function of y . Under these conditions, a sufficient statistic x is invariant
(maximally insensitive) to nuisances if and only if it is minimal.

4Notice that since ε ≤ H(z|y), and usually H(z|y)	 I (y ; x), we can generally ignore the extra term.
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This result implies that, rather than manually imposing invariance to nuisances in the repre-
sentation, which is usually difficult, we can construct invariants by simply reducing the amount of
information that x contains about y , while retaining sufficiency. As discussed above, this can be
done by using a neural network to minimize the IBL (15).

We analyze deep networks in Section 4, but this result, together with the data-processing
inequality, already suggests an advantage in stacking multiple intermediate representations into
layers. In fact, suppose that we have a Markov chain of representations

y → x1 → x2

such that there is an information bottleneck between x2 and x1, that is, I (x1; x2) < I (x1; y). Then,
if x2 is still sufficient, it is necessarily more minimal, and therefore more invariant to nuisances,
than x1. Notice, moreover, that bottlenecks are easy to create, either by reducing the dimension
so that dim(x2) < dim(x1) or by introducing noise between x2 and x1. This is indeed common
practice in designing and training deep networks, which concatenate multiple layers

y → x1 → x2 → · · · → xL

so that, whenever layer xL is sufficient of y for z (which is imposed by the training loss), then xL

is more insensitive to nuisances than all the preceding layers.
This also relates to the notion of actionable information (32), which is the entropy H(y) :=

H( f (y)) of a deterministic maximal invariant f (y) of the observed data. In the special case when the
representation x = f (y) is deterministic, a representation that minimizes the IBL also maximizes
actionable information (12). Interestingly, the IBL can also be modified to favor deterministic
representations of the data by replacing the mutual information cost I (y ; x) with the entropy H(x)
of the representation (33).

Finally, Achille & Soatto (15) showed that, if the mutual information I (y ; x) =
Ey KL(q (x|y) ‖ xq (x)) is naively approximated by substituting the unknown joint marginal q (x)
with a factorized prior q̃ (x) = ∏

i q (xi ), then the modified IBL not only is easier to compute, but
also can be used to bound the total correlation of the representation x. Therefore, minimizing
the simplified IBL yields a representation that trades off sufficiency with complexity, invariance,
and disentanglement. This is particularly interesting because it implies that simply reducing in-
formation when using a factorized prior yields not only invariance but also disentanglement, even
without explicitly adding a term in the loss function (IBL).

Up to this point, representations have been generic (infinite-dimensional) functions of past
data. In the next section, we introduce the basic elements of DNNs, the class of functions we
choose to approximate representations that minimize the IBL.

4. LEARNING WITH DEEP NEURAL NETWORKS

In this section, we sketch the very basics of deep learning, by describing first the class of functions
realized by DNNs and then the choice of functionals and optimization schemes used to determine
their parameters. In Section 5, we then show how this process, despite being agnostic about desir-
able properties of the representations outlined in the previous sections, manages to achieve just that
by exploiting a peculiar information duality between the weights and the activations of the network.

4.1. The Function Class of Deep Neural Networks

A DNN is a parameterized class of nonlinear functions obtained by composing multiple layers.
Each layer implements a linear transformation of its input, which is the output of the previous

294 Achille · Soatto



AS01CH12_Soatto ARI 10 April 2018 16:7

layer, followed by a (generally element-wise) nonlinearity. Specifically, let y := x0 ∈ R
d be the

input data, and let W k ∈ R
di−1×di be a matrix, where d0 := d . Then, we define the activations

(output) of the kth layer as xk = φk(W kxk−1), where φk is a nonlinear function. A common choice
for the nonlinearity is φk(x) = max(0, x), also called a rectified linear unit (ReLU). The output xK

of a network with K layers is the function

F (y ; w) = φK (W K φK−1(W K−1 . . . φ1(W 1 y) . . .)),

where w = {W 1, . . . , W k} is the set of parameters, or weights, of the network. Each xk can be
considered a representation of the original input y , and its components are generally called features
(or feature maps, activations, or responses). By the data-processing inequality, xk contains no more
information than y ; however, as shown below, in a well-trained network we expect xk to contain
all the information that the data contain about the task. Since the output of the network is often a
(conditional) probability distribution [e.g., the probability p(z|y) of a label z given the image y],
the last nonlinearity is usually a softmax nonlinearity, softmax(x)i = e yi /(

∑
j e y j ), which ensures

that the output of the network is positive and sums to one.
When the input y has some particular structure, such as an image, the linear transformation W k

can be chosen to exploit this structure. For example, when y is an image, it is common to choose
W k to be a set of convolutions. Networks using convolutional maps, known as convolutional neural
networks (CNNs), have the notable property that their features are invariant to translations (34)
and have considerably fewer parameters (the number of parameters depends only on the sizes of
the filters, which are generally small, rather than on the size of the image). Aside from reducing
the size of the parameter space, the use of convolutions has a drastic, and not yet fully understood,
effect in achieving desirable properties of the networks when operating on imaging data (35).

4.2. The Loss Function and Optimization

The output of a network is usually interpreted as a probability distribution q (z|y , w) over the
inference target z (e.g., the label of an image or the position of an object). Per Soatto & Chiuso
(35), if that output approached the true posterior, it would be a minimal sufficient representation.

When z is a discrete random variable, this identification can be done directly by letting the
output F (y , w) of the network be a probability vector (or an unnormalized likelihood function).
When z is continuous, we can choose a family of parameterized distributions and let the network
output the parameters (e.g., mean and variance for a normal distribution). In both cases, we
think of a deep network as a map y 
→ Fw(y) := q ( · |y , w) where, absent any system dynamics,
the parameters w are constant and usually determined by maximizing the log-likelihood of the
observed data, which leads to the cross-entropy loss

L(w) = Hp ,q (z|y , w) = 1
t

t∑
i=1

− log q (zi |yi , w).

Notice that the cross-entropy loss can be decomposed as

Hp ,q (z|y , w) = Hp (z|y)+KL(p(z|y) ‖ q (z|y , w)).

Since all terms are positive and only the KL divergence depends on w, we can conclude that L(w)
is minimized if and only if q (zi |yi , w) = p(zi |yi ) on all observed samples, giving an alternative
justification for the use of this loss.

Minimizing the loss L(w), and hence determining the weights w, is usually done using SGD.
We start by randomly initializing the parameters w (36). Then, at each step k, a random subset

www.annualreviews.org • A Separation Principle for Control 295



AS01CH12_Soatto ARI 10 April 2018 16:7

(mini-batch) (yik+b
ik , zik+b

ik ) of size b , with ik ∼ unif(0, t − b), is sampled from the observed data
(yt , zt), and we compute the gradient gk relative to the mini-batch:

gk = 1
b
∇wHp ,q (zik+b

ik |y
ik+b
ik , w) = 1

b

b∑
j=0

−∇w log q (zik+ j |yik+ j , w).

Since∇w L(w) = E[gk], we can see gk as an unbiased (but high-variance, or “noisy”) estimate of the
real gradient of the original loss function with respect to w. This can be computed efficiently since
it requires computing the gradients on only b samples rather than the whole collection of observed
data, which can number in the millions. The weights are now updated using w← w+ηk gk, where
ηk > 0 is called the learning rate. When the loss function is strongly convex, the gradients are
Lipschitz, and the learning rate decreases as ηk = 1/k, SGD converges to the global optimum of
the loss with convergence rate O(1/t) (37).

There are two main challenges in carrying out this optimization: (a) The loss function is
highly nonconvex, and therefore SGD can converge (through annealing of the learning rate) to
suboptimal solutions, and (b) even if a global minimum is found (the training loss is zero), the
parameters could be overfitting the data, meaning that while w minimizes the loss on the observed
data, the loss evaluated on unseen (future) data could be much larger.

The first problem is partly addressed by SGD itself: Because of the noise added in the com-
putation of the gradient by SGD, the optimization typically settles on extrema that are close to
the global minimum in value. Variants of SGD include using Nesterov’s momentum (37), which
generally yields faster training and improved performance of the network. Other algorithms, like
RMSProp and Adam (38), use the gradient history to reduce the variance in the estimate of the
gradient, which is also adapted to the local geometry of the loss function. While in some tasks,
such as stochastic optimal control (reinforcement learning) (39), these algorithms show drastically
improved performance (as expected), on image classification and similar tasks, the simpler SGD
with momentum can still outperform them, suggesting that the noise added by SGD plays an im-
portant positive role in the optimization. There is at present a considerable amount of activity but
a dearth of results in characterizing the topological and geometric properties of the loss function
and designing algorithms that can exploit it to converge to minima that yield good generaliza-
tion performance, as we discuss in Section 5.1. Generalization, or lack thereof (overfitting), is the
second problem, which we discuss in more detail in the next section.

5. DUALITY AND GENERALIZATION

One of the main problems in optimizing a DNN is that the cross-entropy loss in notoriously
prone to overfitting: The loss is small for (past) training data (thus, optimization is successful) but
large on (future) test data, indicating that the training process has converged to a function that is
far from being an optimal representation.

We can gain insight about the possible causes of this phenomenon by looking at the following
decomposition of the cross-entropy (12):

Hp ,q (zt |yt , w)︸ ︷︷ ︸
cross-entropy

= Hp (zt |yt , θ )︸ ︷︷ ︸
intrinsic error

+ I (θ ; zt |yt , w)︸ ︷︷ ︸
weights sufficiency

+ Ew,yt KL(q (zt |yt , w) ‖ p(zt |yt , w))︸ ︷︷ ︸
efficiency of model

− I (zt ; w|yt , θ )︸ ︷︷ ︸
memorization/overfitting

, 2.

where w ∼ q (w|yt , zt). The first term on the right-hand side of Equation 2 relates to the intrinsic
error and depends only on pθ , the second term measures how much of the information that past
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data contain about the parameter θ is captured by the weights, and the third term relates to the
efficiency of the model and the class of functions fw with respect to which the loss is optimized.
The last (and only negative) term relates to how much information about the labels is memorized
in the weights, regardless of the underlying data distribution. Absent any intervention, the left-
hand side of Equation 2 can be minimized by just maximizing the last term, i.e., by memorizing
the data set, which amounts to overfitting and yields poor generalization. Traditional machine
learning practice suggests that this problem can be avoided by reducing the complexity of the
model or by regularizing its parameters. On the other hand, modern architectures, even when
using standard regularizers, are still prone to memorizing the training labels.

Memorization can, however, be prevented by adding the last term back to the loss function,
leading to a regularized loss Hp ,q (z|y , w)+ I (z; w|y , θ ), where the negative term on the right-hand
side is canceled. However, computing, or even approximating, the value of I (z, w|y , θ ) is at least
as difficult as fitting the model itself.

To overcome this problem, consider D = (yt , zt), the collection of all past data that we are
using to infer the model parameters w. Notice that to successfully learn the distribution pθ , we
only need to memorize in w the information about the latent parameters θ ; that is, we need
I (D; w) = I (D; θ ) ≤ H(θ ), which is bounded above by a constant. On the other hand, to overfit,
the term I (z; w|y) ≤ I (D; w|θ ) needs to grow linearly with the number of training samples N . We
can exploit this fact to prevent overfitting by adding a Lagrange multiplier β to make the amount
of information constant with respect to N , leading to the regularized loss function

L(p(w|D)) = Hp ,q (z|y , w)+ β I (w;D), 3.

which is, remarkably, the same IBL in Equation 1 but now interpreted as a function of w rather
than x. Under appropriate assumptions on the form of the posterior q (w|D), the term I (w;D) can
be computed in closed form, and we can optimize Equation 3 efficiently (12, 40).

Thus, as we have seen, the IBL emerges as a natural criterion both for inferring a representation
of the test datum y that is sufficient and invariant (with no explicit notion of overfitting) and for
inferring a representation w of the training data set (past data) D that avoids overfitting (with no
explicit notion of invariance). A natural question, which we address in Section 5.2, is whether and
(if so) how these two representations and their corresponding IBLs are related to each other.

Note that the IBL above is not the one usually described in the information bottleneck litera-
ture, including various attempts to develop a theory of deep learning. Above, we considered both
the weights and the data set as random variables, and the information bottleneck relates to the
weights as a representation of the data set, rather than relating the activations as a representation of
the test datum, as is customary in the information bottleneck literature. This seemingly subtle but
radical departure from current practice was first introduced by Achille & Soatto (12) and is key to
relating generalization to representation learning and to arriving at a consistent theory of represen-
tation learning. In the next remark, we arrive at similar conclusions using entirely different tools.

Remark 1 (alternative derivation of the information bottleneck Lagrangian for
the weights). An alternative approach to the generalization problem is to use the
probably approximately correct (PAC)–Bayes framework (41) to bound and minimize
the future testing error, rather than directly minimizing the training error. This can be
achieved by finding a posterior distribution q (w|D) over the weights that is closed to
some fixed prior p(w) while still being able to fit the training data (41). Concretely, this
reduces to minimizing the loss function

L(q (w|D)) = H(z|y , w)+ β EDKL(q (w|D) ‖ p(w)). 4.
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The sharpest PAC–Bayes upper bound on the test error is obtained when the prior p(w)
is chosen to be exactly the marginal distribution q (w) = EDq (w|D) of the weights over all
data setsD and trainings of the network (12, 41). In this case, using the identity I (w;D) =
EDKL(q (w|D) ‖ q (w)), Equation 4 reduces precisely to the IBL in Equation 3 (11).

Equation 4 also admits another important special case: For β = 1, it reduces to the
evidence lower bound (ELBO)

−log p(zt |yt) ≤ Hp ,q (zt |yt , w)+KL(q (w|D) ‖ p(w)),

which can be used to find an approximation q (w|D) of the real Bayesian posterior p(w|D)
of the network weights given the data set D and the prior p(w) (40). The use of the
PAC–Bayes framework to study generalization properties of deep networks and their
connection to the geometry of the loss function, which we consider in the next section, has
also been championed by Dziugaite & Roy (42), albeit without the connection to the IBL.
They further used the theory to derive strong bounds on the test error of the network.

5.1. Information, Generalization, and Flat Minima

Thus far, we have suggested that adding the explicit information regularizer I (w;D) prevents
the network from memorizing the data set and thus avoids overfitting, which was also confirmed
empirically by Achille & Soatto (12). However, common networks are not typically trained with
this information regularizer, thus seemingly undermining the theory. However, even when not
explicitly controlled, I (w;D) is implicitly regularized by the use of SGD (43). In particular, empir-
ical evidence suggests that SGD biases the optimization toward flat minima—local minima whose
Hessian has mostly small eigenvalues. These minima can be interpreted exactly as having low
information I (w;D), as suggested early on by Hochreiter & Schmidhuber (44). As a consequence
of previous claims, flat minima can be seen as having better generalization properties.

More precisely, let ŵ be a local minimum of the cross-entropy loss Hp ,q (z|y , w) and let H be
the Hessian at that point. Then, under suitable assumptions on the form of the posterior, for the
optimal choice of the posterior parameters we have (12)

I (w;D) ≤ 1
2

K [log ‖ŵ‖2
2 + log ‖H‖∗ − K log(K 2β/2)],

where K = dim(w) and ‖H‖∗ = tr(H) denotes the nuclear norm of the matrix. Therefore, the
information in the weights is upper bounded by the nuclear norm (and hence the flatness) of the
Hessian. Notice that a converse inequality—that is, low information implies flatness—need not
hold, so sharp minima can in principle generalize as well.

In the next section, we show that the quantity of information on the weights is connected not
only to the geometry of the loss function but also to the minimality (invariance) and disentan-
glement of the activations. In particular, this shows that weight regularization, whether implicit
(SGD) or explicit (IBL), biases the optimization toward good representations.

5.2. The Duality of the Representations

The core link between information in the weights, and hence the flatness of the local minima, min-
imality of the representation, and disentanglement, can be described by the following proposition
from Achille & Soatto (12) for the case of a single layer.

Proposition 2. Let x = W y be a single layer of a network. Under opportune hypotheses
on the form of q (W |D), we can find a strictly increasing function g(α) such that we have
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the uniform bound

g(α) ≤ I (y ; x)+TC(x)
dim(x)

≤ g(α)+ c ,

where c = O(1/ dim(y)) ≤ 1 and α is related to I (w;D) by α = exp{−I (W ;D)/
dim(W )}. In particular, I (y ; x) + TC(x) is tightly bounded by I (W ;D) and increases
strictly with it.

Using the Markov property of the layers, we can now easily extend this bound to multiple
layers. Let W k for k = 1, . . . , L be weight matrices, and let xi+1 = φ(W kxk), where x0 = y and φ

is any nonlinearity. Under the same assumptions as the previous result, one can prove

I (xL; y) ≤ min
k<L

{
dim(xk)

[
g(αk)+ 1

]}
,

where αk = exp{−I (W k;D)/ dim(W k)}.
Together with the results of Section 3, this implies that regularized networks containing low

information in the weights automatically learn a representation of the input that is both more
invariant to nuisances and more disentangled. Moreover, by Section 5.1, SGD is biased toward
such representations.

This result is important because it establishes connections between the weights, which are a
representation of past data, given and used to optimize a loss function that knows nothing about
sufficiency, minimality, invariance, or disentanglement, and representations of future data, which
emerge to have precisely those properties. Such connections are peculiar to the class of functions
implemented by DNNs and do not apply to any generic function class.

Finally, we have all the elements to extend the notion of representation and the optimization
involved in inferring it (which encompasses system identification and filtering) to a dynamic setting.

6. REPRESENTING TIME SERIES

In this section, we consider the case where the data are not drawn i.i.d. from a distribution with
constant underlying parameters. Instead, we assume that the representation can evolve over time
according to a probability law that does not.

6.1. A Hidden-State Dynamic Model

Many standard models for filtering and control assume the existence of a hidden state xt that
evolves following a Markov process through some state transition probability p(xt+1|xt , ut), where
we made the dependency on the control action ut explicit. The observations yt are sampled from
the hidden state xt with some distribution p(yt |xt), as described by the graphical model shown in
Figure 1.

The fundamental assumption of this model is that there is a random variable of bounded
complexity, the state xt , that separates new observations yt+1 from all past ones yt . The advantage
of having such a variable is apparent in the classical filtering equations:

p(xt+1|yt+1, ut) ∝ p(yt+1|xt+1)
∫

p(xt+1|xt , ut)p(xt |yt , ut−1)dxt , 5.

p(yt+1|yt , ut) =
∫

p(yt+1|xt+1)p(xt+1|yt , ut)dxt+1. 6.
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Figure 1
Graphical model of the evolution of the (hidden) state xt and corresponding observations yt . Notice that
future observations are independent from past observations given the current state.

Here, all the information about the past data yt is contained in the (relatively small) poste-
rior p(xt |yt). In this sense, the posterior is sufficient for the state update [i.e., for computing
p(xt+1|yt+1, ut)] and for the prediction of the data [i.e., for computing p(yt+1|yt)].

In a hidden Markov model or Kalman filter, the transitions are assumed to be linear, and the state
and observations either Gaussian or discrete. In these cases, the posterior can be updated easily,
and there are efficient algorithms to infer the model parameters of the system. However, for many
real problems, the integrals in the filtering equation are not tractable since the transition operator
is often nonlinear. In this case, the complexity of updating the posterior may grow exponentially
(45). Furthermore, the data-generating distribution p(yt+1|xt+1) is difficult to compute or even to
approximate. Finally, while we can always artificially ignore long-term dependencies and consider
the system Markovian by augmenting the state X t = [xt−k, . . . , xt], the resulting state may be too
complex to handle.

While there is no obvious solution to these problems in general, it is often the case that we
are interested not in predicting the data, but only in predicting the control action z, which can
be quite different and far smaller than the data. In the next section, we see that this can guide the
design of efficient filters.

6.2. Separating Representation

Rather than explicitly looking for a Markovian state that can generate the observed data yt , i.e.,
inferring representations for prediction of the data, we focus on finding a representation (proxy
state) xt to predict a task variable zt (for instance, a control input), which is generally far lower
dimensional than the data and allows causal and recursive posterior updating using only the latest
measurements. In this sense, this section is about inferring representations for control.

Motivated by Equation 5, we define the variable xt through its posterior distribution
q (xt |yt , ut),5 and we require that it satisfies the following:

1. Prediction: The posterior of xt is sufficient of yt and ut for zt+k; that is, for each 0 ≤ k < n,
we have

p(zt+k|yt , ut+k−1) =
∫

q (zt+k|xt , ut+k−1
t )q (xt |yt , ut−1)dxt .

This means that the distribution q (xt |yt , ut−1) of the representation of past measurements
and our model distribution q (zt+k|xt , ut+k−1

t ) that predicts the future task variable given the
state are together sufficient to approximate the real posterior p(zt+k|yt , ut+k−1) of the task
given the past observations.

5We use q to distinguish the (unknown) data distribution p from our model distribution.
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2. Update: the posterior of xt is sufficient of yt and ut for xt+1:

q (xt+1|yt+1, ut) =
∫

q (xt+1|xt , yt+1, ut)q (xt |yt , ut−1)dxt .

That is, the representation contains enough information about the dynamics to update itself
given new measurements. For example, in a Kalman filter, the posterior of the position alone
is not sufficient, since without knowing the speed, we cannot predict the future states.

Note that, like the classical filtering equations, this density propagation is exact. However, unlike
the filtering equations, we can directly learn the transition probability q (xt+1|xt , yt+1, ut) rather
than use Bayes’s rule, and therefore there is no need to compute the posterior p(yt+1|xt+1), which is
generally intractable for high-dimensional and complex data such as natural images. The separator,
in this case, is not the random variable xt but the posterior density q (xt |yt , ut), which is in general
infinite dimensional. As shown below, this model allows us to explicitly trade off the complexity
of the representation with the fidelity of the separation.

Example 1 (Kalman filter). The method we propose reduces, in the linear Gaussian
case, to the Kalman filter. Indeed, it does so in two different ways. First, let xt be the state
of a linear time-invariant Gaussian state-space model and let the task be one-step pre-
diction, zt = yt+1. Now, let x̂t be a random variable such that q (x̂t |yt) = p(xt |yt), where
p(x̂t |yt) is the posterior computed by the Kalman filter, and let q (zt |x̂t) = p(yt+1|xt).
Then, trivially, p(zt |yt) = p(yt+1|yt) = ∫

p(yt+1|xt)p(xt |yt)dxt =
∫

q (yt+1|x̂t)q (x̂t |yt)dxt ,
so the posterior computed by the Kalman filter is sufficient for predicting future measure-
ments. Moreover, by letting q (x̂t+1|x̂t , yt+1) = p(xt+1|xt , yt+1) = 1

Z p(yt+1|xt+1)p(xt+1|xt),
we see that q (x̂t |yt) is also sufficient for the update. Therefore, the posterior computed
by the Kalman filter satisfies both the prediction and update models above. Notice, how-
ever, that this is not the only option. Instead, let x̂t = ( ŷ(yt), P (yt)) be the mean and
covariance of the innovation computed by the Kalman filter. Then xt is a deterministic
sufficient statistic (function of the past yt). Notice that, in this case, the dimension of
the representation x̂t is larger, and the update equation is given by the more complex
Riccati equation. Therefore, by adopting a deterministic representation, we have had to
increase its computational complexity.

While in Equation 5 we need to use the prediction probability p(yt |xt) to update the posterior,
which is not tractable when the data yt are high dimensional, using the prediction and update
conditions given above, we have the simple iterative update rule

q (xt+1|xt , yt+1, ut+1) =
∫

q (xt+1|xt , yt , ut) q (xt |yt , ut)dxt

and the task prediction rule

p(zt |yt , ut) = q (zt |yt , ut) =
∫

q (zt |xt)q (xt |yt , ut)dxt ,

where the first equality is due to the sufficiency hypothesis. Unlike Equation 5, these update
equations involve only distributions over zt and xt , which are assumed to have lower effective
dimension than the data yt , or at least to have a simpler distribution (i.e., discrete or Gaussian).

Moreover, notice that if we restrict q (xt |yt , ut) to be degenerate (i.e., a Dirac delta), so that xt

is a deterministic function of the past history of the measurements, which this framework allows,
then the integrals are trivial, and all updates can be computed exactly. On the other hand, allowing
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a more complex form for q (xt |yt , ut) could drastically simplify the computation of both q (zt |xt) and
q (xt+1|yt+1, ut , xt), so there is a trade-off between the cost of computing the integrals for q (xt |yt , ut)
and the complexity of the prediction and update rules, as seen in the case of the Kalman filter. More
specifically, when the model is linear and the driving input white, zero-mean Gaussian, and i.i.d.,
the posterior is Gaussian. Thus, one can consider either the posterior itself or the parameters that
represent it (mean and covariance matrix) as the separator, with the latter being a deterministic
representation.

While the complexity of a posterior q (xt |yt , ut−1) sufficient for the task zt is generally much
smaller than what would be required to predict yt+1, a representation xt that satisfies all the required
properties may still have a high dimension or high complexity. What we are after is an explicit
way to trade off complexity with the quality of the representation, represented by its degree of
sufficiency and Markovianity. As shown above in the static case, this trade-off can be expressed by
the IBL, which is now

L = 1
T

T∑
t=1

n∑
k=0

Hp ,q (zt+k|yt , ut+k−1)+ β I (xt ; yt , ut),

where Hp ,q is the cross-entropy between the real data distribution p(zt |yt , ut) and our model
distribution q (zt |yt , ut) = ∫

q (zt |xt)q (xt |yt , ut)dxt defined above.

Proposition 3 (n-step prediction loss). Given q (zt |xt , ut) and q (xt |yt , ut , xt−1), define
q (zt |yt) = ∫

q (zt |xt)q (xt |yt , ut)dxt as above. Then the cross-entropy loss

L = 1
T

T∑
t=1

n∑
k=0

Hp ,q (zt+k|yt , ut+k−1)

is minimized if and only if the posterior q (xt |yt) of xt separates zt from the past data yt ,
meaning that p(zt |yt , ut) = ∫

q (zt |xt , ut)q (xt |yt , ut)dxt = F (q (xt |yt , ut)) for almost all yt .

Proof. To simplify the notation, we consider only the case n = 0 (which corresponds
to smoothing), the general case being identical. Recall that Hp ,q (zt |yt) = Hp (zt |yt) +
Eyt∼p(yt )KL(p(zt |yt) ‖ q (zt |yt)), so

L = 1
T

T∑
t=1

Hp ,q (zt |yt)

= 1
T

T∑
t=1

Hp (zt |yt)+ 1
T

T∑
t=1

Eyt KL(p(zt |yt) ‖ q (zt |yt))

≥ 1
T

T∑
t=1

Hp (zt |yt).

Since the degenerate representation xt = yt trivially reaches the lower bound, for any
representation minimizing the loss function, we must have Eyt KL(p(zt |yt) ‖ q (zt |yt)) = 0
for all t and for yt almost everywhere. In particular, for yt almost everywhere, we have
p(zt |yt) = q (zt |yt) = ∫

q (zt |xt)q (xt |yt)dxt . �

Remark 2. Notice that it is not the random variable xt that separates zt from yt (i.e.,
zt ⊥ yt |xt), as it was in the static case. Instead, it is its (posterior) distribution q (xt |yt) that
acts as the separator. However, if the latter is finitely parameterized [q (xt |yt) = qφ(yt )(xt),
where qφ is a parameterized family of probability distributions and φ(yt) is a function],
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then zt ⊥ yt |φ(yt); i.e., the parameters of the distributions can be interpreted as a finite-
dimensional representation that separates the past data from the task.

Corollary 1. Suppose that there exists a separating variable xt of finite complexity. Then,
in the limit β → 0, the IBL recovers a separating representation.

Proof. Since xt has finite complexity, β I (xt ; yt)→ 0 as β → 0. Therefore, in the limit,
the minimum of the Lagrangian is exactly

L′ = 1
T

T∑
t=1

n∑
k=0

Hp ,q (zt+k|yt , ut+k−1).

Therefore, any other minimizer x′ of the IBL must also minimize L′, and by the previous
proposition, it must be a separating distribution. �

7. A SEPARATION PRINCIPLE FOR CONTROL

The previous section showed that, given a task z (a random variable to predict), it is possible to infer
a representation x that trades off complexity with sufficiency and Markovianity. We now specialize
this program for a control task, so that a controller operating on the representation behaves as
if it had access to the entire past history of the data, analogously to the separation principle in
LQG optimal control. Unlike LQG control, however, in general there is no finite-dimensional
sufficient statistic, and therefore, following the program above, we seek a representation that trades
off complexity with fidelity.

To this end, assume that our control task consists of minimizing a control loss R such that

R =
T∑

t=1

rt(yt , ut),

where rt = r(yt , ut) is a possibly stochastic function of the true (global) state of the system xt and
the actions. Notice that even if the system is not Markovian, we can always assume that such a
global state exists; in the worse case, xt = yt . Notice that LQG and other standard control losses
can be written in this form. To simplify, we consider a finite horizon T <∞.

We claim that if the posterior of xt is a sufficient representation of the data yt for the task zt = rt ,
then there exists an optimal control policy π ′ that is a function of the posterior q (xt |yt , ut) alone.

Proposition 4. Let xt be such that the posterior qt = q (xt |yt , ut) of xt is sufficient of
yt , ut for rt , meaning that

p(rt+k|yt , ut+k) =
∫

q (rt+k|xt , ut+k
t )q (xt |yt , ut)dxt .

Then there exists an optimal control policy ut+1 = π∗(qt) that minimizes the expected
risk E[R|π∗] and depends on the past data yt , ut only through qt .

Proof. Adopting standard reinforcement learning notation, let Qπ
>t(y

t , ut , u) =
E[R>t |yt , ut+1 = u, π ] be the expected value of R>t =

∑T
t′=t rt′ when following the

policy π for the last T − t steps given the observation history and action history yt , ut

until now. Define the optimal Q-function Q∗(yt , ut , u) = maxπ Qπ
>t(y

t , ut , u).
Recall that, given Q∗(yt , ut , u), the optimal policy is given by π∗(yt , ut)=

argmaxu Q∗>t(y
t , ut , u). Therefore, to prove that the optimal policy depends only on qt ,
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it suffices to prove that Q∗>t(y
t , ut , u)= Q(qt , u), i.e., that we can compute the optimal

Q-function given qt alone instead of the whole history yt , ut . This follows trivially from
the fact that

Q∗>t(y
t , ut , u) = min

uT
t :ut+1=u

T−t∑
k

E[rt+k|yt , ut+k]

= min
uT

t+1:ut=u

∫ ⎧⎨
⎩

T−t∑
k=0

rt+k q (rt+k|xt , ut+k
t )

⎫⎬
⎭ dq (xt |yt , ut). �

Notice that this proposition does not give an explicit way of learning a policy (since a naive
application would require a brute force optimization over all possible actions). Rather, the use-
fulness of the theorem is that it proves that any representation sufficient to predict the rewards
rt , a fairly general condition, is also sufficient for control. In particular, if rt = rt(mt) is a function
of some (low-dimensional) measurement mt , as suggested by Dosovitskiy & Koltun (27), then
a representation xt trained to predict those measurements mt will also be sufficient for rt and
hence for control. Dosovitskiy & Koltun (27) implicitly exploited this fact to learn a state-of-
the-art control policy for a complex task and high-dimensional data. For example, suppose an
agent whose task is to reach a location is provided with both a (high-dimensional) video input and
a (low-dimensional) GPS input. Since the cost function (distance) can be expressed as a simple
function of the low-dimensional measurements (i.e., the GPS position), a representation that is
sufficient to predict future GPS measurements given the past input and the future control actions
is also provably sufficient for optimal control. However, while training a representation directly
for optimal control is difficult, training a representation in a supervised fashion to predict feature
measurement is comparatively easy.

A more complex example is to learn to control an agent in a video game by predicting future
numerical measurements provided by the game itself, such as score and remaining resources (lives
or ammunition). For instance, Dosovitskiy & Koltun (27) assumed that the reward is a linear func-
tion of past measurements and therefore that future rewards can be computed from a prediction
of the measurements, bypassing explicit computation of the Q-function of reinforcement learning
and instead training to predict future measurements in a supervised fashion. Of course, in many
cases it is not possible to write the reward as an explicit, let alone linear, function of the measure-
ments. However, it may still be possible to express the reward as a function of a lower-dimensional
random variable, as opposed to the hidden state of the environment. Any representation sufficient
for this random variable is therefore a separating representation.

8. DISCUSSION

We have framed the problem of system identification for the purpose of control as that of inferring
not deterministic statistics of sufficiently exciting time series, but rather an approximation of the
posterior of the control loss given past measurements. While this approximation is in general
infinite dimensional, universally approximating function classes, such as neural networks, can be
employed in the inference. This approach yields some nice properties relative to classical Bayesian
filtering. First, we do not need to apply Bayes’s rule, and therefore there is no partition function
to compute, to the benefit of computational complexity. Second, we do not need to make a strict
assumption of Markovianity. Instead, we can explicitly trade off complexity with the fidelity of
the approximation of the posterior. Such a posterior is the separator that plays the analogous role
of the state of a Gaussian linear model in classical linear identification. The good news is that
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the representations learned by generic SGD, while being agnostic of desirable properties of the
resulting representation, end up enforcing them through implicit regularization, as we show for
the static case.

Now for a few caveats. First, the representations we aim to infer are optimal when they are as
good as the data for the chosen task. This does not mean they are good; if the data are uninformative
(or insufficiently exciting), then there is no guarantee that can be made on the quality of the
representation other than that it is sufficient, meaning that it is as good as the data (it can be no
more, per the data-processing inequality). A completely independent problem is how to get as
exciting data as possible, which is the problem of active learning or experiment design; this can be
framed as an optimal control problem, which we do not address here.

Second, we are not suggesting that the model we propose is tractable in its most general form
or that training a neural network to minimize the proposed IBL is easy. However, we show that
minimizing a simple cross-entropy for a particular task (the control loss) leads to a representation
that is sufficient for control. One should notice that this approach has strong links not only with
the work of Dosovitskiy & Koltun (27) but also with reinforcement learning. Indeed, both can be
seen as ways of making the algorithm tractable by directly approximating the expected loss for a
given action.

More importantly, this class of tools opens several potentially exciting research avenues, both
applied—making use of the power of these representations and implementing efficient algorithms
to infer them—and theoretical, as little is known about the properties of these representations
and their approximation bounds. This approach promises to reopen a field that has been shackled
between the linear case (which is nice and elegant and for which a plethora of results are known,
but which has very limited applicability) and the general case (where there is little to say and little
that works in practice).
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