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Abstract

Simultaneous localization and mapping (SLAM) is the process of construct-
ing a global model of an environment from local observations of it; this is
a foundational capability for mobile robots, supporting such core functions
as planning, navigation, and control. This article reviews recent progress
in SLAM, focusing on advances in the expressive capacity of the environ-
mental models used in SLAM systems (representation) and the performance
of the algorithms used to estimate these models from data (inference). A
prominent theme of recent SLAM research is the pursuit of environmental
representations (including learned representations) that go beyond the clas-
sical attributes of geometry and appearance to model properties such as hi-
erarchical organization, affordance, dynamics, and semantics; these advances
equip autonomous agents with a more comprehensive understanding of the
world, enabling more versatile and intelligent operation. A second major
theme is a revitalized interest in the mathematical properties of the SLAM
estimation problem itself (including its computational and information-
theoretic performance limits); this work has led to the development of
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novel classes of certifiable and robust inference methods that dramatically improve the reliability
of SLAM systems in real-world operation. We survey these advances with an emphasis on their
ramifications for achieving robust, long-duration autonomy, and conclude with a discussion of
open challenges and a perspective on future research directions.

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the problem (and procedure) of constructing
a globally consistent model of an environment from local observations of it. This is an essential
capability for autonomous mobile robots, supporting such basic functions as planning, navigation,
and control (1). In consequence, SLAM has been the focus of an intense and sustained research
effort over the previous three decades (2–5). While this work has led to remarkable progress—
including the widespread availability of complete high-quality, open-source SLAM solutions (6–
8)—there remain numerous fundamental challenges in the development of SLAM systems capable
of supporting truly robust, intelligent, long-duration autonomy (5). In this article,we survey recent
progress and open challenges in SLAM, with a particular focus on two crucial areas for achieving
this objective: inference and representation.

Inference addresses the algorithmic aspects of estimating a model of the environment from
raw sensor data. Historically, computational tractability and empirical evaluation have been the
primary drivers of algorithmic SLAM research. This empirical orientation has enabled tremen-
dous progress in reducing SLAM to a practical technology, including the development of the
sparse graphical optimization-based framework that forms the basis of current state-of-the-art
techniques (4, 5, 9). At the same time, however, the historical emphasis on experimental evalua-
tion (which is restricted to measuring performance empirically, under a particular set of operating
conditions) leaves many fundamental theoretical and algorithmic properties of the SLAM estima-
tion problem unresolved. These include, for example, such elementary aspects as the estimation
accuracy that a SLAM system can achieve, what specific features of a given problem determine
these performance limits, and under what conditions it is possible, even in principle, to efficiently
compute a satisfactory SLAM estimate in practice (10).1 A major theme of recent work has been
a renewed focus on these fundamental theoretical and algorithmic challenges. In particular, we
describe recent advances in characterizing the information-theoretic limits of SLAM, the devel-
opment of the first practical inference algorithms that enjoy formal performance guarantees, and
robust extensions.

Representation concerns the environmental attributes that can be captured in a SLAM sys-
tem’s model.Historically, these have been grounded in simple geometric primitives such as points,
lines, and planes. A second major theme of current research, motivated in part by recent progress
in machine learning for perception, is the development of richer representations (incorporating
properties such as temporal dynamics, objects, affordances, and semantics) to enable higher-level
reasoning and advanced autonomy, including environmental and human–robot interaction. Un-
til recently, such efforts were largely limited by the necessity for a priori known object models,
due to the difficulty of tasks such as object recognition and detection. Recent years have seen re-
searchers revisiting seminal work such as Kuipers’s spatial-semantic hierarchy (12), now supported
by decades of progress in machine perception techniques that enable these ideas to be more fully

1Note that SLAMestimation problems are typically both high dimensional and nonconvex,which immediately
raises the specter of computational complexity (11).
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realized.We survey recent strides in the representational capabilities of SLAM systems, especially
the modeling and representation of nonmetric information such as semantics and environmental
topology; the ability to operate in changing environments; the interaction of SLAMwith learning;
and, broadly, the increasingly task-dependent nature of representations for SLAM.

1.1. Problem Formulation

Before proceeding, we provide a brief review of the SLAM problem and its mathematical formal-
ization in order to ground our subsequent discussion. For a more comprehensive introduction, we
encourage readers to consult excellent works by Thrun et al. (1), Stachniss et al. (4), and Dellaert
& Kaess (9).

SLAM is fundamentally the problem of constructing a consistent global model from a collec-
tion of local observations.As real-world sensor observations are affected bymeasurement noise,we
formalize this problem using the language of statistical estimation (1). Let {xi}ni=1 � X ∈ X denote
a collection of latent states (the model) that we would like to estimate, and let Ỹ � {Ỹk}mk=1 denote
a set of sensor measurements.We assume that each observation Ỹk is sampled from a probabilistic
generative model according to

Ỹk ∼ pk(·|Xk ) ∀k ∈ [m], 1.

where Xk � X denotes a subset of the states X comprising the complete model.
Equation 1 formalizes our notion of locality: Each observation Ỹk depends only on a (typically

very small) subset Xk of the complete model X. This is a ubiquitous characteristic of SLAM prob-
lems and is a consequence of the principles of operation of real-world sensors. For example, laser
scanners and cameras provide information only about those portions of an environment that are in
a direct line of sight; similarly, GPS measurements depend only on the receiver’s current position,
not its previous or future locations.

The locality of the observation models in Equation 1 enables us to decompose the joint likeli-
hood p(Ỹ |X ) for the model X given the data Ỹ into a product of small conditional likelihoods:

p(Ỹ |X ) =
m∏

k=1

pk(Ỹk|Xk ). 2.

This conditional factorization provides the mathematical basis for fusing the local observations Ỹk
into the coherent global representation X we wish to obtain.2

It is often convenient to model the factorization shown in Equation 2 by means of probabilis-
tic graphical models (13). The utility of this is twofold. First, the exploitation of the conditional
independencies implied by Equation 2 is essential for achieving fast inference, and probabilistic
graphical models make this independence structure directly accessible via their edge sets. Second,
the graphical formalism provides a convenient modular modeling language for constructing the
complex joint distributions in Equation 2 from simple constituent parts (9) (Figure 1).

The probabilistic graphical model formulation described in Equations 1 and 2 and Figure 1
thus provides an elegant general abstraction for the problem of global estimation from local

2We remark that while Equations 1 and 2 as written describe the conditional likelihood p(Ỹ |X ) for the data
Ỹ given the model parameters X, our discussion straightforwardly extends to the joint distribution p(Ỹ ,X ) =
p(Ỹ |X )p(X ) simply by appending the factor(s) describing the prior p(X) = �lpl(Xl) to the decomposition in
Equation 2. Thus, Equation 2 suffices to describe both likelihood-based and fully Bayesian formulations of
the SLAM problem.
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Figure 1

Factor graph model of the conditional factorization shown in Equation 2 for a simple pose-and-landmark
SLAM problem (14). Here, variable nodes (corresponding to model parameters X) are shown as large circles,
and factor nodes (corresponding to conditional densities pk) are shown as small circles. Edges connect each
conditional density pk(Ỹk|Xk ) to the subset of variables Xk upon which it depends (9). In this case, the
variables consist of robot poses x and landmark positions l, and the factors are odometry measurements u, a
prior p on the initial robot pose x0, loop closure observations c, and landmark measurements m.

measurements. In particular, to instantiate a concrete estimation problem, it suffices to specify
a representation for the model (i.e., the number and types of the states X ∈ X to be estimated)
and the measurement models in Equation 1 that relate these quantities of interest to the available
data Ỹ . SLAM systems can thus be understood in terms of two fundamental properties:

� Representation: What quantities of interest X does the system model, and what are the
generative models in Equation 1 that relate these parameters to the available data Ỹ ?

� Inference: What procedures are employed to perform inference over the probability distri-
bution described by Equation 2?

1.2. Relation to Prior Surveys and Scope

The SLAM literature is vast, and a comprehensive summary of prior work is far beyond the scope
of this article. Our focus is primarily on the advances that have occurred since 2016, when three
previous surveys (5, 10, 15) were published. Readers are encouraged to consult the standard refer-
ence by Thrun et al. (1) for an elementary exposition of the SLAM problem, and the tutorials by
Durrant-Whyte & Bailey (2, 3), Stachniss et al. (4), Dellaert & Kaess (9), and Grisetti et al. (16)
for an overview of prior algorithmic progress in SLAM.

The survey byCadena et al. (5) provides an extensive overview of the state of the art in SLAMas
of 2016, including issues of robustness, scalability, higher-level representations, and active SLAM;
we revisit many of these issues throughout this review, highlighting both recent progress and
remaining open challenges. Huang & Dissanayake’s (10) critique considered algorithmic and
information-theoretic aspects of the SLAM estimation problem, including observability, conver-
gence, accuracy, and consistency, and is closely aligned with our discussion of inference methods.
Lowry et al. (15) addressed the specific problem of place recognition, which is closely related to
issues of environmental representation and semantic mapping but aimed primarily at the problem
of identifying loop closures.

By 2016, a consensus had emerged in the research community that a certain class of SLAM
problems had become relatively well understood. For problems involving the estimation of simple
geometric primitives (such as points, lines, planes, or camera calibrations) with well-characterized
measurement models in Equation 1 (e.g., the projective mappings of vision sensors), maximum
likelihood or maximum a posteriori estimation methods built atop factor graph representations of
Equation 2 had become the method of choice (4, 5). A number of high-quality, open-source im-
plementations of these methods became available, including iSAM (17), GTSAM (9, 18), and g2o
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(19), and the availability of benchmark data sets facilitated standardized measures of performance
and steady progress. Dense and semidense visual SLAM methods, including ORB-SLAM (7) and
ElasticFusion (8), demonstrated remarkable progress in camera pose estimation and 3D scene re-
construction for moderately sized scenes. Visual–inertial navigation, which seeks to estimate the
trajectory of a moving sensor as accurately as possible (i.e., dead reckoning), had also seen sub-
stantial progress; Huang (20) provided a recent survey of progress in this area.

Yet despite this remarkable progress, numerous open challenges in SLAM remain, especially
regarding the representational richness and algorithmic reliability necessary to achieve persistent,
intelligent, long-duration autonomy. Section 2 addresses the SLAM inference problem, including
fundamental computational and information-theoretic limits, certifiably correct estimation meth-
ods, and robust and scalable solvers. Section 3 addresses the issue of representation for SLAM,
seeking to bring us beyond elementary geometry to consider objects and a hierarchy of spatial
relations, revisiting Kuipers’s seminal work on semantic hierarchies for spatial AI. Section 4 closes
the review with a discussion of open issues and prospects for future research.

2. ADVANCES IN ESTIMATION AND INFERENCE FOR SLAM

In this section, we survey recent theoretical and algorithmic advances in inference for SLAM.
While historically, computational speed and empirical evaluation have been the primary metrics
for assessing progress, a major theme of recent work has been a renewed focus on more deeply
understanding the theoretical properties of the SLAM estimation problem in Equation 2, es-
pecially its geometric, algebraic, and graph-theoretic structure. These insights have illuminated
many fundamental but previously only poorly understood aspects of the problem (including lim-
its on achievable accuracy and computational cost), as well as enabled the development of novel
classes of inference algorithms, including the first practical algorithms with formal performance
guarantees for nonconvex SLAM estimation problems.

2.1. Computational Hardness and the Problem of Nonconvexity

The fundamental algorithmic challenge of SLAM is that the model in Equation 2 is a high-
dimensional distribution over a nonconvex state space X , and therefore performing inference
within this model is computationally hard in general (13). Early research in SLAM explored a va-
riety of approaches for performing tractable approximate inference (using, e.g., extended Kalman
filters or Monte Carlo sampling) (1); however, by 2016 the community had settled on maximum
likelihood estimation [or more generally M-estimation (21)] as the de facto method of choice (5,
9). In brief, this approach recovers a point estimate X̂MLE ∈ X of the latent stateX as theminimizer
of an optimization problem of the form

X̂MLE(Ỹ ) � argmin
X∈X

m∑

k=1

lk(X ; Ỹk ), 3.

where each summand lk(Xk; Ỹk ) is the negative log-likelihood of the corresponding factor pk(Ỹk|Xk )
in the model in Equation 2, or a robust generalization thereof (21).

The maximum likelihood formulation in Equation 3 enjoys several attractive properties. From
a theoretical standpoint, maximum likelihood estimation provides strong performance guaran-
tees on the statistical properties of the resulting estimator [including asymptotic consistency and
normality under relatively mild conditions (22)]. Computationally, the formulation of the estima-
tion in Equation 3 as a sparse optimization problem admits the application of sparsity-exploiting
first- or second-order smooth optimization methods (23) to efficiently recover critical points of
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Figure 2

Examples of suboptimal estimates in pose-graph SLAM. Several estimates are shown for the trajectory of a robot as it enters and
explores a multilevel parking garage, obtained as critical points of the maximum likelihood estimation in Equation 3. (a) The parking
garage. (b) The true (globally optimal) maximum likelihood estimate X̂MLE computed using SE-Sync (26, 27). (c,d) Suboptimal critical
points X̂ obtained using local search. Panel a adapted from Reference 16 with permission from IEEE; panels b–d adapted from
Reference 26.

the loss function. This computational efficiency is essential in enabling real-time robotics applica-
tions, where both computational and temporal resources onmobile platformsmay be very limited.
And indeed, current state-of-the-art algorithms and software libraries based on the formulation
in Equation 3 are now capable of processing SLAM problems involving tens to hundreds of thou-
sands of states on a single processor in real time (14, 18, 19, 24, 25).

However, the use of fast local optimization comes at the expense of reliability: Local search
techniques can only guarantee convergence to a critical point X̂ of the loss function, rather than
the global minimizer X̂MLE required in Equation 3. Moreover, it is not difficult to find even fairly
simple examples where suboptimal critical points are such poor solutions as to be effectively un-
usable as SLAM estimates (Figure 2). To address this potential pitfall, several strategies for ini-
tializing local search have been proposed in the literature, with the aim of favoring convergence
to the true (global) minimizer (28–32). While these heuristics are often effective in practice, they
do not provide any guarantees on the quality of the estimates X̂ that are ultimately recovered.

These algorithmic difficulties can actually be understood as particular consequences of a fun-
damental computational stumbling block (11): As a high-dimensional nonconvex optimization,
the maximum likelihood formulation in Equation 3 is general enough to encompass many prob-
lems that are known to be NP-hard, including, in particular, the fundamental problem of rotation
averaging (33, 34).3 This implies that in fact there cannot exist an algorithm that is capable of
efficiently computing the maximum likelihood estimator X̂MLE required in Equation 3 in general,
unless P = NP (11).

In light of these considerations, as of 2016 several fundamental aspects of the reliability of
state-of-the-art SLAM inference methods remained poorly understood (5, 10):

� Algorithmic: Under what conditions do SLAM inference methods successfully recover the
correct estimate X̂MLE in Equation 3? Given the fundamental computational hardness of
Equation 3, is it even possible to design SLAM estimation algorithms that are both practical
and reliable? And if so, under what circumstances is this achievable?

� Statistical: Assuming that it is possible to compute X̂MLE in Equation 3,what are its statistical
properties (e.g., achievable accuracy)? And what features of a given instance of Equation 3
determine these properties?

3This also entails that any estimation problem in the form of Equation 3 that subsumes rotation averaging—
including, for example, the fundamental problem of pose-graph SLAM (26)—is also NP-hard (11).
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2.2. Certifiably Correct SLAM

One of the most exciting advances of the last few years has been the development of the first
class of SLAM estimation methods that are provably capable of efficiently recovering optimal
solutions of Equation 3 for nonconvex problems, at least in certain practically important cases.
These novel approaches, referred to as certifiably correct methods, are based on employing convex
relaxation (rather than smooth local optimization) to search for high-quality state estimates.While
the idea of applying convex relaxation in SLAM is not new [indeed,many well-known initialization
techniques are based on this strategy (28–32)], what distinguishes certifiably correct methods from
prior work is that the relaxations they employ are exact4 provided that the noise on the data Ỹ
in Equation 3 is not too large. Certifiably correct methods thus directly tackle the fundamental
problem of nonconvexity in Equation 3: They enable the efficient computation of globally optimal
solutions via convex programming within a restricted (but still practically relevant) operational
regime (35).

Certifiably correct SLAM algorithms originated in the study of pose-graph SLAM specifically
(Figure 1). Carlone and colleagues (36–38) proposed to address the problem of nonconvexity by
leveraging Lagrangian duality. To that end, they developed a quadratically constrained quadratic
program formulation of the SLAM problem and observed that the corresponding Lagrangian
dual, a semidefinite program (39), was frequently tight in practice. This observation provides a
simple means of certifying the optimality of a (correct) candidate solution X̂ of Equation 3 us-
ing Lagrangian duality. However, due to the high computational cost of standard (interior-point)
semidefinite programming methods, this certification approach (36, 37) still depends on the lo-
cal search in Equation 3 to compute the estimate X̂ itself. Rosen and colleagues (26, 27) subse-
quently studied the dual of Carlone and colleagues’ semidefinite relaxation (Shor’s relaxation of
the original pose-graph SLAM problem) and proved that for sufficiently small noise it admits
a unique low-rank solution that provides the exact MLE X̂MLE; they also developed a special-
ized low-rank Riemannian semidefinite optimization method for efficiently solving large-scale
instances of this problem. The resulting algorithm, SE-Sync, was the first practical certifiably
correct method to appear in the SLAM literature. Rosen and colleagues (26, 27, 40) further ob-
served that the semidefinite relaxation and low-rank optimization methods employed in SE-Sync
could be directly generalized to a broad class of estimation problems (specifically, those formu-
lated as rational polynomial optimization problems) viamoment relaxation (41), thereby providing
a general approach for synthesizing certifiably correct estimators.5

A nascent but rapidly growing body of work has subsequently adapted this approach to pro-
duce certifiably correct estimation methods for a variety of machine perception tasks, including
rotation averaging (43, 44), calibrated two-view registration (45), extrinsic sensor calibration (46),
3D registration (47, 48), image segmentation (49), shape reconstruction (50), and alternative
formulations of pose-graph SLAM (51), including sharper specialized relaxations for the 2D case
(52, 53). In recent works, Fan & Murphey (54) and Tian et al. (55) have also shown how to adapt
the low-rank Riemannian optimization used by Rosen et al. (26) and Briales & Gonzalez-Jimenez
(51) to run in a distributed setting, enabling the first distributed certifiably correct methods

4A convex relaxation is called exact if its minimizer provides an exact solution to the original problem from
which it was derived.Note that this condition can be checked post hoc, simply by verifying that the minimizer
of the relaxation satisfies the constraints of the original problem.
5Kahl &Henrion (42) also proposed the use of moment relaxation for globally optimal geometric reconstruc-
tion in computer vision, although they considered only low-dimensional (≤11D) estimation problems due to
the high computational cost of standard interior-point semidefinite optimization methods.
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for pose-graph SLAM and rotation averaging (56). The further development of this class of
estimation methods remains a very active area of research.

2.3. Robust Estimation

It is well known that maximum likelihood estimators are also frequently nonrobust, meaning that
corrupting an arbitrarily small fraction of the data Ỹ can cause the estimator X̂MLE in Equation
3 to diverge from the true latent value of the parameter X (21). This is true in particular for
MLEs formulated as nonlinear least squares problems, as is frequently the case in robotics and
computer vision applications. In practical SLAM applications, corrupted (outlier) measurements
of this sort frequently arise from erroneous data associations (often due to visual aliasing) and are
a primary source of the brittleness in current state-of-the-art systems.The development of SLAM
estimation methods that are robust to outlier contamination is thus crucial for achieving reliable,
long-duration autonomy.

Several approaches for addressing the problem of outlier contamination have previously ap-
peared in the SLAM and computer vision literature (5). One line of work attempts to directly
identify the set of inlier measurements by searching for the largest subset satisfying a notion of
mutual consistency. A classical example of this class is random sample consensus (RANSAC) (57),
which uses random sampling to search for sets of inlier measurements; while this approach works
well for low-dimensional problems with a moderate proportion of outliers, the curse of dimen-
sionality precludes its scaling to the high-dimensional problems typical in SLAM applications. In
consequence, several more scalable implementations of consensus set search have been proposed
specifically for use in SLAM. A prominent example is realizing, reversing, recovering (RRR) (58),
which exploits the sequential structure of robotics applications to iteratively construct a consensus
set: It integrates themeasurements sequentially in small batches, checking the internal consistency
of the resulting model each time; any batch that results in inconsistency is assumed to contain
outliers and is discarded.While this approach can be very effective, it requires solving an (expen-
sive) high-dimensional nonlinear estimation problem each time new data are added or removed.
A more recent and computationally lightweight alternative is pairwise consistency maximization
(PCM) (59); this method constructs a graph whose vertices correspond to the measurements Ỹ
and whose edges connect mutually consistent observations, and then extracts the maximal clique
as an estimate of the inlier set. Both RRR and PCM provide computationally tractable consen-
sus set estimation methods for high-dimensional SLAM problems and are often very effective in
practice; however, they provide no formal guarantees on the quality of the solutions they return.

An alternative class of approaches, originating in the work of Huber (60), is based on replacing
the negative log-likelihood functions − log pk(Ỹk|Xk ) that would appear in a standard maximum
likelihood formulation of Equation 3 with robust losses lk(X ; Ỹk ) that are less sensitive to the dele-
terious effects of outlier contamination; the resulting class of estimators thus achieves improved
reliability at the cost of a (typically relatively minor) loss in statistical efficiency.Moreover, one can
show that for suitable choices of the loss function, the resultingM-estimator is provably insensitive
to contamination by a bounded fraction of outlier observations (21). Several robust M-estimation
schemes have been proposed for use in SLAM, including the well-known switchable constraints
(61), dynamic covariance scaling (62), andmax-mixtures (63), all of which are straightforwardly im-
plementable using the standard high-dimensional local optimization machinery already prevalent
in these applications (14, 18, 19). Unfortunately, the shape required of a loss function in order to
attain robustness against contamination tends to exaggerate the nonconvexity of theM-estimation
in Equation 3, thus rendering these techniques more vulnerable to convergence to poor-quality
critical points; this pitfall is further exacerbated by the fact that the methods typically employed
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to initialize the local search (28, 30–32) are themselves no longer trustworthy when faced with
potentially contaminated data.

In light of these considerations, a natural pathway to achieving practical robust estimation is
attempting to combine the robust M-estimation in Equation 3 with the certifiably correct global
optimization strategy outlined in Section 2.2. To that end, Yang &Carlone (64) recently described
a general procedure that enables many geometric estimation problems involving the (robust) trun-
cated squared-error loss to be reformulated as polynomial optimization problems6 and demon-
strated empirically that the semidefinite relaxations (41) of these problems are frequently tight,
even when a large fraction of the data (in their experiments, greater than 50%) are outliers.While
the resulting relaxations are too large to be solved directly using standard (interior-point) meth-
ods, they derive an efficient algorithm for solving the dual (sums-of-squares) problems, thereby
enabling the certification of (correct) candidate solutions X̂ for the original robust estimation
problem in Equation 3.7 Finally, they showed empirically that a local optimization strategy [based
on graduated nonconvexity (65)] applied directly to Equation 3 very often succeeds in recovering
certifiably optimal solutions, despite its nonconvexity.Taken together, these approaches provide an
efficient and practically effective means of recovering certifiably optimal robust estimators X̂MLE

for high-dimensional problems, even in the presence of substantial outlier contamination.

2.4. Information-Theoretic Limits of SLAM

Having considered the computational and algorithmic challenges of the M-estimation in
Equation 3, we now address the statistical properties of the estimator X̂MLE itself. In particular,
can we develop sharp limits and/or guarantees on the statistical performance of X̂MLE in SLAM?

As in the case of Sections 2.2 and 2.3, the fact that instances of Equation 3 are typically defined
over high-dimensional nonconvex spaces can substantially complicate the analysis of X̂MLE; nev-
ertheless, recent work has identified certain spectral graph-theoretic properties (66) of the model
(Figure 1) underlying an instance of SLAM as the key quantities controlling estimation perfor-
mance, at least in certain practically important cases. Specifically, the connection Laplacian L [a
generalization of the standard (scalar) Laplacian to graphs with matrix-valued data assigned to
their edges (67)] and its spectral gap λ(L) have emerged as objects of central importance. For ro-
tation averaging, Boumal et al. (68) showed that the Cramér–Rao bound (a lower bound on the
achievable covariance of any unbiased estimator) admits a simple expression in terms of the con-
nection Laplacian L. Similarly, Khosoussi et al. (69) have recently derived an analogous result for
2D pose-graph SLAM. These results provide simple and sharp relations between the graphical
structure of SLAM problems and the accuracy of SLAM estimates.

Interestingly, the analyses presented by Bandeira et al. (33), Rosen et al. (26), and Eriksson
et al. (43) showed that the spectral gap also plays a central role in controlling the exactness of the
semidefinite relaxations underlying the certifiably correct estimators for the rotation averaging
and pose-graph SLAM problems; that is, the same quantity λ(L) controls both the statistical and
the computational hardness of these estimation problems. While much work remains to be done
in this area, these early results are strongly indicative that spectral graph-theoretic tools will have
an important role to play in designing reliable measurement networks for spatial perception.

6This reformulation involves introducing an auxiliary binary indicator variable, similarly to the approach of
switchable constraints (61).
7This is analogous to the verification strategy employed by Carlone and colleagues (36, 37) for the specific
case of pose-graph SLAM.
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2.5. Open Questions and Future Research Directions

The theoretical and algorithmic advances described in this section lay the foundation for designing
a new generation of principled, efficient, and provably reliable estimation algorithms for SLAM.
However, much work remains to realize this potential in the form of standard technology that can
be readily deployed by practitioners. In this section, we highlight three avenues for future work
toward realizing this vision.

2.5.1. Efficient optimization methods for certifiably correct perception. The high com-
putational cost of semidefinite programming remains a serious obstacle to the development of
practical certifiably correct estimationmethods. For example, all of the certifiably correct methods
described in Section 2.2 either are restricted to small-scale problems that can be solved using stan-
dard (interior-point) semidefinite programming techniques or depend on specialized, purpose-
built semidefinite optimization algorithms that are specifically tailored to each problem’s struc-
ture. While semidefinite optimization remains a very active research area (70), the development
of computational approaches that are reasonably general, easy to use, and well suited to the partic-
ular characteristics of machine perception applications (e.g., high dimensionality, ill conditioning,
limited computational and temporal resources, and the need for high-precision solutions) remains
an open problem. Reference 71 reports one initial step in this direction, but much work remains
to be done.

Similarly, to date work on certifiable estimation has primarily addressed the offline (batch)
setting.The development of efficient incremental semidefinite optimization methods—analogous
to, e.g., iSAM (17, 18) and GTSAM (9)—would be extremely valuable for enabling certifiable
estimation in real-time online perception tasks.

2.5.2. A priori performance guarantees. Certifiably correct perception methods approach
the problem of solution certification in a post hoc, per-instance manner. This is sufficient to en-
able run-time verification and monitoring to confirm that a perception system is functioning as
it should be. However, as designers and practitioners, we would also like to have formal results
that clearly delineate in advance the circumstances under which such systems will succeed, as
well as characterizations of their expected performance as statistical estimators. While there are
some formal results that guarantee at least the existence of a noise regime within which certifiable
perception methods will succeed (26, 43, 52, 72), at present there do not appear to be general,
user-friendly theoretical tools for deriving sharp bounds on the size of this regime. Results of this
type would be extremely useful in the design of measurement systems for machine perception
applications, especially in safety- and life-critical applications (e.g., autonomous vehicles).

2.5.3. Beyond point estimation. The certifiably correct methods described in this section are
all derived in the context of Equation 3, i.e., in the setting of point estimation; this is a reasonable
approach whenever the underlying likelihood or posterior probability density is highly concen-
trated around a single mode. However, in practice it often occurs that the posterior is highly
diffuse (due to a lack of sufficiently informative measurements) or even multimodal (as in the case,
for example, of uncertain data association). In these cases, point estimation can dramatically un-
derestimate the actual posterior uncertainty, even missing the existence of completely distinct but
equally plausible solutions. Blindly trusting such a result can easily cause an erroneously overconfi-
dent belief in a completely wrong answer, potentially endangering the safety of the overall system.

Overcoming this challenge requires the development of inference methods that go beyond
simple point estimation and attempt to explicitly characterize posterior uncertainty. This is
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necessary both for introspection (i.e., to enable an autonomous agent to know what it doesn’t
know) and, by extension, for planning and active perception (to enable an autonomous agent to
reason about how it could reduce its own uncertainty). The development of tractable estimation
methods that can extract this richer information while scaling gracefully to high-dimensional
problems is an important and fundamental open problem for future research in SLAM, although
References 73–75 have proposed initial steps along these lines.

3. REPRESENTATION: BEYOND POINTS AND PLANES

This section surveys recent advances in map and robot state representation for SLAM. Our focus
throughout is on the development of representations that go beyond geometry alone and on the
corresponding problems that have arisen in this domain. A major throughline of recent work in
representations for SLAM is the unification of semantic and geometric information, propelled by
recent advances in machine learning.We explicitly discuss the challenges, opportunities, and ma-
jor questions associated with the development of joint geometric and semantic representations;
in so doing, we highlight three key research areas, considering the influence of semantics in each:
navigation in dynamic and semistatic environments, abstraction and hierarchy, and learned rep-
resentations. To contextualize progress in this area, we briefly review state-of-the-art geometric
representations for SLAM.8

In considering the problem of constructing a global representation from local measurements,
a fundamental question arises: What should the global representation be? More precisely, in de-
signing a navigating robot, a choice of environmental representation must address which features
(properties) of the world are relevant, what data and/or models are necessary to encode those fea-
tures, and how that approach should be operationalized. Given that the answers to many of these
questions depend on the specific task at hand, it is no surprise that numerous representations have
been proposed,with no clear universally superior choice.Moreover, while the basic problem state-
ment for SLAMhas remained essentially unchanged formore than 30 years, the criteria for success
have changed drastically.No longer do we expect SLAMmethods to simply build geometric maps
of static worlds and localize a robot.Modern SLAMmethods often must also synthesize data from
heterogeneous sensors to infer object categories, operate in dynamic and evolving environments,
and support planning. These expectations mirror the increasingly stringent requirements in es-
timation for SLAM: We expect certifiability, robustness, and reliable operation with a variety of
sensors, each possessing distinct noise characteristics.

Within the last decade, the expectation of SLAM methods to perform certain scene under-
standing tasks coupled with classical geometric estimation coincided with the recent successes
(and accessibility) of machine learning methods for perception tasks [especially in computer vi-
sion (76, 77)], driven mainly by the availability of large-scale labeled data sets such as ImageNet
(78). Such advances in learning, especially deep learning,motivated research in richer, semantic or
object-level representations for SLAM (79). The expansion of SLAM to include semantic percep-
tion capabilities (most prominently using vision) to enable an embodied system to interact with
the environment has recently been referred to as spatial AI (80–82).

Due in large part to the recent progress in learning for machine perception and the histor-
ical success of geometric methods, the past decade has seen increased research interest in the

8For a review of progress in geometrically grounded SLAM representations, particularly those used in visual
SLAM, we refer readers to a survey by Cadena et al. (5).
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development of SLAM systems that estimate nonmetric properties of the environment (e.g., clas-
sifying static versus dynamic parts of the scene) and advances in representation learning methods
(e.g., deep learning) that can be used to build richer maps. The coupling of map representation
with the task (task-driven perception) is an emerging theme: We desire SLAM systems that will
build environment representations that are useful for some task. Increasingly often, these tasks
include active or interactive perception (83), intelligent exploration, manipulation, and learning
as a task in itself.

3.1. Geometric Representations

Sparse, landmark-based (or feature-based) representations have been used since the earliest work
on the SLAM problem more than 30 years ago. These representations seek to build and maintain
a map of landmarks, i.e., salient, distinct environment features that can be reliably recognized.The
problem of recognizing previously mapped features is known as data association. In the context
of visual SLAM, the SIFT (84), SURF (85), and ORB (86) features are among the most com-
monly used feature descriptors. Visual SLAM methods leveraging sparse representations, such as
ORB-SLAM (7, 87) and DSO and its variants (88–90), have had tremendous success at precisely
localizing a camera in 3D environments. However, the maps built by these methods, while useful
for localization, are not actionable. Geometrically, they consist of a sparsely distributed collection
of points in 3D space, rather than an explicit characterization of free and occupied volumes and
the boundaries (surfaces) that separate them. In consequence, they are not immediately convenient
for planning collision-free paths or exposing potential routes for exploration.

In contrast, dense spatial representations attempt to build complete, albeit approximate, de-
scriptions of surfaces or occupied space. These descriptions may take the form of occupancy grid
maps (91); volumetric maps (in 3D) (92); meshes (93); dense point clouds, as in LSD-SLAM (6);
or truncated signed distance function maps, as in ElasticFusion (8) and KinectFusion (94).Meshes
and other forms of surface representations provide critical information for a system attempting to
avoid colliding with its environment, whereas point-cloud-based methods do not. In these dense
representations, the correspondence problem is addressed by computing the most probable loca-
tion within the map from which a measurement could have been made. In many geometric maps,
this is performed through a variant of iterative closest-point registration; alternatively, as with
sparse representations, loop closures can be determined through place recognition using feature
descriptors [e.g., as is done in the dense SLAM system Kintinuous (95)].

The principal limitations of solely geometric representations are as follows:

� Geometry alone cannot explain all potentially relevant sensory properties of the environ-
ment (e.g., color, tactile sensation, or weight). Thus, a comprehensive understanding of the
environment requires reasoning capabilities above and beyond geometry.

� This fact suggests that geometry alone is insufficient for more sophisticated forms of sensor
fusion that capture not only the physical appearance of objects but also interaction, sound,
touch, and so on.

� Bare geometric representations do not naturally support human–robot interaction. Formost
tasks, humans do not specify, e.g., objects or locations in terms of numerical class labels or
spatial coordinates. If robots aim to interact with the world alongside humans, then we need
them to have at least some basic competency at interpreting higher-level, human-centric
semantic descriptions.

� Though spatial abstractions for geometric data exist, they are not grounded in action. Any
representation suited to reasoning about a task beyond localization must be actionable.
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3.2. Unifying Semantics and Geometry

By 2015, the SLAM community had increasingly recognized the limitations of purely geometric
perception and that concurrent advances inmachine learning would enable richer, semantic repre-
sentations (5, 96). Research on semantics in SLAM considers the development of more expressive
map representations capable of incorporating objects and places and enabling higher-level au-
tonomy. The ability to understand the world in terms of objects and places can provide robots
with a number of benefits over traditional (dense or semidense) approaches, such as point clouds
or octrees. Semantic maps can be encoded with much smaller memory and processing footprints
and can provide robustness against the inevitable accumulation of small errors that can render
purely geometric approaches brittle. Map representations based on human-understandable se-
mantic primitives can also enable better ways for human operators to interact with autonomous
systems, in more natural terms for the human. Thus far, there is no consensus on a mathematical
formalism for the fusion of semantic information about the state of a robot and its environment
with estimates of the local scene geometry. This section concerns the progress that has been made
in establishing models for semantic information in SLAM systems.

The prevailing approach toward incorporating semantics into navigation systems is to treat the
output of learned perception models (e.g., object detectors) as virtual sensor measurements. As in
classical work on learned sensor models, this treatment essentially posits that some deterministic
(though perhaps unknown) function relates the latent semantic category of an object with some
other measurable physical properties, such as its appearance in a camera image, and that this func-
tion can be approximately learned from data. Historical efforts in robot mapping have sought to
learn complex measurement models, e.g., those of sonar sensors (97). However, in this prior work
there really is a (perhaps complex) relationship between the geometric structure of a scene and
the measurements made in that environment; this is an immediate consequence of the physics of
the sensing apparatus. In contrast, such a physically grounded relation need not hold between raw
sensory data and semantics.

Semantics often arise through affordance rather than appearance. Such affordances may only
become clear through interaction, and one cannot reason about interaction using single-image
measurement models that currently dominate the navigation literature. Nonetheless, the recog-
nition of objects from an a priori known set of classes—enabled by these approaches—is undoubt-
edly a useful capability for mobile robots. Recent work has focused on challenges arising within
this relatively limited scope, such as characterizing the noise or uncertainty in the output of learned
perceptionmodels, and the fact that these models are known to fail unpredictably even in nominal,
nonadversarial operating conditions, causing drastic errors in systems that employ this informa-
tion for navigation tasks. However, incorporating discrete measurements of object categories into
the continuous geometric formulation of SLAM poses its own set of challenges for inference:
Joint discrete–continuous estimation often leads to combinatorially large state spaces, making the
determination of the most probable map difficult.

3.2.1. Joint inference of semantics and geometry. Given a model of object detections and
classifications as the output of a (noisy) sensor, the problem of jointly estimating the latent se-
mantic class and geometry of landmarks in the environment can be posed in terms of Equation 2
as

X̂ , L̂, D̂ = arg max
X ,L,D

p(Ỹ | X ,L,D), 4.

where Ỹ denotes the full set of measurements (including semantic measurements); X the set of
robot poses; L the set of environmental landmarks, which typically consist of some geometric
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information (e.g., position, orientation, and size) coupled with a discrete semantic label from a
known, fixed set of classes; and D the set of associations between measurements in Y and land-
marks in L. A key observation is that discrete-valued categorical information about objects can
be naturally combined with the already discrete inference problem of data association: Knowl-
edge of an object’s category can help distinguish it in clutter from other objects. This formulation
unifies discrete models of semantic category, geometric estimation, and data association; however,
in addition to being nonconvex and high-dimensional (as in the standard SLAM formulation), it
now also involves combinatorial optimization. Moreover, in committing to the use of semantics
for data association, one must cope with the errors of learned perception models.

Given this formulation, Bowman et al. (98) performed joint optimization via expectation max-
imization: First fix the data association probabilities and landmark classes and optimize the robot
poses and landmark locations (withmeasurements weighted by the respective probabilities of their
landmark correspondence), then fix the robot poses and landmark locations to compute new data
association probabilities and landmark classes.This approach has the benefit of assigning soft asso-
ciations to objects, gradually converging to a locally optimal solution to the problem in Equation 4.
The data association probabilities can be computed via approximate matrix permanent methods
(99).

An alternative approach to the combinatorial inference problem of Equation 4 is to reframe the
optimization over discrete variables as one over only continuous-valued variables. In early work
to this end, Sünderhauf et al. (96) optimized probabilities of semantic labels, which are defined
over the (K− 1)-dimensional unit simplex for a K-class semantic labeling problem.More recently,
full (albeit approximate) posterior inference has been considered by marginalizing out the discrete
variables, producing a mixture representation (100). A similar methodology has been applied in
the context of maximum a posteriori inference to enable the use of continuous, gradient-based
optimization methods to approximately solve Equation 4 (101). Finally, some have approached
the combinatorial problem directly via multi-hypothesis tracking (75).

3.2.2. Semantic map representations. Many representations for semantic navigation consist
of traditional geometric representations (such as truncated signed distance functions, occupancy
grids, or meshes) in which each element is augmented with a semantic label. SemanticFusion
(102) is one such dense representation; semantic octree-based occupancy maps have also been
used (103), and Kimera (93) uses meshes.

Much work has also been done in the past several years in the area of object-level represen-
tations within SLAM. Since the early work on these representations (104–106), the community
has largely shifted away from a priori known object models toward the use of learned perception
models for object detection, recognition, and pose estimation. The simplest object-centric rep-
resentations treat object landmarks as points in Euclidean space augmented with semantic labels.
More recently, representations have been developed that permit the estimation of not only the
class and position of objects but also their orientation and extent. These include the dual quadric
formulation (107–109), which models objects as 3D ellipsoids, as well as CubeSLAM (110), which
represents objects in terms of rectangular bounding volumes. Another recent consideration in
work on object-centric representations has been the use of learned object descriptors; an example
is the work of Sucar et al. (111), which captures the shape (via the occupied volume) of objects as
well as the pose of the object.

A major theme among all of these representations is the use of some principally geometric
representation augmented with semantic class. In subsequent sections, we discuss the incorpo-
ration of more complex semantic relationships into SLAM representations; the development of
such models is an important underexplored area that we revisit explicitly in Section 3.6.
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3.3. Beyond Static Worlds

The vast majority of SLAM systems have assumed that the world is static. The so-called static
world assumption (that only the robot itself can change state) has enabled great progress in SLAM
but is often violated in practice. In consequence,most practical implementations of SLAM implic-
itly regard dynamic objects as unmodeled disturbances, and rely on outlier rejection mechanisms
[e.g., RANSAC (57)] to filter them out.More recently, methods that attempt to explicitly discrim-
inate between dynamic and static objects in a visual scene have been developed in order to identify
(static) areas of the scene that are more informative for localization (112). Particular interest in
recent research is not restricted to the removal of dynamic elements from a scene, but also extends
to modeling their dynamics over a variety of spatial and temporal scales.

In going beyond the static world assumption, a fundamental question arises: Did I move or
did the world move? Often, without more information, a conclusion cannot be drawn. Prevailing
methods that rely on the static world assumption break in scenarios where the entire scene moves
but the robot stands still. A key representational element missing from such systems is the ability
to reason about geometric ambiguity. Formally, this problem stems from a lack of observability.
To achieve truly robust perception, a SLAM system must be able to reason about such ambiguous
information. Alternatively, in light of making an error of judgment, such a system should be able to
revise its decision, thereby fixing its error, and then use its corrected representation to resume state
estimation.This can be experienced, for example, when one is stopped in traffic and a neighboring
car begins to move: One may feel that it is oneself moving, when in reality it is the scene that
moved. Priors grounded in semantics can help to address this observability problem: Knowledge
that certain collections of geometric features correspond to a house rather than a car may suggest
(though not ensure) that the landmark is stationary. The modeling of changing environments
poses additional, more abstract challenges. If we allow environments or the objects within them to
change over time, then the recognition of familiar places and identities of objects within becomes
nontrivial. Like the ship of Theseus, whose pieces are gradually replaced until none of its original
components exist, it is difficult or impossible in dynamic worlds to determine unambiguous object
or scene identities. Consequently, solutions to SLAM in dynamic environments generally rely
on some assumptions about the nature of the possible dynamics in order to make the problem
tractable.

3.3.1. Dynamic environments. Operationally, highly dynamic environments consist of those
in which any motion not due to the robot occurs on a timescale that makes it directly observ-
able (pedestrians, cars, etc.). This is the most commonly studied form of dynamic SLAM. The
direct observability of these motions reduces the problem of dynamic SLAM to a front-end clas-
sification and filtering problem: Dynamic components of the scene can be identified and modeled
locally without becoming part of the global environmental representation [as in the work ofWang
et al. (113)]. Recent methods such as those described in References 114–116 leverage semantics
to inform dynamic SLAM systems, particularly in deciding which features correspond to objects
that are likely to be moving. An emerging theme in this area is the estimation of the velocity of
classified objects in the scene.

3.3.2. Semistatic environments. Semistatic environments are those in which environmental
change happens on a timescale that is observable only by repeated revisitation or observation of a
given location. This can include, for example, furniture moving around or seasonal variation. The
key challenge associated with modeling semistatic environments is that, operationally, learning
and reasoning about these kinds of environmental changes requires some implementation of
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environmental memory. This difficulty is in large part representational: What does it mean for
a map to change over time? How can we build updatable maps, and how should we think about
recording the evolution of environments over time once changes are permitted? Numerous
approaches to this have been proposed. Rosen et al. (117), for example, developed a Bayesian
framework for recursive estimation of the persistence of each feature in an environment. Krajník
et al. (118) applied Fourier analysis to model the frequencies at which features in the environment
may change. Bore et al. (119) made use of particle filters to learn the temporal dynamics of an
arbitrary number of objects with a priori unknown feature correspondence. Zeng et al. (120)
considered a semantic linking map representation that captures probabilistic spatial couplings
between landmarks; this captures the intuition that in a semistatic environment, contextual
semantic relationships between observed objects can be used to facilitate object search (e.g., to
find cups, we might first look for tables or cabinets). Halodová et al. (121), Berrio et al. (122), and
Pannen et al. (123) each considered the problem of managing changes to a map representation
(though they did not explicitly attempt to track dynamic objects over time). The problem of
change detection and map modification is especially pernicious for safety-critical autonomous
vehicle systems that rely on high-resolution 3D maps for navigation.

3.3.3. Deformable environments. State estimation in deformable environments, or environ-
ments with deformable objects, remains a particularly challenging and underexplored research
area in SLAM. A major milestone on this front was DynamicFusion (124), which demonstrated
dense reconstruction of deformable objects using an RGB-D camera. More recent work has ex-
plored the fundamental theoretical problem of the observability of SLAM in deformable environ-
ments, in particular with application to mapping the interior of the human heart (125).

3.4. Abstraction and Hierarchy in Spatial Representations

Abstraction and hierarchy in spatial environment models have greatly improved the scalability,
efficiency, and generalization of SLAM methods. Early work on the spatial-semantic hierarchy
(12) outlined key ideas related to the construction and maintenance of a cognitive map of the
environment. From a purely geometric standpoint, spatial partitioning algorithms enabled the
scaling of dense representations of occupancy (92).

3.4.1. Topological models. Environment topology plays a major role in decision-making pro-
cesses. For navigation, the (topological) decision to go left or right at a fork in the road can have
a far more significant impact on the time to reach a destination than decisions about the specific
(metric) motion plan. Topological maps describe an environment at this level of abstraction, i.e.,
at the level of connectivity. In the context of SLAM, topological maps provide a very compact
representation that can be used for such coarse (but significant) navigation decisions, as well as
localization.9 In particular, topological feature graphs (126), whose vertices represent geometric
features and whose edges represent obstacles, have recently been used to support information-
theoretic exploration, where they provide a compact description of occupied space. Stein et al.
(127) proposed a polygonal map representation from which topological navigation decisions can
be obtained, enabling a broad class of learning-aided planning tasks. Neural topological SLAM
(128) incrementally constructs a topological map (graph) in which vertices represent physical loca-
tions (identified with a set of features extracted from panoramic images via a neural network–based

9For a review of topological methods prior to 2016, we refer readers to a survey by Lowry et al. (15).
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3D dynamic scene graphs (129). These are a recent application of scene graphs (previously common in the
computer graphics community) to the SLAM problem and provide a substantial step toward linking scene
understanding and spatial perception methods. Figure courtesy of A. Rosinol.

encoder) and edges represent connectivity/traversability between locations; this representation is
used to support learning policies to navigate toward a goal, specified as an image taken at the target
location.

3.4.2. Scene graphs. Representations that synthesize spatial and semantic information in hi-
erarchies incorporating both metric and topological properties of the environment have been of
very recent interest.Hierarchical models have the benefit of partitioning space at a variety of levels
of abstraction, enabling efficient reasoning over large spatial scales. In particular, 3D scene graph
models (129, 130) present a promising representational direction toward capturing object-level
semantics, environment dynamics, and multiple spatial and semantic layers of abstraction (from
the connectedness of unoccupied space to rooms and buildings and beyond). Scene graphs model
the environment in terms of a directed graph where nodes can be entities such as objects or places
and edges represent relationships between entities (depicted in Figure 3). The relationships mod-
eled by a scene graph may be spatial or logical. Scene graph representations have also been used
to learn physical descriptions of scenes in an unsupervised fashion from visual input alone (131),
though this approach has yet to be applied directly in a robotics context.

3.5. Learning-Centered and Learned Representations

Many efforts thus far in semantic SLAM leverage learned perception models but opt for relatively
straightforward environmental representations; these typically consist of some combination of
classical geometric measurements and categorical output from a learned model, such as an object
detector (e.g., 77). Such perceptionmodels are typically trained in an offline setting, using data that
may not accurately reflect the conditions in which a robot is actually deployed.We may ask, then,
whether it is possible to learn or refine perception models during robot navigation. In particular,
knowledge of the scene geometry and robot motion during navigation motivates self-supervision
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of learned perception models (e.g., 132, 133). We must address, in such settings, precisely what
sorts of environment representations would permit these types of learning. Taking this a step
further, we might consider learning parts of the representation itself, the logical extreme of which
is end-to-end learning of navigation (as in 134).

3.5.1. SLAM for self-supervised learning. Work on SLAM-aware perception methods orig-
inated in the desire to leverage global spatial structure when recognizing objects in video streams
(135). Since then, these capabilities have been extended to bootstrap supervision for a variety of
learned perception models (132, 133, 136, 137). The central idea of these approaches is that a
global (typically geometric) representation of the environment can be used as a supervisory signal
for training a variety of models relating the motion of a camera and the scene geometry (e.g.,
visual odometry models). The ability to combine spatial and temporal information in order to
improve learning is a unique feature of embodied spatial AI systems that undoubtedly warrants
further attention.

3.5.2. Learning geometric representations. Coarse geometric models often fail to capture
the precise volumes of objects, while dense representations require substantial memory to store a
map. SceneCode (138) and NodeSLAM (111) incorporate learned intermediate representations
for objects. From these compressed representations, the object geometry can be recovered. More
generally, DeepFactors (139) incorporates compact representations of depth images toward the
same goal.

Given the popularity of gradient-based methods for optimization (particularly backpropaga-
tion), there is great potential utility for differentiable SLAM representations. Recent work to this
end (140) aims to enable backpropagation through traditional SLAM systems in order to seam-
lessly integrate with learning models such as neural networks.

3.5.3. Learning to navigate. Recently, several models have considered end-to-end learning for
navigation. Broadly, these methods seek to learn functions mapping directly from sensor inputs
(or a history of sensor measurements) to actions (e.g., 141, 142). A major consideration for these
methods is how to structure the learning problem. Zhang et al. (141) used an agent with exter-
nal memory representing an occupancy map. More recent work (128) has considered specifically
structuring the learning problem to use a topological representation of the environment.

3.6. Open Questions and Future Research Directions

While the previous decade has brought great progress in the representational power of modern
robotic mapping and localization systems, a number of fundamental issues remain open. In this
section, we highlight three key avenues for future work: novel representations for sensor fusion,
hierarchical abstractions for learning and attention, and the problem of identifying suitable con-
cepts for grounding semantic models.

3.6.1. Novel representations for sensor fusion. Whilemuch progress has beenmade in recent
years on the topic of semantic SLAM,most representations rely on the availability of high-signal-
to-noise-ratio sensors that provide an abundance of accurate geometric measurements, such as
RGB-D cameras and lidar. How can we do more with less? We would like to develop robots that
process rich, multimodal sensory information from measurements that may individually only par-
tially describe objects or scenes. Incorporating novel sensors such as event cameras [see, e.g., the
recent survey by Gallego et al. (143)], light-field cameras, and tactile sensing together with more
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traditional sensors such as cameras, lidar, inertial measurements, and sonar is a key area for future
work. Similarly, the graphical optimization-based estimation frameworks that at present are com-
monly used in robotic state estimation provide a convenient and versatile language for describ-
ing sensor fusion problems, but they typically depend on having a relatively well-characterized
model for each of the deployed sensors. Natural organisms, as well as machines, encounter physi-
cal changes to their sensors and configurations as time goes on: A camera may move slightly on an
autonomous vehicle, lens distortion may occur, and so on. Systems that perform long-term sensor
fusion must in some sense be adaptable. There is still ample room for fundamental contributions
in many of these areas.

3.6.2. Hierarchical models for learning, navigation, and planning. Hierarchical, flexible
models that abstract the minutiae of scene geometry in favor of higher-level concepts are needed
for robust, scalable long-term mapping. However, the design of these abstractions raises several
issues, including to what extent they should be learned or grounded in human-centric concepts,
and how they can be structured to accommodate multiple spatial and temporal scales (to support
large-scale operation).

3.6.2.1. To learn or not to learn? Thousands of years of human-made spatial-semantic abstrac-
tions have become embedded into our world.Given these prior abstractions, two natural questions
arise: What should be learned from data, and what should be enforced as a prior? In particular,
should a robot be explicitly programmed with human-centric abstractions, or should it attempt to
learn its own abstractions through experience? The answers to these questions will naturally be
task dependent, and the twin problems of developing both models of human semantics for robot
use and online robot semantics (grounded in the actions a robot can perform) remain largely open.

3.6.2.2. Flexible representations and attention. What is the spatial representation for a robot
that can get on a plane and fly from Boston to London? It may not matter explicitly where it
is in Earth-centered coordinates while on an airplane: Only the local coordinates of the robot
matter. Mixing topological constraints with metric constraints would be greatly beneficial in such
situations. While this topic was initially explored by Sibley et al. (144), this is largely an open
research area.

For the scalability of representations, another open question is what the robot should remem-
ber. Metric geometric models grow unboundedly in the space needed for navigation; however, it
seems intuitively clear that not all metric information needs to be immediately accessible. Neither
a human nor a robot needs to reason about the dense geometry of their home kitchen in order to
navigate from one location to another while traveling in another country. Developing models that
can pull relevant information from long-term memory into short-term memory for navigation
tasks is another promising area for future work.

3.6.3. Where do semantics come from? In comparison to work using semantics as a sensor,
there has been comparatively little work on semantics as they arise from the compositions of
other entities in a map or from the history of a robot’s interactions with (and observations of ) the
environment.Groupings of geometric features (point clouds, lines, and planes) or local unoccupied
regions (i.e., places) can each be associated with semantic phenomena in the environment. It may
be necessary to build up a semantic model of the environment, rather than capture semantics in
single measurements, in order to develop more intelligent robot systems. The following passage
by Marr (145, p. 36) is relevant in this context:
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Finally, one has to come to terms with cold reality. Desirable as it may be to have vision deliver a
completely invariant shape description from an image (whatever that may mean in detail), it is almost
certainly impossible in only one step.We can only do what is possible and proceed from there towards
what is desirable. Thus we arrive at the idea of a sequence of representations, starting with descriptions
that could be obtained straight from an image but that are carefully designed to facilitate the subsequent
recovery of gradually more objective, physical properties about an object shape.

For a number of reasons, scenes may contain semantic information not captured directly by
individual sensor measurements. For example, the geometry of an object larger in extent than can
be captured by a single image may be relevant, or the semantic relevance of an object may arise
through interaction. More generally, some semantic properties of interest may have no physi-
cal grounding whatsoever; a natural example of such a property is ownership, which is completely
divorced from an object’s physical makeup. Finally, semantics are often contextual: Different prop-
erties or categorizations of objects may be important depending on the specific task at hand.There
is a great need for flexible models that can describe these aspects of the world in order to build
versatile robots that can robustly perform a variety of tasks.

4. DISCUSSION AND FUTURE PERSPECTIVES

Looking forward, we see three key challenges for guiding future research in SLAM:

� Long-term autonomy: Can we improve the robustness of SLAM systems to enable the re-
liable, persistent, and independent operation of robots in the real world?

� Lifelong map learning: Can we create systems that continually improve their mapping per-
formance, despite (and perhaps even leveraging) the constant evolution of real-world envi-
ronments, thereby enabling persistent deployment?

� SLAM and deep learning: Can we capitalize on the promise of recent breakthroughs in deep
learning (146) and new semantic representations, while retaining the desirable properties
of traditional model-based state estimation methods, including recently developed robust
estimation algorithms?

In our view, long-term autonomy (i.e., the capacity of a robotic system to operate reliably, for
extended periods of time, without human supervision or intervention) is an important measure
of performance for evaluating future research in SLAM. Current state-of-the-art methods have
largely solved the problems of spatially and temporally bounded deployment; what remains to
address are the myriad infrequently encountered failure cases that arise in extended, real-world
operation. By nature, these may be difficult to capture in laboratory settings via small-scale
experiments or in the standard data sets that have traditionally been employed for empirical
SLAM evaluation. We expect that the certifiable and robust SLAM inference methods described
in Section 2 will have a particularly prominent role to play in addressing such long-tail failure
modes, as their explicitly delineated operational assumptions and run-time verification enable
potentially hazardous circumstances to be identified before they are encountered in operation.

Persistent operation will also require robots to evolve beyond the classical snapshot version of
the SLAM problem and embrace a long-term existence via lifelong learning. The environment
(and perhaps features of the robot itself ) will change over time, and new inferential and repre-
sentational approaches are required that are similarly adaptive. In particular, an important novel
challenge in this regime is the need to explicitly account for, and actively manage, the uncertainty
inherent in an ever-changing world. For long-term operation, inference and representation must
be combined with planning and control to enable active, task-directed perception; these capabil-
ities will provide autonomous agents the means to introspect (i.e., to monitor their own state of
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Figure 4

Block diagram of a robotic system, including perception and SLAM modules. Solid lines represent the basic
flow of information through the perception subsystem: Sensor measurements Ỹ are received and processed,
and a state estimate X̂ is communicated to the rest of the system. Active perception (147) involves a tighter
interconnection between planning and perception (dashed loop): Here, the planner proactively chooses its
controls uk to reduce the uncertainty in the predicted state estimate X̂k that is expected after uk is applied.

knowledge), equipping them to identify and seek out the information needed to reduce their own
uncertainty (Figure 4). Recalling Bajcsy’s (147) famous adage, intelligent agents do not just see,
they look.

Regarding learning and adaptation, the integration of SLAM with deep learning specifically
will be another key research area over the next decade. Indeed, end-to-end, data-driven machine
learning techniques for SLAM are already starting to enter the literature (132, 136, 137, 140).
There is ample opportunity to develop novel deep learning systems that are specifically adapted
to the unique features of robotic perception; these include the rich, temporally coherent streams
of sensory data available to robots, novel sensing modalities and data types beyond classical vision
(e.g., direct 3D perception via lidar, event-based cameras, and tactile sensing), and the ability to
close the loop around perception via active sensing. The community is also in need of larger
and more varied data sets, tailored to the problem of SLAM, to more thoroughly investigate the
potential of these approaches.

After 30 years of progress, the problem of constructing global representations from local
measurements continues to inspire significant and fundamental advances in SLAM. Recent work
has seen great strides in classical state estimation (Section 2), demonstrating both the theoretical
and empirical effectiveness of certifiable and robust inference methods. However, these methods
derive much of their power from being built atop well-characterized (typically geometric) models;
such strong hypotheses may not always be realistic, especially in moving beyond short-term oper-
ation and representations grounded in simple geometric primitives. Conversely, it is the flexibility
and representational power (Section 3) of learning systems that affords autonomous robots
the capacity to build richer environmental models and adapt through experience. At present,
these systems are often trained and deployed in a black-box end-to-end manner; this may
make the learned representations difficult to interpret and hence difficult to integrate within
larger-scale autonomous systems (see Figure 4). In the future, we envision SLAM systems
that are built as a synthesis of these approaches, applying (narrowly scoped) learning in those
parts of the system where it is required, but integrated within a classical model-based Bayesian
state estimation framework (Figure 1) that enables us to take advantage of principled, highly
developed (e.g., certifiable and robust) inference methods, introspection, and active perception.
Such a synthesis could achieve the best of both worlds, equipping robotic agents with both the
robustness and the adaptability necessary to achieve truly autonomous persistent operation.
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121. Halodová L, Dvořráková E, Majer F, Vintr T, Mozos OM, et al. 2019. Predictive and adaptive maps
for long-term visual navigation in changing environments. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 7033–39. Piscataway, NJ: IEEE

122. Berrio JS,Ward J,Worrall S,Nebot E. 2019.Updating the visibility of a feature-basedmap for long-term
maintenance. In 2019 IEEE Intelligent Vehicles Symposium, pp. 1173–79. Piscataway, NJ: IEEE

123. Pannen D, Liebner M, Hempel W, Burgard W. 2020. How to keep HD maps for automated driving up
to date. In 2020 IEEE International Conference on Robotics and Automation, pp. 2288–94. Piscataway, NJ:
IEEE

124. NewcombeRA,FoxD,Seitz SM.2015.DynamicFusion: reconstruction and tracking of non-rigid scenes
in real-time. In 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–52. Piscataway,
NJ: IEEE

125. Song J, Zhao L, Huang S, Dissanayake G. 2019. An observable time series based SLAM algorithm for
deforming environment. arXiv:1906.08563 [cs.RO]

126. Mu B, Giamou M, Paull L, Agha-Mohammadi AA, Leonard JJ, How J. 2016. Information-based active
SLAM via topological feature graphs. In 2016 IEEE 55th Conference on Decision and Control, pp. 5583–90.
Piscataway, NJ: IEEE

127. Stein GJ, Bradley C, Preston V, Roy N. 2020. Enabling topological planning with monocular vision.
arXiv:2003.14368 [cs.RO]

128. Chaplot DS, Salakhutdinov R,Gupta A, Gupta S. 2020.Neural topological SLAM for visual navigation.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12872–881. Piscataway, NJ:
IEEE

129. Rosinol A, Gupta A, Abate M, Shi J, Carlone L. 2020. 3D dynamic scene graphs: actionable spatial
perception with places, objects, and humans. In Robotics: Science and Systems XVI, ed. M Toussaint, A
Bicchi, T Hermans, pap. 79. N.p.: Robot. Sci. Syst. Found.

130. Armeni I, He ZY, Gwak J, Zamir AR, Fischer M, et al. 2019. 3D scene graph: a structure for uni-
fied semantics, 3D space, and camera. In 2019 IEEE/CVF International Conference on Computer Vision,
pp. 5663–72. Piscataway, NJ: IEEE

131. Bear DM, Fan C, Mrowca D, Li Y, Alter S, et al. 2020. Learning physical graph representations from
visual scenes. arXiv:2006.12373 [cs.CV]

132. DeTone D, Malisiewicz T, Rabinovich A. 2017. Toward geometric deep SLAM. arXiv:1707.07410
[cs.CV]

133. DeTone D, Malisiewicz T, Rabinovich A. 2018. Self-improving visual odometry. arXiv:1812.03245
[cs.CV]

134. Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, et al. 2016. End to end learning for self-
driving cars. arXiv:1604.07316 [cs.CV]

135. Pillai S,Leonard JJ. 2015.Monocular SLAM supported object recognition. InRobotics: Science and Systems
XI, ed. LE Kavraki, D Hsu, J Buchli, pap. 34. N.p.: Robot. Sci. Syst. Found.

www.annualreviews.org • Advances in SLAM 241



136. Pillai S, Leonard JJ. 2017.Towards visual ego-motion learning in robots. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 5533–40. Piscataway, NJ: IEEE

137. Pillai S, Leonard JJ. 2017. Self-supervised place recognition in mobile robots. Paper presented at the Learning
for Localization and Mapping Workshop, IEEE/RSJ International Conference on Intelligent Robots
and Systems, Vancouver, Can., Sept. 24–28

138. Zhi S, BloeschM, Leutenegger S,Davison AJ. 2019. SceneCode: monocular dense semantic reconstruc-
tion using learned encoded scene representations. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11768–77. Piscataway, NJ: IEEE

139. Czarnowski J,LaidlowT,Clark R,Davison AJ. 2020.DeepFactors: real-time probabilistic densemonoc-
ular SLAM. IEEE Robot. Autom. Lett. 5:721–28

140. Jatavallabhula KM, Iyer G, Paull L. 2019. gradSLAM: dense SLAM meets automatic differentiation.
arXiv:1910.10672 [cs.RO]

141. Zhang J, Tai L, Boedecker J, Burgard W, Liu M. 2017. Neural SLAM: learning to explore with external
memory. arXiv:1706.09520 [cs.LG]

142. Mirowski P, Grimes M, Malinowski M, Hermann KM, Anderson K, et al. 2018. Learning to navigate
in cities without a map. In Advances in Neural Information Processing Systems 31, ed. S Bengio, HWallach,
H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett, pp. 2419–30. Red Hook, NY: Curran

143. Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B, et al. 2019. Event-based vision: a survey.
arXiv:1904.08405 [cs.CV]

144. Sibley G, Mei C, Reid I, Newman P. 2010. Planes, trains and automobiles—autonomy for the modern
robot. In 2010 IEEE International Conference on Robotics and Automation, pp. 285–92.Piscataway,NJ: IEEE

145. Marr D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual
Information. New York: Freeman

146. Assoc. Comput. Mach. 2019. Fathers of the deep learning revolution receive ACM A.M. Turing Award.
Press Release,Mar. 27, Assoc. Comput.Mach.,New York.https://www.acm.org/media-center/2019/
march/turing-award-2018

147. Bajcsy R. 1988. Active perception. Proc. IEEE 76:966–1005

242 Rosen et al.

https://www.acm.org/media-center/2019/march/turing-award-2018

