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Abstract

Recent successes in the field of machine learning, as well as the availability
of increased sensing and computational capabilities in modern control
systems, have led to a growing interest in learning and data-driven control
techniques. Model predictive control (MPC), as the prime methodology
for constrained control, offers a significant opportunity to exploit the
abundance of data in a reliable manner, particularly while taking safety
constraints into account. This review aims at summarizing and categorizing
previous research on learning-based MPC, i.e., the integration or combi-
nation of MPC with learning methods, for which we consider three main
categories. Most of the research addresses learning for automatic improve-
ment of the prediction model from recorded data. There is, however, also an
increasing interest in techniques to infer the parameterization of the MPC
controller, i.e., the cost and constraints, that lead to the best closed-loop
performance. Finally, we discuss concepts that leverage MPC to augment
learning-based controllers with constraint satisfaction properties.
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1. INTRODUCTION

Model predictive control (MPC) has seen significant success in recent decades and has estab-
lished itself as the primary control method for the systematic handling of system constraints (1),
with wide adaptation in diverse fields (2), such as process control, automotive systems, and robotics.
TheMPC scheme relies on a sufficiently descriptive model of the system to optimize performance
and ensure constraint satisfaction, rendering modeling critical for the success of the resulting con-
trol system. In practice, however, model descriptions can be subject to considerable uncertainty,
originating, e.g., from insufficient data, restrictive model classes, or the presence of external dis-
turbances. The fields of robust (3) and stochastic (4) MPC provide a systematic treatment of nu-
merous sources of uncertainty affecting the MPC controller, ensuring constraint satisfaction with
regard to certain disturbance or uncertainty classes.These controller paradigms, however, follow a
strict separation of a design phase, which is carried out offline by a control engineer, and an appli-
cation phase of closed-loop control, duringwhich the formulation of the controller remains largely
unchanged. The availability of increasing computational power and sensing and communication
capabilities, as well as advances in the field of machine learning, has given rise to a renewed interest
in automating controller design and adaptations based on data collected during operation, e.g., for
improved performance, facilitated deployment, and a reduced need for manual controller tuning.

This review provides an overview of these research efforts in the context of learning-based
MPC. Most research has focused on an automatic data-based adaptation of the prediction model
or uncertainty description. The opportunities for learning- and data-based adaptation in MPC,
however, go beyond a data-driven model improvement. The relationship between the specific
parameterization of an MPC controller—e.g., the cost function, horizon length, or terminal
components employed—and the resulting closed-loop behavior of the control system is often
difficult and cannot be analytically described,motivating several research efforts toward the use of
data-driven techniques for controller design and improvement. A conceptually different direction
using MPC in the context of learning-based control leverages MPC solely to address constraint
satisfaction and safety, while closed-loop performance is optimized, e.g., using a reinforcement
learning algorithm.

The field of learning-based and data-driven control is vast, and we would like to point out
some connections to related methods and viewpoints that we do not address in this review. There
is a large body of research on iterative learning control, some of which has direct connections
to MPC (5, 6). While there are efforts toward approximating explicit MPC control laws using
learning techniques (e.g., 7–10), we focus on learning in online MPC, i.e., where the learning
affects the MPC optimization problem to be solved at each sampling instance. A central question
in the context of learning and control is the resulting exploration–exploitation trade-off and the
problem of dual control (11), i.e., the optimal simultaneous identification and control.We include
only a brief discussion of this aspect and refer readers to a recent survey by Mesbah (12) for an
overview. A data-based optimization technique with several applications toMPC that has received
substantial interest in recent years is scenario optimization. We briefly make the connection to
these results in this review but refer readers to References 13–15 for a more detailed discussion of
the approach and resulting MPC schemes. For an overview of reinforcement learning from the
control perspective, we refer readers to Reference 16, which includes a brief discussion of MPC
in this context.

The review is organized as follows. In Section 2 we give a technical introduction to the prob-
lem of stochastic optimal control and motivate (learning-based) MPC as an approximate solution
strategy. Section 3 reviews learning methods focusing on an improvement of the dynamics model
in MPC, whereas Section 4 focuses on learning-based parameterization of MPC controllers to
improve closed-loop behavior. In Section 5 we finally discuss MPC as a technique to augment
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learning-based control methods in order to achieve safety during operation and learning. We
close with a discussion in Section 6.

2. OPTIMAL CONTROL OF UNCERTAIN SYSTEMS

In order to motivate and classify the various types of learning-based MPC, we begin with the in-
terpretation ofMPC as an approximation of the ideal stochastic optimal control problem that is to
be solved, but the exact solution of which is typically not tractable. By referring to this underlying
original problem, we then highlight different opportunities in which adaptation and learning in
the MPC formulation have been investigated with the goal of improving the approximation and
the resulting controller.

2.1. The General Stochastic Optimal Control Problem

The methods discussed in this review deal with the problem of controlling dynamical systems
that are subject to system constraints under uncertainty, which can affect numerous parts of the
problem formulation. We formulate the system dynamics in discrete time as

x(k+ 1) = ft (x(k), u(k), k,w(k), θt ), 1.

in which x(k) ∈ R
nx is the system state and u(k) ∈ R

nu is the applied input at time k. We use the
subscript “t” to emphasize that these quantities represent the true system dynamics or true optimal
control problem.The dynamics are subject to various sources of uncertainty, which we distinguish
by using two categories: θt ∼ Qθt is a random variable describing the parametric uncertainty of the
system, which is therefore constant over time, and w(k) describes a sequence of random variables
corresponding to disturbances or process noise in the system, which are often assumed to be inde-
pendent and identically distributed (i.i.d.). The true problem therefore relates to the development
of an optimal controller for a distribution of systems given by Qθt under random disturbances
w(k). Throughout this review, we assume direct access to measurements of the system state x(k)
and neglect the problem of state estimation.

The optimality of the controller is defined with respect to a cost or objective function. In the
presence of random model uncertainties, the cost is often defined as the expectation of a sum of
potentially time-varying stage costs of the states and inputs over a possibly infinite horizon N̄ :

Jt = E

⎛
⎝ N̄∑

k=0

lt (x(k), u(k), k)

⎞
⎠, 2.

where the expected value is taken with respect to all random variables, i.e., w(k) and θ t.
The difficulty central to the methods discussed in this review is the requirement to satisfy

constraints on states and inputs during closed-loop control.While input constraints typically rep-
resent a physical actuator limitation, such as the limited torque of an electric motor, constraints on
the system state can arise in different capacities. They can similarly represent the physical limits
of the system but also express constraints in terms of system safety or relate to a desired perfor-
mance, e.g., by encoding a desired comfort range. Expressing the state and input trajectories over
the horizon as X̄ = [x(0), . . . , x(N̄ )] and Ū = [u(0), . . . , u(N̄ )], respectively, one can compactly
express such system constraints as

Pr(X̄ ∈ X̄ j ) ≥ p j for all j= 1, . . . , ncx , 3a.

Pr(Ū ∈ Ū j ) ≥ p j for all j= 1, . . . , ncu. 3b.
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Note that the probability pj = 1 implies the important special case of hard constraints, i.e.,
constraints that are to be fulfilled for every possible realization of the random variables w(k) and
θ t. In the form presented, the constraints express joint chance constraints in time, i.e., constraints
that need to hold for the entire state or input trajectory with a given probability. This general
form, however, includes the case of individual constraints at each time step, e.g., Pr(x(k) ∈ X ) ≥ p
through a suitable definition of X̄ j . The resulting constrained stochastic optimal control problem
can be formulated as

J∗
t =minimize

{πk}
E

⎛
⎝ N̄∑

k=0

lt (x(k), u(k), k)

⎞
⎠ 4a.

subject to x(k+ 1)= ft (x(k), u(k), k,w(k), θt ), 4b.

u(k)=πk(x(0), . . . , x(k)), 4c.

W̄ = [w(0), . . . ,w(N̄ − 1)] ∼ QW̄ , θt ∼ Qθt , 4d.

Pr(X̄ = [x(0), . . . , x(N̄ )] ∈ X̄ j ) ≥ p j for all j = 1, . . . , ncx , 4e.

Pr(Ū = [u(0), . . . , u(N̄ − 1)] ∈ Ū j ) ≥ p j for all j = 1, . . . , ncu , 4f.

optimizing over a sequence of control laws {π k}, which can make use of all information in the
form of state measurements x(k) up to time step k. Problems of the form in Equation 4 are in
general very hard to solve, and direct efforts typically rely on some form of discretization in space
and approximate dynamic programming or reinforcement learning (16, 17). A notable exception
is linear systems under additive noise and quadratic stage costs in the unconstrained setting, for
which an exact solution to Equation 4 exists (18), such as the standard linear quadratic regulator
(LQR).

The challenges in a direct attempt to solve Equation 4 are manifold. In particular, a direct opti-
mization over general feedback laws π k is not possible. Other difficulties are related to the evalua-
tion of the cost and the nonconvexity of the resulting problem. A particular challenge is due to the
model uncertainty,where an optimal control policy should not only be robust, but also take into ac-
count that information about the model can be gained from state measurements. In the following,
we motivate MPC as a tractable approximate solution strategy. This is followed by a discussion of
efforts using learning and adaptation inMPC, e.g., by collecting information about the parametric
uncertainty θ t from measurement data (Section 3), with the goal of improving performance with
respect to the general optimal control problem inEquation 4while taking constraints into account.

2.2. Model Predictive Control

MPC approximates the problem in Equation 4 by repeatedly solving a simplified version of the
problem initialized at the currently measured state x(k) over a shorter horizon N in a receding-
horizon fashion. To this end, we introduce the prediction model

xi+1|k = f (xi|k, ui|k, i+ k,wi|k, θ ), 5.

as well as predicted states and inputs. We use the subscript i|k to emphasize predictive quantities,
where, e.g., xi|k is the i-step-ahead prediction of the state, initialized at x0|k = x(k). The prediction
dynamics f typically aims at approximating the true dynamics in Equation 1 but often differs, e.g.,
for computational reasons or because a succinct description of the true dynamics is unavailable.
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While the true system dynamics ft can be very complex, control formulations based on, e.g., a
linear approximation can often yield tractable and powerful controllers.

MPC formulations of varying complexity exist, the most widespread of which are nominal
MPC schemes, which do not consider any uncertainties in the prediction model but instead
rely exclusively on the compensation of uncertainties via feedback and by re-solving the prob-
lem at the next sampling instance. We exemplify the MPC problem in the following for such
a nominal approach. Robust and stochastic variants can similarly be derived from the optimal
control problem in Equation 4 by considering the cost and constraints over a shortened predic-
tion horizon N. In nominal MPC, the optimization can be performed over control sequences
U= [u0|k, . . . , uN − 1|k] rather than policies, resulting in the constrained optimal control problem

J∗ = minimize
U

l f (xN |k, uN |k, k+N ) +
N−1∑
i=0

l (xi|k, ui|k, i+ k) 6a.

subject to xi+1|k = f (xi|k, ui|k, i+ k), 6b.

U = [u0|k, . . . , uN |k] ∈ U j for all j = 1, . . . , ncu , 6c.

X = [x0|k, . . . , xN |k] ∈ X j for all j = 1, . . . , ncx , 6d.

xN |k ∈ X f , 6e.

x0|k = x(k). 6f.

Again, the stage cost function l does not necessarily coincide with the actual cost lt, which may
express complex objectives that can be sparse, nondifferentiable, or even unavailable as a precise
mathematical expression, such that it is often ill suited for a solution using gradient-based numer-
ical optimization. Instead, l is often chosen to facilitate the optimization problem, e.g., providing
differentiability or convexity. The cost function most widely used in MPC is a weighted quadratic
cost, which is particularly suitable for tracking tasks.

To mitigate the effect of the shortened horizon, a particular cost lf (xN|k, uN|k, k + N) and con-
straint X f on the last predicted state are imposed to approximate the cost and the effect of the
constraints over the remainder of the possibly infinite control horizon N̄ . In many MPC formu-
lations, these terminal components lf and X f play a significant role in establishing properties of
the closed-loop control system, such as asymptotic stability (19). The MPC control law is then
implicitly defined through the optimization problem in Equation 6 as

πMPC(x(k), k) = u∗
0|k, 7.

where u∗
0|k is the first element of the computed optimal control sequence U ∗.

In particular, in the convex and time-invariant setting (i.e., for linear dynamics, convex cost
function, and constraint sets), nominal MPC methods and robust variants are well studied, and
the theory is comparatively well established (3, 19, 20). MPC theory usually involves two main
properties: recursive or persistent feasibility and stability. Recursive feasibility states that if the
MPC optimization problem in Equation 6 is feasible for a state x(k), and the computed control
input u(k) = u∗

0|k is applied to the dynamical system, it can be ensured that the MPC problem
is again feasible for (all possible) resulting states x(k + 1), and the problem is therefore feasible
for all future time steps. The feasibility of the MPC problem is used to show the satisfaction
of the constraints in Equation 3 during closed-loop control. While different notions of stability
for the resulting closed-loop system exist, the stability analysis is often based on Lyapunov-type
arguments, e.g., using the optimal cost function J∗ of the MPC as a Lyapunov function.
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As such, theoretical guarantees in MPC are typically ensured by design in the controller syn-
thesis, as opposed to an a posteriori analysis of the resulting control system, either analytically or
by large-scale simulation, as is commonly the case, e.g., in computer science and reinforcement
learning. In the following, we give a brief overview of learning in MPC and an outline of the
remainder of the article.

2.3. Overview of Learning-Based Model Predictive Control

Learning-based MPC addresses the automated and data-driven generation or adaptation of el-
ements of the MPC formulation such that the control performance with respect to the desired
closed-loop system behavior—i.e., the general optimal control problem (Equation 4)—is im-
proved. The setup in which this learning takes place can be diverse. For instance, offline learning
considers the adaptation of the controller between different trials or episodes of a control task,
during which data are collected. In methods that learn online, on the other hand, the controller is
adjusted during closed-loop operation (e.g., while performing repetitive tasks) or using the data
collected during one task execution.

While much of the research in learning-basedMPC is focusing on automatically improving the
model quality, which is themost obvious component affectingMPC performance, several research
efforts are addressing the formulation of the MPC problem directly or utilizing the MPC concept
to satisfy constraints during learning-based control. In the remainder of the review, we discuss the
research in the following three categories:

� Learning the system dynamics: MPC relies heavily on suitable and sufficiently accurate
model representations of the system dynamics. One path of learning-based MPC considers
the automatic adjustment of the systemmodel, either during operation or between different
operational instances. Section 3 provides an overview of this rather broad direction and
related issues.

� Learning the controller design: A second interesting research direction focuses less on the
prediction model and more on the remaining problem formulation, such as the employed
cost function l, the constraints X , or the terminal components lf and X f , such that the
resulting closed-loopMPC controller behaves favorably with respect to the underlying task,
i.e., the stochastic optimal control problem.We discuss these approaches in Section 4.

� MPC for safe learning: A third direction is the use of MPC techniques to derive safety
guarantees for learning-based controllers. The main idea is to decouple the optimization of
the objective function lt from the requirement of constraint satisfaction, which is addressed
using MPC techniques. We discuss this research direction in Section 5.

The organization of this review, together with the corresponding referenced literature, is shown
in Table 1.

3. LEARNING THE SYSTEM DYNAMICS

System modeling represents the first step of an MPC design, which is traditionally addressed by
deriving a parametric prediction model offline (i.e., before closed-loop control) using physical
principles and applying system identification techniques. Robust or stochastic MPC can then be
used to systematically address predictive control of dynamical systems under remaining uncer-
tainties and disturbances. In the robust case, for instance, model uncertainty as well as process
noise is often considered to lie in compact sets θt ∈ T , w(k) ∈ W , while stochastic approaches
make use of distributional information on the uncertainties. In both cases, however, model and
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Table 1 Organization of the review and the referenced literature

Section Specific subtopic References
Learning the System Dynamics Robust models 37–41

Parametric 44–61
Nonparametric 64–70

Stochastic models/robust in probability 71–73
Parametric 77–84
Nonparametric 86, 87, 90–92, 95–100

Learning the Controller Design Performance-driven learning —
Bayesian optimization 102–108
Terminal components 110–113

Inverse optimal control 114–126
Model Predictive Control for Safe Learning — 72, 73, 127–138

uncertainty descriptions are typically fixed offline and assumed available before controller design.
Learning-based approaches, on the other hand, take collected data, such as state measurements,
explicitly into account—e.g., by constructing the function f or uncertainty sets T andW from data
and possibly updating these sets over time.

Many learning-based MPC techniques make use of an explicit distinction between a nominal
system model fn and an additive learned term fl accommodating uncertainty:

f (x, u, k, θ ,w) = fn(x, u, k) + fl (x, u, k, θ ,w). 8.

An implicit assumption is then that (rudimentary) control of the true system based on the nominal
model is possible, such that data in terms of state measurements x(k) resulting from the true system
dynamics ft under a specific true parameter realization θ t can be safely collected. Most methods
do not distinguish between the true system dynamics ft and prediction dynamics f—i.e., a typical
assumption is that the true dynamics lie within the class of considered prediction dynamics, and
given knowledge of the true parameter realization θ t, there is no model mismatch. For simplicity,
we refer to f as both the system dynamics and the prediction model in the following and highlight
the difference only where relevant.

Successful learning methods are often based on probabilistic formulations (21), leading to a
nonlinear stochastic prediction model in Equation 5. Leveraging the full potential of such models
within MPC, however, is very challenging and remains an active research field (4). Many model-
learning MPC schemes have therefore evolved from the extensively studied field of robust MPC,
offering a large body of available theoretical results (3, 20). We first discuss learning-based MPC
methods making use of a robust paradigm in Section 3.1.

As a second category, we consider techniques that are stochastic in nature in Section 3.2. This
category includes adaptations of robust control schemes to stochastic estimation techniques. For
instance, the basic MPC mechanism can be adopted from robust MPC, while in particular the
considered parametric uncertainty θ is stochastic. This results in schemes that are robust with
respect to some (likely) set of parameter values, which we call robust in probability. Lastly, we
also investigate fully stochastic approaches, in which typically both stochastic parameters θ and
process noise w(k) are considered, aiming at a further reduction of conservatism and integration
of stochastic learning techniques.

In this review, we focus on methods allowing for a principled treatment of the resulting
model uncertainty, which is critical in the context of constraint satisfaction. There is related
research using model learning in MPC that neglects uncertainties of the learned model fl(x, u, k,
θ , w) and results in nominal MPC formulations. Important examples include the use of artificial
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MODEL PREDICTIVE CONTROL WITH ACTIVE LEARNING AND DUAL CONTROL

Dual control considers the challenge of simultaneous identification and control of dynamical systems (11) and was
first studied by Feldbaum (26, 27). In the optimal control setting, such as the problem in Equation 4, the optimal
policy needs to take the information gain over the horizon into account in order to address this trade-off. The
problem can be studied using dynamic programming; however, the exact solution is computationally intractable
for all but the smallest toy examples (18), which is why most learning-based MPC techniques use passive learning
schemes. Mesbah (12) presented a recent survey of dual control in the context of MPC.

Dual control methods are typically divided into two categories: explicit and implicit. In explicit dual control, the
exploratory aspect of the controller (i.e., the dual effect) is explicitly inserted into the control scheme—e.g., through
a form of exploration bonus in the cost function (28, 29) or by ensuring persistent excitation (30, 31) to enhance
adaptation speed and ensure the quality of the parameter estimates. The resulting techniques typically do not sig-
nificantly increase computational complexity, but the exploration–exploitation trade-off is addressed heuristically.

In implicit dual control, the optimal stochastic control problem in Equation 4, including the information gain
with respect to the parameters along the control horizon, is directly approximated. This can be achieved, e.g.,
through the use of sampling (32–34) or a specific system structure (35, 36). In contrast to explicit approaches, the
exploration–exploitation trade-off is therefore naturally addressed, but the resulting methods tend to be limited to
specific system classes or are computationally expensive.

neural networks (e.g., 22, 23) and recent results using data-based nonparametric linear system
descriptions (as in 24, 25). MPC approaches explicitly addressing the dual control problem (i.e.,
the optimal simultaneous identification and control) are briefly discussed in the sidebar titled
Model Predictive Control with Active Learning and Dual Control.

3.1. Robust Models

Robust MPC schemes guarantee the satisfaction of closed-loop constraints for all possible re-
alizations of the uncertain elements θ t and w(k)—i.e., the problem in Equation 4 is guaranteed
to hold with probability one. Similarly to Equation 8, a split into a nominal model fn and addi-
tive uncertainty is often employed, where the uncertainty is assumed to lie in a compact set, i.e.,
fl (x, u, k, θt,w) ∈ W̄ , and the controller is designed to be robust against the additive uncertainty.
While the predicted MPC cost is then typically optimized for the nominal system, some learning-
based extensions consider optimization of the cost for a performance model that is generated or
improved from data. The benefit of such an approach is that theoretical guarantees, particularly
recursive feasibility and satisfaction of constraints in closed loop, carry over from robust MPC
theory, while performance can be improved based on measurements received during operation.

Aswani et al. (37) proposed a learning-based MPC framework based on this concept. Their
approach uses two prediction models. The first is a nominal linear model with an additive term
comprising all uncertainty wi ∈ W̄ ,

zi+1|k = Azi|k + Bvi|k + wi|k,

on the basis of which the recursive feasibility of the approach is established using techniques from
linear robust MPC. The second is a learned performance model,

xi+1|k = Axi|k + Bui|k + O(xi|k, ui|k, i, k),
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where O is an oracle representing an arbitrary learning-based approximation of fl(x, u, k, θ t, w).
By optimizing a cost with respect to the performance model, i.e., xi|k, the MPC can therefore
improve its performance while robustly enforcing all constraints. Practical demonstrations of this
method have been presented in References 38–41. By using a decomposition in terms of a safety
and performance model, the approach has direct connections to MPC for safe learning, which we
discuss in further detail in Section 5.

While the method presented by Aswani et al. (37) therefore allows for some adaptation and
improvements with respect to the performance achieved, it considers one fixed model uncertainty
set fl (x, u, k, θt,w) ∈ W̄ assumed to be known beforehand. Various learning-based MPC schemes
aim at estimating this model uncertainty set directly from data, potentially adjusting it over time to
reduce conservatism.Many of the techniques are based on set-membership identification, estimat-
ing the function f from noisy measurements with bounded uncertainty w(k) ∈ W .We distinguish
parametric approaches, which aim at finding the set of parameter values θ consistent with the
observations, and nonparametric approaches, which form their estimate of the function f directly
from observed data points and derive bounds on the function, e.g., based on Lipschitz arguments.
We provide a simplified conceptual overview of set-membership techniques here; for additional
details, we refer readers to Reference 42 for the parametric case and Reference 43 for the non-
parametric case.

3.1.1. Robust parametric models. Given a measured state and input trajectory X = [x(0), . . . ,
x(k)], U = [u(0), . . . , u(k − 1)], parametric set-membership estimation aims at finding the set of
possible parameter values θ for which the observed trajectories are consistent. This is formulated
as a feasible parameter set:

Tk = {θ | ∀ j = 0, . . . , k− 1 ∃w( j) ∈ W , such that x( j + 1) = f (x( j), u( j), j, θ ,w( j))}. 9.

In a stochastic setting, Equation 9 can be interpreted as the set of parameter values with nonzero
probability. An iterative update can be defined as

Tk+1 = {θ ∈ Tk | ∃w(k) ∈ W , such that x(k+ 1) = f (x(k), u(k), k, θ ,w(k))}. 10.

It can be directly seen that the estimates of the parameter set using set-membership techniques
are subject to a nestedness property

Tk+1 ⊆ Tk, 11.

such that the set of consistent parameters is nonincreasing over time. As the complexity of set
iterates can grow unbounded as more state measurements are included in the estimation,measures
to counteract this complexity growth are usually employed—e.g., Veres et al. (44) limited the
number of half-spaces defining the resulting polytopes. In addition to the estimation of viable
parameter values Tk, many techniques use a nominal model estimate θ̂k, which, as with a nominal
model in robust MPC, is often used to evaluate the cost term J in the MPC and to optimize
controller performance. Such a nominal estimate can, e.g., be found by maximizing the distance
to the boundary of Tk or using a suitable projection of any point estimate onto the set Tk.

Parametric set-membership estimation has been used in various results, particularly for differ-
ent forms of linear time-invariant systems, expressed as

f (x, u, k, θ ,w) = A(θ )x+ B(θ )u+ w, 12.

which, depending on the type of selected model, may have a specific structure.
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Tanaskovic et al. (45) presented a set-membership MPC approach for steady-state reference
tracking of finite impulse response systems, which is therefore limited to open-loop stable sys-
tems and output noise. Set-membership identification is applied to the parameters of the impulse
response using a conservative approximation of the set Tk for computational reasons, which en-
sures that the set containment property in Equation 11 is maintained. This results in a recursively
feasible adaptive MPC scheme, in which the uncertainty set Tk is subsequently reduced, and con-
vergence to a desired steady state can be shown under some assumptions. The approach has been
implemented in a building control setting (46), extended to linear time-varying systems (47) and
stochastic output noise (48), and combined with a learning approach for terminal components (49)
(see Section 4.1). Fagiano et al. (14) reviewed the method and contrasted it with scenario MPC,
which we briefly touch on in Section 3.2.1.Terzi et al. (50–52) discussed the use ofmodels mapping
an entire input sequence to a state sequence over the prediction horizon for autoregressive exoge-
nous models using set-membership identification. For polytopic state-space linear time-invariant
systems in the general form of Equation 12, Di Cairano (53) and Zhou et al. (54) presented an
MPC approach in which, similarly to the method of Aswani et al. (37), the model is improved for
performance, but the model uncertainty sets T are not updated over time. Lorenzen et al. (55,
56) presented an approach for a similar problem class, taking additive process noise and recursive
updates of the uncertainty sets T into account using set-membership techniques, and adapting the
technique such that slowly varying parameters can be tracked.

Related ideas have been proposed using parameter adaptation laws for single-input linear sys-
tems (57, 58) and nonlinear systems that are linear in their parameters (59–61), thereby including
systems of the form in Equation 12, i.e.,

f (x, u, θ ,w) = �(x, u)θ + w. 13.

Instead of making use of set-membership identification, point estimates θ̂k and uncertainty sets Tk
are derived from parameter update laws. Under the assumption that the true system parameter
lies in an initially known compact set θ ∈ T0, containment of the true parameter and nestedness
Tk ⊆ Tk−1 can be ensured by construction. For the resultingMPC, the methods described by Sugie
and colleagues (57, 58) use a scalar comparison system to bound the growth of uncertainty in the
state prediction, taking the knowledge gained over the parameter into account. In the nonlin-
ear case, two resulting MPC formulations have been presented for continuous-time (59, 60) and
discrete-time (61) systems. The first approach finds a policy considering the worst-case parameter
in the uncertainty set usingmin-max optimization,which is in general computationally intractable.
The second formulation presents a tractable approximation based on linearization and Lipschitz
bounds and is able to maintain theoretical properties such as recursive feasibility and convergence.

3.1.2. Robust nonparametric models. In nonparametric estimation, the function f is not spec-
ified explicitly using parameter values; instead, a function estimate is formed directly based on
(noisy) observations of function values and regularity properties. The aim is to avoid the speci-
fication or iterative search for an adequate parametric representation (43). Similar to parametric
set-membership methods, the nonparametric form aims at providing strict bounds on the possible
function values, given some observations with bounded uncertaintyw(k) ∈ W . Similar and related
approaches are known as Lipschitz interpolation (62) and kinky inference (63).

Considering again a given trajectory X and U and a time-invariant function f with bounds on
its gradient |�f| ≤ ϵ and bounded additive noise, the feasible system set is defined as

Fk = { f | ‖∇ f ‖ ≤ ε,∀0 ≤ j ≤ k− 1 ∃w( j) ∈ W , such that x( j + 1) = f (x( j), u( j)) + w( j)}.
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Figure 1

Robust and stochastic nonparametric estimation techniques. Noisy measurements of the true function (red)
are shown as crosses; the nominal function estimate is shown in blue. (a) Illustration of the robust
set-membership technique based on a bound of the noise w(k) and the gradient of f, with the resulting
bounds shown in gray. (b) Gaussian process regression estimate based on a squared exponential kernel
function, with the 2-σ confidence bound shown in gray.

A recursive definition is given by

Fk+1 = { f ∈ Fk | ‖∇ f ‖ ≤ ε, ∃w(k) ∈ W , such that x(k+ 1) = f (x(k), u(k)) + w(k)}.

Anominal function estimate f̂ is often chosen tomaximize the distance to resulting feasible system
bounds, i.e., as the average between the upper and lower bounds (illustrated in Figure 1).

To the best of our knowledge, the available results based on nonparametric set-membership
identification do not consider an update of the model uncertainty during closed-loop control, but
rather focus on robust control using models generated from data or an adaptation of a perfor-
mance model. Canale et al. (64, 65) proposed an MPC approach for nonlinear autoregressive ex-
ogenous models using nonparametric set-membership identification. Limon et al. (66) presented a
related approach that makes use of a data-based Lipschitz estimation technique (67).Themethods
generally suffer from the nonsmooth function estimate f (illustrated in Figure 1), which makes
numerical optimization in an MPC scheme challenging. Ideas for smoothing the predictions have
been proposed that use either a convex combination resulting from a number of data points sur-
rounding the query point (68, 69) or a weighted sum of basis functions (70), both of which improve
the computational properties while maintaining favorable theoretical guarantees.

3.2. Stochastic Models

While the robust treatment of uncertainty is an established technique that gives rise to a number
of learning-based MPC methods with strong theoretical properties, their application typically
requires a hard a priori bound covering all uncertainty, which can be conservative in practice.
Stochastic MPC methods, on the other hand, rely on distributional information on the system
uncertainty and do not necessarily make use of hard bounds, which, however, renders a theoretical
analysis more difficult and often results in less rigorous results (4).

An approach that aims at combining the benefits of both methods converts the stochastic prob-
lem into a related robust one. The use of stochastic parameter estimation techniques leads to a
stochastic belief about the parameter distribution p(θ |X, U), expressing the knowledge about the
system dynamics given data X,U. Based on this distribution, in analogy to the feasible parameter
sets in Equation 9, one can construct parameter confidence sets Tk

Pr(θ ∈ Tk|X ,U ) ≥ p
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with a specified probability p or, similarly, confidence sets directly on f in the case of nonparametric
approaches. Given the confidence sets, established robust MPC methods can be used to design
controllers that are robust in probability. If the true function lies in the estimated confidence set,
robust guarantees carry over, and choosing a sufficiently large probability p ensures satisfaction of
chance constraints (Equation 3). Along the same lines, robust MPC approaches have, e.g., been
combined with stochastic model learning by Soloperto et al. (71) and Koller et al. (72).

One issue that arises in this approach is that, for the stochastic estimation procedure, w(k) is
often assumed to be Gaussian and can have large or unbounded support, making it incompati-
ble with a robust control approach. Although presented in the context of MPC for safe learning
(see Section 5), this issue was addressed by Wabersich et al. (73) by splitting the difference of
the measured state from a nominal linear system into a robust-in-probability part (dealing with
the parametric uncertainty) and a stochastic part (dealing with the unbounded noise). Paulson
et al. (74) presented similar ideas in the context of stochastic MPC.

A second issue concerns the nestedness of parameter confidence sets along Equation 11, which,
as opposed to robust set-membership techniques, is more challenging to guarantee in the stochas-
tic case and makes automatic set updates during closed-loop control challenging. For instance, in
each adaptation step there is a chance of up to 1 − p that θ does not lie in the current confidence
set Tk, which makes it difficult to provide feasibility guarantees.

In the following, we discuss learning-based MPC methods that are formulated directly in a
stochastic setting, for which a theoretical analysis is generally challenging.We again address para-
metric uncertainty first and treat measurable disturbances w(k) that are correlated in time as a
special case, which is often approached using scenario optimization techniques (75, 76). For non-
parametric approaches,Gaussian process (GP) regression has become a popular learning approach
by directly providing an assessment of the residual model uncertainty after learning.

3.2.1. Stochastic parametric models. We take a Bayesian viewpoint of parametric estimation
techniques, for which we again consider measured state and input trajectories X, U, as well as a
noise distribution p(w) and prior distribution over the parameter p(θ ), expressing knowledge about
the parameter that is assumed before observing data. The posterior distribution of the parameter,
given state measurements, can then be expressed using Bayes’ rule as

p(θ |X ,U ) = p(X |U , θ )p(θ )∫
p(X |U , θ̄ )p(θ̄ )dθ̄

, 14.

where p(X|U, θ ) can be obtained via the distribution of the noise p(w) (i.e., the likelihood of the
parameter θ is related to the likelihood of the particular noise sequence explaining the observed
statesX under this parameter).Using conditional independence due to the dynamics in Equation 1,
we can define a recursive parameter update as

p(θ |x(k+ 1), u(k),X ,U ) = p(x(k+ 1)|x(k), u(k), θ ))p(θ |X ,U )∫
p(x(k+ 1)|x(k), u(k), θ̄ ))p(θ̄ |X ,U )dθ̄

, 15.

such that one can iteratively update the posterior distribution p(θ |X, U) instead of tracking the
entire state and input history. These equations can therefore be viewed as stochastic analogies
generalizing the robust case in Equations 9 and 10.The computation of the distributions, however,
is in general not tractable, with the notable exception of dynamic systems that are linear in their
parameters (i.e., Equation 13) under Gaussian noise w(k) ∼ N (μ(k),�(k)) and Gaussian prior
parameter distribution θ ∼ N (μθ ,�θ ), for which Equations 14 and 15 can be solved by (recursive)
Bayesian linear regression (21).
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Due to many technical challenges in stochastic MPC and some of the issues discussed above,
many stochastic learning-based MPC schemes come with little theoretical analysis, but they have
nevertheless been very successful in practical implementations. For instance, Desaraju and col-
leagues (77, 78) presented parametric learning-based MPC approaches for robotic systems that
enhance the model of a quadrotor over time while taking approximate uncertainty in the predic-
tion into account through constraint tightening. Similarly, McKinnon & Schoellig (79) presented
an implementation for trajectory tracking of an off-road robotic vehicle based on linear Bayesian
regression for the actuator dynamics, with the particular focus of mitigating the conflict between
fast adaptation and long term learning.

Several research efforts have focused on linear stochastic MPC with data-driven model adap-
tation based on measurable disturbance sequences w that are correlated in time, which allows
for a more thorough analysis. Given measurements of w(k) during operation, the conditional or
predictive distribution p(w(k), . . . ,w(k+N− 1)|w(0), . . . ,w(k− 1)) can be used to adapt and im-
prove the resulting expected cost J∗ of the MPC. This idea has been presented in scenario-based
MPC for additive disturbances (80), as well as for correlated multiplicative noise (81), which can
be similarly interpreted as time-varying parametric uncertainty. Scenario-based MPC methods
typically come with limitations regarding recursive feasibility and closed-loop constraint satisfac-
tion, which Lorenzen et al. (82) overcame by generating fixed disturbance samples of the original
distribution p(W ) instead of the conditional predictive one. Hewing et al. (83) presented an ap-
proach for systems under additive noise that similarly achieved recursive feasibility by considering
the distribution of the disturbance sequence p(W ) while optimizing performance with respect to
the conditional distribution.Di Cairano et al. (84) presented related techniques for vehicle control
that modeled driver actions as an additive disturbance, estimated from data as a Markov chain.

3.2.2. Stochastic nonparametric approaches. Because it provides a flexible stochastic non-
parametric approach,GP regression is the most commonly employed technique in learning-based
control. We give a brief account here and refer readers to Reference 85 for a detailed exposition.
For notational simplicity, we consider here the scalar case; multiple outputs are typically consid-
ered by training a GP for each dimension independently.

GP regression for model learning usually assumes dynamics with i.i.d. zero mean additive
Gaussian noise w(k) ∼ N (0, σ 2

w ) of the form x(k + 1) = ft(x(k), u(k)) + w(k) and builds on the
assumption that values of the function ft at different inputs x, u are jointly Gaussian distributed ac-
cording to a kernel function k, expressing the covariance between function values. Using recorded
state and input sequences X,U and considering for each state and applied input the resulting state
measurement X+ = [x(1), . . . , x(N + 1)], the joint distribution of data points and function values
at a test point (x, u) is

[
X+

ft (x, u)

]
∼ N

(
0,
[
K + Iσ 2

w Kx,u
KT
x,u k([x, u], [x, u])

])
,

where K is the Gram matrix of recorded data X, U under the kernel k, and Kx, u represents the
corresponding entries for test point (x, u). The kernel k is essential for shaping the resulting pre-
diction and must be chosen such that any resulting Gram matrix K is positive definite. Several
functions that satisfy this condition are available, the most popular of which is the squared expo-
nential kernel

k(x, x′ ) = σ 2
f exp

(
−1
2
(x− x′ )TL(x− x′ )

)
,
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in which σ 2
f is the signal variance and L is a positive diagonal length scale, constituting (together

with the noise variance σw) the hyperparameters of the GP regression. Applying the rules of con-
ditioning for Gaussian random variables then results in the fact that the function value ft(x, u) at
a test point (x, u) given the recorded data is similarly normally distributed:

ft (x, u)|X + ∼ N (μ(x, u),�(x, u)),

where μ(x, u), and �(x, u) are, respectively, the posterior mean and variance functions constituting
the estimator, which depend on the collected data points X+, X, and U. The variance function
�(x, u) can be used to assess residual model uncertainty due to insufficient data near the test point
(x, u). Figure 1 provides an illustration of a resulting function estimate.

A challenge in an MPC formulation based on a GP dynamics model is the propagation of the
resulting stochastic state distributions over the prediction horizon. This is typically achieved by
assuming that subsequent function evaluations of ft(x, u)|X+ are independent. Approximate Gaus-
sian distributions of the predicted states xi|k over the prediction horizon are then derived using
techniques related to extended Kalman filtering, e.g., by linearization (86), sigma-point trans-
form (87), or exact moment matching (88)—an approach tailored to GP regression. Partly due to
the approximate nature of the prediction, there is little theoretical analysis of the resulting MPC
controller, with the exception of Reference 89, which presents nominal robustness properties of
GP-based MPC, and Reference 72, which provides robust bounds on the estimation error that
hold with a specified probability under the assumption that the true function ft is an element of a
reproducing kernel Hilbert space (RKHS) with a bounded RKHS norm.

There are, however, a number of promising practical results. The prediction model is typi-
cally split into a nominal and learning part, as in Equation 8, the latter of which is subsequently
improved using GP regression to enhance the overall model quality. Due to its nonparametric na-
ture, GP regression is particularly well suited to identifying discrepancies with a nominal system
model, which are challenging to parameterize. Many techniques use the residual model uncer-
tainty estimate to provide a heuristic constraint tightening and practical safety margins, as shown
in Figure 2 for an autonomous racing application (86, 90).

Computation times are a fundamental challenge in GP-based MPC, particularly since the
model complexity grows with the number of recorded data points.Techniques to address this issue
include data selection andmaintenance of a dictionary of data points of limited size, computational
approximations of the GP [e.g., via inducing points (93) or selected basis functions (94)], and ne-
glecting or simplifying the variance dynamics (i.e., the evolution of the uncertainty). Building on
these ideas, successful applications of GP-based MPC to robotic systems have been presented,
e.g., for trajectory tracking with robotic manipulators (95), path following of off-road mobile
robots (87, 96), autonomous racing (86, 90, 97), process control (98), and telescope systems in the
context of periodic additive disturbances (99). Using autoregressive models, Jain et al. (100) pre-
sented a simulation study for building control and demand response, which additionally addresses
the problem of suitable exploration by maximizing the information gain. Additionally, Kamthe &
Deisenroth (88) showed that learning-based MPC is a highly competitive model-based reinforce-
ment learning technique, particularly with regard to data efficiency.

4. LEARNING THE CONTROLLER DESIGN

While the system model is a core element of a predictive controller, other elements in the MPC
formulation, such as the cost function and constraints, also have a major influence on the result-
ing closed-loop performance. In this section, we discuss learning-based methods for designing the
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Figure 2

Gaussian process–based model predictive control for autonomous racing. (a) Application to a full-sized race car (90), showing the
position constraint set (red); the predicted trajectory including uncertainty (gray), which is used for constraint tightening; and selected
data points from previous rounds (green spheres). (b,c) The resulting trajectories of a similar approach applied to miniature
radio-controlled cars (86), with the initial nominal controller shown in panel b and the improved trajectories after learning shown in
panel c. For videos of these experiments, see References 91 and 92. Panel a is a still from Reference 92. Panels b and c adapted from
Reference 86 with permission.

MPC problem according to a desired controller behavior. For this purpose, we consider a param-
eterized version of an MPC problem, including a parameterization of the cost function l(x, u, θ l),
and constraints X (θX ), U (θU ), i.e.,

U ∗ = arg min
U

N̄∑
i=0

l (xi, ui, θl ) 16a.

subject to xi+1 = f (xi, ui, θ f ), 16b.

U = [u0, . . . , uN ] ∈ U (θU ), 16c.

X = [x0, . . . , xN ] ∈ X (θX ), 16d.

x0 = x(k). 16e.

We group the techniques into two main areas. Performance-driven controller learning,
discussed in Section 4.1, aims at improving the closed-loop performance by successively adjusting
the parameterization in Equation 16 in an episodic setting. Learning from demonstrations via
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inverse optimal control, on the other hand, addresses the fact that we can often observe a desired
behavior of a closed-loop control system and would like to design an automatic controller
according to these specifications. The goal is to translate the recorded data into a corresponding
parameterization of the MPC problem, which we discuss in Section 4.2.

4.1. Performance-Driven Controller Learning

Receding-horizon controllers are often a rough approximation of the true stochastic optimal con-
trol problem, e.g., due to the finite prediction horizon, simplified models, and neglected stochas-
tic disturbances. Performance-driven controller learning focuses on finding a parameterization of
an MPC as in Equation 16 that optimizes closed-loop performance with respect to the optimal
control problem in Equation 4. Below, we provide a brief overview of two main directions for ad-
dressing this problem: black-box optimization in the form of Bayesian optimization, and learning
terminal components to counteract the finite-horizon nature of the controller.

4.1.1. Bayesian optimization for controller tuning. In the context of controller learning,
Bayesian optimization aims at optimizing the true closed-loop cost Jt(θ ) as a mapping from the
controller parameters θ = [θTl , θ

T
f , θ

T
X , θ

T
U ]

T to the cost achieved when performing a task with the
MPC controller. Most commonly, Bayesian optimization considers the function Jt(θ ) using GP
regression as a regularity assumption. (For a discussion of GPs in the context of system dynam-
ics learning, see Section 3.2.2; for a general introduction to Bayesian optimization, see Refer-
ence 101.) In this episodic learning task, past trials—e.g., with parameter θ i and resulting closed-
loop cost Jt, i—are used as data points to infer information about the function Jt(θ ).This is achieved
by relating different trials via a kernel function k(θ i, θ j) that specifies the covariance between the
trials at θ i and θ j. Based on this estimate of the function Jt(θ ), an acquisition function α(θ ) is used to
trade off exploration and exploitation and to determine θ	 = argminθ α(θ ) as the next parameter
to be evaluated.

While this scheme can be applied to most parameterized controllers (102, 103), only a few
techniques explicitly consider the parameterization of optimal control formulations. In the con-
text of unconstrained optimal control, Marco et al. (104) introduced a parametric cost function
l(x, u, θ l) = xTQ(θ l)x + uTR(θ l)u and optimized the parameters θ l in order to compensate for
deviations of the true dynamics ft from linear prediction dynamics f, such that the performance
metric in closed loop is improved. In a similar setup, Fröhlich et al. (105) investigated learning
in higher-dimensional spaces by automatic domain adaptation. For constrained optimal control,
the approach of Bansal et al. (106) instead uses Bayesian optimization to learn the parameters θ f

of a linear prediction model f(x, u, θ f) = A(θ f)x + B(θ f)u in an MPC, similarly with the goal of
improving the closed-loop performance of a specific task for unknown, potentially nonlinear and
stochastic true system dynamics ft. In addition to optimizing over a linear parametric prediction
model, Piga et al. (107) considered the prediction horizon of the MPC formulation as a parameter
and optimized with Bayesian optimization.Gros&Zanon (108) presented related ideas in the con-
text of economic MPC, making use of reinforcement learning rather than Bayesian optimization
for parameter adaptation.

4.1.2. Learning terminal components. A potential limitation of MPC is related to its short-
sightedness due to the limited prediction horizon, which is often imposed by computational
constraints. A terminal cost function and constraint can be used to mitigate this effect; however,
their design is challenging for complex systems and tasks. Typically, the goal is to find a large
terminal invariant set to ensure recursive feasibility for a large set of initial states, and a terminal
cost approximating the infinite-horizon cost and/or guaranteeing theoretical properties such as

284 Hewing et al.



AS03CH11_Zeilinger ARjats.cls April 2, 2020 14:26

asymptotic stability of the closed-loop system. Learning in this context makes use of collected
data to construct or improve the terminal cost and constraint.

The main mechanism for improving the terminal constraint relies on the fact that, for nominal
time-invariant systems, a trajectory X = [x(0), . . . , x(k)] terminating in a control-invariant set X f

yields an enlarged invariant set

X+
f = X f ∪

⎛
⎝ k⋃

j=0

{x( j)}
⎞
⎠.

For linear time-invariant systems,Blanchini & Pellegrino (109) showed that the convex hull of this
set is similarly control invariant. Brunner et al. (110) employed this mechanism in a linear MPC
scheme that additionally uses scaling and translations of the terminal set around the trajectory
points to further enlarge the data-based terminal set. The terminal cost function is then adapted
as an interpolation of cost functions defined on the translated sets. Rosolia & Borrelli (111) pre-
sented a method for iterative tasks that uses a similar notion for a sampled safe set as the terminal
constraint and combines it with terminal cost learning, assigning the cost-to-go from previous
iterations to the points in the sampled safe set; they showed that the resulting overall cost of the
trajectory of an episode is nonincreasing over the successive episodes. For nonlinear systems, this
approach results in mixed-integer optimization, whereas for linear systems, relaxations based on
the convex hull of the terminal set maintain theoretical guarantees. Rosolia et al. (112) presented a
robust variant of the approach, and Rosolia & Borrelli (113) later extended the method to a repet-
itive learning setting and applied it to autonomous racing. A recent review by Rosolia et al. (15)
also discusses the approach.

4.2. Learning from Demonstration with Inverse Optimal Control

Designing a cost function or defining an objective mathematically in order to achieve a desired
complex behavior can be tedious and require extensive parameter tuning and development time.
Inverse optimal control addresses the problem of defining an objective function l or constraints
X , U systematically by inferring them from demonstrations. To do so, a prediction model f of
the system dynamics is usually assumed to be given. By learning the components of an optimal
controller rather than imitating an observed policy, inverse optimal control offers favorable gen-
eralization properties, such that a resulting MPC control law can be derived for the entire state
space even though observations are sparse. Another motivation arises in the context of human–
controller interaction, where adjusting the controller based on human demonstrations makes its
behavior more natural for the human.

The hypothesis underlying inverse optimal control is that the observed demonstrations are
the solution of a corresponding optimal control problem. Specifically, we consider here the case
where a demonstrated input trajectoryUt = [u(0), . . . , u(N)] starting at x(0) is the optimal solution
to the unknown deterministic optimal control problem in Equation 16 for specific values of the
unknown parameters θ l, θX , and θU , i.e.,Ut = U∗. Most of the research in inverse optimal control
has assumed knowledge of potential constraints and focused on the cost function instead, following
three main steps:

1. Define the optimal control problem with a parametric cost function l(x, u, θ l), e.g., quadratic
costs with unknown weights l(x, u, θ l) = xTQ(θ l)x + uTR(θ l)u.

2. Derive optimality conditions for the parametric optimal control problem.
3. Solve optimality conditions for the parameters θ l given the demonstration.
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Since a deterministic optimization problemwith perfect model knowledge is typically assumed,
an exact solution to the optimality conditions is generally feasible only if the demonstrations are
indeed optimal and themodeling assumptions met.To account for suboptimal execution and noisy
data, the optimality conditions are therefore relaxed, and an approximate solution is found that
explains the demonstrated behavior as closely as possible.

The proposed methods differ in the chosen optimal control model and resulting optimality
conditions, as well as in the relaxation of the optimality conditions. For the case of unconstrained
linear system dynamics, quadratic cost function, and infinite horizonN→ ∞, the optimality con-
ditions are given by the Riccati equation, corresponding to LQR control, which was investigated
by Priess et al. (114) andMenner & Zeilinger (115). For more general cases, optimality conditions
are given by the Karush–Kuhn–Tucker (KKT) conditions of the form

∇UL(U , θl )|U=Ut = 0, 17a.

λT g(Ut )= 0, 17b.

λ ≥ 0, 17c.

where L(U , θl ) is the Lagrangian, λ is the Lagrange multiplier, and g(U) ≤ 0 defines the constraint
set of the optimal control problem. The approach described by Englert et al. (116) addresses non-
linear system dynamics and complex manipulation tasks such as the interaction with objects, which
is incorporated using additional contact constraints. The method presented byMenner et al. (117)
similarly considers nonlinear system dynamics in the infinite-horizon case, including manipula-
tion experiments, with the goal of predicting human movements. Both methods use a relaxation
of the optimality conditions and minimize ‖∇UL(U , θl )|U=Ut‖ instead of enforcing Equation 17a,
yielding a convex optimization problem if the cost function is linear in its parameters θ l. Aswani
et al. (118) proposed an inverse formulation resulting in a bilevel optimization problem for convex
forward problems in Equation 16, taking noise in the demonstrations explicitly into consideration.
Instead of relaxing the KKT conditions, the approach computes an input sequence U that exactly
satisfies Equation 17 and minimizes the distance to the demonstration, i.e., min U|Ut −U| subject
to Equation 17. The resulting parameter estimates were shown to be statistically consistent (118);
however, the approach is computationally more demanding.

A related field of research is inverse reinforcement learning.This technique similarly addresses
the problem of identifying a cost or reward function, typically in the context of probabilistic
decision-making, which is often expressed in terms of Markov decision processes (see, e.g., 119–
122). While such frameworks facilitate the interpretation of model-dependent optimality condi-
tions in a probabilistic sense, where the unknown parameters are, e.g., obtained using likelihood
maximization, they are usually formulated for discrete state and action spaces and do not take sys-
tem constraints explicitly into account. Menner et al. (123) achieved nondeterministic decision-
making with a continuous state space by introducing a probabilistic control objective,which allows
for formulating the forward control problem in a Kalman filter framework and the corresponding
inverse problem as maximum likelihood estimation.

Few results address the problem of inferring constraints (simultaneously with the cost) from
demonstrations. Conceptually, the idea is again to leverage the optimality conditions. Chou
et al. (124) presented a sampling-based method that learns constraints from demonstrations
for a given objective function l(x, u, θ l) and known parameters θ l. The approach uses sampled
trajectories of the unconstrained forward optimal control problem and compares them with
demonstrations (which by definition satisfy the constraints) to infer the presence of constraints
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from the deviation of both trajectories. Menner et al. (117) identified constraints and cost
simultaneously in a two-step procedure. First, candidate constraints are constructed using the
convex hull of the state and the input trajectories. Second, the Lagrange multipliers λ of the KKT
conditions (Equation 17) are utilized to identify constraints θU , θX from the candidate constraint
set, which were active during a demonstration.

5. MODEL PREDICTIVE CONTROL FOR SAFE LEARNING

While general learning-based control, particularly reinforcement learning, has shown great suc-
cess in solving complex and high-dimensional control tasks (see, e.g., 125, 126), most techniques
cannot ensure that safety constraints under physical limitations are met, particularly during learn-
ing iterations. To address this limitation, safety frameworks emerged from control theory (127),
handling safety using a model-based controller when necessary, while otherwise a learning-based
control method is used to optimize the overall cost Jt (Equation 2). MPC techniques can be used
for such safety filters (128) to turn a safety-critical dynamical system into an inherently safe system
to which any learning-based controller without safety certificates can be applied out of the box
(see also Figure 3).

The separation of constraint satisfaction provided by an MPC approach and optimization of
performance via direct use of learning-based methods, such as reinforcement learning, is moti-
vated by the complexity of the stochastic optimal control problem, as described in Section 2.1. A
direct optimization of the true cost Jt in an MPC often cannot be performed, and the cost would
have to be approximated (see also Section 4.1), e.g., if Jt describes complex tasks requiring ex-
tensive planning horizons, is discontinuous, or is given as a black-box function (i.e., accessible via
numerical function evaluations only).

To alleviate these restrictions, the idea is to address the solution to the stochastic optimal con-
trol problem through learning-based control methods, such as stochastic policy search or approx-
imate dynamic programming (16). The proposed learning-based control input uL(k) at time k is
then verified in terms of safety by computing a safe backup trajectory from the one-step predicted
state x1|k to a safe terminal set X f or by modifying uL(k) as little as possible while still providing a

Learning-based controller πL(x)

Model predictive
safety filter πS(x,uL)System f(x,u)

uLx

u

Safe system fS(x,uL)

X

Xf

x(k)

x2|k − 1

x3|k − 1

x4|k − 1

f(x(k),uL(k)) = x1|k

x3|k

x4|k

x2|k

a b

Figure 3

(a) The concept of a model predictive safety filter. Based on the current state x, a learning-based controller provides an input
uL = πL(x) ∈ R

m, which is processed by the safety filter u = πS (x, uS ) and applied to the real system. (b) Inner working of a model
predictive safety filter. The current system state x(k) is shown with a safe backup plan (brown) from the solution at time k − 1. An
arbitrary learning input uL(k) is passed through unfiltered if a feasible backup trajectory (green) can be obtained from the resulting
f (x(k), uL(k)) via the optimization problem represented by Equation 18. Panel a adapted from Reference 128; panel b adapted from
Reference 73.
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safe backup trajectory.The optimization problem necessary for validating safety of the input uL(k)
is computationally cheaper than a direct optimization of the task Jt and can often be carried out
over a reasonably short horizon.

More precisely, the model predictive safety filter πS in Figure 3a is realized through anMPC-
like optimization problem of the form

minimize
U

‖u0|k − uL(k)‖
subject to Equations 6b–f

18.

with the goal of obtaining a safe backup state and input sequence with a small deviation be-
tween the first predicted input u0|k and the currently requested learning-based control input uL(k).
Choosing πS (k) = u∗

0|k implements the desired filtering property—i.e., in the case that, for a given
state x(k) and proposed learning-based input uL(k), all safety-relevant constraints from Equation 6
can be satisfied for all future times, we have u∗

0|k = uL(k), and the learning-based control input uL
is safely passed through the filter (compare with Figure 3b). If this solution does not exist, then
the input uL is deemed unsafe, and the filter will output a modified control input πS = u∗

0|k, which
differs from uL(k) as little as possible while still providing a backup trajectory from the resulting
x(k + 1) that ensures safety. Importantly, by forcing the terminal predicted state to be contained
inside an appropriately chosen terminal set X f via Equation 6e, one can directly use basic MPC
arguments to prove safety for all future times. In contrast to standard MPC, the terminal set X f is
thereby not coupled to a terminal cost function mimicking the tail of the underlying optimal con-
trol problem. Instead, it can consist of any explicit safe set together with a safety controller, which
guarantees infinite constraint satisfaction once the system enters the safe set, as proposed in Ref-
erences 129–131. The data-driven computation of such safe sets together with safety controllers
has been studied for different classes of systems (see, e.g., 132–135).

The safety filter in Equation 18 neglects model uncertainties, as similarly considered by
Gurriet et al. (136) and Bastani (137). MPC techniques with model learning, as discussed in
Section 3.2, can be used to facilitate the application of model predictive safety filters in the
common case where the model is uncertain and needs to be learned from data. This problem was
investigated by Wabersich and colleagues (73, 138) for approximately linear stochastic systems,
along similar lines as the methods presented in Section 3.2. To support safe exploration of non-
linear system dynamics beyond available data, Koller et al. (72) and Wabersich & Zeilinger (128)
developed methods that are robust in probability (compare with Section 3.2) and are capa-
ble of treating state- and input-dependent model uncertainties at a prespecified probability
level.

While virtually any (learning-based) controller can be enhanced with rigorous safety guaran-
tees using model predictive safety filters, the resulting performance of the overall system—i.e.,
the combination of the safety filter with different types of learning-based control approaches—
remains to be investigated.

6. DISCUSSION

Opportunities for using learning and data-driven techniques in MPC are abundant, and while
this review presents some major directions, we do not claim to provide an exhaustive discussion.
This review has focused on highlighting mechanisms that are utilized when integrating learning
in MPC and discussing their benefits and potential limitations as well as the resulting theoretical
properties. Before analyzing common questions, we provide brief conclusions about the three
categories of learning in MPC:
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� Learning the system dynamics: Most research efforts have focused on an automated im-
provement of the prediction model in MPC, addressing challenges such as costly system
identification, fine-tuning for performance during operation, or adjustment to changing
or aging plants. The theoretical research regarding model adaptation is founded mostly
in established results from robust MPC. Considering the success of stochastic methods in
system identification and regression, this leads to a gap that appears to be rooted largely
in the technical difficulties of deriving theoretical properties for stochastic models. The
focus in integrating stochastic prediction models has therefore been on practical or perfor-
mance considerations, leaving large potential for theoretical results in a general stochastic
MPC context. While most learning-based MPC methods implement passive learning, an
important open question is the realization of active learning and dual control in constrained
systems.

� Learning the controller design: Data-based design or improvement of MPC formulations
based on observed closed-loop behavior emerges as an important domain where learning
concepts can contribute to the field of predictive control. While the design of terminal
components is comparably well studied and has been successfully demonstrated, there are
many open problems related to more general automatic tuning of the cost and constraints.
Techniques such as Bayesian optimization have been applied out of the box, and there is
great potential in the development of concepts that are tailored to MPC, i.e., that exploit
the problem structure and properties. First results in inverse optimal control motivate this
relatively unexplored direction as an alternative to inverse reinforcement learning, with the
ability to address constraint satisfaction. Open challenges include the systematic consider-
ation of suboptimality and probabilistic concepts.

� MPC for safe learning: Safety is recognized as a central issue of learning-based control
throughout domains. Safety filters offer a powerful concept but have suffered from scal-
ability limitations. The combination of MPC to ensure constraint satisfaction with any
learning-based controller to optimize performance enables this framework for complex sys-
tems and can therefore be a stepping stone toward an increased practical impact. All devel-
opments in learning-basedMPC for model or constraint learning can be similarly leveraged
in an MPC filter. An important issue to be addressed is the investigation and theoretical
analysis of the resulting closed-loop system under such a safety filter.

Throughout the learning-basedMPC techniques discussed in this review, general concepts and
challenges are emerging in different areas. There is a tendency to disconnect performance opti-
mization from constraint satisfaction and safety, which is most evident in MPC for safe learning
but also common in model-learning MPC methods. While this split can negatively affect perfor-
mance, it simplifies the theory and is often computationally beneficial by avoiding costly min-max
or expected value optimization. Similarly, there is a general tension between stochastic methods
from machine learning and deterministic or robust approaches in control. Many rigorous results
in control and optimization struggle with encountered noise and modeling uncertainty. Initial
results, however, motivate further research toward stochastic learning-based MPC. Considering
developments thus far, the real-time capability of learning-based MPC has not been the center
of attention but will become critical for its ultimate success. Stochastic formulations in particular,
but also techniques such as set-membership methods, can result in prohibitive computation or
require sophisticated hardware. While there has been some success in combating growing model
complexity through suitable approximations, there is great potential in the development of control
methods that are computationally elegant, efficient, and reliable.
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Learning-based MPC has been demonstrated to result in competitive high-performance con-
trol systems and has the potential to reduce modeling and engineering effort in controller design.
Recent successes and growing interest should motivate the further development of a systematic
body of theory, advanced methodologies, and computational methods that can establish learning-
based MPC as a powerful tool, bringing the large potential of learning into safety-critical control
applications.
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