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Abstract

In autonomous systems, the ability to make forecasts and cope with uncer-
tain predictions is synonymous with intelligence. Model predictive control
(MPC) is an established control methodology that systematically uses fore-
casts to compute real-time optimal control decisions. In MPC, at each time
step an optimization problem is solved over a moving horizon. The objective
is to find a control policy that minimizes a predicted performance index while
satisfying operating constraints. Uncertainty in MPC is handled by optimiz-
ing over multiple uncertain forecasts. In this case, performance index and
operating constraints take the form of functions defined over a probability
space, and the resulting technique is called stochastic MPC. Our research
over the past 10 years has focused on predictive control design methods
that systematically handle uncertain forecasts in autonomous and semiau-
tonomous systems. In the first part of this article, we present an overview of
the approach we use, its main advantages, and its challenges. In the second
part, we present our most recent results on data-driven predictive control.
We show how to use data to efficiently formulate stochastic MPC problems
and autonomously improve performance in repetitive tasks. The proposed
framework is able to handle a large set of predicted scenarios in real time
and learn from historical data.
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1. INTRODUCTION

Paraphrasing the definition given in Reference 1, a control system is a device in which sensed
quantities are used to generate an autonomous behavior through computation and actuation. In
autonomous systems, two assumptions can facilitate the control algorithm design: First, there is no
human interaction with the system, and second, there is precise knowledge of the environment that
the system interacts with. If both assumptions are satisfied, then control design for autonomous
systems is challenged only by the system design itself.

Mass-produced autonomous systems are available today for scenarios satisfying both assump-
tions. Automated cars on a highway performing lane keeping or lane changing belong to this class
of problems. In fact, these systems assume (a) that the driver does not touch the pedals or the
steering wheel (otherwise, the functionality is disengaged) and (b) there is high confidence in the
current and predicted positions of surrounding vehicles. These are good assumptions in highway
scenarios. When predictions are incorrect (such as in abrupt cut-in scenarios), safety is ensured by
low-level active control systems (such as emergency brakes) and the requirement that the driver
should pay attention to the road.

DJI drones autonomously moving between two points or landing at the takeoff point is another
example of an autonomous functionality delivered in a mass-produced system. During the maneu-
ver, the human does not intervene unless he or she wants to take over. Moreover, the drone uses
a simple, obstacle-free environment model that is used to predict only the distance to the ground.
Obstacle avoidance is left to the human, who can take over at any time. Other mass-produced au-
tomated robots include the iRobot Roomba cleaning robots, painting robots used in car assembly
lines, and robots used in semiconductor manufacturing.

This article focuses on the challenges of control design when one or both of the assumptions
given above are not satisfied—i.e., when there is interaction between the autonomous systems
and a human and/or there is high uncertainty in the environment that the system moves in and
interacts with. Walking robots, for example, are difficult to design and control (2, 3). Walking
robots that can operate in an unknown environment containing obstacles, slippery surfaces, and
doors while handling objects of unknown weight and unknown surface friction are the holy grail of
the robotics industry. Autonomous cars in urban driving and autonomous drones in an unknown
hostile environment belong to the same class of problems, as they are characterized by high
uncertainty in the environment that the system moves in and interacts with. Such problems are
challenging, interesting for the academic community, and practically relevant from an industrial
point of view.

Human interaction with an autonomous system represents another challenge. In a world with
increasing automation, interaction with robots becomes inevitable. An “intelligent” robot needs
to predict and understand human intention. Wrong interaction between humans and machines
can be fatal.

Undoubtedly, an effective control design for the class of problems described above requires
forecasts of human actions and the environment state. Forecasts can be uncertain, and thus the
control design can be very challenging. Without forecasts, autonomous systems are slow and
dumb. Recently, the intelligence of AlphaGo has been connected to the ability to predict and
learn from 30 million human moves (4). Many researchers have embraced the paradigm that the
more quickly and accurately a machine can forecast, the smarter it is.

One key challenge is undoubtedly related to the design of the forecasting algorithms. For
instance, it is commonly believed that reconstructing a scene in urban driving and predicting
the motion of all of its classified objects is the most challenging part of the autonomous driving
problem. However, a badly designed control algorithm can easily lead to undesired behavior—e.g.,
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as if AlphaGo were able to play billions of games in its “brain” but then played the wrong move
in real time. The control design becomes even more challenging if all of the forecasts need to be
analyzed in milliseconds on a platform with limited computational resources.

Our research over the past 10 years has focused on control design methods for platforms with
limited computational resources that systematically handle uncertain forecasts. Forecast signals
provide information about the environment that the system moves in and interacts with, includ-
ing potential human interaction. In this article, we present the unified framework that we have
been using in several applications. In the proposed formulation, uncertainty is introduced in the
modeling phase and possibly learned from data. Models are used to make forecasts, and forecasts
are used by the autonomous system control algorithm to make decisions in real time. The goal
is to provide an overview of the predictive control framework, point to relevant literature, and
focus on only one relevant aspect of our recent results: the use of data to improve the safety and
performance of the resulting autonomous systems.

As will become clear, data enable two results. First, one can design controllers that are robust
to uncertain forecasts without analytically propagating the uncertainty model over the prediction
horizon. This results in a simple and effective technique when a large amount of data is available.
Second, one can improve controller performance and safety when data from the same or similar
tasks are available. Predictive control can easily incorporate the most relevant information con-
tained in past data and use it to continually improve its performance while satisfying operating
constraints.

The article is organized as follows: In Section 2, we recall the basic idea behind the predictive
control framework. The control design challenges associated with imprecise forecasts of human
actions and knowledge of the environment are discussed in Section 3. In Section 4, we describe the
data-driven stochastic model predictive control (MPC) framework that exploits data to guarantee
safety. Learning model predictive control (LMPC), a framework used to improve the closed-loop
performance of a system performing the same task over and over, is discussed in Section 5. Finally,
in Section 6, we test the data-driven control frameworks on a simple motivating example.

Some of the material in this article derives from our previous publications. In particular, Sec-
tion 1 derives from the introduction of the book Predictive Control for Linear and Hybrid Systems (5),
Section 4 derives from work by Zhang and colleagues (6, 7), and Section 5 derives from articles
by Rosolia & Borrelli (8, 9).

2. DYNAMIC OPTIMIZATION AND PREDICTIVE CONTROL

Control design for autonomous systems can often be formulated as a dynamic optimization prob-
lem. The basis of a dynamic optimization problem is a dynamic model for the system to automate.
For example, xk+1 = f (xk, uk, dk, hk, ek), x0 = x(0), is a commonly used model and describes the
evolution of the state xk ∈ R

nx with time, starting from the initial condition x(0), as it is affected
by the manipulated input uk ∈ R

nu . The function f (·) here can be an arbitrary nonlinear function,
while dk ∈ R

nd , hk ∈ R
nh , and ek ∈ R

ne are the disturbance, the human action, and the state of the
environment at time k, respectively.

The goal is to find a sequence of manipulated inputs UT = {u0, . . . , uT−1} that optimizes a
given objective function

∑T−1
k=0 �(xk, uk) over the autonomous task duration T :

min
u0,...,uT−1

T−1∑
k=0

�(xk, uk)

subject to xt+1 = f (xt , ut , dt , ht , et), ∀t = 0, 1, . . . , T − 1,

x0 = x(0), xT = xF ,
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MPC controller:
the control law
represented in
Equation 3, where
u∗

0(x(t)) is the first
component of the
solution to the
optimization problem
represented in
Equation 2 solved at
time t

g(xt , ut , ht , et) ≤ 0, ∀t = 0, 1, . . . , T − 1,

d0, h0, e0 . . . , dT , hT , eT given from forecast models. 1.

In Equation 1, x(0) and xF are the initial and terminal goal states, respectively. The function
g(·) ≤ 0 describes the state and input constraints that must be satisfied during the control task.
Almost all practical autonomous control design problems can be put into this form, and a large
number of algorithms and software packages are available to determine the optimal solution vector
U∗

T = {u∗
0, . . . , u∗

T−1}, also known as the optimizer. Indeed, various algorithms exist that exploit
the structure of a particular problem (e.g., linearity and convexity), allowing even large problems
that are described by complex models and involve many degrees of freedom to be solved efficiently
and reliably.

There are two difficulties associated with this idea. First, a long duration T of the autono-
mous task can easily make it infeasible to solve Equation 1 in real time. Second, in practice
the sequence of inputs u0, u1, . . . , which is obtained by the procedure described above, cannot
be simply applied. This is because the model f (·) used to predict the evolution of the real
system can be inaccurate and because the prediction of the external disturbances dk, human
actions hk, and environment states ek are uncertain and often wrong in the far future. To al-
leviate both issues, it is common practice to (a) predict over a horizon N shorter than T and
(b) continuously measure the state of the system (say, once every time step) and then recom-
pute new control sequences with updated information on the disturbance, human action, and
environment forecasts. The procedure described above is commonly referred to as model pre-
dictive control (MPC) (5, 10–14). At the generic time t, an MPC controller solves the following
problem:

min
u0,u1,...,uN−1

N−1∑
t=0

�(xt , ut) + Q(xN )

subject to xt+1 = f (xt , ut , dt , ht , et), ∀t = 0, 1, . . . , N − 1,

x0 = x(t),

g(xt , ut , ht , et) ≤ 0, ∀t = 0, 1, . . . , N − 1,

gN (xN , hN , eN ) ≤ 0,

d0, h0, e0 . . . , dN , hN , eN given from forecast models, 2.

where x(t) is the measured state at time t.
Let U∗

N = {u∗
0(x(t)), . . . , u∗

N−1(x(t))} be the optimal solution of Equation 2 at time t. Then the
first element of U∗

N is applied to the system:1

u(t) = u∗
0(x(t)). 3.

At the next time step t + 1, the optimization problem represented in Equation 2 is solved
again based on the new state x0 = x(t + 1), yielding a moving or receding-horizon control
strategy.

Compared with Equation 1, Equation 2 is solved over a shorter horizon N and uses a terminal
cost Q(·) and terminal constraint gN (·) to approximate costs and constraints from time N to time T .
The choice and the role of Q(·) and gN (·) are critical in MPC design and are discussed at length
in Section 3.1.

1We use u∗
i (x(t)) to emphasize that the optimal solution depends on the current state x(t). Later in the article, whenever the

meaning is obvious, we use the simpler notation u∗
i .
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It is important to distinguish between (a) the real state x(t) and input u(t) of the system at time
t and (b) the predicted states xt and inputs ut in the optimization problem. Indeed, a more complex
notation is often used, where one differentiates between (a) the state x j |t at time j predicted at
time t and (b) the state x j |t+1 at time j predicted at time t + 1. Below, we use the complex notation
whenever necessary.

In summary, the sequences {x0, . . . , xN }, {e0, . . . , eN }, and {h0, . . . , hN } represent the forecasts
of the state, environment, and human model from time t to time t + N . These forecasts are used
by the controller to plan the optimal control sequence {u∗

0, . . . , u∗
N−1} over the finite horizon N .

At each time step t, only the first element of the planned sequence u∗
0 is applied to the system.

Before we dive into further technical details, we will use Equation 2 to comment on practical
considerations, advantages, and disadvantages of this approach.

2.1. System, Environment, and Human Modeling

Autonomous system models provide a relationship between physical inputs and the states of the
system and/or its parts. Choosing the right system model is often an art and is highly dependent
on the task complexity as well as the availability of computation power. For real-time computation
on platforms with limited resources, for example, objects are often simplified and treated as point
masses, and simple kinematic models are preferred over complex dynamic models even if the latter
are more accurate.

Environment models are necessary for any autonomous system that requires the ability to
navigate and/or manipulate objects. As in system models, the complexity is tightly coupled with
the autonomous system task. For instance, autonomous cars on highways do not need models
and forecasts for pedestrians, bicycles, or traffic lights. Similarly, painting robots do not need
object models if they grasp the same tool and paint the same surface over and over again. Roughly
speaking, based on their type of prediction, environment models can be classified into deter-
ministic models, stochastic models, and scenario-based models. Deterministic models provide
a single (usually most likely) prediction trajectory. Such models generally cannot capture the
significant uncertainty associated with different actions of the agents in the environment, es-
pecially over longer periods of time. Stochastic models often rely on standard probability dis-
tribution functions to model elements of the environment. They are often implemented by
using a set of standard distributions, such as Gaussian distributions or Gaussian mixtures. The
general challenge is the difficulty of including interactions between agents in the environment,
especially if such interactions are described by a set of rules. Scenario-based models can over-
come these limitations by not stating these probability distributions explicitly (15, 16). Rather,
the uncertainty is described via a discrete number of possible future scenarios that may be
drawn directly from collected real-world data and do not require the fitting of a probabilistic
model.

In the case of assisted or interactive automation, it is important to anticipate humans’ ac-
tions in order to assist their decision and control, giving rise to the need for human models.
For example, a collision-avoidance system needs to predict whether a driver will brake or steer
in time to avoid an obstacle in order to decide whether to intervene or not (17). Similarly, in
robotics, an automated system that must hand over an object to a human needs a model that
describes how humans select a grasping configuration to avoid harm (18, 19). Modeling human
interaction is often challenging because the actual physical process involves human perception,
information processing, decision-making, and physical action execution, all of which are extremely
complex to model and not yet fully understood. Several approaches have been proposed to ap-
proximate the true process and reduce its complexity. This field is currently receiving a lot of
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interest from the automatic control community (20, 21) because control-oriented models of hu-
mans can be used by the autonomous systems to deliver better interaction. A thorough liter-
ature review goes beyond the scope of this article since the models vary across different fields
of robotics. For more details, we refer the interested reader to Reference 22 and the references
therein.

Remark 1. In this article, we lump environment and human states into a single variable,
et , and use f (·) and m(·) to denote the system and environment state update functions,
respectively, i.e.,

xk+1 = f (xk, uk, ek, dk),

ek+1 = m(xk, uk, ek, dk). 4.

In Equation 4, dk describes the uncertainty, which we model as a random variable whose
support D we assume is time invariant.

2.2. Constraint Formulation and Guarantees

A fundamental advantage of using the control formulation represented in Equations 2 and 3
is that system constraints can easily be incorporated in the design stage as g(xt , ut , ht , et) ≤ 0.
However, two well-known facts must be considered in this context. First, constraint satisfaction
at a given time t does not automatically guarantee constraint satisfaction at time t + 1, even in
the case of perfect models and forecasts. This issue is known as persistent feasibility, and we will
return to it in Section 3.1. Second, with the exception of very simple constraints, the function
g(·) in Equation 2 must be formulated in a standard form that is accepted by general-purpose
numerical solvers. This can be accomplished either by a software parser [such as YALMIP (23)
or CVX (24)] or by the control engineer, which is often computationally more efficient since it
is tailored for the specific problem at hand. As an example, let us consider a navigation problem
where an autonomous system needs to go from point A to point B while avoiding obstacles
along its way. Specifically, if E(xt) ⊂ R

3 is the space occupied by the system at time t, and
O ⊂ R

3 is the space occupied by the obstacle, then the obstacle-avoidance constraint is given
by

E(xt) ∩ O = ∅, ∀t = 0, 1, . . . . 5.

Although the constraint represented in Equation 5 describes the obstacle-avoidance problem,
Equation 5 cannot be implemented as such since it does not come in a standard form accepted
by conventional numerical solvers and must be reformulated. One way of reformulating it is to
introduce auxiliary binary variables δi ∈ {0, 1}. This method is particularly attractive for linear
systems with polytopic constraints since in this case a mixed-integer linear program can be solved
using mature off-the-shelf solvers. For nonlinear systems, however, reformulating Equation 5
using binary variables should generally be avoided since mixed-integer nonconvex programs are
numerically difficult to handle. To alleviate this issue, one can reformulate Equation 5 as a smooth,
albeit nonconvex, constraint function that can be handled with off-the-shelf nonlinear optimization
solvers. For example, Zhang et al. (25) recently showed that, if E(xt) and O are polytopes or
ellipsoids (or can be decomposed into a finite union of such sets), then the strong duality of convex
optimization can be used to reformulate Equation 5 as g̃(xt , λt) ≤ 0, where λt represents auxiliary
variables and g̃(·) is a smooth nonconvex function that can be handled by nonlinear solvers such
as IPOPT (Interior Point Optimizer) (26).
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Feedback policy: a
function that computes
the input given the
current system and
environment state; also
known as a control
policy

2.3. Policy Search

Equation 2 assumes perfect forecasts and looks for a single sequence {u0, . . . , uN−1} that optimizes
the cost and satisfies the constraints for such nominal forecasts. In Section 3, we consider the
more general case of uncertain forecasts. In this case, the optimization scheme looks for feedback
policies

ut = πt(xt , et)

in order to take into account that the control scheme can use a different input sequence for each
different forecast. In this case, the cost function and the constraints need to be reformulated in a
stochastic or robust sense. Section 3.3 provides more details.

2.4. Model Predictive Control–Like Approaches

The model-based design principle of Equations 2 and 3 can be found across various research
communities working on autonomous systems. Often, the approaches are not called MPC, and
the disciplined formalism of Equations 2 and 3 is not employed. For instance, Mueller et al. (27, 28)
“solved” Equation 2 for a drone by first heuristically generating thousands of sample trajectories
obtained from a model of the form shown in Equation 4 with suitably chosen control inputs,
and then picking the best according to a user-defined cost function. The first input of the best
trajectory is applied to the system, resulting in a receding-horizon control scheme. A similar idea
is the rapidly exploring random trees (RRT) algorithm, which has found its way into motion-
planning problems (29, 30). Roughly speaking, RRT “solves” Equation 2 by using a very basic
system model to generate a tree of possible solutions from which the best trajectory is chosen.
The control actions are then usually performed using a simple proportional–integral–derivative
(PID) controller whose goal is to track the chosen trajectory.

Compared with the above-mentioned heuristics, the disciplined approach of Equations 2 and
3 is appealing owing to its conceptual simplicity, especially when it comes to the control design
phase. In addition, several mature numerical algorithms exist to efficiently solve Equation 2. When
the system is linear and the cost and constraints are convex, Equation 2 is a convex optimization
problem and can be solved efficiently and reliably using off-the-shelf numerical solvers, such as
the Gurobi Optimizer (31) and MOSEK (32). When the system model is nonlinear and/or the
constraints or objective function is nonconvex (as is the case in the obstacle-avoidance problem
represented in Equation 5), Equation 2 requires the solution of a nonconvex optimization prob-
lem, which can be challenging in general. In addition, solving Equation 2 using general-purpose
nonlinear, nonconvex numerical solvers in real time is often seen as unorthodox by traditional con-
trol engineers, as one typically has no direct control over how those solvers operate and cannot
influence their behavior based on physical considerations.

We close this section by pointing out that one should not underestimate the advantage of having
a simple algorithm that does not require additional numerical routines to solve a control design
problem. This is the power of the above-mentioned heuristics (such as RRT and A*) compared
with MPC. In addition, one should consider the fact that, in the nonconvex case, neither the formal
optimization-based approach nor those heuristic approaches have practically useful bounds on the
convergence time to compute the control solution.

3. STOCHASTIC PREDICTIVE CONTROL

We begin by detailing one possible formulation of the MPC represented in Equations 2 and 3 for
the model represented in Equation 4. Specifically, let us assume that the uncertainties d0, d1, . . .
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are random variables defined on an abstract probability space (�,F , P) and consider the following
finite-time optimal control problem at time t:

min
πt|t (·),...,πt+N−1|t (·)

t+N−1∑
k=t

E
[
�(xk|t , uk|t)

] + E
[
Q(xt+N |t)

]
6a.

subject to xk+1|t = f (xk|t , uk|t , ek|t , dk|t), ∀k = t, . . . , t + N − 1, 6b.

ek+1|t = m(xk|t , uk|t , ek|t , dk|t), ∀k = t, . . . , t + N − 1, 6c.

xt|t = x(t), et|t = e(t), 6d.

uk|t = πk|t(xk|t , ek|t), ∀k = t, . . . , t + N − 1, 6e.

P[g(xk|t , uk|t , dk|t , ek|t) ≤ 0] ≥ 1 − ε, ∀k = t, . . . , t + N − 1, 6f.

where E[·] is the expectation with respect to P[·], ε ∈ (0, 1) is the so-called violation probability,
and P[g(xk|t , uk|t , dk|t , ek|t) ≤ 0] denotes the probability that the constraint g(xk|t , uk|t , dk|t , ek|t) ≤ 0
is satisfied. Equation 6 differs from Equation 2 in that the disturbance dk is no longer assumed
to be perfectly known; instead, it is a random variable that gives rise to the expected-value cost
represented in Equation 6a and the chance constraint represented in Equation 6f.

As before, xt+k|t denotes the state vector at time t + k predicted at time t obtained by starting
from the current state xt|t = x(t) and applying dt|t , . . . , dt|k−1 to the system and environment models
and the input sequence ut|t , . . . , ut+N−1|t . The symbol xt+k|t is often read as “the state x at time t +k
predicted at time t.” Similarly, ut+k|t is read as “the input u at time t + k computed at time t.” For
instance, x3|1 represents the predicted state at time 3 when the prediction is done at time t = 1
starting from the current state x(1). It is different, in general, from x3|2, which is the predicted
state at time 3 when the prediction is done at time t = 2 starting from the current state x(2). The
uncertainty d and the environment/human model were introduced in Section 2 and Remark 1.

Given the optimal feedback policy [π∗
t|t(·), . . . , π∗

t+N−1|t(·)], the first input

ut = π∗
t|t(xt|t , et|t) 7.

is applied to the system. At the next time step t + 1, Equation 6 is resolved based on the new
state measurement xt+1, yielding a receding-horizon control strategy. This strategy introduces
feedback into the system that can correct the inaccuracy of the system and disturbance model.

Equation 6 is difficult to solve in general because it requires (a) a finite-dimensional parameter-
ization of the control polices π (·), (b) an efficient propagation of the uncertainty d over the system
dynamics and the translation of the probabilistic constraints into deterministic constraints, and
(c) the solution of the resulting mathematical optimization problem. With the exception of linear
systems and special classes of distributions (e.g., normal distributions), these steps are nontrivial.
In the following, we discuss the design challenges associated with Equation 6 in the context of
autonomous systems and provide an overview of existing strategies to address these steps that
allow for practical implementation.

3.1. Feasibility and Optimality with Short Horizons

The predictive controller represented in Equations 6 and 7 plans the system’s trajectory over
the finite time windows of length N , which is usually much smaller than the task duration T
in Equation 1 owing to the availability of reliable forecasts and computational resources. For a
short N , the controller takes only shortsighted control actions, which may be unsafe or result in
poor closed-loop performance. For instance, in autonomous racing, a predictive controller that
plans the vehicle’s trajectory over a short horizon without accounting for an upcoming curve may
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Recursively feasible
controller:
a controller that fulfills
the constraints at all
time instants

accelerate to the point that safe turning becomes infeasible. In this example, the short planning
horizon would force the controller to violate the safety constraints at a certain time instant.
Avoiding such situations requires designing recursively feasible controllers, i.e., controllers that
are feasible at all time instants despite a short prediction horizon and the presence of uncertainty.
This in turn requires designing a terminal set that guarantees the existence of a feasible state and
control sequence beyond the prediction horizon.

Shortsighted control actions may also result in poor closed-loop performance. For instance,
a predictive controller for an autonomous agent trying to escape a maze using the shortest path
may easily make a suboptimal decision if the prediction horizon is too short. A commonly used
solution is to introduce a terminal cost Q(·) and terminal constraint gN (·) in Equation 2 in order
to approximate the cost and constraints from time N to time T of the original Equation 1. The
choice and role of Q(·) and gN (·) are critical in any MPC design; properly chosen Q(·) and gN (·)
ensure feasibility and optimality despite a short-horizon N .

In particular, gN (·) should be designed such that xN must belong to a control invariant set
XT ⊂ R

n. Control invariant sets are sets of initial states for which there exists a controller uk = v(xk)
such that system constraints are never violated. Moreover, the terminal function Q(·) must be a
Lyapunov function over XT for the autonomous system controlled by uk = v(xk).

Control invariant sets and Lyapunov functions are very hard to compute for general nonlinear
systems (5). In Section 5, we show that historical data can be used to compute both the control
invariant set and control Lyapunov function, which guarantee that the MPC design is recursively
feasible and does not take shortsighted control actions.

3.2. Policy Approximation

In the presence of uncertainty, it is important to distinguish between open-loop policies and
closed-loop policies (5, chap. 15). While the latter are less conservative, they may lead to
computationally intractable problems. In practice, compromises are made by parameterizing the
control structure and optimizing only over these parameters. The following policy structures are
common in the literature:

ut = zt open-loop policy, 8a.

ut = zt + K̄ xt affine state-feedback policy, 8b.

ut = zt +
t−1∑
j=0

Zt, j dj affine disturbance-feedback policy, 8c.

where the control parameters are zt ∈ R
nu in Equations 8a and 8b and zt ∈ R

nu and Zt, j ∈ R
nu×nx

in Equation 8c. The objective is to determine the optimal parameters zt and Zt, j that minimize the
control objective and satisfy the constraints. Often, the feedback matrix K̄ in Equation 8b is fixed to
ensure computational tractability. It is easy to see that Equation 8a is a special case of Equation 8b,
which in turn is a special case of Equation 8c if the system and constraints are linear (33).

3.3. Chance-Constraint Approximation

As discussed above, a key aspect in the solution of Equation 6 is the appropriate reformulation
of the chance constraint. Roughly speaking, the existing approaches dealing with probabilistic
constraints can be divided into two categories: cases when ε = 0 (robust MPC) and cases when
ε > 0 (chance-constrained stochastic MPC). Next, we briefly review the main ideas.
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Single linear chance
constraint:
a constraint that takes
the form
e
xk + f 
uk ≤ g,
where e and f are
vectors and g is a scalar

Multiple linear
chance constraint:
a constraint that takes
the form
Exk + F
uk ≤ g,
where E and F are
matrices and g is a
vector.

3.3.1. Robust model predictive control. One way of satisfying the chance constraints is to
require them to be satisfied with probability 1, i.e., P[g(xk|t , uk|t , ek|t) ≤ 0] = 1. Under mild
regularity assumptions, this is equivalent to requiring

g(xk|t , uk|t , ek|t) ≤ 0, ∀dt|t , . . . , dk−1|t ∈ D, 9.

where D is the support of the random variable dk|t that affects both the system xk|t and the envi-
ronment ek|t . Since Equation 9 corresponds to a chance constraint when ε = 0, it constitutes a
conservative (i.e., inner) approximation of the original chance constraint in Equation 6. Despite
its conservatism, robust MPC has received considerable attention because of its conceptual sim-
plicity (information on distribution is neglected, and only the support D is needed) and because
it finds application in safety-critical applications where ε ≈ 0 is required, and robust constraint
satisfaction is a good approximation.

Robust MPC approaches can be roughly categorized based on their policy parameterization.
The classical method is to use the state-feedback policy represented in Equation 8b, which results in
a gradual tightening of the constraints (34–36). Another method, known as tube MPC, employs an
input policy of the form uk = K̄ (xk − x̄k), where x̄k is some nominal state. This parameterization
results in a constant constraint tightening along the horizon (13, 37). The main drawback of
these approaches is that it is not clear how to choose the feedback matrix K̄ . To alleviate this
issue, approaches based on disturbance-feedback policies of the form shown in Equation 8c have
been proposed, which allows the optimal (linear) state-feedback matrix to be chosen (33, 38, 39).
Compared with simple state-feedback policies, disturbance-feedback policies have the drawback of
increased computational complexity, since the optimization is performed not only over the affine
terms zk but also over the feedback matrices Zt, j . Regardless of the chosen policy parameterization,
stability and recursive feasibility still need to be ensured by adding an appropriate terminal cost
and terminal constraint.

3.3.2. Stochastic constraint satisfaction. As shown in the previous section, the stochastic MPC
problem represented in Equation 6 can be conservatively approximated using the theory of ro-
bust MPC. The main limitation of this approach is its inherent conservatism, since robust MPC
enforces the constraints against all uncertainty realizations, even the rare ones. Indeed, extreme
disturbances often limit a controller’s performance (in terms of objective function), but the prob-
ability of encountering them is often very low, and ignoring them may improve a controller’s per-
formance (40). These limitations can be partially overcome by directly reformulating the chance
constraints in Equation 6. In the following, we review methods of dealing with chance constraints.
To simplify the discussion, we restrict ourselves to linear systems with polyhedral constraints
subject to the policy parameterizations in Section 3.2.

The simplest instance of chance constraint arises when dk is a Gaussian random variable and
we have single linear chance constraints. For this special case, the chance constraint can be exactly
reformulated as a second-order cone constraint, which is convex and computationally tractable
(41). A generalization of this approach is to release the assumption of dk being Gaussian and
consider only its first two moments. In this case, if single linear chance constraints are present,
Chebyshev’s inequality can be invoked, and the constraints can be reformulated again as second-
order cone constraints (42–44). While this method is very general (it can be applied to all random
variables with finite first- and second-order moments), it is conservative because only the first
two moments of a distribution are considered and because it can be applied only toward single
linear chance constraints. Methods based on polynomial chaos theory and Galerkin projection
have recently been proposed as tools to handle multiple linear chance constraints (45). The main
idea is to analytically propagate the uncertainty through the system dynamics using a series of basis
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functions (46–48). The theory of this method can handle very generic constraints and distributions;
its main challenge is establishing precise bounds on the approximation quality.

While multiple methods exist for approximating chance constraints, they are often limited
to specific distributions (e.g., d is Gaussian) or single linear chance constraints (Chebyshev’s
inequality), or their approximation quality is unknown (polynomial chaos theory). In Section 4,
we show how data-driven sampling-based methods can alleviate some of these limitations.

3.4. Summary: Control Design Challenges

In this section, we have reviewed the basic concepts of predictive control and discussed three
challenges associated with it: (a) ensuring recursive feasibility and achieving optimality despite a
short prediction horizon, (b) satisfying input and state constraints in the presence of uncertainty,
and (c) ensuring computational tractability by properly reformulating constraints and costs and
parameterizing control policies. There is no systematic and universal solution to the third chal-
lenge, and often the chosen approach is application dependent. In the following, we show how the
first and second challenges can be addressed by using data. Specifically, in Section 4 we show how
historical data can be used to address the computational challenges associated with the second
challenge by using methods from randomized optimization. In Section 5, we show that when a
controller repeatedly performs a task, the data from each task execution can be used to address
the first challenge.

4. DATA-DRIVEN STOCHASTIC MODEL PREDICTIVE CONTROL

In this section, we show how historical data can be used to overcome the challenges associated
with solving the stochastic MPC problem represented in Equation 6, as described in Section 3.3.
In particular, we discuss the so-called scenario MPC, also known as randomized MPC, which is
a data-driven method for addressing chance-constrained stochastic MPC problems of the form
shown in Equation 6 (49–53).

4.1. Control Design

The main idea in scenario MPC is to use data (scenarios) to represent the random variable dk; these
data are then propagated through the system dynamics. More concretely, given the prediction
horizon N , let us denote by dt = [dt|t , dt+1|t , . . . , dt+N−1|t] the uncertainty along the prediction
horizon N , and let {d(1)

t , d(2)
t , . . . , d(S)

t } be a collection of independent and identically distributed
(i.i.d.) samples,2 where S is called the sample size. The idea now is to propagate each sample d(i )

t

through the state and environmental dynamics represented in Equation 4, resulting in different
scenarios of [x(i )

t+1|t , x(i )
2 , . . . , x(i )

t+N |t] and [e (i )
t|t+1, e (i )

2 , . . . , e (i )
t+N |t]. The goal in scenario MPC is to find

a control law that satisfies the system constraints for all sampled scenarios. Hence, the scenario
MPC is given by

min
πt|t (·),...,πt+N−1|t (·)

t+N−1∑
k=t

E[�(xk|t , uk|t)] + E[Q(xt+N |t)]

subject to x(ik )
t|t = x(t), e (ik )

t|t = e(t),

x(ik )
k+1|t = f (x(ik )

k|t , u(ik )
k|t , d (ik )

k|t , e (ik )
k|t ),

2In practice, samples often come from historical or simulated data.
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e (ik )
k+1|t = m(x(ik )

k|t , u(ik )
k|t , d (ik )

k|t , e (ik )
k|t ),

u(ik )
k|t = πk|t(x

(ik )
k|t , e (ik )

k|t ),

g(x(ik )
k|t , u(ik )

k|t , e (ik )
k|t ) ≤ 0,

∀ik = 1, . . . , Sk, ∀k = t, . . . , t + N − 1. 10.

For technical reasons, different samples d ik
k|t and sample sizes Sk are required for each predic-

tion stage k. Specifically, for each stage k, a new set of samples {d(1)
k|t , d(2)

k|t , . . . , d(Sk )
k|t }, each of car-

dinality Sk, is extracted, and the constraints associated with the kth stage need to be satisfied
only for these samples. The scenario MPC problem represented in Equation 10 is highly in-
tuitive and easy to implement in practice. Furthermore, since it relies only on extracted sam-
ples, the scenario MPC approach applies to any probability distribution and is entirely data
driven.

Research on scenario MPC has focused mainly on three questions. First, how large do we need
to choose the sample sizes Sk such that the solution of Equation 10 indeed satisfies the original
chance constraints in Equation 6? This question is of great practical importance since a sample size
that is too small may lead to solutions that do not satisfy the original chance constraint. Second, is
it possible to implement scenario MPC in real time for systems with fast dynamics? And third, how
can we guarantee persistent feasibility and stability when Equation 10 is implemented in a receding-
horizon approach? In the following, we provide a brief overview of the first question; for results
concerned with the second and third questions, we refer the interested reader to References 54–57
and Reference 52, respectively. To streamline the presentation, we ignore the environment model
and consider the special case of linear time-invariant systems with probabilistic state constraints
of the form

xk+1 = Axk + Buk + Ddk, Pδ [Gxk ≤ g] ≥ 1 − ε, 11.

where the matrices A, B, D, G, and g are of suitable dimensions.
Scenario optimization, also known as random convex programming, concerns itself with ap-

proximating chance-constrained optimization problems of the form minx∈Rn {c
x : Pδ[g(x, δ) ≤
0] ≥ 1 − ε} by the scenario program minx∈Rn {c
x : g(x, δ(i )) ≤ 0, i = 1, . . . , S}, where δ(i ) are
i.i.d. samples randomly extracted according to Pδ and S is the so-called sample size. In a learning
context, the samples can be interpreted as training data. The scenario approach was originally
developed by Calafiore & Campi (58, 59) and then later refined by Campi & Garatti (60) and
Calafiore (61). Campi & Garatti (60) showed that, if the constraint function g(·, δ) is convex for
every fixed δ, then a sample size of S ∼ O( n

ε
) suffices to ensure that the solution of the scenario

program is feasible for the original chance-constrained optimal control problem, where n is the
dimension of the decision vector x. While the bound S ∼ O( n

ε
) is tight for the class of convex

sampled problems, it can be improved by exploiting additional structural information of the un-
derlying problem (61). This observation has been exploited by, among others, Zhang et al. (6,
62) and Schildbach et al. (63) to derive improved sample sizes tailored toward stochastic MPC
problems, as reflected below in Theorems 1 and 2.

4.2. Controller Properties

One of the main challenges in scenario MPC is establishing the required sample sizes Sk such
that the solution of the scenario MPC problem represented in Equation 10 satisfies the original
stochastic MPC problem represented in Equation 6. Generally speaking, it is desirable to establish
sample sizes Sk that are as small as possible, since unnecessarily large sample sizes not only render
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the control policy overly conservative (if Sk → ∞, then the solution of the scenario MPC problem
converges to that of the robust MPC problem) but also has a negative impact on the computational
complexity because each sample in Equation 6 generates a new set of constraints. Next, we show
that, depending on the choice of input policy (affine state feedback or affine disturbance feedback;
see Section 3.2), different sample sizes are required.

4.2.1. Linear state-feedback policies. Recall from Section 3.2 that affine state-feedback policies
take the form uk = K̄ xk + zk, where K̄ is a fixed state-feedback matrix. Then Theorem 1 follows
from corollary 5.10 in Reference 7.

Theorem 1. Consider the MPC problem represented in Equation 10 with the linear
model represented in Equation 11 and the control law represented in Equation 3, and
let uk = K̄ xk + zk for all k = 1, . . . , N and β ∈ (0, 1). If the sample sizes Sk satisfy

Sk ≥ 2
ε

(
rank(G) − 1 + log

1
β

)
, k = 1, . . . , N , 12.

then, with probability at least 1 − β, the solution of the scenario MPC problem repre-
sented in Equation 10 satisfies each chance constraint of Equation 6.

4.2.2. Linear disturbance-feedback policies. Recall from Section 3.2 that affine disturbance-
feedback policies take the form uk = zk + ∑

j<k Zk, j dj, where zk and Zk, j are parameters that
need to be determined. Then we have the following sampling theorem from corollary 5.10 in
Reference 7.

Theorem 2. Consider the MPC problem represented in Equation 10 with the linear
model represented in Equation 11 and the control law represented in Equation 3, and
let uk = hk +∑

j<k Kk, j dj for all k = 1, . . . , N and β ∈ (0, 1). If the sample sizes Sk satisfy

Sk ≥ 2
ε

(
ζk − 1 + log

1
β

)
, where ζk = rank(G) [(k − 1)nd + 1] , 13.

and nd is the dimension of the uncertainty dk, then, with probability at least 1 − β, the
solution of the scenario MPC problem represented in Equation 10 satisfies each chance
constraint of Equation 6.

Comparing Theorems 1 and 2, we find that the sample sizes required by the state-feedback
policies are smaller than those required by the disturbance-feedback policies. Intuitively, this
can be explained by the fact that, since disturbance-feedback policies are more general than
state-feedback policies, they also need more training data to exhibit the same generalization
property.

Theorems 1 and 2 are remarkable for two reasons. First, they do not require any assumptions
about the distribution of the random variables dk. The results are distribution free and data
driven: The sample sizes hold irrespective of the distribution and do not require knowledge of
the distribution of dk, but only access to samples. Second, for a given violation probability ε, the
sample sizes Sk depend logarithmically on the so-called confidence β. Therefore, the confidence
of obtaining feasible solutions can be chosen to be very high (i.e., β can be chosen close to zero)
without a negative impact.
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5. LEARNING MODEL PREDICTIVE CONTROL

In this section, we consider iterative control problems where the controller must perform the same
task repeatedly. We present the LMPC framework, which uses data from each task execution, often
referred to as iteration, to improve the closed-loop performance of the original control problem
represented in Equation 1. More detail on recent work on LMPC for autonomous systems can be
found in References 8, 9, and 64–66.

5.1. Learning from Data

Consider the original control design problem represented in Equation 1 over the horizon T . In
practice, every automated task has a finite duration T , and if the task is repeated at a subsequent
iteration j, then its duration Tj might be different from the duration Ti at iteration i . For the
sake of simplicity, we set T = ∞ in Equation 1 with the implicit understanding that the task is
completed at time Tj of iteration j when some convergence condition is satisfied.

At each task iteration, the control input and the related closed-loop trajectory are recorded.
In particular, at the jth iteration, the vectors

u j = [u j (0), u j (1), . . . , u j (t), . . .] and x j = [x j (0), x j (1), . . . , x j (t), . . .] 14.

collect the inputs applied to the system and the corresponding state evolution. In Equation 14,
x j (t) and u j (t) denote the system state and the control input at time t of the jth iteration. We
assume that at each jth iteration, the closed-loop trajectories start from the same initial state xs , i.e.,

x j (0) = xS, ∀ j ≥ 0.

Next, we introduce the definitions of the sampled safe set and the iteration cost, both of which
will be used below to guarantee the stability and feasibility of the LMPC framework.

5.1.1. Sampled safe set. The LMPC framework exploits the iterative nature of the control
design. For every kth iteration that successfully steers the system to the terminal point xF , the
state trajectory xk is a safe feasible trajectory. Thus, we define the sampled safe set SS j at iteration
j as

SS j =
⎧⎨
⎩

⋃
i∈M j

∞⋃
t=0

xi (t)

⎫⎬
⎭ , with M j =

{
k ∈ [0, j ] : lim

t→∞
xk(t) = xF

}
. 15.

SS j is the collection of all state trajectories at iteration i for i ∈ M j . M j in the above equation is
the set of indexes k associated with successful iterations k for k ≤ j .

5.1.2. Iteration cost. At time t of the jth iteration, the cost to go associated with the closed-loop
trajectory and input sequence represented in Equation 14 is defined as

J j
t→∞(x j (t)) =

∞∑
k=t

�
(
x j (k), u j (k)

)
, 16.

where �(·, ·) is the stage cost of Equation 1. We define the jth iteration cost as the cost represented
in Equation 16 of the jth trajectory at time t = 0. J j

0→∞(x j
0 ) quantifies the controller performance

at each jth iteration. We define the function Q j (·), defined over the sample safe set SS j , as

Q j (x) =
{

min
(i ,t)∈F j (x)

Ji
t→∞(x), if x ∈ SS j

+∞, if x /∈ SS j
, 17.
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x1(0) = x2(0) = x3(0)

x1(1)

x3(1)

x2(1)

x2(t)

x3(t)

x1(t)

xF

Figure 1
The convex hull of SS j . The circled dots represent the closed-loop trajectory in a two-dimensional phase
plane. Three successful trajectories are shown, and their convex hull ( gray shaded area) corresponds to the
convex safe set CS3.

where F j (·) is defined as

F j (x) = {
(i , t) : i ∈ [0, j ], t ≥ 0 with xi (t) = x; for xi (t) ∈ SS j } .

The function Q j (·) in Equation 17 assigns to every point in the sampled safe set, SS j , the minimum
cost to go along the trajectories in SS j .

5.1.3. Continuous relaxation. The sampled safe set SS j and Q j (·) are used in the next section to
construct the LMPC. Since the sampled safe set SS j is a set of discrete points and Q j (·) is defined
over a discrete domain, the LMPC is computationally challenging to solve. In this section, we
introduce the continuous relaxation for both the sampled safe set and the Q j (·) function, which
can be used to reduce the computational burden associated with the LMPC. We define the convex
safe set CS j as the convex hull of SS j (shown in Figure 1) and the function P j (·) as the barycentric
approximation of Q j (·). These quantities are convex and can be used in the control design to speed
up computations; for more details, we refer the reader to Reference 9.

5.2. Control Design

In this section, we present the design of the LMPC. We exploit the iterative nature of the control
task to design a recursively feasible controller that guarantees a nonincreasing iteration cost [i.e.,
J j

0→∞(·) ≤ J j−1
0→∞(·)]. Finally, we show that when the iteration cost converges to a steady-state

value, the related controller is optimal for the overall control problem represented in Equation 1.

5.2.1. Learning model predictive control formulation. The LMPC solves at time t of iteration
j the finite time-constrained optimal control problem

JLMPC, j
t→t+N (x j (t)) = min

ut|t ,...,ut+N−1|t

[
t+N−1∑

k=t

�(xk|t , uk|t) + Q j−1(xt+N |t)

]
18a.

subject to

xk+1|t = f (xk|t , uk|t), ∀k ∈ [t, . . . , t + N − 1], 18b.

g(xk|t , uk|t) ≤ 0, ∀k ∈ [t, . . . , t + N − 1], 18c.

xt+N |t ∈ SS j−1, 18d.

xt|t = x j (t), 18e.

where Equations 18b and 18e represent the system dynamics and initial condition, respectively.
The state and input constraints are given by Equation 18c. Finally, Equation 18d forces the
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terminal state into the set SS j−1 defined in Equation 15. Let

u∗, j
t:t+N |t = [u∗, j

t|t , . . . , u∗, j
t+N−1|t],

x∗, j
t:t+N |t = [x∗, j

t|t , . . . , x∗, j
t+N |t],

be the optimal solution of Equation 18 at time t of the jth iteration and JLMPC, j
t→t+N (x j

t ) be the
corresponding optimal cost. Then, at time t of the iteration j , the first element of u∗, j

t:t+N |t is
applied to the system

u j (t) = u∗, j
t|t . 19.

The finite-time optimal control problem represented in Equation 18 is solved at time t + 1, based
on the new state xt+1|t+1 = x j (t + 1).

At iteration j = 1, we assume that SS j−1 = SS0 is a nonempty set and that the trajectory
x0 ∈ SS0 is feasible and convergent to xF . Furthermore, we assume that the stage cost, �(·, ·), in
Equation 1 is continuous and satisfies

�(xF , 0) = 0 and �(x j (t), u j (t)) � 0 ∀ x j (t) ∈ R
n \ {xF }, u j (t) ∈ R

m \ {0},

where the final state xF is assumed to be a feasible equilibrium for the unforced system.
In the next section, we present the main fundamental properties of the proposed schema: The

LMPC represented in Equations 18 and 19 in a closed loop with Equation 18b guarantees recursive
feasibility and stability, and the iteration cost does not increase at each iteration.

5.3. Controller Properties

In this section, we analyze the controller properties. We show that the information from the previ-
ous trials, embedded in SS j and Q j (·), allow us to guarantee safety and performance improvement
for the closed-loop system.

5.3.1. Recursive feasibility and stability. As mentioned in Section 5.1, for every point in the
set SS j there exists a control sequence that can drive the system to the terminal point xF .
The properties of SS j and Q j (·) guarantee the recursive feasibility and asymptotic stability of
the equilibrium point xF , as stated in the theorem below.

Theorem 3. Consider Equation 18b controlled by the LMPC controller represented
in Equations 18 and 19. Let SS j be the sampled safe set at iteration j as defined in
Equation 15. Then the LMPC represented in Equations 18 and 19 is feasible for all
t ≥ 0 and at every iteration j ≥ 1. Moreover, the equilibrium point xF is asymptotically
stable for the closed-loop system at every iteration j ≥ 1.

5.3.2. Convergence properties. Assume that the LMPC represented in Equations 18 and 19
converges to a steady-state trajectory. We can make two statements. First, the jth iteration cost
J j

0→∞(·) does not increase as j increases. Second, when the learning process has reached steady
state (i.e., the behavior of the controller between two consecutive iterations does not change),
the controller actions are optimal with respect to the original control problem represented in
Equation 1.

Theorem 4. Consider Equation 18b in a closed loop with the LMPC controller rep-
resented in Equations 18 and 19. Let SS j be the sampled safe set at the jth iteration
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as defined in Equation 15. Then the iteration cost J j
0→∞(·) does not increase with the

iteration index j .

Theorems 3 and 4 show that the proposed control strategy is able to learn from data. Indeed,
the experience from the previous trials is used to compensate for the limited forecast availability.
The controller uses the information given from the sampled safe set SS j and the Q j (·) function
to forecast the evolution of the system in the environment beyond the prediction horizon. This
precious information allows the controller to not take shortsighted control action and to improve
the closed-loop performance at each task execution.

Finally, it is possible to show that if the learning processes have converged to a steady-state
solution, then the controller has learned the best strategy to perform the overall control problem
represented in Equation 1 (theorem 3 in Reference 8).

6. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the presented control framework using a simple inverted pendu-
lum example, as depicted in Figure 2. The system has two controllable inputs: a longitudinal
acceleration ak that is applied to the cart, and a torque Tck that is applied to the pendulum bar.

This simple system can be used for a fully autonomous demonstration (in this case, ak and
Tck are the output of the system’s controller) or for a semiautonomous control demonstration. In
the latter case, the pendulum cart is held by a human, who controls the acceleration ak, while the
system controller manipulates Tck . In both autonomous and semiautonomous modes, the goal is to
move the pendulum in an upright position from point A to point B (Figure 3). In semiautonomous
mode, the controller assists the human in keeping the pendulum upright by applying only a torque
Tck .

The interested reader can find additional applications of the discussed approaches (scenario
MPC and LMPC) to complex real-world examples in References 56, 57, 64, and 66–69.

Tc = controller torque

(θ,ω)

(s,v)

a = human acceleration

Figure 2
Scheme of the autonomous system used in our illustrative example. An inverted pendulum with an assistive
motor is held in the palm of the human’s hand.
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Figure 3
Initial and final goal configurations in our illustrative example. A blue line represents the pendulum, and a
red box represents the cart.

6.1. System Modeling

With reference to Figure 2, let θ be the angle of the pendulum (θ = 0 if the pendulum points down-
wards, and θ = π if the pendulum is upright), ω = θ̇ , s be the horizontal position of the cart, v = ṡ ,
a be the acceleration applied to the cart, and Tc be the controller torque.3 The basic principles of
physics mean that the dynamics are then given by ω̇ = ω+ 1

ml2 (Tc − mgl sin(θ ) + mal cos(θ ) − bv),
where l is the length of the pendulum, m is the mass on its pinpoint, g is the gravitational constant,
and b is the viscous friction coefficient. Choosing x = (ω, θ , v, s ) as the state vector and employing
a forward Euler discretization with time step dt yields the following state-space representation:

xk+1 = f (xk, Tck , ak) =

⎡
⎢⎢⎢⎣

ωk + dt
ml2 (Tck − mgl sin(θk) + ml cos(θk)ak − bvk)

θk + ωkd t
vk + akd t
sk + vkd t

⎤
⎥⎥⎥⎦. 20.

For the semiautonomous case, the cart position and the position of the human hand that
moves the cart coincide. Also, ak is the acceleration resulting from the human hand, and Tck is the
controller torque. In this notation, ak can be interpreted as the environment variable ek used in
Equation 4.

6.2. Keeping the Pendulum Upright Using Stochastic Model Predictive Control

In this section, we focus on the semiautonomous case and assume that the controller does not
know the exact human movement a , but only that it lies between −6 and 14 m/s2. The human
attempts to move the pendulum from its initial position s = 0 to its final position s = 2 m, while
the controller attempts to keep the pendulum upright—i.e., θ should be 180◦ ± 1.5◦ as often as
possible. The simulation is terminated as soon as the pendulum has reached s = 2 m. For the
purposes of this illustration, we assume that a is uniformly distributed, i.e., a ∼ U [−6, 14], and

3If x is a variable that depends on time, then ẋ denotes its derivative with respect to time.
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that the initial state of the system is x(0) = (0, π , 0, 0). The discretization time is dt = 50 ms
and the prediction horizon N = 5, which reflects the fact that it is often difficult in practice to
accurately predict the human’s behavior for a long time. The stochastic MPC problem is now
given by

min
Tct|t ,...,Tct+N−1|t

t+N−1∑
k=t

T2
ck|t

subject to xt|t = x(t),

xk+1|t = f (xk|t , Tck|t , ak|t),

P[(180◦ − 1.5◦) ≤ θk+1|t ≤ (180◦ + 1.5◦)] ≥ 1 − ε,

∀k = t, . . . , t + N − 1, 21.

where ε > 0 is a user-chosen desired violation probability and x(0) = (0, π , 0, 0). The objective
function in Equation 21 reflects the goal that the controller, which actuates the system through
Tk, should apply as little torque as necessary. Equation 21 is difficult to solve using conventional
analytical methods since the system dynamics are nonlinear, rendering the propagation of the
uncertainty ak a nontrivial task. We circumvent this difficulty by approximating Equation 21
using scenario MPC (discussed in Section 4), which is given by

min
Tct|t ,...,Tct+N−1|t

t+N−1∑
k=t

T2
ck|t

subject to x(i )
k+1|t = f (x(i )

k|t , Tck|t , a (i )
k|t),

(180◦ − 1.5◦) ≤ θ
(i )
k|t ≤ (180◦ + 1.5◦),

∀k = t, . . . , t + N , ∀i = 1, . . . , S. 22.

In the interest of computational efficiency, the optimization in Equations 21 and 22 is performed
over open-loop policies. The use of closed-loop policies such as affine disturbance feedback would
introduce additional decision variables and increase computation time.

Remark 2. Equation 22 is, strictly speaking, not an instance of Equation 10 since the
latter would require drawing different samples for each stage. In the interest of simplicity,
we enforce the same samples in Equation 22, which, in practice, has performed well.
Furthermore, we point out that, since system Equation 20 is nonlinear and Equation 21
is nonconvex, the theoretical guarantees on the sample sizes presented in Section 4.2
do not hold. Nevertheless, we will see that Equation 4 can be well approximated by
Equation 21 in practice. For a rigorous analysis of sample sizes for stochastic nonlinear
MPC problems, we refer the interested reader to References 51 and 70.

Table 1 shows empirical violation probabilities and computation times for solving
Equation 22 as a function of the sample size. The numbers are averages obtained from 100

Table 1 Empirical violation probabilities and computation times as a function of the sample size S

Sample size S = 1 S = 5 S = 10 S = 30 S = 50 S = 100 S = 200

Violation probability 31.9% 14.2% 11.2% 9.3% 7.4% 6.9% 5.1%

Computation time 7 ms 18 ms 29 ms 92 ms 131 ms 329 ms 741 ms

Computation times were obtained on a MacBook Pro equipped with a quad-core Intel Core i7 processor at 2.6 GHz and 16 GB of RAM.
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Figure 4
Randomly generated sample trajectories using the controller represented in Equation 22 with (a) S = 10 and
(b) S = 200. The solid gray lines indicate the ±1.5◦ constraint.

simulation runs. Two interesting observations underline the efficacy of scenario MPC. First, the
sample size S can be used as a tuning variable to modulate the robustness of scenario MPC in
terms of the violation probability. For small sample sizes (e.g., S = 10), scenario MPC is al-
ready able to obtain solutions that keep the pendulum within the designated constraints with
a high probability, an observation that has also been made previously (57, 67, 71). Second,
Table 1 shows that the optimization problems arising in scenario MPC problems can be solved
in real time when the sample size is small. For example, when S = 10, the average compu-
tation time is 29 ms, which is less than the sampling time of 50 ms. This implies that sce-
nario MPC is also feasible for systems with fast dynamics, as has been previously demonstrated
(56, 57).

Figure 4 depicts randomly generated sample trajectories when scenario MPC is used with
S = 10 and S = 200. A large sample size results in both fewer and less severe constraint violations.
This is intuitive because when S → ∞, the solution of the scenario MPC problem converges
to that of a robust MPC problem, where the constraints are satisfied for all possible uncertainty
realizations. Finally, Figure 5 depicts a snippet of a randomly chosen trajectory for S = 10,
showing that the controller is indeed able to keep the pendulum in an upright position.

We conclude our first numerical study by pointing out that scenario MPC is a conceptually
simple and computationally efficient way to address stochastic MPC problems. It approximates the
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Figure 5
Snippet of one randomly chosen realization with S = 10 after 0.05 s, 0.7 s, 0.9 s, and 1.05 s from the task
kickoff. The constraint (180◦ − 1.5◦) ≤ θ ≤ (180◦ + 1.5◦) is satisfied at t = 0.05 s, t = 0.7 s, and t = 0.9 s but
violated at t = 1.05 s. The terminal position is represented in light gray.

true distribution of a system using sampled data (training data) and enforces constraint satisfaction
only on these discrete data points. Finally, the solution quality is good, even when a small sample
size (such as 10 or 50) is chosen.

6.3. Learning Model Predictive Control

In this section, we focus on the fully autonomous case, where the goal of the controller is to learn
the best strategy with respect to different objectives, e.g., minimum time control or minimum effort
control. The data from each trial are used to improve the closed-loop performance as described
in Section 5. One can merge the results of this section with the previous example to design a
stochastic LMPC that teaches a human to perform a better control at each iteration, which is an
area of ongoing research.

The considered objective is a trade-off between the minimization of the task duration T and
the control effort. More formally, the controller’s goal is to solve the following finite-time optimal
control problem:

min
T ,u0,...,uT−1

T∑
k=0

1 + α||uk||Q̄

subject to xk+1 = f (xk, Tck , ak),

x0 = [0, π , 0, 0]T , xT = xF , 23.

where uk = [Tck , ak]T and ||uk||Q̄ = uT
k Q̄uk, with Q̄ = diag(10, 0.01). Note that, for small val-

ues of α, the solution to Equation 23 is close to a minimum-time solution, and for high val-
ues of α, the controller’s goal is to reach the end point with minimum torque applied to the
pendulum.

First, we compute a feasible solution to Equation 23 using an open-loop controller that drives
the cart to the final position and a decoupled torque controller that keeps the pendulum upright.
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Table 2 Evolution of the closed-loop cost through the iterations

Iteration j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

Cost 1,732,329 22,731 3,590 1,017 258 116 98 97 97

This feasible trajectory is used to construct the convex safe set CS0 and the terminal cost P0(·)
needed to initialize the first iteration of the LMPC represented in Equations 18 and 19.

The LMPC is implemented with α = 1, a horizon N = 3, and the cost �(xk, uk) = ||xk||22/√
||xk||42 + 1 + ||uk||22, which approximates the cost in Equation 23. The LMPC with the convex

safe set CS j and terminal cost P j (·) is reformulated as a nonlinear optimization problem and
is implemented in Julia (72) using the solver IPOPT (26). Furthermore, each jth closed-loop
trajectory is used to enlarge the convex safe set used at the ( j + 1)th iteration.

After eight iterations, the LMPC converges to a steady-state solution, as shown in Table 2.
The iteration cost is nonincreasing over the iterations, and the LMPC improves the closed-loop
performance.

Figure 6 shows the evolution of the closed-loop trajectory over the iterations. In particular,
Figure 6a reports the pendulum angle as a function of the distance traveled. After the learning
process, the controller swings the pendulum forward in order to limit the control effort needed to
reach the final point without overshooting. Figure 6b shows a snippet of the closed-loop trajectory
after 0.5 s, 2 s, and 4 s from the task kickoff. We emphasize that the controller successfully completes
all learning iterations without dropping the pendulum.

Table 3 shows the results of several simulations for different values of α. For low values of
α, Equation 23 is almost a minimum-time problem. On the other hand, for high values of α, the
goal of the controller is to reach the terminal position while minimizing the torque applied to the
pendulum. The LMPC improves the closed-loop performance for all values of α.

Finally, we compare the closed-loop trajectory for the first and fifth tunings in Table 3. In
the first tuning, the controller’s goal is mainly to minimize the torque. The fifth tuning is almost
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(a) Angle evolution through the iterations. After the learning process, the controller swings the pendulum forward to reach the terminal
upright position without overshooting. (b) Snippet of a steady-state trajectory after 0.5 s, 2 s, and 4 s from the task kickoff. The terminal
position is represented in light gray.
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Table 3 Simulations for different control tunings

Task α J0
0→T J9

0→T Improvement

1 1 1.7 × 106 97 99.9%

2 0.1 1.7 × 105 97 99.9%

3 0.01 17,402 100 99.9%

4 0.001 1,812 74 95.8%

5 0.0001 253 51 79.8%

a minimum-time optimal control problem. We emphasize that, for both tunings, the LMPC
is initialized with the same data, and therefore SS0 is the same. This shows that the LMPC
algorithm is data efficient and that, depending on the control task, the LMPC explores the state
space in different directions. Therefore, the convex safe set converges to different sets, as shown
in Figure 7. Figure 8 compares a snippet of the steady-state solution after 0.5 s from the kickoff
of the two tunings. In Figure 8a, when the objective is mainly the minimization of the torque, the
controller moves the cart backward to swing the pendulum forward. On the other hand, when the
controller’s goal is to reach the end point in minimum time, the controller immediately moves
the cart forward and applies torque to prevent the pendulum from falling. As a result, the inputs
corresponding to the steady-state trajectory for the two tunings are different, as shown in Figure 9.
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Convex safe set comparison. The convex safe sets for the torque-minimization problem and the minimum-
time problem are shown in blue and red, respectively.
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