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Abstract

Biomimetic robots that replace living social interaction partners can help
elucidate the underlying interaction rules in animal groups. Our review fo-
cuses on the use of interactive robots that respond dynamically to animal
behavior as part of a closed control loop. We discuss the most influen-
tial works to date and how they have contributed to our understanding of
animal sociality. Technological advances permit the use of robots that can
adapt to the situations they face and the conspecifics they encounter, or
robots that learn to optimize their social performance from a set of expe-
riences.We discuss how adaptation and learning may provide novel insights
into group sociobiology and describe the technical challenges associated
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with these types of interactive robots.This interdisciplinary field provides a rich set of problems to
be tackled by roboticists,machine learning engineers, and control theorists. By cultivating smarter
robots, we can usher in an era of more nuanced exploration of animal behavior.

1. INTRODUCTION

The use of biomimetic robots to study animal social behavior has received considerable attention
in recent years. Robots that mimic the appearance and behavior of conspecifics allow biologists to
embody specific hypotheses regarding social interactions and test them in the real world. Given
the existence of previous reviews in this field (1–4) and the breadth of the literature, we focus here
on interactive robots. These are robotic systems that are responsive to the behavior of animals—
that is, the animal is part of a closed control loop, which we term animal-in-the-loop control (see
Figure 1). Our goals are to highlight key studies that advanced the field and to analyze current
trends that suggest future advances.

Incorporating the animal into the control loop is useful in two regards: It improves the social
acceptance of the robot, and it increases the realism of the hybrid social dynamics, thereby al-
lowing scientists to test hypotheses that require or relate to these dynamics. The rules by which
observations are mapped to robotic actions are fixed in the majority of studies—that is, the robot
is purely reactive and follows rules predefined by experts. An example of such a system is a robot
that follows an animal at all times (5).
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Figure 1

(a) Open-loop controlled robots execute their actions without any feedback from the environment. An
example would be a robot that executes a specific predefined movement without taking into account other
animals or obstacles in the environment. (b) Closed-loop controlled robots observe their environment and
measure an error between the desired state of the system and the observed state. The next action is
computed based on this error signal. An example could be a mobile robot that monitors its environment and
avoids collisions with walls or other obstacles. (c) We use the term animal-in-the-loop control specifically for
interactive robots that can discriminate animals from objects in the environment and consider them to be
interaction partners, including behavioral observations in the error signal.
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In the first half of this review, we discuss existing interactive systems. There is still much room
for improvement and adoption of interactive robots. Advances in robotics and machine learning
will allow the next generation of interactive robots to learn optimal behavioral responses—for
example, when the robot changes its interaction rules based on prior experience. Hence, in the
second part, we discuss how these new technological advances could be implemented. We focus
on identifying promising concepts and discuss how the process of obtaining knowledge about the
animal system may benefit from machine learning approaches.

The field of interactive robotics faces some of the same issues as other disciplines, such as com-
puter animation (6) and virtual reality (7, 8), regarding the realism of themimicked appearance and
behavior. Much time and effort can be spent on refining the robots to create increasingly realistic
interactions with animals. However, we should keep in mind that the robot and its behavior only
need to be realistic enough to serve the purpose of the investigation. Most behavioral research
is hypothesis driven, and the purpose of biological investigation is to have an interactive robot
that allows the testing of a hypothesis. Currently, the community of behavioral robotics includes
research groups that are interested primarily in pushing the capabilities of the technology as well
as groups that are focused on developing new biological insights through the use of robots. In
this review, we cater to both arms of the community, giving an overview of the design principles
of interactive robots with reference to key studies that helped define the field. We address how
interactive robots have increased our understanding of social behavior and how improved behav-
ioral plasticity through adaptation and learning could provide novel insights into the dynamics of
animal social interactions.

2. INTERACTIVE ROBOTS

Open-loop and interactive closed-loop robots have different merits for the investigation of social
behavior in animals.The increasing availability of interactive robots does notmean that open-loop
robots will disappear, because for many behavioral experiments, it can be useful to investigate what
happens in an interaction if we switch off the responses on one side (9, 10). For example, if we
are interested in the degree to which individuals vary in their responsiveness to a leader, a robot
that does not respond to its social environment ensures that we are measuring individual traits
uncoupled from social responses.

Established study systems that employ interactive robots include insects [cockroaches,Periplan-
eta americana (9); honeybees,Apis mellifera (11); and crickets,Gryllus bimaculatus (12)], small fresh-
water fish [e.g., zebrafish,Danio rerio (13–16); guppies, Poecilia reticulata (5, 17–19); weakly electric
fish,Mormyrus rume proboscirostris (20); and golden shiners,Notemigonus crysoleucas (21)], rats [Rattus
norvegicus domestica (22)], and birds [chickens, Gallus gallus domesticus (23, 24), and Japanese quail,
Coturnix coturnix japonica (25)]. It is unsurprising that research has focused on small species that
are easy to handle and breed in the laboratory and are already firmly embedded in the biological
literature, making further research particularly relevant.

Several challenges are associated with developing interactive robots, and the specific challenge
may vary drastically depending on the study species. Interactive robots require low-latency sen-
sory feedback and enough computational power to process it in real time. While size constraints
may limit the number and capabilities of sensors, actuators, and processing units, there are many
examples of systems that separate the animal replica from the robot. To test hypotheses regarding
the biology of animal interactions, the robot needs to reproduce relevant social cues, which in in-
teractive robots could be responses to animal actions.While a realistic reproduction of these cues
is an obvious requirement, another relevant question is whether they produce unwanted cues that
could impede natural interaction, such as acoustic or vibrational noise produced by the motors
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or adverse smells from nonbiological materials. Since the robot is intended to reveal information
on unknown mechanisms of social interactions, the development of interactive robots is highly
iterative (26). Robot development is often organized in cycles, in which we improve the robot
gradually by testing various basic properties of prototypes, such as how well it is accepted by the
animals. The choice of study species often limits the number of cycles. Consider, for example, a
honeybee robot that mimics the waggle dance: Bees naturally use the dance when foraging for
food, but they do that only in spring and summer.

The majority of interactive systems have been used in experiments that showcase how closed-
loop control is beneficial for the social integration of the robot, for example, by assessing how
spatial relations become more realistic as a result of integrating positional feedback information
from the social environment. In the following, we give an overview of the most influential works,
discussing how feedback complexity has evolved over the years and which biological questions
have been addressed with this approach.

2.1. Types of Feedback Loops: What Is Investigated with Interactive Robotics?

To count as interactive, a robotic system must use at least one feedback loop with its social envi-
ronment. To understand the various types of feedback loops, it is helpful to review the robot’s set
of sensors, which could either be carried on the robot itself (9) or be an external system [e.g., a
video camera above the arena that monitors the mixed group (19)]. The simplest form of feedback
can be provided with proximity sensors that detect whether a certain region close to the robot is
occupied, either by a social partner or by the walls of the experimental arena.

Probably the first study to make full use of interactive technology was by Halloy et al. (9) who
explored collective decision-making in cockroaches. Cockroaches and robots that smelled (but did
not look) like cockroaches interacted in an experiment that explored shelter use (see Figure 2a).
The robots were autonomous and capable of detecting the presence of cockroaches in close range.
Cockroaches normally prefer the darker of two otherwise identical shelters and aggregate under
it. The robots detected these locations using simple photodiodes and were programmed to behave
similarly according to a mathematical model defining the probability and duration of the stay. By
changing the behavioral model such that the robotic cockroaches preferred a lighter shelter, the
authors showed that even a minority of robotic cockroaches were capable of steering the decision
process. The mixed group now favored the lighter shelter, providing insights into the collective
decision-making process that would not have been possible without robots.

Similar wheeled robots have also been used to imprint bird chicks (23–25). Young birds of these
species are known to accept moving objects (regardless of their appearance) as their parents. The
use of imprinting is an elegant way to get around the problem of creating realistic conspecific

aa b c

Figure 2

Examples of interactive robots. (a) Cockroach robot. Panel adapted with permission from Reference 9.
(b) Chicken robot (27). Photo by J. Halloy and adapted with permission. (c) Guppy robot (19).
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robots when investigating social interactions. The PoulBot (23, 24) used both onboard sensors to
detect obstacles and localize vocalizations of social partners and camera-based tracking from above
the arena for rich sensory feedback (see Figure 2b). Gribovskiy et al. (23) proposed a method to
automatically classify individual behavior over time.While the engineering efforts are impressive,
most experiments conducted to date have addressed only the social cohesion of the hybrid group
and have not extended into the underlying mechanisms of group dynamics.

Most systems that go beyond registering proximity employ some kind of computer vision
on live camera feeds. For example, Kopman et al. (13) presented a large fish model to a single
zebrafish in a separate compartment. The spatial position of the live fish in relation to the fish
model was tracked with a camera from above to adjust the tailbeat frequency of the model. The
authors investigated the degree to which changes in the behavior of the live fish and the model
influenced each other. One drawback of the design was that the autonomous fish model had to be
much larger than the live fish to accommodate the electronics and actuators, and it was therefore
not recognized as a conspecific. Especially in fish studies, where the focal species may be only a
few centimeters long,most studies involving interactive robots separate the control units from the
animal replica to keep the robotic fish small enough to appear as a realistic conspecific. Scientists
have, for example, suspended the fish replica from a rod above the tank (13, 28). The rod is then
moved using a serial motion mechanism outside the tank. Another popular approach is placing
the robot under the tank to move the fish replica via a magnetic coupling (17, 21, 29). A video
camera above or beside the tank is used to detect and track the fish and to close the feedback loop.

In some systems, a separate camera under the tank tracks the position of the robotic unit(s)
to provide accurate motion control and prevent tracking errors that mislabel live fish and robots.
Landgraf et al. (18) used this approach to develop an interactive fish robot (see Figure 2c) that
could execute a well-known shoaling model, switching to one of three behaviors [attraction, align-
ment, or repulsion (30)] based on the distances to the nearest neighbors. In a later study (19), the
interactive robot was used to investigate different morphologies and swimming behaviors to de-
termine which ones best achieved realistic behavioral statistics (distances to the nearest neighbor
and time spent together).

Both of the above studies looked at leadership behavior but did not combine leadership and
social cohesion algorithms. The latter has been explored in a recent study that investigated col-
lective U-turns in zebrafish using three interactive robots that moved together with three live
fish (31). The study compared three different robot behaviors: followership (the robot always fol-
lows the live fish), despotic (the robot moves independently of the live fish), and intermediate
(the robot’s directional decision depends on the perceived heading direction of its neighbors and
an independent decision component). The fish robots using the intermediate algorithm were the
most successful at initiating collective U-turns in the fish shoal. This approach provides an elegant
way to measure the performance of the robotic algorithms in terms of successful U-turns, because
U-turns are a clearly distinguishable behavior.

A different approach to study interactions between fish was taken by Worm et al. (20), who
investigated the social behavior of weakly electric fish. One long-standing problem is that how
electric fish adapt their pulses to particular social contexts is not fully understood. The authors
moved a fish robot on predefined trajectories, but it was capable of producing pulses with mil-
lisecond latency in response to those of a live fish, which allowed the team to show that live fish
likely address nearby conspecifics by echoing their signals.

Most robotic fish use two-dimensional positions of social partners as feedback and also move
the robot in a fixed plane; only a few studies have made the step to controlling the robot in three-
dimensional space. Kim et al. (28) presented a system that could control the three-dimensional
position of a life-sized zebrafish replica. In addition, the system could imitate body-wagging
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motions (minor yaw oscillations) with a fourth actuator. The authors tracked the three-
dimensional position of a zebrafish and tested the effect on the fish’s position in the tank with
the robot following it, then compared the results with conditions in which only single axes were
followed or that had an open-loop condition with predefined trajectories. This work showcases an
interesting technological proof of concept and touches on the issue of how complex the models
of the study systems should be.

Exploring amore complex social scenario, Shi et al. (22) developed a robot for interactions with
rats. They studied the behavior of two observer rats while the rat robot was following a particular
target rat. The feedback loop was closed with a camera that was positioned on top of the cage and
allowed monitoring of the position of the robot in relation to the target rat that was followed and
the observer rats that were avoided. The presence of the rat robot resulted in behavioral changes
in the observer rats, but given the complexity of the setup, the interpretation of the results is not
unambiguous.

A recent work has demonstrated an interesting variant of interactive robots. Bonnet et al. (32)
presented a system that closed the loop between two species that do not interact in nature: hon-
eybees (Apis mellifera) and zebrafish (Danio rerio). In a binary choice experiment, a system of sta-
tionary robots could affect the movement of young bees by producing heat, while the presence
of bees close to the robots was measured with proximity sensors. The zebrafish robot (33) was
swimming with live conspecifics in a circular corridor and was able to influence the decision of
whether to swim clockwise or counterclockwise. In a closed-loop experiment, the choice of the
bees for one of two robots affected the fish robot’s swimming direction, and the movements of the
live fish were fed back to the heating elements of the bee robots. The authors showed that both
species successfully transmitted information to and used information from the partner species,
showcasing that robotics can serve as a tool not only to understand intraspecies interactions but
also to create and explore novel animal–robot systems.

3. ADAPTATION AND LEARNING IN INTERACTIVE ROBOTS

So far, interactive robots have produced behavior as a fixed behavioral policy R: o → a (or short
policy) that maps an observation o to an action a. The policy R is predefined (usually by a human
expert) and does not change during the experiment—that is, the same input o is always mapped
to the same action a. Introducing behavioral plasticity through adaptation and learning can be
motivated from two perspectives. From an engineering point of view, roboticists may regard the
living environment as a challenging test bed for robotic systems in which learning and adapta-
tion may be crucial for successful robotic performance. In collaborations focusing on biological
questions, roboticists may want to either provide their collaborators with a robot that performs
optimally (e.g., with respect to social integration) or enable research that investigates how the an-
imals themselves learn and adapt or respond to interaction partners that learn and adapt. Virtually
all animal species exhibit behavioral plasticity involving at least one of many types of learning (34,
35). From the biologist’s perspective, investigating which role these biological learning processes
play in animal interactions may require implementing mechanisms that allow the behavioral pol-
icy to change in response to experience. Specific hypotheses can then be tested in animal–robot
interactions.

It is helpful to consider the different timescales these learning processes may span and relate
them to possible classes of adaptive rules. Animals, for example, habituate to repeated stimuli with
fewer responses or, by contrast, sensitize to repeated stimuli by responding more strongly (36–38).
Depending on the stimulus, this type of learning can be fast: Guppies that explore a new tank may
first seek the safety of a dense school and swim fast but after a few minutes will disperse more
readily and slow down (10, 39, 40). However, when transferred into another unfamiliar aquarium,
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Figure 3

Interactive, adaptive, and learning robots. (a) Interactive robots have a fixed behavioral policy R that maps observations ot of their
interaction partners to actions at. (b) Adaptive robots amend the behavioral policy R by a parameter set b that they adjust during the
experiment according to rules A. (c) Learning robots collect experience over many interactions and use this experience to update the
behavioral policy (and in general also the adaptation rules) according to the learning algorithm L.

the guppies react with the same behavioral pattern. Biological learning processes underlying be-
havioral plasticity can also span much longer time frames. Animals may continuously integrate
experience with multiple interaction partners or different environments into persistent behav-
ioral changes [the effects of familiarity (see 41–44)]. On even longer timescales, evolution selects
behavioral changes that yield higher fitness and survival [e.g., changes in sociality (45)]. Repro-
ducing or studying short-term adaptations or long-term learning requires the robot behavior to
change in response to the robot’s observations.Figure 3 illustrates the differences between purely
interactive robots and adaptive/learning robots.

3.1. Adaptation Versus Learning

We define adaptive interactive robots as systems that modify the behavioral policy R through a set
of variables b—that is, a=R(o; b).These parameters are adjusted based onwithin-trial past, current,
or even expected future observations according to update rules�b=A(o1: t). Adaptive robots adjust
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to local social dynamics, that is, the dynamics of an individual rather than the population and
of specific encounters rather than all possible situations. The adjustment of b aims to optimize a
certain objective function. In contrast tomachine learning, the adaptation rulesmay not be derived
from the objective but could be designed by the experimenter. It may be unknown a priori whether
a specific adaptation leads to an optimal outcome, but experiments using such an adaptation could
help confirm or reject this hypothesis.

A recent study with a robotic guppy (46) provides an example of adaptive interactions. In a lead-
ership scenario, the robot adjusts its approach vector in response to previously observed avoidance
behaviors of the social partner: Every observed avoidance motion leads to an increment of a vari-
able that in turn reduces the directness of the robot’s approach, making the robot appear more
careful. Long periods without avoidance behaviors, by contrast, lead to the robot’s desensitiza-
tion and bolder approaches. This study showed not only that this behavior decreases the amount
and magnitude of the fish’s avoidance behaviors but also that adaptive leaders significantly out-
perform leaders that do not adjust their carefulness or only adjust randomly, without regard to
the observed avoidance behaviors. Adaptive leaders, for example, needed significantly fewer ap-
proaches and were followed significantly longer than nonadaptive robots. The current value of
b represents a type of short-term memory of encountered past situations and adaptations. Given
that the purpose of the adaptive behaviors is to track and represent local dynamics, it follows that
b should disregard experiences beyond a given temporal horizon. This could, for example, relate
to different experimental trials, because the animal may have been replaced, or the within-trial
timeline, because the animal’s internal state may have changed. These adaptive behaviors are thus
quite different from purely reactive behaviors. In a study by Jolles et al. (5), a guppy robot followed
individual fish, copying the forward motion speed of its partner at every point in time. Although
the behavior appears to adapt to the live fish, the rules with which the robot determines its motion
speed are still fixed, and the same observation will produce the same action again and again.

Learning interactive robots adjust their behavior to optimize the behavioral policy R (and in
general also the adaptation rules A) for a population of situations or interaction partners. A learn-
ing rule changes the behavioral policy by �Ri = L(T1: t), where T1: t is the set of collected expe-
riences up to the current time t. Typically, the learning objective or task is given in an analytical
form that is amenable to numeric optimization. Adaptation and learning are not mutually exclu-
sive, and a learned mapping may be further optimized by adaptation with a specific partner. Again,
both categories may have some overlap, and a given algorithm may qualify as either adaptation or
learning. We could think of an adaptive learner, for example, whose memory is large enough to
contain experiences with multiple animals and is able to generalize from those experiences while
simultaneously overfitting to the specific subpopulation. Learning can take place offline, using
data sets obtained from the focal system, or could be executed in real time while interacting with
animals in the real world or in simulations. In contrast to adaptation, learning processes aim to
optimize on global social dynamics—that is, the rules are trained to exploit behavioral features
that generalize well to the experienced dynamics, and potentially even new dynamics, assuming
they are sufficiently well represented by the training set. In contrast to testing individual behav-
ioral plasticity with adaptive robots, learning policies provides a means to study population-level
dynamics and generic rules that apply to all data points (either multiple individuals or multiple
interactions with one individual). Note that a learner may still be able to produce adaptive be-
havior, exploiting social rules that are observable in all animals irrespective of their individual
personalities, current physiological states, or other factors that produce individual variability.

Cazenille et al. (14) presented a fish robot that automatically optimizes a set of shoaling param-
eters in real time.The authors measured the fitness of a given parameter configuration in episodes
of 120 seconds by comparing reference distributions (natural interindividual distances, wall
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HUMAN–ROBOT INTERACTION AS A SPECIAL CASE OF ANIMAL–ROBOT
INTERACTION

A particular case of using robots to study the social behavior of animals is human–robot interaction. A large body of
research in human–robot interaction has used both purely reactive robots and robots that adapt during the inter-
action. The main difference from animal studies is that interaction effects on humans are not limited to behavioral
metrics: The human subjects themselves can provide valuable information through questionnaires or interviews.
Even though humans may know that an artificial agent they interact with in an experiment is nonhuman, they
may anthropomorphize it such that the associated brain activity is detectable and may be sufficiently aware of the
anthropomorphization to report it on a questionnaire (47, 48). Indeed, in a series of correlational studies and ex-
periments, Waytz et al. (49) showed that humans were more likely to attribute “a mind of its own” to computers
and robots when the latter behaved in unpredictable ways. They explained this through the human observers’ need
for a predictable environment (effectance motivation): Attributing a mind to an unpredictable object made it less
threatening. These results contain two relevant lessons for using interactive robots with animals: First, it may be
possible to gain insights from animal–robot interactions without having to be certain that the robot is fully accepted
as a conspecific, and second, it may be worth trying to manipulate the predictability of an artificial agent to see how
this influences its acceptance by nonhuman animals.

Several human–robot interaction studies have provided evidence that adaptive interactions often affect human
behavior much differently than purely reactive robots do, motivating similar studies in the animal–robot scenario.
Schillaci et al. (50) tested different levels of robot interactiveness during a human–robot interaction experiment;
using questionnaires and proximity measures, they showed that these different levels influenced user experience
factors (such as excitement) and perceived robot factors (such as lifelikeness and intelligence). Scheunemann et al.
(51) compared an intrinsically motivated adaptive robot with a purely reactive robot in a human–robot interaction
experiment and studied differences in human perceptions of those robots. Schneider & Kummert (52) studied the
effects of different levels of automation in socially assistive robots on human perception during a physical exercise
scenario. In all of these studies, the difference in the level of adaptivity in the robot behavior had a strong effect on
social interactions.

In their thorough review of socially aware person-following robots,Honig et al. (53) identified five layers of user
needs according to which a robot may be evaluated and suggested how far factors pertaining to the human, robot,
task, and environment should ideally be taken into account for each layer. This framework may exceed the level of
refinement needed for research with nonhuman animals but could still be useful as a comprehensive template for
evaluating a robot.

distances, and preferences for occupation of three compartments of the arena) with those mea-
sured with the robot, then performed an evolutionary optimization of the parameters for a pre-
defined shoaling model. In this way, the robot was calibrated on a given population of 60 fishes.
The paper focused on describing the impressive engineering efforts, which could then be used in
future investigations of the biology of collective behavior. It would be interesting, for example, to
investigate how the learning system maps different shoal compositions (think of a shoal of only
bold fish and a shoal of only very shy ones) in its parameter space. It would also be interesting to
see how well the learner is able to generalize from limited experience.How quickly can the system
detect differences in the shoal composition?

In contrast to human–robot interaction, adaptive and learning robots have not been explored
thoroughly by the animal–robot community (for additional discussion of commonalities and dif-
ferences, see the sidebar titled Human–Robot Interaction as a Special Case of Animal–Robot
Interaction). To stimulate further developments in the field, we next give a summary of the
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components necessary for building a learning system, specify the main challenges, and discuss
how learned policies may be used to augment the typical research cycle in biology.

3.2. Learning Frameworks, Action, and Observation Space

A popularmachine learning approach to train behavioral policies is reinforcement learning (54). In
essence, reinforcement learning is trial-and-error learning: The robot executes its current policy
and collects experience in the form of actions, observations, and reward values. The reward is an
expert-defined function quantifying the quality of the agent’s action and the resulting state of the
environment.The goal in reinforcement learning is to optimize the policy based on the experience
such that the collected reward is maximized over a given time frame. For continuous action spaces,
most reinforcement learning algorithms require the policy to be differentiable (e.g., neural net-
works). If a policy is not differentiable, then optimization methods such as evolutionary strategies
(55, 56) or Bayesian optimization (57, 58) could be used. However, this generally limits the size of
the search space required to converge in a feasible amount of time. The complexity of the policy
model affects the required amount of data and hence the time and number of interactions that are
necessary to find the optimal policy. Limiting the number of parameters could lead to models that
are not complex enough to learn the required mapping from observation to optimal action. Two
factors that contribute to model complexity are the choices of action and observation space.

All actions the robot can execute span an action space. The policy could, for example, control
each degree of freedom of the robot, or it could just produce bearings in which the robot should
move using a set of predefined motion primitives (e.g., 19). While low-level action spaces allow
the policy to express a much broader range of behaviors, high-level commands help reduce the size
of the search space and accelerate the learning process (59–62). This form of inductive bias allows
us to restrict the search space to biologically plausible regions. From the biological perspective,
movement primitives (relatively short parameterized movements that can be adapted to a certain
goal and speed, such as a reaching movement of an arm) could, for example, correspond to innate
behaviors of biological organisms or could be seen as basis vectors in a high-dimensional motion
space from a computational perspective. These primitives could be designed by hand or result
from an analysis of behavioral data (see the sidebar titled The Quantification of Behavior).

Observations are inputs to the behavioral policy and could be raw sensory data, such as video
frames. Consequently, the policy model must learn to extract meaningful features and integrate
how these features translate into optimal decisions. Alternatively, hand-designed features such as
the relative positions of the interaction partners or the robot’s simplified egocentric view of the
world (as in 89), could ease the learning of the policy but again may induce human bias and re-
duce the expressiveness of the model. Machine learning models generally assume that the input
is of fixed dimensionality. For variable environments (e.g., with a variable number of interaction
partners, as in a school of fish), we need to find suitable representations.One approach could be to
simplify the observations by taking only a fixed number of nearest neighbors into account when
computing the action. Another widely used approach is to use a distribution over the states of the
interaction partners. These distributions can then be represented by its statistics, for example, as
mean and variance (90), by using mean field approximation (91), or by embedding the distribution
into a reproducing kernel Hilbert space (92). Images are a widely used representation when ap-
plying deep learning methods, and using pretrained networks can reduce the amount of data and
time required to learn the policy model. Other approaches to representing a variable number of
observations as inputs to neural networks are deep sets (93) and deep mean embeddings (94, 95),
which are network structures that process an arbitrary set of inputs and combine the output via
reduction operations to a fixed-size feature vector. Figure 4 shows examples of such observation
spaces.
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THE QUANTIFICATION OF BEHAVIOR

Interactive robots have strongly benefited from advances in the field of computer vision (63). Real-time video track-
ing often represents the essential basis of closed-loop feedback (e.g., providing the robot with the location of in-
teraction partners). Computer vision methods are also integral to many behavioral analyses, either in guiding the
development of robotic behaviors or in assessing the effect of robotic actions in the animal system.

Traditionally, animal behavior was annotated by human observers.These so-called ethograms aimed to represent
an inventory of an animal’s behavioral repertoire (64). In recent years, the advent of deep learning has made it
possible to reliably track the position and pose of virtually any animal (65–68) and detect behaviors using hand-
crafted definitions (e.g., to detect U-turns, as discussed in Section 2.1) or a machine learning model that requires
training examples provided by human experts (69–71).

However, human annotations are prone to bias. Even experts may fail to detect behaviors that are relatively rare,
too slow or too fast to be recognized, or too similar to be separated.Unlike supervised machine learning techniques,
unsupervised methods do not rely on predefined behavioral classes and may transfer well to other species (see, e.g.,
Reference 72, which discovered a repertoire of 100 stereotyped behaviors in fruit flies, Drosophila melanogaster).
Detecting distinct behavioral classes in animal behavior data may inform the design of the robot’s action space and
allow one to encode observations in the space of behavioral classes or even infer internal animal states (73) upon
which the robot could react.

Animals may not always exhibit stereotypic (i.e., separable) behaviors, and instead may have a continuous action
space. Robots could thus use time-continuous tracking data to derive meaningful information. On the individual
level, typical measures of interest are movement characteristics (e.g., linear and rotational speeds and accelera-
tions in the available dimensions) and spatiotemporal measures (e.g., time spent in a certain area of the arena or
distances to the wall or other points of interest).Dyadic and group-level measures are of special interest when trying
to assess the influence of a robot’s behavior on live animals or vice versa. Examples include measures of whether
an animal is following or avoiding another (comparing motion vectors to the respective bearings), cohesion (e.g.,
interindividual distances between neighbors), movement alignment (e.g., assessed by cross-correlations), and polar-
ity (variance of the distribution of body orientations). Group dynamics can also be studied by constructing social
networks and investigating their structural properties over time (74, 75).

Inferring social interactions from animal tracking data (76–78) provides important insights into possible behav-
ioral mechanisms underlying collective behavior. However, it is often restricted by the investigation of dyads or by
assumptions of specific interaction models. Furthermore, to reduce behavioral noise, these methods rely on long-
time and/or large-ensemble averages, potentially ignoring individual variability and contextual, time-dependent
effects (79–81).

These studies are complemented by analyses of information flows in collective animal behavior, ranging from
the usage of (pairwise) time-delayed correlation functions (see, e.g., 10, 82) to information-theoretic measures such
as mutual information (83), transfer entropy (84), or causation entropy (85, 86). Pilkiewicz et al. (87) provided a
recent review discussing potential challenges for applying these methods in the context of collective behavior.

Empirical studies often feed into mathematical modeling, which opens up a variety of analyses—for example,
regarding how sensitive the collective system is to changes of critical parameters (see, e.g., 88).

3.3. Challenges

The standard reinforcement learning setting assumes that the underlying control problem is a
Markov decision process—that is, the (distribution over the) next state of the environment is fully
determined by its current state and the performed action. This might be a correct assumption in
robotics, where the system is fully observable, as with a robot arm that has velocity or force–torque
sensors in all joints. The behavior of animals, however, is determined by unobservable or latent
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Examples of how conspecifics can be observed by a robot. (a) The robot observes its interaction partners via discretized distance bins
and, similarly, the distances to the walls as raycasts. The field of view is limited by a maximal observation distance and a blind area
behind the robot. (b) A variable number of interaction partners can be represented as a distribution in which the robot observes
statistics such as mean and variance. (c) The robot observes the m-dimensional state of only its k nearest neighbors.

variables, such as individual personality traits or past experience. For such problems, we need to
assume a partially observable Markov decision process (POMDP). Here, in addition to finding
the optimal policy, we need to solve the problem of inferring the latent state from past and
current observations.

Since exact solutions to POMDPs are computationally intractable, practical solutions usually
rely on approximations (96). As discussed above, adaptive policies are one approach to approx-
imately solve POMDPs, since the adaptation mechanism tries to find a solution that optimizes
for the latent state of the conspecific (e.g., a personality trait). Recent reinforcement learning
approaches often use recurrent neural networks to model such adaptation mechanisms (97, 98).
These networks have an internal state that is updated with new observations, which help to infer
a latent state of the focal system. Alternatively, model-based reinforcement learning can help to
solve the issues of partial observability. Instead of using adaptive policies, model-based reinforce-
ment learning approaches learn a separate world model from observations (any observations of the
focal system, even without robot interactions). This world model learns to predict the next state
of the system given the current and past observations. Hence, the world model needs to maintain
a representation of the system state that contains all necessary information, based on which much
simpler policies can be learned. Furthermore, such world models are independent of the task for
which we want to learn a policy and consequently can be reused to learn policies for different tasks.

Depending on the size of the search space, it may be prohibitive to run the learning process in
real time with live animals. This problem is generally recognized in robotics, where the ability to
learn control models is drastically limited by the time needed to execute a motion and the lifetime
of the robot. In an animal–robot scenario, learning is further limited by the dynamic range of
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social interactions, the physiological parameters of the animal, and ethical considerations. Besides
simplifying the model (by, e.g., adjusting action and observation spaces) to accelerate the learning
process, roboticists are often left with only one option: simulation. In virtual worlds, robots can
learn the underlying rules of the environment and how the state of the environment changes after
executing an action. Simulations can be run much faster than real time, and learning episodes can
be run in parallel to further speed up the process.However, because simulations always differ from
the real world, transferring policies from a simulation to the real world often results in subopti-
mal performance. How to handle this domain shift is an ongoing research question, but several
approaches appear promising. Domain randomization (99) proposes to randomize the dynamics
of the simulation environment so that the learner can better generalize to the dynamics in the real
world; here, generalization refers to the ability to perform well on unseen data points. Zero-shot
learning, one-shot learning, few-shot learning, and metalearning (100–102) are concerned with
how a learner can generalize to unseen data sets with little or no extra learning.

The ability to generalize critically depends on the representativeness of the data distribution
presented to the learner, whether in a simulation or in the real world. Because data sets (i.e.,
interaction experiences) are never complete, models cannot just learn all data by heart (i.e., we
usually regularize models to limit their expressive power). However, generalizing to unseen data
modes is inconceivable. How do we recognize missing modes or biases in our data? With learned
rules, we must be aware that the behavior is optimal only with respect to the available data.

Let us assume that we have overcome these challenges and successfully trained a complex pol-
icy. In general, we do not explicitly know which behavioral features the policy learned to exploit or,
when the training was done in a simulation, which behavioral dynamics of the simulated model are
actually exploitable in the real world. Interpreting neural policies is especially hard due to the large
number of parameters and activations. Animal interactions are dynamical systems best modeled
with time-dependent policies, such as recurrent neural networks. How do we interpret the behav-
ior of the policy, and what were the relevant inputs? Complex recurrent architectures may use sev-
eral layers of hidden states that represent the agent’s history.What do these states actually mean?
In recent years, the field of explainable AI has generated several approaches to analyze, visualize,
and explain the way neural networks map inputs to outputs (103). Especially in the domain of im-
age recognition tasks, a variety of approaches have been proposed; however, most successful work
has focused primarily on convolutional neural networks, a special type of feed-forward network.

3.4. Use Cases for Adaptation and Learning in Animal–Robot Interactions

Despite the challenges, learning and adaptation offer several interesting use cases in the animal-
robot interaction scenario:

1. Understanding behavior as a result of multiple drivers under multiple constraints: Learning
under different constraints or using different reward functions will yield different policies.
Studying how they differ behaviorally (e.g., whether they express biologically plausible be-
havior) may provide insights into which selection pressures contributed to the evolution of
natural behavior.

2. Using learning robots as a tool for automatic phenotyping: Animals of the same species of-
ten differ consistently in their behavior (104), and even clonal animals reared in the same
environment show variation in their behavioral types (105, 106). Studying these differences
often requires biologists to repeatedly conduct multiple behavioral assays (e.g., running a
specific experimental protocol), each used to assess an animal’s personality along a specific
dimension. While open- and closed-loop robots are already used to provide animals with
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standardized social cues and thus work out the live fish’s individual differences (5, 10), adap-
tive robots could be used to automate this process and steer the animal to behavioral dy-
namics that are more informative than would be possible without adaptation. The way the
robot adapts, or the configuration of parameters it converges on, may be predictive of a
specific behavioral phenotype.

3. Evaluating animal behavior models: Let PA and PB be two policies trained on animal inter-
actionmodelsA and B, respectively, tomaximize the same objective function J in simulation.
When A and B are representing similar but different dynamics, one policy may learn to ex-
ploit interaction dynamics unavailable to the other to maximize J. Since A and B are only
incompletely representing the real dynamics, both policies will likely perform worse in the
real world than they did in simulation.The dynamics the policies have learned to exploit (or
a subset thereof ) may still be available to the robot.Testing and comparing robot-embedded
policies may then reveal which model is more realistic regarding the task represented by J,
which at the same time serves as an evaluation metric in the real world. This way, animal
interaction hypotheses compete in the same frame of reference, which yields a fairer model
comparison than, for instance, defining metrics that are independent of task and therefore
could favor one model over another.

4. Optimizing the environment for hypothesis testing: The laboratory environments in which
we run experiments are tuned to test specific hypotheses. Learning can be used to optimize
not only robotic behavior but also any architectural structure or dynamical cue to stimu-
late the animals (e.g., light, sound, and the geometry of the arena). However, most high-
dimensional search spaces may have to resort to simulated dynamics, and without the data
that can represent the real dynamics, we find ourselves in a dilemma: How do we simulate
the dynamics when we do not know what they are in the real world?

5. Enabling curiosity-based exploration to learn policies that elicit new data: Model-based ap-
proaches may represent a way out of the dilemma mentioned above (107–109). The behav-
ioral policy, trained using interactions with a world model instead of the real world, could
use curiosity or intrinsic motivation (110–114) to explore the environment in dynamics re-
gions that are poorly represented by the model because data were missing. The model can
then be improved by iteratively finding poorly supported areas in the learned world model
and collecting new data from interactions in the real environment. These regions of the so-
cial dynamics may, however, be hard to sample due to local instabilities of the system. This
may motivate close connections to mathematical modeling to study these systems (e.g., with
dynamical system analysis).

4. CONCLUSIONS

Interactive robots are still a technological challenge and by no means trivial to operate. Therefore,
many studies are still engaged in the important task of improving the capability of these systems
rather than homing in on answering biological questions of significance. Progress in the field of
interactive robots clearly requires both further developments in robotics and a clear identification
of important and relevant research questions. Here, we identify three areas that we believe are of
high biological significance.

The first is leadership. Large parts of the literature on collective behavior and collective intel-
ligence remain untested, because simulations of multiagent interactions can be carried out much
faster than empirical tests, which means that a large body of untested or only partly tested the-
ory exists. Simulations have proposed solutions to leadership strategies as a function of group size
(115). For example, an individual that wants to lead one or more conspecifics to a target location is
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faced with making a trade-off between goal-oriented movement and social cohesion. If too much
emphasis is put on goal-oriented behavior, then groups tend to split, but if goal-oriented move-
ment is too weak, then it takes a long time to reach the target. Ioannou et al. (116) carried out
some elegant experiments on golden shiners (Notemigonus crysoleucas) that used trained fish that
differed in their goal-oriented movement in social interactions. In the future, trained fish could
be substituted with robotic fish, allowing investigators to specifically control the balance between
goal-oriented behavior and social cohesion and vary it to determine when each type of leadership
is most critical. Testing leadership as a function of group size, however, is only one interesting
option. Tests that experimentally manipulate the composition of groups would also be of great
interest, and adaptive interactive robots allow us to examine the role of social responsiveness in
such processes.

Animal cognition is a second significant area. Frohnwieser et al. (117) argued that robots could
help address fundamental questions in comparative psychology regarding perception, spatial cog-
nition, social cognition, and early cognitive development. Interactive robots have great potential
when it comes to the questions of whether and (if so) to what degree animals can anticipate and
predict the behavior of con- and heterospecifics. A closely connected question is whether the abil-
ity to predict the behavior of others is used to influence the outcome of interactions. The highly
controlled nature of social interactions involving robots makes it possible to address these ques-
tions in ways that were not possible before. Dyadic interactions in which a robot and a biological
agent try to outsmart each other could be a promising testing ground for future experiments,
providing insights into the strategic capabilities of animal minds.

Finally, heterospecific interactions and group hunting are receiving increased interest (118).
We have a fairly good understanding of some aspects of the collective behavior of conspecific ani-
mals, but little is known about the interactions between social predators and group-living prey
or about their potential coevolution. Robots can potentially help us to better understand the
strengths and weaknesses of collective prey behavior when under attack by cooperatively hunting
predators. Robotic models of predators can be made to interact according to particular algorithms
to study the effects on the collective behavior of prey.

Machine learning has been applied to a variety of problem settings. We focused in this review
on animal social interactions, but promising advances have also been made in other related fields.
Bieker et al. (119) used a deep recurrent neural network tomodel complex fluid dynamics and learn
a controller that could successfully force the system to a desired state. Analogously, neuroscientists
have shown that it is possible to simultaneously record from and stimulate brain tissue, and to use
machine learning to drive neural activity to desired states (120) and characterize computational
properties of the tissue (121).

Despite its growing popularity, the use of robots to investigate social behavior in animals is still
at its beginning. Many behavioral biologists who could benefit enormously from testing their hy-
potheses with interactive robots still find the interdisciplinary threshold too high to engage with
roboticists. At the same time, many roboticists working on animals could benefit from the con-
ceptual input of biologists and the interesting problem settings in complex animal systems. These
two sides have much to gain from each other, and we hope that this review will be instrumental
in bringing them closer together to generate more exciting research that pushes the boundaries
of both robotics and behavioral biology.
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