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Abstract

Physics-based simulation provides an accelerated and safe avenue for devel-
oping, verifying, and testing robotic control algorithms and prototype de-
signs. In the quest to leverage machine learning for developing AI-enabled
robots, physics-based simulation can generate a wealth of labeled training
data in a short amount of time. Physics-based simulation also creates an ideal
proving ground for developing intelligent robots that can both learn from
their mistakes and be verifiable. This article provides an overview of the use
of simulation in robotics, emphasizing how robots (with sensing and actu-
ation components), the environment they operate in, and the humans they
interact with are simulated in practice. It concludes with an overview of ex-
isting tools for simulation in robotics and a short discussion of aspects that
limit the role that simulation plays today in intelligent robot design.
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1. INTRODUCTION

Computer simulation is increasingly relied upon to predict the outcome of real-world phenom-
ena and to explore the response and performance of physical systems that are too complex to be
investigated via analytical solutions. For instance, NASA simulated the “seven minutes of terror”
millions of times to ensure that the Curiosity rover had a less than 1.7% risk of failure when it
landed on Mars. The recent breakthrough in simulating the life cycle of Mycoplasma genitalium,
the world’s smallest free-living bacterium, demonstrated how computers can be used to expand
our understanding of cellular function, presenting a stepping stone toward computer-aided de-
sign in bioengineering and disease treatment. Physics-based simulation has become mainstream
in science and engineering,with adoption accelerated by the rapid growth in computational power
over the last three decades. The highly successful Intel Pentium chip from 1993 had 3.1 million
transistors; a GPU card in 2020 has more than 100 billion. Almost all these transistors are orga-
nized either as processing units or as cache memories, providing a staggering amount of compute
power—trillions of arithmetic operations per second—at a low cost. Multidisciplinary in nature
and computationally intensive in its numerical solution, simulation in robotics is well positioned
to benefit from these hardware advances.

As argued in this article, simulation in robotics has deep roots in computer graphics and video
gaming. Early computer graphics researchers saw the potential of physics simulation as a generic
approach to creating realistic visual content.They envisioned simulation as a tool capable of trans-
forming numbers and vectors produced by numerical processes into images, providing intuitive
ways for artists to generate and tweak a wide range of phenomena in 3D worlds. Ideally, this
happened fast enough to facilitate real-time or interactive applications, such as gaming and user-
in-the-loop design tools. This concept of a visualizable, tunable, and fast simulation tool resonates
well with researchers and practitioners in robotics. A visualizable simulator allows engineers to ex-
amine and understand how a robotic system might behave early in its life cycle, without the need
to first build costly physical systems. A tunable simulator can be instrumental in choosing among
competing solutions to identify trade-offs among task efficiency, safety, and end product costs,
allowing the rapid design of components and control algorithms as well as the evaluation of safety
and efficiency across a wide range of realistic and relevant scenarios. A sufficiently fast simulator
can also shorten the development cycle and reduce costs. When an accurate or adaptive model is
available, a fast simulator can enable online prediction and online planning, as employed in model
predictive control (1). Generic physics engines with these properties have become increasingly
instrumental in robot design and control (Figure 1).
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Figure 1

Examples of physics engines used in robot design and control. (a) The first DARPA Robotics Challenge was a software competition
carried out in a virtual environment using physics-based simulation as the first proving ground for developing biped robot controllers.
(b) OpenAI Gym (https://gym.openai.com) is a toolkit for developing reinforcement learning algorithms to control physically
simulated agents. (c) iGibson (the Interactive Gibson Environment) (2) is a virtual environment reconstructed from real indoor scenes,
providing visual rendering and physics simulation to train simulated robots for navigation and manipulation tasks.
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The rise of deep learning has further augmented the importance of physics simulation in the
era of AI.The last few years marked a manifest surge in interest for AI-enabled robots that operate
in dynamic and unstructured environments and might interact with humans. These robots are ex-
pected in the future to drive us around on crowded streets, physically assist healthcare providers,
teach young learners in schools, manage underwater oil spills, and execute rescue missions in ad-
verse environments. AI is poised to endow a new generation of robots with mobility and decision-
making skills.However, learning approaches demand a large amount of training data encapsulating
physical interaction between the robot and its environment. Unlike other types of data, such as
images and text, acquiring robot interaction data requires careful instrumentation in physical ex-
periments, which can be challenging and risky to the robots and experimenters. For many physical
tasks, the sheer quantity of training data needed for the learning algorithms is simply infeasible to
acquire in the real world. In combination with the power of cloud computing, physics simulation
can provide a virtual world in which robots generate training data at low cost, gain experience
with a wider range of scenarios, and operate in a risk-free manner.

Computer simulation can be a versatile tool that is instrumental in developing next-generation
robots that venture outside controlled environments and operate in complex real-world scenarios.
Presently, this tool is not very effective, asmany designs produced in simulation fail to deliver in the
real world—the so-called sim-to-reality gap.We do not yet know the complex interplay of multi-
ple physical regimes in the real world at the level we can simulate it; or, if we do, the physics-based
simulation is too slow to be useful. Recent advances in machine learning and statistical techniques
open the possibility of using a large amount of measured data to replace or augment physics mod-
els. However, such approaches are in their infancy, and principled methodologies to design and
validate data-driven models remain to be identified. Simulating complex real-world environments
is further challenged by the fragmented landscape of existing efforts in physics simulation. Many
available physics engines bring unique aspects to the table, but they do not work together due to
the lack of unified modeling abstraction and hierarchies. Finally, we do not know how accurate is
accurate enough. Impractical demands for highly accurate models often make downstream con-
trol design tasks intractable, and we do not know for certain that high-fidelity physics simulation
will lead to effective control when operating in the real world. Establishing a lower bound on
physical fidelity for the simulation tools is challenging but critical for creating learning environ-
ments, producing training data, designing better controllers, improving mechanical performance,
and auditing for safety purposes.

Against this backdrop, the article is organized as follows: Section 2 provides an overview of the
concept of physics-based simulation. Section 3 focuses on what it takes to simulate robots. Sec-
tion 4 discusses existing software and tools. Finally, Section 5 rounds off the article with a summary
of several steps expected to augment the role that simulation plays in designing intelligent robots.

2. WHAT IS A PHYSICS-BASED SIMULATOR?

In the context of this article, simulation is the process of using a computer to approximate how
a dynamic system (here a robot) evolves in time. To this end, if the computer relies on the laws
of physics to predict the behavior of the dynamic system of interest, then the simulation is called
physics based. In robotics, the laws of physics that come into play most often are mass andmomen-
tum conservation. The laws of optics might also come into play if sensor simulation is required,
which turns out to be the case for autonomous vehicle (AV) simulation in particular. These laws
bring along, or are framed in terms of, mathematical equations, e.g., F = m · a. Formulating and
then solving the collection of equations associated with the dynamic system of interest is what
computers are extremely good at. Because of the sheer count (billions of equations for granular
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terrains, for instance) or high complexity level, these equations require a specialized numerical
method that produces an approximation of their solution. The software code that poses the equa-
tions and solves them is called a dynamics engine.

In practice, a physics-based simulator is more likely to be successful in predicting how a dy-
namic system will respond to external excitations and will do so over a broad spectrum of scenarios
and applications. Simulators that cut corners in the equation formulation or numerical solution
phases will predict the system dynamics poorly, or they might provide acceptable predictions but
only over a narrow set of use scenarios.

2.1. The Momentum Equation

Robot simulation draws on themomentum balance equation,which leads to the following second-
order ordinary differential equation (ODE) that governs the robot’s dynamics (3, 4):

M(q)q̈ = f (t,q, q̇). 1.

Equation 1 is a rehashing of F = m · a (i.e., mass times acceleration equals force). Since robots are
made up of several bodies that move in 3D space, the mass m of a particle is replaced by the gen-
eralized massM(q) ∈ R

N×N , which depends on N generalized coordinates q ≡ [q(1), . . . ,q(N )]T.
Knowing the value of q on a time grid t0, t0 + �t, t0 + 2�t, . . . allows one to locate and orient
each robot component or part over time. Finding how q changes in time under the agency of a
generalized force f (t,q, q̇) is the job of the dynamics engine. Both external forces, such as contact
force or gravity, and internal actuation are factored into the equations of motion via f . The un-
known quantities of the ODE that the dynamics engine needs to solve for are the accelerations q̈,
velocities q̇, and generalized coordinates q.

How are these unknowns computed by the dynamics engine? We set off to solve Equation 1
using the symplectic Euler integration formula (5) since it is simple and captures the essence of the
algorithm. Given a set of initial conditions—i.e., having a specification of where the robot is (via
q0) and what its velocity is (via q̇0)—the velocity of the robot after �t seconds will be q̇1 = q̇0 +
�t q̈0, and its new position will be q1 = q0 + �t q̇1. Then, 2�t seconds into the simulation, the
robot’s velocity will be q̇2 = q̇1 + �t q̈1, and its position will be q2 = q1 + �t q̇2.Thus, recursively
applying this formula, one propagates the dynamics of the robot forward in time, producing a
numerical solution at a collection of stations�t, 2�t, . . . ,nsteps�t=Tfinal.What is left is to compute
q̈0 at the beginning of the simulation, then q̈1 at time �t, q̈2 at time 2�t, and so on. Finding the
accelerations is as simple as solving a linear system Ax = b, where, using Equation 1, A = M(q0),
x = q̈0, and b = f (t0,q0, q̇0). Since the generalized mass matrix is typically symmetric and positive
definite, one can use, for instance, the Cholesky algorithm (6) to compute q̈0. Computing, �t
seconds into the simulation, the generalized acceleration q̈1 once q̇1 and q1 are available follows
the same pattern and requires the solution of another linear system Ax = b. Note that A and b
change with each time step.

The simple form of the equations of motion in Equation 1 is encountered only for robots
whose topology is a tree with no closed loops. For tree-like mechanisms, a child element is posi-
tioned relative to its parent element; this is the so-called recursive formulation (4), which uses a
minimal (or reduced) set of generalized coordinates q. When one poses the equations of motion
in the recursive formulation, the ensuing ODE in Equation 1 is small; the solution will be fast,
not noisy, and good for controls. However, recovering the reaction forces in joints requires non-
trivial computations, and the recursive formulation is challenging to comprehend and not simple
to implement and parallelize.
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2.2. Dynamic Systems with Constraints

For more complex systems, such as AVs and rovers, the bodies that make up the robot contain
closed loops, and a minimal set of generalized coordinates cannot be produced. It might also be
the case that the set of generalized coordinates q selected is notminimal, e.g.,when usingCartesian
coordinates to formulate the equations of motion. In this case, the equations of motion read (7)

M(q)q̈ = f (t,q, q̇) − ∇T
q g(q, t ) λ, 2a.

g(q, t ) = 0M×1. 2b.

The salient point is that the generalized coordinates in q are no longer independent, an observa-
tion captured in Equation 2b in the form ofM kinematic constraints that are posed as nonlinear
equations in q and t. Each of theM kinematic constraints has one associated Lagrange multiplier,
which is a measure, or proxy, for the internal (reaction) force required to enforce the satisfaction
of the kinematic constraint. The individual multipliers are collected in λ ∈ R

M , which is used to
compute the constraint reaction force −∇qg λ in Equation 2a, where �q is the gradient (with
respect to q) operator. While Equation 2a dictates how q changes in time, Equation 2b qualifies
these changes so that they are compatible with the constraints present in the system. This qual-
ification happens via the constraint reaction force induced by the Lagrange multipliers λ. From
an applied mathematics point of view, the problem in Equation 2 takes the form of a set of differ-
ential algebraic equations (DAEs) (5), which are different and more difficult to solve than ODEs
(8). Knowing q and q̇, one can immediately evaluate the generalized mass matrix M(q) and the
generalized forces f (t,q, q̇), that is, the torques and forces acting on the robot (the case of fric-
tion and contact forces, which can violate this assumption, is discussed in Section 3.1.5). Likewise,
g(q, t) and the gradient �qg can be evaluated once q and q̇ are known. In the end, the unknown
quantities that the dynamics engine needs to solve for are the Lagrange multipliers λ as well as the
accelerations q̈, velocities q̇, and generalized coordinates q. The presence of kinematic constraints
in Equation 2 complicates the process of solving for these unknowns. There are two widely used
approaches: the DAE-to-ODE strategy and the DAE head-on strategy.

2.2.1. Reducing differential algebraic equations to ordinary differential equations. This
approach reduces the DAE problem to an ODE and then solves it using the symplectic Euler
algorithm or another explicit or implicit numerical integration algorithm. For instance, Wehage
& Haug (9) selected a subset of so-called independent generalized coordinates q̂ out of all the
generalized coordinates stored in q. The remaining ones, q̄, are called dependent generalized
coordinates: q = q̂ ∪ q̄. The solution strategy is as follows: At time step tl, one computes q̈l but
uses a numerical integration method to compute ˙̂ql and q̂l . Then, using Equation 2b, one solves
for q̄l , and using the condition ġ(q, t ) = 0 (the time derivative of Equation 2b), one solves for ˙̄ql
given ql and ˙̂ql .

The coordinate partitioning approach described above is predicated on the availability of q̈l .
To compute q̈l along with the unknown Lagrange multipliers, one first takes a time derivative of
the kinematic constraints in Equation 2b to obtain ġ(ql , tl ) = ∇T

q q̇l + gt = 0; then, a second time
derivative yields g̈(ql , tl ) = ∇T

q q̈l + γl = 0, where γl is defined as the sum of all terms that do not
depend on q̈l in the expression of g̈(ql , tl ) (7). The unknown acceleration and Lagrange multiplier
at time tl are computed as the solution of the following symmetric linear system (10):[

M(ql ) ∇q(ql )
∇T

q (ql ) 0

][
q̈l
λl

]
=

[
f (tl ,ql , q̇l )

−γl

]
. 3.
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Consider amechanical systemwithN= 7 generalized coordinates (Equation 2a) constrained by
M= 4 equations (Equation 2b). The number of independent generalized coordinates is 7 − 4 = 3,
which also happens to be the degree-of-freedom count for the system. Wehage & Haug (9) dis-
cussed how to choose these three independent generalized coordinates: Assume they are the sec-
ond, fourth, and seventh components of q, i.e., q̂ = [

q(2), q(4), q(7)
]T. Once the acceleration q̈l

is available (Equation 3), one integrates forward in time ¨̂ql+1 to get q̇l+1(2), q̇l+1(4), and q̇l+1(7),
and then once again to get ql + 1(2), ql + 1(4), and ql + 1(7). Then, Equation 2b is used to recover
ql + 1(1), ql + 1(3), ql + 1(5), and ql + 1(6); this calls for the solution of a set of nonlinear algebraic
equations. What is left to compute the state of the system at tl + 1 is q̇l+1(1), q̇l+1(3), q̇l+1(5), and
q̇l+1(6), using a 4 × 4 system of linear equations associated with the condition ġ(ql+1, tl+1) = 0.

Two observations are in order. First, one fact that slightly complicates the numerical solution
is that during an analysis, the set of independent generalized coordinates can change. This parti-
tioning q = q̂ ∪ q̄ is continuously vetted so as to ensure that q̂ can parameterize the underlying
manifold on which the system dynamics evolves (11; see also 9). Second, there are more sophis-
ticated approaches that reduce the DAE problem to an ODE problem beyond simply choosing a
subset q̂ of q. They are similar in spirit, though: The evolution of the system is expressed in terms
of a set of time-dependent parameters (think of them as hyper-generalized coordinates) equal in
number to the degree-of-freedom count.This choice of the hyper-generalized coordinates is what
differentiates these methods (see, e.g., 12, 13).

2.2.2. Differential algebraic equation head-on strategy. This approach emerged before the
DAE-to-ODE strategy (14, 15) and draws on implicit integration formulas. For demonstration
purposes, without any loss of generality, the discussion here uses backward Euler, the simplest
implicit algorithm. Assuming for the moment that q̈1 is available, the velocity at t1 is computed
as

q̇1 = q̇0 + �t q̈1. 4a.

Similarly, the new position configuration will be q1 = q0 + �t q̇1, or, equivalently,

q1 = q0 + �t q̇0 + (�t )2 q̈1. 4b.

Posing the problem at hand at time t1 yields

M(q1)q̈1 + ∇qg(q1) λ1 = f (t1,q1, q̇1), 4c.

g(q1, t1) = 0. 4d.

The important observation is that were q̈1 known, one could immediately compute q1 and q̇1

given the state of the system at time t0. As such, in Equation 4c, one should keep in mind that
the generalized mass matrix depends on q̈1; q1 is only a proxy for q̈1, as seen in Equation 4b. By
the same token, Equation 4c references q̇1 in the expression of the applied force f. In reality, f
depends only on the accelerations q̈1 owing to Equations 4a and 4b. In the end, in Equations 4c
and 4d, one has a well-posed nonlinear system with an equal number of equations and unknowns:
for equations,N momentum balance equations andM bilateral constraints, and for unknowns,N
generalized accelerations q̈1 andM Lagrange multipliers λ1 associated with the constraint forces.
Upon solving this system of nonlinear algebraic equations, one is in a position to immediately
evaluate the position and velocity at t1. Applying this idea recursively, one advances the time evo-
lution of the robot, one �t at a time. (For more details on this approach, see, e.g., Reference 16;
for a survey, see Reference 17; and for a reference contribution, see Reference 5.)
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How do these solution methods compare against each other? For the example above with
q ∈ R

7 and M = 4, the DAE-to-ODE strategy will solve a linear system in 11 unknowns (see
Equation 3) to recover the accelerations and the Lagrange multipliers. Then it will solve one
nonlinear system with 4 unknowns to recover the dependent generalized positions, and finally a
linear system with 4 unknowns to recover the dependent velocities. The DAE head-on strategy
will solve a nonlinear system with 11 unknowns (q̈l and λl ). In general, the DAE head-on strategy
is fast and friendly to parallel computing. However, the solutions are often noisy, particularly
in accelerations. Moreover, changes in time step �t during the simulation lead to jolts in the
solution.

Regardless of which approach one selects, rigid-body robots can typically be simulated in real
time—i.e., one second of robot dynamics can be simulated in less than one second of compute time.
This was not the case one to two decades ago, but advances in CPU hardware (e.g., large caches,
multicore architectures, instruction-level parallelism, and high clock frequencies) have made real-
time robotics simulation a reality.

2.3. Accounting for Uncertainty

There is uncertainty in the value of many parameters associated with the physical robot—masses,
moments of inertia, spring stiffness, actuator parameters, joint compliance, elastic material prop-
erties, and so on. This uncertainty carries over to the model used to simulate the robot. Several
analysis types can be used to manage and account for uncertainty: (a) gauging the sensitivity of
the simulation results with respect to the model parameters and their uncertainty, (b) model cali-
bration, and (c) quantifying how uncertainty in parameters leads to uncertainty in robot behavior.
These three tasks can be approached in a frequentist (e.g., 18) or Bayesian (e.g., 19) framework.

Sensitivity analysis (the first type listed above) can pursue various ends and be accomplished
by many means (20). One type of sensitivity analysis relevant for the problem at hand is variance
based,which relatively ranks the importance of amodel parameter based on the expected reduction
in model output statistical variance, should one know the value of that parameter with certainty.
For instance, if gauging the sensitivity indicates that precisely knowing the mass of a robot part
significantly reduces variance in results, one might spend extra effort (time and/or money) to have
a sharper input value for this parameter.

In contrast to the mass of a component, some parameters cannot be measured directly to pro-
duce sharp values for them. Model calibration (the second type listed above) is invoked to supply
values for suchmodel parameters, which include the friction coefficientμ, Young’s modulus E, and
so on. In this case, sensors placed on the robot collect data, the ground truth. Then, the Bayesian
inference machinery (see, e.g., 21) could be set in motion to produce distributions for μ, E, and
so on. To that end, before seeing the ground truth data, we provide expert insights into how these
model parameters are distributed, and based on a Markov chain Monte Carlo process, these prior
distributions are modified in light of the collected data. The outcome is a set of posterior distri-
butions that learned from the measured data and can subsequently be used to yield data-informed
parameter choices.

Regardless of whether one performs sensitivity analysis and then precisely measures the mass
of a quadruped robot component or does model calibration and produces data-informed model
parameters, inevitably there is still uncertainty in the model. The third type of analysis, which is
less expensive than sensitivity analysis, aims to understand how the uncertainty in the value of the
model parameters is reflected in the response of the system. This analysis is Monte Carlo based
(see, e.g., 18) and therefore calls for running many simulations. This leads to a key observation:
For the simulation engine to be useful, it must be fast.
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3. SIMULATION IN ROBOTICS: WHAT GETS SIMULATED?

Simulating a robot in action is a puzzle with several pieces. Simulating the actual, mechanical
contraption represents the beginning. The environment the robot interacts with must also be
simulated; for example, a robot can move over a patch of deformable terrain and sink into it to
the point where it gets stuck. Being able to re-create in simulation what an actual robot perceives,
through sensing, is critical sincemost often the robots are simulated to test control policies.Finally,
for many reasons (safety, ethics, desire to run millions of scenarios, range of subjects, etc.), human–
computer interaction requires simulating the human element. This section discusses these robot
simulation components.

3.1. World Simulation

The majority of the scenarios of interest in robotics can be simulated if the dynamics engine can
capture the physics of four types of elements: rigid bodies, compliant (deformable) bodies, fluids,
and terrains or granular material.

3.1.1. Simulating rigid bodies. Beyond modeling the robot, rigid bodies are also used to gen-
erate the virtual world in which the robot operates. The simulator will solve at t0, then at t1, then
at t2, and so on, using Equation 2 to produce the position, velocity, and acceleration of each rigid
body, be it a robot part or some component of the virtual world around it. Typically, the actual
geometry or shape of a rigid body is not relevant—all that is needed is its mass and mass moment
of inertia. The geometry does come into play in two cases: when the body collides with other bod-
ies, and when one wants to visualize how the body moves as time passes. For collision detection,
which is a hard computational geometry problem (22), a relatively coarse mesh often suffices for
capturing a collision or contact between bodies. For visualization, one usually draws on a finemesh
that is used in conjunction with textures that provide realism to make the scene photo-realistic.

3.1.2. Simulating soft bodies. Most robots are represented in simulation as a collection of
rigid bodies connected through articulations (joints). The rigid-body assumption is violated for
slender robots; likewise, robots that involve soft components bring to the fore large strains that
cannot be neglected in the solution. Two classes of solutions emerged over time. One is more
expeditious but assumes small deformations (flutter) and strains about a reference rigid body that
travels or rotates in the 3D space: flex body = rigid body + small deformation on top. The other
unleashes the full power of the nonlinear finite element method, where nonlinearities stem from
three sources: large deformations and displacements or rotations, boundary conditions (friction,
contact, and impact), and nonlinear material (soft material or padded gripper fingers).

The first approach is commonly known in the multibody dynamics community as the floating
frame of reference (FFR) formulation. For rigid bodies, the location of a point P on body i at time
t would be the position of the center of mass of body i plus a relative offset that takes into account
the particular position of P on the body: rP (t ) = ri(t ) + ri,P (t ). In the FFR formulation, the posi-
tion is further qualified to take into account an elastic deformation, which becomes an unknown
in the problem: rP (t ) = ri(t ) + ri,P (t ) + ei,P (t ). The cornerstone of the approach is the observation
that, given the small magnitude of these excursions away from the rigid body, one obtains a linear
problem that governs the time evolution of ei,P. This linear problem is subsequently simplified
using techniques such as model truncation, component mode synthesis, condensation, proper or-
thogonal decomposition, and so on (23). On the upside, the FFR approach is easy to implement,
and because it adds only a modest number of unknowns to the underlying rigid-body problem, it
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does not lead to long simulation times. On the downside, it works only for small deformations of
the compliant body and obscures physical insights into the solution. For instance, although it is
possible to handle friction and contact forces that act at random and unknown locations on the
body, doing so is not straightforward, because one is dealing not with an actual body but with
some mathematical set of coordinates used in the model reduction.

A second class of solution employs the classical, full-blown nonlinear finite element analysis
(FEA) methodology (24, 25). Note that linear FEA does not suffice owing to the three sources of
nonlinearity mentioned above. On the upside, the FEA approach is versatile and, unlike the FFR
approach, is a general and robust solution. On the downside, the execution times are long and the
software implementation is complex.

3.1.3. Simulating terrain. As robots venture outside, they operate on uneven terrain that might
also be deformable. If the terrain is simply uneven but otherwise rigid, the simulation is relatively
simple: One can consider the terrain to be just a very large rigid body on which a robot moves. As
such, knowing how to handle friction, contact, and impact suffices.When the terrain is deformable,
there are three solution paths, drawing on semiempirical approaches, continuum formulations, and
discrete representations, respectively.

Semiempirical approaches are anchored by seminal work reported in References 26–28. Upon
carrying out a bevameter test (a uniaxial pressure–sinkage test and symmetric plate shear test)
in the field, one obtains a set of parameters that are subsequently used in a simple model of the
vehicle–terrain interaction (29). This methodology quickly produces reasonable results for vehi-
cles moving in a straight line (no cornering forces) on rigid tires. The Bekker–Wong approach
to modeling vehicle–terrain interaction targets heavy military vehicles rather than light robots.
As such, it has been adjusted over time to meet the specific needs of robotics (see, e.g., 30, 31).
For granular material only, a recent approach that bypasses the Bekker–Wong methodology is
anchored by the so-called resistive force theory (32, 33), which maintains the spirit of quickly
producing reasonably accurate results.

Continuum approaches have been used for terrains made up of silt or clays or covered in snow.
The solution is FEA based (34, 35) and uses visco-elasto-plastic models, which are versatile but
laborious to establish and implement in code (unless one falls back on commercial solutions), re-
quire parameters that are relatively difficult to produce, and computationally tend to be extremely
taxing. The use of these models in robotics thus far has been limited.

Finally, discrete approaches have been relied upon heavily in simulating robots operating on
granular terrain (see, e.g., 36). The methodology is anchored by the so-called discrete element
method (see 37), in which the bed of granular material is modeled using a collection of discrete
elements whose dynamics is individually tracked as the robot moves over the granular bed. This
method is laborious, and alleviating the computational burden led to solutions that typically use
larger particles than are encountered in the physical test and softer particles that allow for larger
simulation steps.

3.1.4. Simulating fluid dynamics. Should the robot move in or handle (pour or transport)
water or some other incompressible fluid, the motion of the fluid is governed by the momentum
balance (Navier–Stokes) and mass conservation equations (38):

D(ρu)
Dt

= −∇ p+ μ∇2u + fb, 5a.

∇ · u = 0. 5b.
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The momentum balance equation dictates the change over time in the location of each infinites-
imal volume of fluid. This change is qualified by a constraint: The conservation of mass, stated in
Equation 5b, constrains the motion of the fluid so as to prevent it from bunching in one spot only
to deplete somewhere else. In Equation 5a, ρ is the density of the fluid; the term on the left of the
equation represents the change in momentum for an infinitesimal volume of fluid. The term on
the right has forcing terms that are responsible for the momentum change: The first is the pres-
sure gradient, the second is a viscous force that depends on the viscosity coefficient μ and velocity
Laplacian, and the last is the external (or applied) force per unit volume. For the motion of a fluid,
the velocity u and pressure p are not known and must be computed in the solution process; the
other quantities are known. The most common computational fluid dynamics method to approx-
imate the solution of the partial differential equation (PDE) shown in Equation 5 is the smoothed
particle hydrodynamics (SPH) method (39) or a similar approach that is Lagrangian based, i.e.,
that follows the trajectory of a collection of fluid particles to infer the motion of the aggregate.
Compared with Eulerian (grid) methods, Lagrangian methods are known for trading off accuracy
for gains in speed and versatility. The weakly compressible SPH formulation (40) uses interpola-
tion to approximate an unknown variable at location P using values of that variable as reported
by the SPH particles in the neighborhood of P. These interpolation-based approximations are
used to express the action of the � and �2 operators, effectively reducing the PDE to an ODE
problem. The solution of the latter was discussed in conjunction with the solid-body dynamics.

3.1.5. Simulating contact and friction. Handling frictional contact in robotics is as important
as it is difficult. From a high vantage point, there are two main approaches to compute the contact
normal force Fn and the tangential friction force Ff. Computing Fn and Ff requires at each time
step a collision detection process, which is costly when the geometries of the bodies in contact are
nontrivial, e.g., when using meshes to specify complex shapes (22).

3.1.5.1. The penalty approach. The main actor in this approach is δn, the local and normal
deformation at the interface between the two bodies, A and B, in mutual contact. In general, the
normal force is computed as Fn = knδα

n + kcδ̇n, where kn and kc are material- and shape-dependent
parameters, and 1 ≤ α ≤ 2 (41). For any penalty-based solution, the collision detection should be
highly accurate since the normal stiffness kn assumes large values. As an order of magnitude, for
steel, kn ≈ 1 × 107 N/m; this stiffness comes multiplied by a local deformation of the order 1 ×
10−6 m. Implicitly, the collision detection should be accurate within less than one micron, which
is a tall order.

Since in most robotics applications the bodies are treated as rigid to save computational time,
the penalty approach leads to a paradox: How can rigid bodies produce a deformation δn? Here,
δn is interpreted not as a deformation but rather as an overlap of the geometries of A and B. This
hand-waving associated with the penalty approach also permeates the computation of Ff. In this
case, a second deformation δt is associated with a fictitious stiff spring, acting in the tangent plane
and with ends connected to the contact points on A and B. This fictitious spring saturates when its
internal load reaches μFn. The tangent plane changes in time as the location and pose of A and B
change, and with this comes a change in δt. This means that for each contact, the algorithm carries
along δt as a state and updates its value to compute Ff = min(ktδt, μFn), where the stiffness kt is
an empirical model parameter, and μ is the friction coefficient that assumes one of two constant
values depending on the slip regime (static or kinetic).

The penalty approach does not increase the size of the problem at hand: The number of equa-
tions in Equation 2 does not increase no matter how many contact events are in play. Additionally,
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the approach is simple to comprehend and easy to implement, and it scales well (all system con-
tacts can be computed at the same time, in parallel). However, the approach is finicky to work with
(it requires a significant amount of tuning), places tight constraints on the step size (because of
the stiff fictitious springs), and requires values for many parameters (kn, kt, α, etc.).

3.1.5.2. The complementarity approach. In this approach, a signed distance � between bodies
A and B is monitored, and the condition stating that the bodies should not penetrate is posed as
� ≥ 0 (42).This is a kinematic constraint, intrinsically tied to the geometry of the bodies in contact.
When � = 0, there is a kinematic constraint present in the problem (similar in spirit to the ones
in Equation 2b), and along with it there is a Lagrange multiplier λAB ≥ 0. The positive value of
λAB captures the fact that a contact produces a force that prevents bodies from penetration and
should not seek to keep them together. Note that � ≥ 0 and λAB ≥ 0, yet their product is always
zero. This is because a normal force λAB only crops up if � = 0 (bodies A and B touch each
other); this represents a complementarity condition, 0 ≤ � � λAB ≥ 0, hence the name of the
approach.

The computation of the friction force relies on a complementarity condition as well: 0 ≤ vt�

(μFn − Ff) ≥ 0, where vt is the slip speed between A and B. This condition and the observation
that whenever 0 < vt, the friction force Ff acts in the opposite direction of the relative slip, are
the ingredients required by the numerical algorithm to compute Fn and Ft. In addition to not
bringing δn or kn into the discussion, the complementarity approach does not need δt or kt. This
is good—there are fewer variables to keep track of (δn and δt) and fewer model parameters (kn
and kt) to come up with. Additionally, the collision detection algorithm can be sloppier since
there are no δn and δt to worry about. Moreover, since there are no stiff springs required by the
model, the simulation can proceed with large �t without rendering the numerical integration
unstable.

The complementarity approach does have its own problems, though. First, the implementation
is complex. Second, computing Fn and Ft leads to a coupled problem that brings together all
friction and normal forces for the entire system. For robotics, this is not a major limitation, since
the number of contact events at any given time is small, perhaps less than 15–20 contacts.However,
for granular terrains or other systems that involve large numbers of contact events, the fact that
the normal and friction forces become unknowns adds millions of new variables to the problem.
Finally, and perhaps most vexing, there is a lack of uniqueness in the solution of the problem
that produces Fn and Ft. In fairness, this is tied to the rigid-body assumption, not exactly to the
complementarity approach. Nonetheless, since the latter builds off the former, the approach, in
certain conditions that cannot be foreseen, can produce, equally well, several different distributions
for the normal and friction forces. The simplest way to understand this is to think of a symmetric
four-legged stool weighing 100 N. Under a rigid-body assumption, the four legs could take four
25-N loads; or 30-N, 20-N, 30-N, and 20-N loads; or 40-N, 10-N, 40-N, and 10-N loads; and
so on. This redundancy is common in packed granular materials but can arise in robotics as well.
Nonetheless, this is disconcerting since it can compromise smoothness,which confuses the control
algorithms. The penalty approach does not display this lack of uniqueness since there is local
deformation (δn and δt), which lifts the indeterminacy.

3.2. Subsystem Simulation

This section concentrates on sensor and actuation simulation. Mainstream computer-aided engi-
neering is rarely, if ever, concerned with sensor simulation, which is a prerequisite for intelligent
robot analysis.
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3.2.1. Simulating sensors. The extensive use of inexpensive sensors by today’s robots is what
differentiates them from older designs. Robots have been used for decades in industrial settings,
but their catalog of actions is limited since they operate in structured and tightly controlled envi-
ronments, such as the assembly line of a car manufacturing plant; concepts such as fog, dim light,
and bicycle riders fall outside these robots’ ontology. Having mobile robots operate in a hospital,
in a plant populated with other mobile robots and workers, or in a warehouse with a topology
that changes based on the day of the week requires sensors such as cameras, radars, lidars, infrared
sensors, and inertial measurement units (IMUs).

In its basic task, sensor simulation is the process of generating synthetic information that is sim-
ilar to the information that comes out of an actual sensor. If a vehicle drives downMain Street and
its camera is on, data start streaming out of that sensor. If a virtual vehicle moves down a 3DMain
Street replica generated using meshes, textures, appropriate light sources, and so on, as in a video
game, a stream of data should come out of the virtual camera that resembles the data produced by
the actual camera. A common misconception is that the data produced by the simulated camera
should represent something that is pleasing to the eye, but the human eye is a sensor that is quite
different from a camera’s complementary metal–oxide–semiconductor (CMOS) sensor. A CMOS
sensor can be expensive or cheap, produce large amounts of data or not, be noisy or crisp, and so
on. Another way to put this is that there is a difference between the Unity (https://unity3d.com)
or Unreal Engine (https://www.unrealengine.com) image we see on a screen, which is pleas-
ing, and what it means for a camera sensor to be realistic (the issue of sensor-realism versus
photo-realism).

Perhaps, in an end-to-end control strategy, a high-resolution camera is not actually needed.
This point is made in Figure 2, in which a camera sensor is used for end-to-end learning for
autonomous off-road convoy navigation (43). Figure 2a shows a frame from an animation in-
tended to produce something that is pleasing to the eye, for use in a presentation, and Figure 2b
shows a low-resolution image fed to a neural net for inference; the latter is the type of image the
actual camera produces and is meant for vehicle control, not human consumption. Generating
the Figure 2b image in simulation is nontrivial, and it starts with a photon leaving the vehicle in
front and hitting the lens of the camera attached to the ego vehicle. When moving through the
physical lens, there is lens distortion, vignetting, flare, and so on. After the lens comes the sensor,

a b

Figure 2

(a) Rendering of a frame used to generate a movie for human consumption. The snapshot is from the fourth vehicle in a convoy of four
vehicles. (b) An 80 × 45–pixel replica of the frame in panel a simulated as being produced by a camera sensor attached to a vehicle in a
platooning maneuver that relies on an end-to-end deep learning policy for driving in formation (43).
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which introduces artifacts tied to quantum efficiency, dark noise, and so on (44), depending on
the nature of the sensor [CMOS, charge-coupled device (CCD), etc.]. The data coming out of the
sensor are color-blind and are passed into an image signal processor, which further massages the
data for demosaicing, gamma correction, compression, and so on (45). Eventually, the data out-
put is encoded, which might discard information from the data. This entire sensing process needs
to be regenerated in simulation, leading to what is called physics-based camera simulation (46).
Data-driven approaches are poised to make a mark in sensor simulation; with enough training,
one can expect to augment or replace the data produced by the sensor simulator pipeline. Rather
than spending time offline discovering and implementing sophisticated methodologies and then
online running complex algorithms, one can use simpler sensor simulation approaches (perhaps
non–physics based) and enhance them through machine learning. Such data-driven approaches
are not yet available in the literature, but the building blocks are (47). A thorough discussion of
sensing models for the different sensors (cameras, lidars, IMUs, etc.) falls outside the scope of this
review; Elmquist & Negrut (48) discussed this topic further.

3.2.2. Simulating actuation. Actuation simulation seeks to map the command from the con-
troller to the robot actuation expressed as a generalized force in Equation 1. The actuation mech-
anisms vary with the hardware, but most robots are actuated by independent rotor motors, which
generate torques around joints.Many actuator models in robotics assume an ideal DCmotor con-
trolled by pulse-width modulation signals received from the controller. These signals modulate
the supplied voltage, which determines the armature current of the actuator based on the arma-
ture resistance. For an ideal motor, the torque generated by the actuator is linear in the level of
current, and the armature resistance and the coefficient of the linear function are typically param-
eters provided by the motor manufacturer. In reality, the linear torque–current relation does not
hold true everywhere in the current domain—the torque saturates as the current increases. For
applications that require highly accurate actuation simulation, one needs to carefully construct a
nonlinear function that characterizes the torque–current relation through system identification.

In practice, most control algorithms operate in an abstract control space instead of directly
commanding the supplied voltage or current. The most common abstraction is to directly com-
mand the joint torque. This torque-based control is trivial to simulate because it assumes that the
actuator is able to achieve the target torque instantaneously, as long as the target torque is within
predefined bounds and does not require too sudden of a change. Many robot platforms provide
further abstraction in the control space, such as position- or velocity-based control. Position-based
control allows the controller to command a desired configuration of the robot and use it as the rest
position of a proportional–derivative controller to generate force. Alternatively, one can compute
the generalized force required to achieve the desired configuration via inverse dynamics. Simi-
larly, velocity-based control commands a desired velocity, and the actuator internally converts the
target velocity to the required generalized force using inverse dynamics.

3.3. Human Simulation

Robots have the potential to provide adaptable and intelligent assistance to individuals, but robotic
research involving humans presents numerous challenges, including the risks of rough contact
or collision. Mobile robots and AVs can benefit from training in environments populated with
ambulating humans and learning to avoid colliding with them. Healthcare robots, on the other
hand, need to embrace physical contact and learn to utilize it in order to enable the daily living
activities of humans. Likewise, wearable robotic devices and exoskeletons often need to apply large
amounts of force to humans to support their body weight. An immediate concern in developing
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Figure 3

Three examples of human simulation: (a) DYNA4 (49), (b) Assistive Gym (50), and (c) the AnyBody Modeling System (51). Learning
from physically simulated humans and environments presents a promising alternative that might enable robots to explore and learn
from vast amounts of data more freely than they can in the real world. For example, autonomous vehicles can be trained in an
environment populated with simulated pedestrians in the street. Likewise, healthcare robots and exoskeletons can safely make and learn
from mistakes without putting real people at risk.

such an autonomous and powered robotic device is the safety of human users during the early
development phase, when the control policies are still largely suboptimal (Figure 3).

Learning from physically simulated humans and environments presents a promising alterna-
tive that might enable robots to explore and learn from vast amounts of data more freely than
they can in the real world. When compared with real-world robotic systems, physics simulation
allows robots to safely make and learn from mistakes without putting real people at risk. It can
also parallelize data collection to perform thousands of human–robot trials in a few hours and
provide models of people representing a wide spectrum of human body shapes, weights, physical
capabilities, and impairments.

What makes modeling human motion difficult is that it must simulate both the mechanics of
the human body and its control. How do we develop such a human model that predicts the re-
sponses of real humans under external stimuli? Researchers in biomechanics and computer anima-
tion are interested in understanding the underlying dynamics and control mechanisms of natural
human motions by re-creating and predicting them in the simulated world. The first step toward
a computational model for human motion is to define a parameterized space of human motion
with governing laws expressed as differential equations.

A natural starting point is to model the human skeletal system as articulated rigid bodies, a
compact representation for functional, volitional movements of the human body. An articulated
rigid-body system in the generalized coordinates is governed by Lagrange’s equations of motion:

M(q)q̈ + c(q, q̇) = g(q) + JTe (q)fe + τ, 6.

where q ∈ R
N are the system’s generalized coordinates used to determine the pose of the human

via the orientation and location of each component of the human model. We denote the mass
matrix, Coriolis force, and gravitational force as M, c, and g, respectively, all in generalized coor-
dinates. The external forces, fe, such as the contact force, are described in the Cartesian space and
impressed onto the generalized coordinates via the Jacobianmatrix Je. In addition to external grav-
itational and contact forces, humans also generate an internal force τ to actuate their movements.
The simplest actuation mechanism is to allow joints to directly generate torques, as if they were
electric motors capable of producing angular acceleration between bones. However, the real hu-
man skeletal system does not move by itself—the bones are pulled by muscles, which are activated
by neural excitation. A more accurate representation of human motion includes the internal states
of the muscles and incorporates muscle contraction and neural activation as part of the equations
of motion:

τ = JTm(q)fm(q, l, l̇, a), 7.
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where the muscle force fm is computed by muscle contraction dynamics that depends on the cur-
rent joint configuration q, the muscle length l and its time derivative l̇, and the muscle activation
a. The muscle force fm is impressed onto the generalized coordinates via the Jacobian matrix Jm.
Note that Jm and Je are different when the points of application for fm and for fe are not the same.
The muscle length l is governed by an ODE of musculotendon dynamics, l̇ = h(q, l, a), which can
be integrated to obtain the muscle length in the next time step: lt+1 = lt + �t h(qt , lt , at ). Seth
et al. (52) provided details about the musculotendon dynamics defining the derivative function h.

Each muscle activation a is also governed by an ODE:

ȧ = u− a
k

, where k =
{
kA(0.5 + 1.5a) if u > a,

kD
0.5+1.5a otherwise.

8.

The neural excitation u � [0, 1] is a scalar that controls muscle activation in the human mus-
culoskeletal system, and kA and kD represent the time it takes to activate and deactivate a muscle
fiber, respectively. The muscle activation ODE regulates the activation speed based on the current
activation level. For example, if the current activation of a muscle fiber is already high, then the
activation speed is slower, but the deactivation speed is higher.

While the dynamics and control mechanisms of a single muscle are well understood, modeling
the whole human body using such a bottom-up approach is simply intractable—the human body
consists of 206 bones driven by more than 600 muscles and tendons, which in turn are controlled
by billions of neurons. In addition, Equation 7 depends on a large number of model parameters,
such as the inertial, material, and geometrical properties of each muscle fiber, which are difficult
to identify accurately. It is also important to note that numerous simplifications and assumptions
have been made in modeling the geometry, dynamics, and physiological properties of the muscu-
loskeletal system.

If modeling the human musculoskeletal system is daunting, controlling such a system to create
natural and functional movements is perhaps even more complicated. The human musculoskele-
tal system is uniquely perplexing because we have redundant control variables (i.e., billions of
neurons) and yet our dynamic system is underactuated. One can start by dividing the degrees of
freedom into two sets, q = q0 ∪ q1, where q0 ∈ R

6 contains the 6D global translation and orienta-
tion of the entire human system, and q1 stores the remaining degrees of freedom. The equations
of motion (Equation 6) can then also be divided into two sets:[

M00 M01

MT
01 M11

][
q̈0

q̈1

]
+

[
c0
c1

]
=

[
g0

g1

]
+

[
JT0
JT1

]
fc +

[
0
τ1

]
, 9.

where the zero entries in the forcing term reflect the fact that the global translation and orientation
of the entire body, q0, are unactuated. To control q0, we must utilize external forces by creating
and manipulating contacts fc with the environment:

q̈0 = −M−1
00 M01q̈1 − M−1

00 c0 + M−1
00 g0 + M−1

00 J
T
0 fc. 10a.

Obviously, we cannot directly control the contact force fc. Instead, we need to use the controllable
degrees of freedom τ1 tomanipulate the contact force indirectly,whichmakes the control problem
substantially more difficult.

The underactuation challenge is not due to the lack of control variables. In fact, our muscu-
loskeletal system is largely redundant—we have nearly 50 muscles to control just six degrees of
freedom on the leg. The redundancy serves many mechanical purposes (e.g., increasing stability),
but the highly nonlinear mapping from muscle activation a ∈ R

m to independent joint torques
τ1 ∈ R

N−6, where m � N, increases the difficulty of control:

q̈1 = −M−1
11 M01q̈0 − M−1

11 c1 + M−1
11 g1 + M−1

11 J
T
1 fc + M−1

11 J
T
Mfm(q, l, l̇, a). 10b.
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While the road to modeling, simulating, and controlling the human physiological system is
extremely arduous, over the last few decades, the field of computer animation has been quite
successful in developing shortcuts to re-create natural human movements. One common be-
lief is that we can synthesize the observable aspects of human movement without needing to
fully understand human biological systems. As such, it is common for computer animation tech-
niques to make whatever simplifications and assumptions are necessary to achieve realistic human
movements. When applying these techniques to human–robot interaction applications, it is crit-
ical to first understand the key trade-offs that characterize the research landscape in computer
animation.

3.3.1. The trade-off between optimality and coverage of state space. Oneway to understand
the complex landscape of computer animation is through the lens of optimal control theory. The
problem of humanmotion synthesis can be generally formulated as a PDE, and the solution to the
PDE is a controller that maps states to actions. Most PDEs that address complex and continuous
human movements do not have classic solutions where the controller is optimal everywhere in
the state space. The need to simplify the PDE results in a trade-off between optimally solving
a trajectory from a single state and suboptimally solving a wide range of states. Earlier work on
manually designing controllers for specific tasks, such as locomotion, did not attempt to pursue
optimality but yielded reasonable actions for a wide range of states (53). At the other side of the
spectrum, trajectory optimization seeks the optimal action along one specific trajectory in the state
space. The solution of trajectory optimization, while optimal, deteriorates quickly when the agent
deviates from the trajectory due to perturbations in the environment (54).

A deep reinforcement learning approach strives to reach a balance between optimality and a
wider coverage of the state space by maximizing the long-term reward for a set of states during
stochastic exploration. Applying deep reinforcement learning to humanmotion synthesis has been
actively explored in the recent years, and great achievements have been made in locomotion (55),
manipulation (56), and other highly dynamic tasks (57, 58). Understanding the trade-off between
a single optimal trajectory and a suboptimal policy for a wide range of states is paramount to a
robotic application. For example, if the role of the human is simply that of a moving obstacle in a
navigation application, tracking an optimal trajectory in an open-loop fashion is likely to be suffi-
cient. On the other hand, physical human–robot interaction, such as assistive dressing or feeding,
might require a policy that can handle unexpected perturbations in the testing environment. In
that case, the coverage of state space that can be controlled reasonably well is more important than
finding the true optimal solution.

3.3.2. The trade-off between functionality and naturalness. Onemajor difference between a
humanmotion controller and a robot controller is that humanmotionmust be not only functional
but also visually natural. Designing an objective function that balances these two often conflicting
goals is intricate and usually done in a trial-and-error fashion. For example, a locomotion policy
that is concerned only with task goals tends to produce highly energetic and asymmetric motion
that is unlike any biological movements we see in the real world. If we simply dial up the weight
for the energy cost in the objective function, the motion could look smoother, but the agent might
simply stand still to save energy and fail to achieve the goal of locomotion.

Frustrated by endless tweaking, some researchers argue that naturalness in motion should be
achieved not through control but throughmodeling.Usingmuscles and tendons to drive the skele-
tal system has long been hypothesized as the key element to producing human-like movements,
as opposed to directly controlling torque actuated at joints. Modeling the musculotendon system
essentially changes the boundary of the action space and the calculation of the cost of control,
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such that the controller yields more human-like actions (59–61). However, the complexity of the
musculotendon model comes at a steep computation and implementation cost, rendering many
downstream motor learning tasks infeasible. While modeling the musculotendon system for the
purpose of visual naturalness of human motion might not be necessary in robotic applications,
estimating the biomechanical or physiological state of human motion, such as the realistic range
of motion or fatigue level, could be essential for evaluating the effectiveness and safety of a robot
that physically interacts with humans (62).

3.3.3. The trade-off between data and domain knowledge. Using real human motion data
to inform the model is a logical approach when our prior knowledge is lacking and model pa-
rameters are uncertain. In computer animation, motion data are utilized in many different ways,
from informing reward functions to selecting features in the state space to customizing the action
space (63, 64). Motion data can also be used to train a dynamic model that predicts future human
movement conditioned on high-level commands, bypassing the need for physics simulation. The
controllers that effectively utilize motion data tend to create more human-like movements, but
the dependency on the data also limits the transfer of the controller to new situations, different
tasks, or unexpected perturbations in the environment.On the other hand, developing a controller
without the aid of motion data is significantly more challenging.Without the desired bias induced
by the motion data, the controller might start off very far away from the solution and can easily
fall into one of many undesired local minima. Prior work has utilized domain knowledge to design
objective functions or curriculum learning to mitigate this issue (65), but when applied to complex
motor skills, these approaches usually cannot be exempted from costly computation, initial guess
tweaking, or objective function shaping.

If the generalization of human movements is not expected in a robotic application, then data-
driven approaches and imitation learning are viable ways to achieve realistic and functional human
movements. However, if the robot frequently perturbs the human’s movement during (physical)
interaction, as with wearable robotic devices, a data-driven controller that mimics the motion
data is likely to be suboptimal. Moreover, the motion data for many human–robot interaction
scenarios cannot be captured if a functional robot controller does not yet exist. This presents a
chicken-and-egg problem because the robot controller depends on the data, which in turn depend
on the availability of a functional robot controller.

The three trade-offs presented are not meant to be viewed as orthogonal axes. The use of
data has an obvious impact on the trade-off between functionalities and naturalness. Likewise,
the trade-off between optimality and state-space coverage also depends on the amount of high-
quality data available. The takeaway is that the field of computer animation can provide many
practical solutions to the field of robotics, but it does not have a panacea for synthesizing gen-
eral human movements. Knowing the demands of the robotic application and the trade-off each
method brings is the first step toward an effective solution.

4. SIMULATION IN ROBOTICS SOLUTIONS

Simulation in robotics is used mostly for mechanical (body) design and controls (mind) design.
The body design is concerned with whether a candidate solution can physically accomplish one
or more tasks—reach a high drawer in a cabinet, lift a certain weight in a warehouse, not break in
two months, and so on—while meeting certain constraints. The mind design is concerned with
enabling the robot to safely and efficiently execute its tasks. For both body and mind design,
simulation is used to optimize a candidate solution, quantify uncertainty, and assess safety. The
concept of a robot, and by implication the simulation thereof, is open to interpretation. One can
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argue that AVs are actually sophisticated robots. The discussion here touches but does not focus
on AV simulation.When discussing AVs,we emphasize off-road AVs; on-road AV simulation tools
have been reviewed elsewhere (66, 67).

We list below, alphabetically and with comments, entries in two categories: dynamics engines
and platforms, the latter of which integrate dynamics engines with sensing support, virtual world
modeling, advanced rendering, user interaction support, and so on, providing a one-stop shop-
ping solution for robotics simulation. The list is not comprehensive; a solution is listed if it is
broadly used or open source. References 68–70 provide head-to-head comparisons of several of
the dynamics engines discussed below.

4.1. Dynamics Engines

Bullet (http://pybullet.org), a widely used engine in the movie and gaming industry, places equal
emphasis on speed and accuracy. It supports rigid-body dynamics (primarily via an extended set
of generalized coordinates, and more recently also via reduced coordinates), friction, and contact
(complementarity). It has a collision detection engine that itself is widely used by other engines.
Flexible bodies are approximated via lumped-mass systems (mass–spring–damper elements). It is
used for traditional robotics simulation—manipulation, robotic arms, limbed robots, and so on
(71)—and anchors Google’s push into robotics.

Chrono (72) is a multiphysics engine that emphasizes accuracy; its strength is the simulation
of wheeled and tracked robots. It supports rigid and flexible (nonlinear FEA) body dynamics,
friction and contact handling (penalty and complementarity), and deformable terrain simulation at
several levels: empirical (expeditious but less accurate), continuum (amiddle-ground solution), and
discrete element (accurate but slow). It has GPU-implementedmodules for fluid–solid interaction
(Navier–Stokes based, with SPH) and granular dynamics.

DART (Dynamic Animation and Robotics Toolkit) (73) places equal emphasis on speed and
accuracy. Its API design seeks to reduce implementation overhead for researchers in the robotics
and computer graphics communities. In contrast to many popular physics engines that view the
simulator as a black box, DART gives full access to internal kinematic and dynamic quantities
and allows users to easily specify or request data computed by the engine. In addition, it provides
flexibility to extend the API for embedding user-provided classes into DART data structures.

MuJoCo (Multi-Joint Dynamics with Contact) (74) places equal emphasis on speed and accu-
racy. It focuses on classical robotics applications, such as multiple link arms, fingers for grasping,
and walking bipeds. It has become very popular owing to its speed, accuracy, and robotics-centric
user experience. It supports rigid-body dynamics (reduced set of generalized coordinates) and
friction and contact (complementarity). Flexible bodies are approximated using a lumped-mass
approach (similar in nature to Bullet).

Newton Dynamics (http://newtondynamics.com) emphasizes speed, as it is widely used in
video gaming. It supports rigid-body dynamics, collision detection, and friction and contact
(penalty).

ODE (Open Dynamics Engine) is a physics engine that emphasizes speed over accuracy. It is
used for video game development and was relied upon in the early virtual robotics competitions by
virtue of being the default simulation engine inGazebo. It supports rigid-body dynamics (extended
set of generalized coordinates) and a collision detection engine.

PhysX is a multiphysics engine that emphasizes speed over accuracy and is primarily designed
for video gaming. It is NVIDIA’s flagship simulation solution; the company has gone to great
lengths to improve its accuracy, as it is nowadays relied upon in robotics (Isaac; see below) and
AV simulation (75). It handles rigid-body dynamics and particle-based simulation for scenes
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with multiple bodies that collide, break, and so on. The SPH-type particle is used in expeditious
simulation of fluids.

4.2. Platforms

Unity (https://unity3d.com) and Unreal Engine (https://www.unrealengine.com) are the two
most versatile platforms for video game development. They have out-of-the-box support for
physics simulation, graphics rendering, scripting, collision detection, and more. They are not
robotics simulation platforms per se, but they anchor several platforms, as discussed below. Nei-
ther is open source; it is possible to gain access to the code, but owing to the software complexity
and dependencies associated with these massive codes, augmenting the software to improve the
dynamics engine (both Unity and Unreal Engine use NVIDIA’s PhysX) or sensing support is not
simple. Moreover, such investments are not guaranteed to be portable to the next version of the
gaming engine. This leads to a conundrum: Building a robotics simulation platform off a gaming
environment provides significant advantages for virtual world content modeling, but the physics
and sensing simulation support is limited, and improving it is daunting.

AirSim (76) isMicrosoft’s open source platform for robotics simulation built off Unreal Engine.
Originally developed for simulating flying drones, it now supports on-road mobility via PhysX.
While the graphics are top-notch, the physics-based sensing simulation is limited.

Chrono (72, 77) is an open source platform developed in academia that is focused primarily on
off-road mobility. It comes with a Python interface and predefined templates for easy instantiation
of wheeled or tracked vehicles. It relies on parallel computing to simulate tens of high-fidelity
vehicles operating on rigid terrain in real time (43). It is used by NASA and the US Army and
Navy, in industry, and in academic projects concerned with robots operating primarily off-road
(silt-like, snow-like, and granular deformable terrains; see Figure 2).

CoppeliaSim (formerly V-REP) (78) is a closed source, commercial multirobot simulation plat-
form that exposes a rich set of dynamics engines: Bullet, MuJoCo, Newton Dynamics, and Vortex
Studio (79). It simulates manipulation, robotic arms, manufacturing robots, factory automation,
and so on, and it was designed to scale for multirobot applications. It has limited physics-based
sensor support.

Gazebo (80; http://gazebosim.org) is likely the most widely used robotics simulation plat-
form. It exposes several physics engines: Bullet, DART, ODE, and Simbody (81). For graphics,
it uses Ogre3D (http://www.ogre3d.org) and OpenGL (http://www.opengl.org). The support
for physics-based sensing simulation is fairly basic, although it can be user augmented by virtue
of being open source. It is used for both traditional robotics applications and off-road mobility. It
has been used for several robotics challenges, including the DARPA Robotics Challenge, Virtual
RobotX, and competitions conducted by NASA and Toyota.

iGibson (the Interactive Gibson Environment) (2) and Habitat (82) are two platforms that
simulate photo-realistic indoor scenes based on the real world for the development of robot con-
trollers that use RGB images. The platforms provide very fast rendering of photo-realistic images,
as they were designed to support data-intensive deep (reinforcement) learning. Both platforms use
Bullet as their dynamics engine to enable physical interaction between the robot and the environ-
ment. iGibson was developed in academia, while Habitat was developed by Facebook.

Isaac (83) is NVIDIA’s recent entry in the robotics simulation arena. Virtual world support
comes via Unreal Engine, which under the hood embeds PhysX. There is support for human
models that can interact with the robots. Three predefined worlds are available out of the box: a
hospital, kitchen, and warehouse. The software is free but not open source. The level of sensor
sophistication is unknown.
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MAVS (Mississippi StateUniversity AutonomousVehicle Simulator) is a closed source off-road
simulation environment actively developed in academia (84). It provides an in-house-developed,
sophisticated physics-based sensor simulation module (85, 86), has a ROS (Robot Operating Sys-
tem) bridge, and uses Chrono as its dynamics engine.

ROAMS (Rover Analysis, Modeling, and Simulation) (87) is a platform for rover design and
testing developed by NASA’s Jet Propulsion Lab. It relies on the in-house-developed simulation
engine DARTS (Dynamics Algorithms for Real-Time Simulation) (88) to provide support for
simulating instrument arms, terrain interaction, sensors, actuators, and power sources. It is not
open source but is available for free for research purposes.

USARSim (Urban Search and Rescue Simulation) (89) is a platform that draws on Unreal
Engine. It is open source and aimed at multilegged robot simulation. It is not under current
development.

Webots (90) is a popular open source platform that draws on a customized version of the ODE
dynamics engine; it relies on OpenGL for virtual world rendering. It has been actively developed
for almost two decades and has a large collection of ready-to-use robot models, mostly of the
indoor type, although there is limited support for AVs, flying drones, and tracked robots. It has a
rich collection of sensors, catering mostly to indoor robotics.

5. CLOSING THOUGHTS: LOOKING AHEAD

In simulation, robots can be controlled to perform amazing tasks, and stunningmovies can be gen-
erated as well. As has been poignantly observed, “Simulation is doomed to succeed”—and indeed,
reality is often unkind to simulation-derived control policies. Yet if we discard simulation, what
alternatives are there? Setting aside the case of robotic manipulators, the trial-and-error approach
is expensive, sometimes dangerous, and sometimes impossible (e.g., testing a Mars rover).We be-
lieve that striving to steadily improve the simulation-to-real transfer rate is a worthwhile endeavor.
One question is how a computer analysis can be used to decide whether a control policy derived in
simulation will work in reality.While we do not know the answer to this question, we believe that
increasing the fidelity of the simulation is key. Another school of thought is that robust policies
can be obtained through randomization of model parameters (91). Instead of randomly chang-
ing parameters, one relatively unexplored approach would change the fidelity of the model, using
several levels of resolutions, matryoshka-style (92). Some of these models can be exclusively data
driven, an approach that is used in many applications, such as cars (93). Using statistical learning
techniques, one could bypass simulation-specific hurdles such as model generation and calibra-
tion by constructing oracles that predict the next system state given its current one. Data-driven
simulation could be used to methodically reduce model complexity through systematic dimen-
sional reduction. However, such approaches for highly nonlinear and nonsmooth systems are in
their infancy, and principled methodologies to design and validate data-driven models remain to
be identified.

Building a simulation-in-robotics ecosystem is a multidisciplinary effort in which funding
agencies can bring together disparate communities to work toward a worthwhile end. As shown
in this article, simulation in robotics consists of much more than a dynamics engine that predicts
the next state of a mechanical contraption. It also needs to simulate sensors, unstructured and
time-dependent environments, and potentially the humans interacting with the robot. Relevant
open problems that are beyond our current level of understanding will require basic research in a
variety of areas, including physics-based modeling of frictional contact, impacts, soft or compliant
bodies, fluid–solid interactions, and terramechanics, as well as expeditious numerical methods for
DAEs, PDEs, FEA, and computational fluid dynamics. These problems are highly intertwined
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and need to be addressed in a holistic way. We believe that a broad, multiagency initiative can
stimulate fundamental research in relevant areas and at the same time foster its translation into
open source simulation platforms. An initiative of this caliber would bring together, ideally in an
international framework, research groups from academia and agile software development outfits
from research laboratories and industry.
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