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Abstract

Reachability analysis consists in computing the set of states that are reach-
able by a dynamical system from all initial states and for all admissible inputs
and parameters. It is a fundamental problemmotivated bymany applications
in formal verification, controller synthesis, and estimation, to name only a
few. This article focuses on a class of methods for computing a guaranteed
overapproximation of the reachable set of continuous and hybrid systems,
relying predominantly on set propagation; starting from the set of initial
states, these techniques iteratively propagate a sequence of sets according
to the system dynamics. After a review of set representation and computa-
tion, the article presents the state of the art of set propagation techniques
for reachability analysis of linear, nonlinear, and hybrid systems. It ends with
a discussion of successful applications of reachability analysis to real-world
problems.
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1. INTRODUCTION

Historically, analysis of dynamical systems has been done through the use of mathematical no-
tions such as transfer functions, Lyapunov functions, and so on. As the complexity of engineered
systems has grown considerably over the past decades, there has been a need to complement these
analytical tools with computer-based techniques, which are able to deal, for instance, with high-
dimensional state spaces or with hybrid (discrete/continuous) dynamics. The current industrial
practice relies mostly on simulation and testing, which makes it possible to explore the behavior
of a system under various scenarios. While this approach is useful to detect undesirable unfore-
seen behaviors that need to be corrected, it suffers from the limitation that it is not possible to
exhaustively explore all possible scenarios, and therefore it does not provide any formal guarantee
that the system is correct.

In the early 1980s, research on model checking of discrete-state dynamical systems (1, 2) was
initiated with the objective of proving automatically that a system satisfies some requirements.
The domain has had a great impact, with many industrial successes, and is extensively used in the
hardware industry today. Many algorithms used in model checking rely heavily on reachability
analysis,which consists in computing the set of states that are reachable by the system, from a given
set of initial states under all possible inputs. The extension of model checking and reachability
analysis to continuous (3) and hybrid (4) systems gained traction in the 1990s, and the first tools
that were able to deal with nontrivial continuous dynamics, such as CheckMate (5) and d/dt (6),
were released in the early 2000s. Since then, there has been continuous progress in this research
area as more accurate and more scalable algorithms have been developed. The goal of this article
is to present the state of the art of reachability analysis for continuous and hybrid systems, with
an emphasis on a family of techniques based on propagation of sets.

1.1. Reachability Analysis of Continuous Systems

We first introduce the problem of reachability analysis in the context of continuous systems; the
case of hybrid systems is treated specifically in Section 5. In this article, we use calligraphic cap-
ital letters to denote sets and bold roman letters to denote functions of time. Let us consider a
continuous dynamical system modeled by a differential equation of the form

ẋ(t ) = f (x(t ),w(t )), x(t ) ∈ R
n, w(t ) ∈ W , 1.

where x(t ) denotes the state of the system andw(t ) is an external input, considered in the following
as a disturbance.The input values are assumed to belong to a given compact setW ⊆ R

p.Wemake
the standing assumption that for a given initial state x0 ∈ R

n and a given measurable input signal
w : R+

0 → W , the system shown in Equation 1 admits a unique trajectory defined on R
+
0 , denoted

in the following by ξ (·, x0,w).
The reachable set of Equation 1 at time t ∈ R

+
0 from a set of initial states X0 ⊆ R

n is

Reacht (X0) = {ξ (t, x0,w) | x0 ∈ X0, w(s) ∈ W ,∀s ∈ [0, t]}. 2.

The reachable set (or reachable tube) of Equation 1 over a time interval [0,T ] ⊆ R
+
0 is then defined

as

Reach[0,T ] (X0) =
⋃

t∈[0,T ]

Reachs(X0). 3.

In words, the reachable set comprises all states that can be reached at time t or on the time interval
[0, T], from any initial state in X0, for any admissible external input. Reachability analysis consists
in computing the reachable set of a dynamical system.
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1.2. Difficulty and Usefulness

The question whether a state can be reached by a dynamical system is known to be tricky. In
fact, for many types of systems, one can show that there can be no algorithm that decides the
question in a finite number of steps; this kind of problem is called undecidable. The decidability
of reachability depends on the type of dynamics and on the constraints on inputs and initial states.
For instance, reachability is decidable for a discrete-time linear time-invariant system if the set of
inputs is unconstrained.However, if the inputs are constrained to a finite union of affine subspaces,
the problem becomes undecidable (7). In the case of hybrid automata, reachability is undecidable
even for classes with very simple dynamics, such as systems with piecewise constant derivatives
(8). In some cases, the problem becomes decidable if one restricts the analysis to a finite time
horizon (9). For this reason, one usually resorts to approximation methods. However, to be able
to reason formally on the system using these approximations, one needs these approximations to
present some guarantees. For instance, we can request that the computed approximation contains,
or is contained by, the true reachable set. In that case, we talk about overapproximations and
underapproximations, respectively.

The focus of the present article is on the computation of overapproximations, which are more
often used in practice, but several works on underapproximations exist (see, e.g., 10 and the refer-
ences therein). Computing approximations of reachable sets can be useful for many purposes:

� Formal verification: If an overapproximative reachable set does not intersect an unsafe set,
one can prove that it cannot be entered by any trajectory. If more complicated properties
are formulated, such as liveness or fairness (e.g., in temporal logics), one can sometimes
synthesize a corresponding monitor automaton. By using parallel composition, the monitor
and the system to be verified result in a hybrid automaton for which onemust check whether
a bad state of the monitor can be reached. Thus, the verification problem can be translated
into a reachability problem.

� Computation of invariant sets and regions of attractions: If a state starts in an invariant set, it
will remain in it indefinitely (11). For instance, invariant sets are useful to ensure the stability
ofmodel predictive control.While one can obtain invariant sets fromLyapunov functions, in
many cases one obtains better results when using reachable sets (12).The region of attraction
of a steady state contains all states that asymptotically converge to it. As for invariance sets,
one often obtains better results when using reachability analysis than when using Lyapunov
functions (13).

� Robust control: Reachability analysis can be incorporated in controllers to ensure that a
goal region is reached while unsafe regions are avoided and input and state constraints are
respected. Especially for model predictive control, robust variants using reachability analysis
have emerged (14–16).

� Set-based observers and fault detection: In safety-critical systems, it does not suffice to es-
timate the internal state using a standard approach, such as a Kalman filter. One instead
requires a set of states in which the true state is guaranteed to be found. Many set-based
observers propagate the set of states using reachability analysis and then constrain these sets
using new sensor information (17). Sets of estimated states are also used to reduce the false
alarm rate in fault detection (18, 19).

� Set-based prediction: Prediction algorithms are often used by autonomous systems to avoid
conflicts with surrounding entities. To ensure safety, one must predict all possible behaviors
of these entities using reachable sets, which serve as time-varying unsafe sets for verification
purposes (20, 21).
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� Controller synthesis: Reachability analysis is often used as a building block for synthesizing
controllers from formal specifications.One application is to compute discrete abstractions of
continuous and hybrid systems so that synthesis methods for discrete systems can be applied
(22).To avoid the state-explosion problem, one can also directly synthesize controllers in the
continuous space using reachable sets (23).

� Conformance checking: For the above methods, it is often crucial that all behaviors of a
real system are captured by its corresponding model, ensuring that obtained results also
hold in reality. This requires nondeterministic models with potentially uncertain inputs,
initial states, and parameters. A special form of conformance checking—called reach set
conformance checking—ensures that all recorded behaviors of a real system are captured by
the abstract nondeterministic model (24, 25).

1.3. Scope of the Article

There exist several types of approaches to reachability analysis. Some rely on optimal control the-
ory to show that the reachable set of a system corresponds to the zero-sublevel set of the solution
of a Hamilton–Jacobi partial differential equation (26, 27). Approximations of the reachable set
can then be obtained by solving this equation numerically.While this approach allows one to cope
with complex nonlinear dynamics with inputs, their computational cost increases sharply with the
state dimensions, since partial differential equations are usually solved by discretizing the state
space.

Barrier certificates can also be used to provide an overapproximation of the reachable set using
the zero-sublevel set of a function (28). Intuitively, a function is a barrier certificate if no trajec-
tory of the system can evolve from negative to positive values of the function. It follows that if the
zero-sublevel set of a barrier certificate contains the initial states of the system, it also contains
the reachable set. Barrier certificates can be a powerful tool for showing safety if the reachable
states can be separated from the unsafe states by a suitable barrier function. Intuitively speaking,
this depends on both the distance to the unsafe states and the geometric complexity of the reach-
able set. Since a single barrier certificate is typically insufficient to accurately represent a reach-
able set, Kong et al. (29) presented a sequence of piecewise barrier functions for different time
intervals.

Another class of methods rely on simulation and trajectory sensitivity analysis to cover the
reachable set using a finite number of neighborhoods of individual trajectories (30–34).Trajectory-
based techniques have been successfully applied to complex nonlinear systems. However, in cases
of event-based switching (hybrid systems), the trajectory branches into a tree whose size can grow
rapidly with time. Decreasing the complexity of this tree, by detecting redundant states, can be
easier with set propagation techniques.

Another perspective on reachability analysis is to construct a logic formula that encodes
whether a state is reachable (35, 36). Expressing reachability as the satisfiability of a set of con-
straints can be advantageous in particular over a bounded time horizon. However, it requires
bounding the reachable states with a finite number of constraints (each one geometrically sim-
ple), which is difficult if the reachable states are geometrically complex.

In this article, we do not elaborate further on these approaches, and we focus on a class of
methods that rely on set propagation. Starting from the set of initial states, these approaches
iteratively compute a sequence of sets that correspond to propagations of the initial set according
to the system dynamics. Set propagation techniques can be seen as an extension of numerically
solving the ordinary differential equations of the system,where the solution is expressed in terms of
sets rather than numbers.The error is generally a function of the time step and the size of the initial
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set. In principle, both can be made arbitrarily small, possibly by splitting the initial set, so that the
approximation can be made arbitrarily precise. The set propagation techniques presented here
are by design conservative—i.e., they cover all possible solutions of the system. Set propagation
techniques can benefit from techniques that reduce the complexity, such as detecting previously
explored states through containment checks, accelerating cycles through widening, and merging
sets through hull operations. These properties have made set propagation techniques popular in
both academic research and industrial case studies.

The article is organized as follows. In Section 2, we present several classes of sets that are
suitable for computer representation and have favorable properties for reachability analysis.Then,
Sections 3–5 present set propagation techniques for overapproximation of the reachable sets for
linear, nonlinear, and hybrid systems, respectively. In Section 6, we review several applications
where such techniques have proven useful.

Several software tools and packages are available for computing reachable states,most of which
are specialized to a particular class of systems. Since a comprehensive listing would go beyond the
scope of this article, we refer readers to the proceedings of the 2019 International Workshop
on Applied Verification of Continuous and Hybrid Systems (37), which provides an up-to-date
overview.

2. SET REPRESENTATIONS

To efficiently and accurately compute overapproximations of the reachable sets, one important
question is the representation of sets. Below, we provide a taxonomy of sets (see Figure 1). At
the coarser level, we distinguish between convex and nonconvex sets. In this section, we discuss
how these sets are represented on a computer and which types of operations can be effectively
computed. We use C(·, i) to denote the ith-column vector of a matrix C.

2.1. Convex Sets

Convex sets are attractive for their geometric simplicity and computational efficiency for many
subclasses.Moreover, they are particularly suitable for reachability analysis of linear systems, since
the convexity of reachable sets at any instant is preserved under linear dynamics. In that case, one
usually chooses to work with a subclass of compact convex sets, which can be easily represented
on a computer, and for which elementary set operations can be effectively computed. The most
common set operations that are needed in this respect are linear transformations,Minkowski sums,
and convex hulls.

Support functions
Zonotope bundles and
constrained zonotopes

Polytopes Zonotopes

Taylor models

Polynomial zonotopesConstrained
polynomial
zonotopes

Nonconvex
sets

Convex sets

Sublevel sets

Star sets

Intervals

Ellipsoids

Figure 1

The relationships among the different set representations, where A → B denotes that B contains A.
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2.1.1. Ellipsoids, polytopes, and zonotopes. Ellipsoids, polytopes, and zonotopes are defined
as follows.

Definition 1 (ellipsoid). Given a center c ∈ R
n and a positive definite symmetric matrix

Q ∈ R
n×n, an ellipsoid is

E = {
x ∈ R

n
∣∣ (x− c)�Q(x− c) ≤ 1

}
.

Definition 2 (polytope). Given a matrix A ∈ R
m×n and a vector d ∈ R

m, anH-polyhedron
is

P =
{
x ∈ R

n
∣∣∣ Ax ≤ b

}
.

An H-polytope is a bounded polyhedron. Given a finite set of vertices {v1, . . . , vr} ⊆ R
n, a

V-polytope is P = conv({v1, . . . , vr}).

Definition 3 (zonotope). Given a center c ∈ R
n and a generator matrix G ∈ R

n×p, a zono-
tope is

Z :=
{
c +

p∑
i=1

αiG(·,i)

∣∣∣∣αi ∈ [−1, 1]
}
. 4.

Ellipsoids can be represented by n× (n+ 3)/2 real numbers.AnH-polytope can be represented
by m × (n + 1) real numbers. A V-polytope can be represented by r × n real numbers. It is always
possible to go from an H-polytope to a V-polytope and vice versa. The representation of an H-
polytope is usually more compact than its equivalent representation as a V-polytope. A zonotope
can be represented by n × (p + 1) real numbers. In addition, it is always possible to go from
a zonotope to an equivalent H-polytope or V-polytope, though the zonotope representation is
usually much more compact.

2.1.2. Zonotope bundles and constrained zonotopes. A major disadvantage of polytopes is
that Minkowski sums are computationally expensive. Since Minkowski sums are an essential op-
eration in reachability analysis, alternative set representations based on zonotopes have been de-
veloped that can also represent polytopes but are computationally cheaper for certain operations.

Definition 4 (zonotope bundle; see definition 4 in Reference 38). Given a finite set
of zonotopes Z∩, a zonotope bundle is Z∩ = ⋂s

i=1 Zi, i.e., the intersection of zonotopes Zi.
Note that the intersection is not computed, but the zonotopes Zi are stored in a list, which
we write as Z∩ = {Z1, . . . ,Zs}∩.

Due to the lazy representation of polytopes as a set of intersecting zonotopes, the Minkowski
sum cannot be computed exactly, but it can be tightly overapproximated in the sense that the result
is always better than face lifting (38, propositions 2–4). Also, convex hulls must be overapproxi-
mated. An alternative to zonotope bundles is constrained zonotopes, which are computationally
more demanding, but operations on them are exact for Minkowski sums and convex hulls (18).

Definition 5 (constrained zonotope; see definition 3 in Reference 18). Given a center
vector c ∈ R

n, a generator matrix G ∈ R
n×p, a constraint matrix A ∈ R

m×p, and a constraint
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vector b ∈ R
m, a constrained zonotope CZ ⊂ R

n is

CZ :=
{
c +

p∑
i=1

αiG(·,i)

∣∣∣∣
p∑
i=1

αiA(·,i) = b, αi ∈ [−1, 1]
}
. 5.

2.1.3. Support functions. The support function of a compact convex set is determined by the
position of the supporting hyperplane in a given direction.

Definition 6 (support function). Given a compact convex set S ⊆ R
n, the support func-

tion is defined for all � ∈ R
n as ρS (�) = maxx∈S ��x.

Tight polyhedral overapproximations of S can be obtained by sampling its support function in
a finite number of directions L ⊆ R

n:

S ⊆
⋂
�∈L

{
x ∈ R

n
∣∣ ��x ≤ ρS (�)

}
.

Moreover, S is uniquely determined by its support function since the above inclusion becomes
an equality when L = R

n. The evaluation of the support function in a given direction requires
solving a convex optimization problem. Closed-form solutions exist for ellipsoids and zonotopes,
while for polytopes one must solve a linear program.

2.2. Nonconvex Sets

The convexity of reachable sets for points in time is preserved for linear systems.However, reach-
able sets are in general no longer convex for nonlinear systems (39), so that nonconvex set repre-
sentations provide tighter overapproximations (see, e.g., 40, 41).

2.2.1. Polynomial zonotopes and constrained polynomial zonotopes. We first present the
more general class of constrained polynomial zonotopes.

Definition 7 (constrained polynomial zonotope; see definition 4 in Reference 42).
Given a starting point c ∈ R

n, a generator matrix G ∈ R
n×h, an exponent matrix E ∈ Z

p×h
≥0 ,

factors αk, a constraint matrix A ∈ R
m×q, a constraint vector b ∈ R

m, and a constraint expo-
nent matrix R ∈ Z

p×q
≥0 , a constrained polynomial zonotope is defined as

CPZ :=
{
c +

h∑
i=1

( p∏
k=1

α
E(k,i)
k

)
G(·,i)

∣∣∣∣∣
q∑
i=1

( p∏
k=1

α
R(k,i)
k

)
A(·,i) = b, αk ∈ [−1, 1]

}
. 6.

Polynomial zonotopes are a special case of constrained polynomial zonotopes without con-
straints, except that αk � [ − 1, 1]. Even though polynomial zonotopes are a special case, they can
represent polytopes since (a) they are closed under convex hulls (see Table 1), (b) a point is obvi-
ously a special case of a polynomial zonotope, and (c) the convex hull of points is a polytope. Poly-
nomial zonotopes were first introduced by Althoff (41) and later extended to the above-presented
sparse representation (50).
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2.2.2. Taylormodels. Taylormodels are essentially n-dimensional Taylor polynomials enlarged
by an n-dimensional interval [x] := [x, x], ∀i : xi ≤ xi, x, x ∈ R

n.

Definition 8 (Taylor polynomial; see section 3 in Reference 54). Let us first introduce
the multi-index set

Lq =
{
(l1, l2, . . . , ln )

∣∣∣ li ∈ N,
n∑
i=1

li ≤ q
}
.

We define Pq(x, x0, p) as the qth-order Taylor polynomial of f (x, p) : Rn × R
p̃ → R

m param-
eterized by p ∈ P ⊂ R

p̃ around x0 (x, x0 ∈ R
n):

Pq(x, x0, p) =
∑
l∈Lq

(x1 − x0,1 )l1 . . . (xn − x0,n )ln

l1! . . . ln!

(
∂ l1+...+ln f (x, p)

∂xl11 . . . ∂xlnn

)∣∣∣∣∣
x=x0

. 7.

Next, we define Taylor models and show how they can enclose arbitrary multi-dimensional
functions.

Definition 9 (Taylor model; see definition 1 in Reference 55). Let f (x, p) : Rn × R
p̃ →

R
m be a function that is (q + 1) times continuously differentiable in an open set containing

the n-dimensional interval [x]. Using the qth-order Taylor polynomial Pq(x, x0, p) of f (x, p)
around x0 � [x], we choose an m-dimensional interval [I] such that

∀x ∈ [x], p ∈ P : f (x, p) ∈ Pq(x, x0, p) ⊕ [I]. 8.

The tuple T = (Pq(x, x0, p), [I], [x],P ) fully specifies a qth-order Taylor model of f(x, p) around
x0. In Section 4.1, Taylor models T = (Pq(t, t0, x0), [I], [t],X0) are obtained with respect to t and
parameterized by the initial state x0 to enclose a reachable set starting in x0 ∈ X0 for a given time
interval [t]. Taylor models are not sets per se but are used in Section 4.1 to obtain reachable sets
through {Pq(t, t0, x0)|t ∈ [t], x0 ∈ X0} ⊕ [I].When replacing αk in Definition 7 with xk � [ − 1, 1],
one can easily see that Taylor models and polynomial zonotopes are equally expressive. However,
Taylormodels are closed only under linearmaps, convex hulls, and quadraticmaps if the interval [I]
is reduced to a point. Also, many operations, such as Minkowski sums, require renaming variables,
which is not required when using polynomial zonotopes.

2.2.3. Sublevel sets and star sets. Sublevel sets are a general concept used for various problems.

Definition 10 (sublevel set). Given a real valued function μ(x) : Rn → R, a sublevel set
is defined as

LS := {
x | μ(x) ≤ 0

}
, 9.

where any constraint μ̃(x) ≤ c, c ∈ R can be transformed to the above form.

Sublevel sets are very general sinceμ(x) can be arbitrarily chosen.However, due to their general
structure, it is hard to reduce their representation size. Star sets have a bit more structure.

Definition 11 (generalized star set; see definition 1 in Reference 56). Given the center
x0 ∈ R

n; q vectors v1, v2, . . . , vq (definition 1 in Reference 56 restricted q, but later publica-
tions removed this restriction) forming the basis; and a predicate P : Rn → �,⊥, a gener-
alized star set is defined as

SS :=
{
x

∣∣∣∣∣x = x0 +
q∑
i=1

αivi,P(α) = �
}

. 10.
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Since the predicate can be arbitrarily chosen, closed-form solutions for many set operations do
not exist.

2.3. Comparison

Table 1 summarizes the different set representations and their properties regarding some geomet-
rical transformations. For closed-form expression of operations, complexity results are provided
with respect to the system dimension n. The computational complexity is obtained assuming that
the resulting sets are not reduced to their minimum representation—e.g., redundant vertices of
V-polytopes and redundant half spaces of H-polytopes are not removed. Also, we consider only
the number of required binary operations (i.e., operations that require two operands); the compu-
tational effort of unary operations, such as concatenations of lists, can be safely neglected. Please
note that we do not assume the use of special numerical tricks that have been developed for large
matrices and instead consider the textbook method.The linear map is defined byM ∈ R

m×n, while
the quadratic map is defined as {[xTQ1x] × . . . × [xTQnx]|x ∈ S},Q ∈ R

n×n×n.
From Table 1, one can see that for reachability analysis of linear systems that relies heavily

on linear maps and Minkowski sums, convex representations such as zonotopes and support func-
tions possess interesting computational features. However, when the dynamics presents strong
nonlinearities, the accuracy provided by convex representations may no longer be sufficient, and
nonconvex alternatives such as (constrained) polynomial zonotopes can be considered.

3. LINEAR SYSTEMS

In this section, we focus on reachability analysis of continuous dynamical systems with linear
dynamics:

ẋ(t ) = Ax(t ) + Bw(t ), x(t ) ∈ R
n, w(t ) ∈ W ⊆ R

m. 11.

It is common to assume that the set of inputs W and initial states X0 ⊆ R
n are compact convex

sets. Then, for all t ∈ R
+
0 , the reachable set Reacht (X0) is also a compact convex subset of Rn.

Therefore, for linear systems such as Equation 11, it is generally sufficient to overapproximate
the set Reach[0,T ] (X0) by a union of convex sets. One usually uses one of the class of convex sets
presented in Section 2.1: ellipsoids (57, 58), polytopes (59, 60), zonotopes (61, 62), or support
functions (63, 64). In the following, we focus on time-invariant systems, but similar techniques
exist for linear time-varying or uncertain systems (65).

3.1. Time Discretization

Most of the approaches for computing overapproximations of the reachable set of Equation 11
are based on time discretization. Let N ∈ N and τ = T/N; from the semigroup property of the
differential equation shown in Equation 11, it follows that

Reach[0,T ] (X0) =
N−1⋃
k=0

Reachkτ (Reach[0,τ ] (X0)).

The main idea is to compute a sequence of compact convex sets (Sk )N−1
k=0 such that for all k, Sk

contains Reachkτ (Reach[0,τ ] (X0)). Several approximation schemes exist; here, we briefly describe
the one from Reference 63. To initialize the sequence, one can use

S0 = conv
(X0 ∪ (eAτX0 ⊕ τW ⊕ α(τ ,A,B,X0,W )B)),
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where α(τ ,A,B,X0,W ) = O(τ ) is a positive scalar and B is the unit ball for a norm of Rn. The
remaining elements of the sequence can then be obtained using the recurrence equation for k =
1, . . . ,N − 1:

Sk = eAτSk−1 ⊕ τW ⊕ β (τ ,A,B,W )B, 12.

where β (τ ,A,B,W ) = O(τ 2) is a positive scalar. The analytic expressions of α and β can be found
in Reference 63. We then obtain the following result, where dH denotes the Hausdorff distance
between sets:

Reach[0,T ] (X0) ⊆ RN and dH(Reach[0,T ] (X0),RN ) = O(τ ), where RN =
N−1⋃
k=0

Sk. 13.

We should remark that computing the sequence (Sk )N−1
k=0 and thus the overapproximationRN of

the reachable set involves computing one convex hull,N linear transformations, andNMinkowski
sums, whose computation has been discussed in the previous section for ellipsoids, polytopes,
zonotopes, and support functions. However, one should note that the complexity of the represen-
tation of Sk increases as k grows. For instance, if one uses a zonotope to represent Sk, the size of
the generator matrix increases linearly with k. The algorithm to compute RN then has memory
and time complexity that is quadratic with respect to N.

A way to impose linear memory and time complexity is to add a reduction step at each iteration
(see, e.g., 61). In that case, the recurrence equation shown in Equation 12 becomes, for k = 1, . . . ,
N − 1,

Sk = reduce
(
eAτSk−1 ⊕ τW ⊕ β (τ ,A,B,W )B), 14.

where reduce is a function that overapproximates a convex set (e.g., a zonotope) by a convex set
of given complexity (e.g., a zonotope with a generator matrix of given size). With this approach,
the complexity becomes linear with respect to N but at the expense of additional conservatism.
In particular, the approximation estimate in the Hausdorff distance provided in Equation 13 is no
longer valid.Moreover, while with the recurrence equation shown in Equation 13, the approxima-
tion error can be reduced by increasingN, this is generally no longer the case with the recurrence
equation shown in Equation 14. This phenomenon is referred to as the wrapping effect (66).

3.2. Computing Without the Wrapping Effect

For linear time-invariant systems such as Equation 11, it is actually possible to reschedule the
computations of the sequence (Sk )N−1

k=0 given by Equation 12 to reduce the complexity without
additional conservatism, as presented by Girard et al. (67). For that purpose, let us introduce the
auxiliary sequences (Xk)N−1

k=0 , (Wk )N−1
k=0 , and (Yk )N−1

k=0 , given by

Z0 = conv
(X0 ∪ (eAτX0 ⊕ τW ⊕ α(τ ,A,B,X0,W )B)) , V0 = τW ⊕ β (τ ,A,B,W )B, Y0 = {0},

and the recurrence equation for k = 1, . . . ,N − 1:

Zk = eAτZk−1, Vk = eAτVk−1, Yk = Yk−1 ⊕ Vk−1.

Then, one can verify that for k= 0, . . . ,N− 1,Sk = Zk ⊕ Yk.Themain advantage of this approach
is that, contrary to Equation 12, the complexity of the sets to which the linearmaps are applied does
not increase with k. By computing these sequences with zonotopes (67) or support functions (63),
it is actually possible to compute the overapproximation RN of the reachable set with memory
and time complexity that is linear with respect to N.
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3.3. High-Dimensional Systems

To scale reachability analysis for linear systems for systems beyond 1,000 state variables, the meth-
ods presented above typically do not suffice.Twomethods for scaling to larger systems havemainly
been investigated: reduction methods and methods based on decomposing the system dynamics.
The first work using order reduction techniques for reachability analysis was probably a paper by
Han & Krogh (68). The same authors later used Krylov subspace reduction methods (69), which
preserve the entire reachable set, in contrast to Reference 68.While non-Krylov order reduction
techniques are still explored for reachability analysis (70), Krylov methods have been most suc-
cessful (52, 71). Recently, Krylov methods for reachability analysis have been extended such that
arbitrarily varying inputs can be considered (72).

In decomposition techniques, the system is divided into subsystems. For each subsystem, the
reach tube is computed by treating variables from the other subsystems as bounded inputs (73).
Finally, the reach tubes of the subsystems are combined, e.g., embedded back into full-dimensional
space and intersected.For linear systems, one can use a coordinate transform to bring the system to
a block-triangular form (Schur form), and the transformation matrix can be chosen to minimize
the coupling terms (74). However, the back transformation into the full-dimensional space can
amplify approximation errors. A decomposition without full decoupling can be achieved by com-
puting successor states in the subsystems and using the resulting state sets at each time step (45).
Taken to the extreme, decomposing the system into one-dimensional subsystems, this is equivalent
to computing the reachable states via interval arithmetic. For nonlinear systems, related projection
techniques have been applied to level sets (75) and using two-dimensional polygonal projections
(76). To improve accuracy, one can treat the computed reach tubes of subsystems as time-varying
interval-shaped inputs in order to recompute the reach tubes with higher accuracy (77).

4. NONLINEAR SYSTEMS

The analysis of nonlinear systems is much more complicated since many valuable properties are
no longer valid, such as the superposition principle and that the homogeneous solution can be
computed by a linear map. We consider general nonlinear continuous systems with Lipschitz
continuity. Using the same notation as for linear systems, the evolution of the state x is defined by
the following differential equation:

ẋ(t ) = f (x(t ),w(t )), x(0) ∈ X0 ⊂ R
n, w(t ) ∈ W ⊂ R

m. 15.

As for linear systems, all subsequent approaches compute reachable sets for consecutive time in-
tervals. Due to the difficulty of computing reachable sets of nonlinear systems, most approaches
resort to abstraction techniques, either in the solution space or in the state space; other techniques
exploit specific system properties, such as monotonicity. Finally, we briefly discuss the extension
to differential-algebraic systems.

4.1. Abstraction in Solution Space

Abstractions in solution space approximate solutions of Equation 15 by a Taylor polynomial (see
Definition 8) with respect to time. Taylor polynomials approximating initial-value problems of
ordinary differential equations can be obtained by using the Picard iteration or a truncated Lie
series (40).While the Taylor polynomial is most accurate for initial-value problems with the initial
state chosen as the expansion point, the solution is often well approximated for other initial states
in its vicinity. To enclose the solution for a set of possible initial states and inputs, intervals are
added to the Taylor series, resulting in Taylor models, as presented in Definition 9. Taylor models

380 Althoff • Frehse • Girard



were originally developed by Makino and Berz (55, 78, 79); an earlier development equivalent
to Taylor models can be found in Reference 80. A common technique to obtain the interval [I]
for reachability problems is to guess [I] so that evaluating the Picard operator for (Pq(x, x0), [I])
yields a contractive Taylor model (Pq(x, x0), [I]post) with [I]post�[I] (40, section III). If the guess
is not successful, [I] is iteratively increased. These techniques were further developed by Chen
et al. (40), who computed Taylor models not only from the initial point in time but also from
later points in time, by obtaining the set of states of intermediate time points using standard set
representations, such as polytopes or zonotopes (40).

4.2. Abstraction in State Space

Another abstraction technique is to abstract the system dynamics rather than its solution. To write
subsequent abstractions in a compact way, we introduce z = [xT, wT]T ∈ R

o (o = n + m) and the
nabla symbol∇ = ∑o

i=1 e
(i) ∂

∂zi
, where e(i) represents orthogonal unit vectors.The nonlinear system

in Equation 15 can be abstracted by a Taylor expansion of order κ at point z∗ with Lagrange
remainder L (see 78):

ẋi(t )∈ Pκ (z(t ),z∗ )⊕ Li(t ), Li(t )=
{(

(z(t )− z∗ )T∇)κ+1 fi(z̃(t ))
(κ + 1)!

∣∣∣∣∣z̃(t )= z∗ + α(z(t )− z∗ ),α ∈ [0,1]

}
.

16.

Inmany cases, only first-order terms are considered, so that the system is conservatively linearized.
In a few cases, it is even possible to obtain a polynomial system without any abstraction error by
a change-of-bases transformation (81, 82).

4.2.1. Time-invariant regions. The abstraction in Equation 16 is tight only in the vicinity of
the expansion point z∗. To expand the scope of tight abstractions, several works have split the state
space into regions with different expansion points, resulting in hybrid systems, as described in Sec-
tion 5.Henzinger et al. (83) abstracted nonlinear dynamics by a constant value plus the abstraction
error using polyhedral regions. Asarin et al. (84, 85) performed a more precise abstraction, where
the original dynamics in linearized and the state space is decomposed into polyhedral regions; the
abstraction error is determined either by the Lipschitz constant or by a bounded second derivative.

One disadvantage of static regions is that the number of required regions scales exponentially
with the system dimension. This can be alleviated by computing only reachable regions on the fly
(86). Another disadvantage is that static regions require two expensive operations: intersections
with guards and unifications of sets to avoid computing too many instances of reachable sets; this
is addressed in Section 5.

4.2.2. Time-variant regions. To avoid computing intersections and unifications when using
time-invariant regions, one can construct time-variant regions moving along with the reachable
set of the current time interval. The simplest form of abstraction is to consider only the linear
part of Equation 16 (see, e.g., 87, 88). Several methods to obtain the abstraction error exist. One
possibility is to evaluate the Lagrange remainder in Equation 16 overapproximatively using inter-
val arithmetic (87). Another example is to obtain the abstraction error from linear interpolation at
the vertices of simplices (88, 89), requiring simplices as a set representation. One can also obtain
an abstraction error from a scalar error dynamics (90); however, a scalar error dynamics overap-
proximating a multidimensional dynamics introduces substantial conservatism.

The disadvantage of linear abstractions is that their abstraction error becomes too large when
the reachable set is not sufficiently contracting. Obviously, using a higher-order Taylor expansion
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reduces the abstraction error at the cost of having to compute the reachable set for polynomial
differential equations. Since no analytical solution is known for polynomial differential equations,
overapproximative conversions to nondeterministic polynomial difference equations have been
proposed (41, 91). Since the resulting sets are no longer convex, polynomial zonotopes were used
by Althoff (41), while the earlier approach of Dang (91) uses convex simplices. Another difference
is that Dang (91) solved the nonlinear part of the polynomial as a linear function of time. Thus, a
solution space abstraction is integrated in a state-space abstraction, while Althoff (41) relied only
on a state-space abstraction.

4.3. Computing Bounds

Instead of computing the whole set of reachable states, one can compute the bounds of the reach-
able set. One of the earliest techniques using this method is face lifting, where facets are pushed
outward to obtain reachable sets (92). This is typically not beneficial when using the techniques
from Sections 4.1 and 4.2 since one only converts an n-dimensional problem to an (n − 1)-
dimensional problem at the expense of propagating many regions of the surface, such as facets
of a polytope. However, this idea makes it possible to use different methods summarized below.

4.3.1. Optimization-based techniques. By parameterizing the bound of a reachable set, one
can solve an optimization problem that minimizes a performance criterion (e.g., volume) under
the constraint that all solutions must be enclosed.Chutinan&Krogh (59) used this technique with
general nonlinear systems for bounds modeled as half spaces. Dang & Salinas (93) also used half
spaces, but they presented a more tailored approach for polynomial differential equations, where
the optimization problem is abstracted to linear programming using Bernstein polynomials.

4.3.2. Bounds from monotonicity. When the system dynamics is monotone, it is particularly
easy to obtain the bounds of the reachable set.

Definition 12 (monotone dynamics; see definition II.1 in Reference 94). The system
dynamics is monotone with respect to the initial state x0 and input trajectories w when the
following property holds for the solution ξ (t, x0,w):

∀i, j, t ≥ 0 : x0,i ≤ x0,i,w j (t ) ≤ w j (t ) ⇒ ∀i, t ≥ 0 : ξi(t; x0,w) ≤ ξi(t; x0,w).

Angeli & Sontag (94, proposition III.2) presented a constructive method to prove monotonic-
ity. From Definition 12, it follows directly that the upper bound of each state can be computed
by ξi(t; x0,w), while analogously, the lower bound can be computed by ξi(t; x0,w); however, exact
solutions of these bounds do not exist. For this reason, one can provide upper bounds of ξi(t; x0,w)
and lower bounds of ξi(t; x0,w) using validated integration methods, such as interval Taylor meth-
ods (95). These can be seen as a form of reachability computation when only a single initial state is
provided. Ramdani et al. (96) and Coogan & Arcak (97) presented extensions for piecewise mono-
tone and mixed monotone systems, respectively. If a system is not piecewise monotone or mixed
monotone, then one can generate monotone dynamics whose upper and lower bounds enclose the
reachable set (96, 98); results can be further tightened by known constraints on states, as shown
by Scott & Barton (98).
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4.4. Nonlinear Differential Algebraic Systems

Besides approaches for nonlinear systems, there are also some approaches for nonlinear differ-
ential algebraic equations. Most of the current literature on reachability analysis for nonlinear
differential algebraic systems focuses on index-1 systems. While some works exist for methods
solving Hamilton–Jacobi partial differential equations (99, 100), which are not particularly scal-
able, only a few have used set propagation techniques. Dang et al. (101) presented an approach
using polyhedral set representations, which requires computationally expensive projections of the
reachable set onto the constraint manifold. A scalable approach that does not require intersections
is based on abstracting differential algebraic systems to linear differential inclusions (102).

5. HYBRID SYSTEMS

Hybrid systems are systems with both discrete states and continuous state variables. Various for-
malisms have been proposed to describe hybrid systems.Typically, the evolution of the continuous
state variables is described through differential equations.The changes between discrete states can
be described, e.g., by a finite state automaton (103). Alternatively, changes in dynamics can be en-
coded through difference equations involving integer variables (104) or the continuous variables
themselves (105). The continuous dynamics in a hybrid system depends on its discrete state. Since
the timing of transitions between the discrete states is a priori unknown, this is called event-based
switching. The interaction between events and differential equations may lead to very complex
behavior, even if the dynamics of the ordinary differential equations themselves are simple or
even constant. In the following sections, we briefly describe the formalism of hybrid automata
and a high-level reachability algorithm.We then present the major subclasses of hybrid automata,
which are distinguished by their continuous dynamics, and discuss their particularities in more
detail.

5.1. Hybrid Automata

Hybrid automata are the result of combining finite-state automata with differential equations (4,
106). The discrete states are represented by an automaton (finite-state machine) and are referred
to as locations, Loc = {�1, . . . , �m}. A state (�, x) of the hybrid automaton consists of a location �

and a continuous state x ∈ R
n. The state space is Loc × R

n. The states must at all times lie within a
given subset of the state space, which is called the invariant or staying condition, Inv ⊆ Loc × R

n.
We first describe the changes between discrete states, which can instantaneously modify the

continuous variables.Changes between locations are described by transitionsEdg ⊆ Loc × Lab ×
Loc, where each transition is associated with a label from a finite set Lab. The labels can be used
to synchronize transitions when several automata are connected in parallel; owing to space limi-
tations, we refer readers to a paper by Alur et al. (4) for more details. For a given transition, a state
x can jump instantaneously to any other state x′ for which (x, x′) satisfies the jump relation of the
transition e ∈ Edg, denoted as Jump(e) ⊆ R

n × R
n. For convenience, the jump relation is often

described by a guard set Ge and a set-valued reset map Re; any state x ∈ Ge can take the transition
and can jump to any x′ � Re(x).

The continuous variables evolve with time according to a flow relation Flow, where for each
location �, Flow(�) ⊆ R

n × R
n. A state x can evolve with derivative ẋ if (ẋ, x) ∈ Flow(�). The flow

relation is often described by an ordinary differential equation, ẋ = f (x), or by a differential in-
clusion. A solution ξ (t) to the above ordinary differential equation describes a (local) trajectory of
the continuous state as long as it remains inside the invariant—i.e., for all 0 ≤ τ ≤ t, ξ (τ ) ∈ Inv(�).

www.annualreviews.org • Set Propagation Techniques for Reachability Analysis 383



All behaviors of the system originate in a given set of initial states, Init. Starting from a state
(�0, x0) ∈ Init, a run of the hybrid automaton is an alternating sequence of trajectories and jumps.
Denoting at the ith step the trajectory with ξ i(t) and the time on this trajectory with δi, a run of
length N is the sequence

(�0, x0)
δ0,ξ0−−→ (�0, ξ0(δ0))

α0−→ (�1, x1)
δ1,ξ1−−→ (�1, ξ1(δ1)) . . .

δN ,ξN−−−→ (�N , ξN (δN )),

with (�0, x0) ∈ Init, αi ∈ Lab, that satisfies the following for i = 0, 1, . . . ,N:

1. Trajectories: (ξ̇i(t ), ξi(t )) ∈ Flow(�) and ξi(t ) ∈ Inv(�i ) for all t � [0, δi], δi ≥ 0.
2. Jumps: (ξi(δi ), xi+1) ∈ Jump(ei ), ei = (�i,αi, �i+1) ∈ Edg, and xi+1 ∈ Inv(�i+1).

A state (�, x) is called reachable if it is a state of a run of any length. The above definition of
the behaviors of a hybrid automaton is inherently nondeterministic. The automaton may change
the location if it enters the guard set of a transition, but it may also continue in the same location
provided that it keeps satisfying the invariant. This is called “may” semantics. An alternative is
called “must” semantics, in which a transition must be taken as soon as possible, e.g., as soon as
the system enters a guard set. Note that most simulation tools apply must semantics, while most
reachability tools use may semantics. Some models can be translated from must to may semantics
(107).

5.2. Reachability for Hybrid Automata

The set of reachable states of a hybrid automaton can be computed by executing the runs on
sets of states (4, 106). We show a simple but widely used algorithm that applies this to symbolic
states (�,P ), which is a set of states that share the same location �, with P ⊆ R

n being the set of
continuous states. LetW be a waiting list for the symbolic states to still be explored and let R be a
list of symbolic states that are reachable. Let PostC(�,P ) be the one-step successors by time elapse
and PostD(�,α, �′,P ) be the one-step successors of a jump with transition (�, α, �′):

PostC(�,P ) = {
ξ (δ)

∣∣ ∃x ∈ P : (�, x)
δ,ξ−→ (�, ξ (δ))

}
,

PostD(�,α, �′,P ) = {
x′ ∣∣ ∃x ∈ P : (�, x) α−→ (�′, x′ )

}
.

To check whether a successor state has already been explored, we need an operator visited(R, �,P )
that returns true if all the states in (�,P ) are already contained in the passed list R (more details
are given below). The reachability algorithm proceeds as follows:

1. Let Q(�) := {
x
∣∣ (�, x) ∈ Init

}
. ComputeW := {

PostC(�,Q(�))
∣∣ � ∈ Loc

}
and let R := W.

2. Pop (�,P ) fromW.
3. For each α ∈ Lab, �′ ∈ Loc, compute P ′ = PostD(�,α, �′,P ). If P ′ �= ∅ and visited(R, �′,P ′ )

is false, compute P ′′ = PostC(�′,P ′ ) and add (�′,P ′′ ) to the waiting list.
4. IfW = ∅, terminate and return R. Otherwise, go to step 2.

The containment check using visited(R, �′,P ′ ) avoids adding the same states over and over. An
exact computation of this containment relationship is costly, since it requires checking whether
P is in the union of all symbolic states in R that involve location �. A simple heuristic is to apply
a pairwise check: Let visited(R, �′,P ′ ) return true if there is some (�′,P ) in R such that P ′ ⊆ P
and return false otherwise. This may, of course, create a situation where the algorithm iterates
forever, while an exact containment check would terminate, but in practice this seems to be a
minor problem. The main bottleneck is the computational complexity of the one-step successor
operations,PostC andPostD. In the next sections,we discuss how they can be computed efficiently,
depending on the dynamics.
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5.3. Piecewise Constant Dynamics

In a hybrid automaton with piecewise constant dynamics, the relationships between continuous
variables are given by linear constraints, and the derivatives are independent of the continuous
state (106) (for brevity, we give a slightly simplified definition). Despite having relatively sim-
ple flow relations, piecewise constant dynamics can exhibit complex, even chaotic, behavior. For
instance, they can model discrete-time linear time-invariant systems by setting all derivatives
to zero and placing the linear time-invariant state update in a transition. Automata with piece-
wise constant dynamics stand out since one-step successor computations can be computed ex-
actly (assuming infinite precision arithmetic), which is not the case for most other classes in the
literature.

In a piecewise constant dynamics, all continuous sets and relations [Inv(�), Init(�), and Jump(e)]
are polyhedra, which can be given by strict or nonstrict linear inequalities. Flow(�) is of the form
ẋ ∈ P , whereP is a polyhedron. If we restrict the invariants to closed constraints, we can construct
an equivalent automaton for which all sets are convex polyhedra.Writing out PostD as a predicate,
we obtain

PostD(�,α, �′,P )= {
x′ ∣∣ ∃x ∈ P : (x, x′ ) ∈ Jump(�,α, �′ ) ∧ x′ ∈ Inv(�′ )

}
.

Since Inv(�) is convex, the time elapse operator PostC can be written as

PostC(�,P )= P ∪ {x′ ∣∣ ∃x ∈ P , ẋ ∈ Flow(�), t > 0 : x′ = x+ tẋ ∧ x′ ∈ Inv(�)
}
.

Looking at PostD and PostC in terms of geometric operations, one can view the quantifier elim-
ination as a projection (an irreversible linear map) and the conjunction as an intersection. Both
can be implemented using the operations discussed in Section 2.1. For efficiency, a dual represen-
tation for polyhedra combines both H-polyhedra and V-polyhedra (V-polytopes extended with
rays to represent unbounded sets) (108). Further improvements in representation and targeted
algorithms for both PostD and PostC can lead to significant speedups (109).

Computing of the reachable states using the above operators frequently does not terminate,
even in cases where the computed set of states converge to a fixed point.To induce termination, one
can resort to overapproximations in the hope that the enlarged set either is already a fixed point or
converges more rapidly toward one (110). In widening (111), one looks at subsequent iterations
and removes constraints that are relaxed from one iteration to the next. Alternatively, one can
modify constraints by quantizing their coefficients or remove them based on other criteria (112).

5.4. Piecewise Affine Dynamics

In a hybrid automaton with piecewise affine dynamics, the flow relation Flow(�) defines affine
dynamics as in Equation 11:1

ẋ = A�x + B�w�, w� ∈ W� ⊆ R
m� . 17.

The jump relation for transition e is given by a guard set Ge and an affine reset map with nonde-
terministic inputs:

x′ = Rex + Sewe, x ∈ Ge, we ∈ We ⊆ R
me .

1Affine dynamics ẋ = Ax + B̂ŵ + ĉ, ŵ ∈ Ŵ , can be brought into the form of Equation 17 by takingB = I,W =
B̂Ŵ ⊕ ĉ.
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Note that the constraintsw� ∈ W� andwe ∈ We can be encoded as part of the invariant by includ-
ingw� andwe in the variables of the hybrid automaton (113). Invariants and initial states are given
by linear constraints, as in automata with piecewise constant dynamics. The jump operator is

PostD(�,α, �′,P )= (
R�,α,�′ (P ∩ G ) ⊕ S�,α,�′W�,α,�′

) ∩ Inv(�′ ).

The time elapse operator can be approximated with a sequence of sets, as described in Section 3,
but with the added difficulty that the invariant Inv(�) must be taken into account (114). For now,
we assume a finite time horizon, and we present the extension to infinite time in Section 5.6.
Intersecting the invariant at each step of the reach tube approximation shown in Equation 12, we
get the sequence Sk for k = 0, . . . ,N − 1, as

S0 = conv
(X0 ∪ (eAτX0 ⊕ τW ⊕ α(τ ,A,B,X0,W )B)) ∩ Inv(�),

Sk =
(
eAτSk−1 ⊕ τW ⊕ β (τ ,A,B,W )B

)
∩ Inv(�).

18.

The time elapse operator is PostC(�,P) = ⋃N−1
k=0 Sk. Since the intersection in Equation 18 is in-

compatible with several of the scalability improvements in Section 3, one often resorts to com-
puting Sk using Equation 12 and afterward intersecting with the invariant. For set representations
that are not closed under intersection, the time elapse operator under invariant constraints intro-
duces an approximation error that cannot be decreased by taking smaller time steps. Instead, the
set of initial states can be split into smaller pieces, but this leads to state explosion.

Thanks to the methods in Section 3, computing successor states with Equation 12 scales fairly
well. However, in the fixed-point computation from Section 5.2, this approach can lead to severe
state explosion. Recall that the input to PostC is a single set, while its output is a possibly long
sequence of convex sets. PostD usually maps each of these to another convex set, usually filtering
out a number of them that do not overlap with the guard set. Repeating this process produces an
exponentially increasing number of sets, unless PostD happens to filter out all but one set in the
sequence.

A common remedy for state explosion is to force PostD to return a single set, e.g., by taking
the convex hull or a bounding box of its image. This is referred to as clustering. Clustering can
reduce the state-explosion problem, but it introduces a wrapping effect that may quickly lead to an
exploding approximation error. As a remedy, Frehse et al. (115) proposed optimal clustering. The
approximated reach sets are clustered such that the overapproximation error can be measured.
Finding the minimal number and exact time intervals over which to cluster sets is reduced to a
graph coloring problem (115).

5.5. Nonlinear Dynamics

For nonlinear dynamics, the time elapse operator is computed using one of the methods described
in Section 4. The central problems outlined for piecewise affine systems remain: Intersecting with
the invariant may induce overapproximation, and clustering is required to fight state explosion,
adding to the wrapping effect. Complex dynamics can be abstracted by simpler dynamics over
a given region of the state space, as described in Section 4.2.1. The abstraction error depends
on the diameter of the region and can be made arbitrarily small by dividing the state space into
small enough pieces (83).This technique is readily applied to hybrid systems, by representing each
piece as a discrete state and connecting adjacent pieces by transitions. The technique is therefore
referred to as hybridization.
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5.6. Unbounded Versus Bounded Time

There is a subtle but fundamental difference between the reachability computations in Sections 3
and 4 and the ones in this section: The set propagation techniques for continuous systems cover
a finite time horizon, while our definitions of the time elapse operator PostC and the reachable
states for hybrid automata range over an infinite time horizon. Even if the hybrid system spends
only a finite time in each location, it may not be easy to estimate an upper bound that is not overly
conservative. One solution is to extend the time elapse operator to infinite time through widening
or abstract acceleration (as in 116).

We briefly sketch another solution, which exploits the fixed-point computation of the reacha-
bility algorithm from Section 5.2 to lift the operation from bounded to infinite time. The system
is augmented with a clock variable and transitions that reset the clock every δ > 0 time units. The
time elapse operator can be limited to a time horizon of δ in the augmented system, since the
system cannot remain longer in any location without taking a transition. The reachable states of
the augmented system are identical to those of the original system if one projects away the clock.
This augmentation can be applied to purely continuous systems by considering them to be hy-
brid automata with a single location. It follows that infinite-time reachability can be reduced to
bounded-time reachability with an unbounded number of jumps.

6. APPLICATIONS

Reachability analysis has been applied across many application areas.Table 2 shows a small selec-
tion of examples, covering aerospace, analog/mixed-signal circuits, automobiles, power systems,
robotics, and systems biology. The table also gives the main purposes of the reachability analysis
(verification, stability, planning, prediction, or conformance checking) and whether reachability
is used predominantly in an offline setting (i.e., reachability analysis is performed before deploy-
ment) or in an online setting (i.e., reachability analysis is continuously performed during opera-
tion, considering updated environment models). Each application area makes use of all purposes
of reachability analysis even though the list is not exhaustive.

Nevertheless, one can see some trends in each application area. Systems developed or analyzed
in analog/mixed-signal circuits and systems biology are less autonomous in the sense that they do
not explore an environment that is unknown during design time, and thus they use reachability
analysis in an offline setting. A difference between analog/mixed-signal circuits and systems bi-
ology is that in analog/mixed-signal circuits, reachability analysis is used mainly for verification
since modeling is fairly well understood, whereas in systems biology, it is used mainly for finding
conformant models since the underlying mechanisms are not yet well understood.

The aerospace, automotive, and robotics sectors are similar in the sense that the safety-critical
applications are those where decisions are made autonomously in constantly changing environ-
ments. Thus, these sectors require online methods, mainly for predicting the environment in a
set-based fashion and for verifying whether these decisions are safe. The search space for these
safe decisions can be efficiently pruned using reachability analysis.

The power sector is very diverse, since it is the world’s most complex interconnected human-
made system. While some decisions are made on a day-to-day basis, such as planning of energy
production schedules, some control actions must be made within milliseconds to ensure the
transient stability of parts of the grid. Thus, one finds a mix of online and offline techniques, as
well as a mix of purposes and considered system types—even systems described by differential
algebraic equations.

In particular, reachability analysis has been successfully applied to online verification;
Figure 2 shows selected examples. Figure 2a shows a modular robot that can be reconfigured.
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Table 2 Example applications of reachability analysis across several domains

Reference Main purpose System type Offline versus online
Aerospace
117 Planning Nonlinear Online (simulation)
118 Prediction Nonlinear Online (simulation)
Analog/mixed-signal circuits
101 Verification Differential algebraic

equations, hybrid
Offline

119 Verification Nonlinear, hybrid Offline
120 Verification, stability Nonlinear, hybrid Offline
121 Verification, stability Linear, hybrid Offline
86 Verification Nonlinear Offline
Automobiles
122 Verification Linear, hybrid Offline
123 Verification Nonlinear Online (simulation)
124 Verification Nonlinear Online (simulation)
125 Verification Nonlinear Online (real system)
20 Prediction Nonlinear Online (simulation)
126 Planning Linear Online (simulation)
Power systems
127 Prediction Linear Offline
128 Verification Nonlinear Offline
129 Verification Differential algebraic

equations
Online (simulation)

130 Conformance checking,
verification

Nonlinear Online (real system)

131 Stability Nonlinear Offline
Robotics
132 Planning Nonlinear Online (real system)
133 Conformance checking,

planning
Linear Online (simulation)

134 Verification Linear Online (real system)
Systems biology
135 Conformance checking Nonlinear Offline
136 Conformance checking Nonlinear Offline
137 Verification Linear Offline
138 Conformance checking Nonlinear Offline

After each reconfiguration, the robot reprograms its online verification based on reachability
analysis itself (134); this is presumably the first robot that provably avoids collisions when humans
interact with it. Figure 2b shows a scene during a test drive of a BMW vehicle that uses set-based
motion planning and online verification to guarantee safety (20). Figure 2c shows an office robot
that can be certified using reachability analysis. It can be shown not only that the robot is provably
safe, but also that it reaches its goal around 1.4–3.5 times faster than navigation according to the
ISO 13855 and 13482 standards (133).
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a cb

Figure 2

Examples of applications in which reachability analysis has already been used. (a) Provably safe human–robot interaction. (b)
Guaranteeing safety in autonomous driving. (c) Office robot with certifiable safety. Image provided courtesy of Bosch Research.

7. CONCLUSIONS

After more than two decades of research, reachability analysis for continuous and hybrid systems
has become an effective tool for model-based design of complex engineered systems. During that
period, there has been tremendous improvement in the scalability and accuracy of algorithms for
approximating the reachable set of continuous and hybrid systems, making it possible to use these
techniques on real-world problems. Several challenging research problems remain to be addressed
in the field, such as handling large initial sets for nonlinear systems and many guard intersections
in hybrid systems. Both aspects are especially relevant when verifying systems involving neural
networks. In addition, new methods are needed to be able to perform online verification (also
known as real-time verification) in order to verify autonomous systems in (partially) unknown
environments.
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