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Abstract

Polygenic scores offer developmental psychologists new methods for inte-
grating genetic information into research on how people change and develop
across the life span. Indeed, polygenic scores have correlations with develop-
mental outcomes that rival correlations with traditional developmental psy-
chology variables, such as family income. Yet linking people’s genetics with
differences between them in socially valued developmental outcomes, such
as educational attainment, has historically been used to justify acts of state-
sponsored violence. In this review, we emphasize that an interdisciplinary
understanding of the environmental and structural determinants of social
inequality, in conjunction with a transactional developmental perspective on
how people interact with their environments, is critical to interpreting asso-
ciations between polygenic measures and phenotypes. While there is a risk
of misuse, early applications of polygenic scores to developmental psychol-
ogy have already provided novel findings that identify environmental mech-
anisms of life course processes that can be used to diagnose inequalities in
social opportunity.
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Polygenic scores:
indices of an
individual’s genetic
liability or propensity
toward expressing a
phenotype relative to
other people, not
measures of something
“innate”

Phenotype: a trait or
characteristic (e.g.,
height, depressive
symptoms) that is the
result of both genetic
and environmental
influences
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Too often, we pour the energy needed for recognizing and exploring difference into pretending those
differences are insurmountable barriers, or that they do not exist at all. This results in a voluntary
isolation or false and treacherous connections. Either way, we do not develop tools for using human
difference as a springboard for creative change within our lives.

—Audre Lorde (1984, pp. 115–16)

1. INTRODUCTION

The central goal of developmental psychology is to describe, explain, and optimize how humans
develop. In working to accomplish this goal, developmental psychologists cannot ignore genetic
variation, because it accounts for a substantial proportion of individual differences in nearly ev-
ery aspect of human development. Nevertheless, many developmental psychologists and other
social scientists continue to engage in “tacit collusion” to ignore the relevance of genetics to their
research (Freese 2008). In this review, we describe how recent advances in genomics offer devel-
opmental psychologists new methods for integrating genetic information into research on how
people change and develop across the life span. In particular, we focus on polygenic scores. Poly-
genic scores can be briefly defined as genetic measures of an individual’s predisposition toward a
given phenotype, but, as we describe in this review, this seemingly simple definition elides consid-
erable uncertainty and complexity.

Historically, the primary tools for integrating genetic information into developmental psychol-
ogy were twin and family studies. These methods generated foundational insights into the impor-
tance of the genome for personality and mental disorders (Gottesman & Shields 1972, Loehlin &
Nichols 2012), and they continue to provide researchers with quasi-experimental tools to evalu-
ate hypotheses about environmental causes of developmental phenomena (Turkheimer &Harden
2014). Yet twin studies remain contentious, in part because the studies make controversial sta-
tistical assumptions (Charney 2012), and in part because the results of twin studies have been
appropriated by far-right political ideologies (e.g., Herrnstein & Murray 1996).
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Social inequalities:
unequal challenges and
opportunities for
different social
positions, which occur
at the intersection of
socially constructed
dimensions of race,
ethnicity, skin tone,
gender, wealth,
education, ability,
sexuality, nationality,
and age, among others

Polygenic: refers to
phenotypes influenced
by many loci dispersed
across the genome,
each with very small
individual effects

Social equity: the goal
of fairly distributing
resources,
opportunities, and
other social goods in
ways that acknowledge
historical, social,
institutional, and
biological differences
among people

Genome-wide
association studies
(GWASs):
hypothesis-free study
design that associates
measured genetic
differences between
people with differences
in their phenotypes

As with these early twin/family methods, we anticipate that developmental psychologists will
also treat the introduction of polygenic scores with some degree of wariness. There are good
reasons for this wariness. Linking people’s genetics with differences between them in socially val-
ued developmental outcomes, such as cognitive skills or antisocial behavior, has historically been
used to justify acts of state-sponsored violence, such as forcible sterilization and genocide (Kevles
1998). Even now,white supremacist movements appropriate genetics research to propagate narra-
tives about the superiority or inferiority of human groups (Carlson &Harris 2020,Harmon 2018,
Panofsky & Donovan 2019). Given this history, “there is an old and perhaps permanent danger
that inquiries into the genetic differences among us will be appropriated to justify inequalities in
the distribution of social power” (Parens 2004, p. S31). Consequently, it is imperative for devel-
opmental psychologists, as they adopt new methods and technologies, to guard against further
exacerbating existing social inequalities and creating new dimensions of disparity.

In this review, we aim to highlight how scientists can incorporate polygenic measures in devel-
opmental research without compromising their commitment to social equity. To this end, we em-
phasize that an interdisciplinary understanding of the environmental and structural determinants
of social inequality, in conjunction with a transactional and developmentally informed perspective
on how people interact with their environments, is critical to interpreting associations between
polygenic measures and phenotypes. This framework highlights the ethical, legal, and social con-
cerns potentially introduced by misleading applications of polygenic measures. Yet, while there is
a risk for misuse, early applications of polygenic scores to developmental psychology have shown
how genetic data can be used to spotlight environmental privilege and diagnose inequalities in
social opportunity.

The remainder of this review is organized as follows. In Section 2, we highlight three long-
standing developmental psychology questions that research integrating polygenic scores can help
address. That section highlights the promise of polygenic scores, but to understand fully how
polygenic scores can (and cannot) move science forward, we need to take a closer look at how
these scores are generated and interpreted. Thus, in Section 3, we present a brief primer on ge-
netic methods, with an emphasis on genome-wide association studies (GWASs) and how GWAS
results are used to generate polygenic scores. In Section 4, we describe some of the greatest hits
of polygenic scores, which have correlations with developmental outcomes that rival their cor-
relations with traditional social science variables. We then describe different processes that can
contribute to a correlation between a polygenic score and a developmental outcome. Our overar-
ching goal in this section is to demonstrate that polygenic scores are not measures of something
“innate” about a person. Rather, polygenic associations reflect a mix of both true causal signal and
confounding by environmental contexts at different scales, and even the causal effects of genes
encompass processes that depend on social and historical structures. In Section 5, we review how
polygenic score research highlights the effects of environmental privilege, which informs our un-
derstanding of gene–environment interplay more generally. Finally, in Section 6, we offer some
general thoughts about polygenic scores as a technology that can be used for harm but also for
good.

2. THREE DEVELOPMENTAL PSYCHOLOGY QUESTIONS THAT
POLYGENIC SCORES CAN HELP ADDRESS

Three long-standing areas of scientific inquiry in developmental psychology and the social
sciences can leverage polygenic scores to improve their inferences. First, a central question
in developmental psychology is concerned with how human behavior is transmitted across
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generations, for example, through parent–child interactions (Eisenberg et al. 1998). Because
children typically inherit both their genes and their family environments from their parents, cor-
relating parental characteristics with child characteristics confounds genetic and environmental
pathways from parents to their children, and vice versa. For instance, a child of a more anxious
parent may show stronger internalizing behaviors for a multitude of reasons: The parent’s anxiety
has created a stressful environment, the child’s internalizing behaviors made the parent anxious,
an external event made them both anxious, they share a genetic liability for mood disorders, or
some combination of the above. Thus far, family designs that use naturally occurring variation
in how strongly family members are genetically related, such as twin and adoption studies, have
been used to disentangle genetic from environmental pathways of intergenerational transmis-
sion. However, such samples tend to be difficult and costly to obtain, and they make statistical
assumptions that are controversial (Charney 2012).

In addition to observational studies using biological relatives, experimental studies of envi-
ronmental interventions provide causal evidence of the importance of environmental influences
on developmental outcomes (Duncan et al. 2017). But individuals can respond quite differently
to interventions, to the degree that for some participants the intervention could exacerbate the
problem they are trying to address (Freese & Shostak 2009). Therefore, the second scientific in-
quiry that can benefit from integrating polygenic scores is concerned with identifying who is being
served by interventions, as some of the individual differences that make people react differently
may be hidden, either because the relevant individual difference is difficult to measure or because
it simply was not measured.

Third, developmental psychologists aim to trace the developmental precursors of adult life
course outcomes, exploring the continuity and change of human behavior. However, samples that
span the human life course are scarce, and can require multiple generations of researchers to
maintain a costly study.

Polygenic scores have two rare and special properties that make them useful for addressing
these research questions. First, a child’s genotype is a randomly assigned recombination of the
parents’ genotypes. Which genetic variants people inherit from their parents (and which variants
they do not inherit) is the outcome of a genetic lottery. Therefore, polygenic score data, when
combinedwith family structure data (siblings or parent–offspring trios), allow us to root analyses in
at least one variable that can be reasonably treated as exogenous. Second, one’s gene sequence, and
therefore one’s polygenic score, is fixed at conception and does not change over the life span. This
immutability means that polygenic scores cannot be reciprocally influenced by life experiences.

Three studies illustrate how these two special properties—that genotypes are random with re-
spect to parental genotype and immutable over the life span—can improve psychological research.
First, a study of genotyped parent–offspring trios took advantage of the fact that half of a parent’s
genes are (randomly) not transmitted to their offspring and tested whether a polygenic score con-
structed from the parental genes that offspring did not inherit nonetheless predicted offspring
educational attainment. It did. As the study design explicitly rules out genetic inheritance, this is
clear evidence for the intergenerational transmission of environmental factors affecting educa-
tion. Follow-up research has incorporated measured variables, such as prenatal environment and
parental cognitive stimulation, to probe hypotheses about mechanisms of this effect (Armstrong-
Carter et al. 2020, Wertz et al. 2019).

Second, a study of an educational policy reform in the United Kingdom found that increas-
ing the age of compulsory schooling reduced body size, particularly in individuals who had a
polygenic score associated with higher body mass index (BMI) (Barcellos et al. 2018). The pol-
icy thus mitigated genetically associated disparities in health. Notably, participants’ outcome data
were collected when they were older adults, but there were no retrospective data available, to our
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Heritability:
the proportion of
variation in a
particular phenotype
that can be attributed
to genetic factors; it
can be calculated using
family designs (e.g.,
twin models) or using
genomic methods

knowledge, about participants’ body size as children or adolescents (prior to the educational re-
form). Polygenic score data, which are invariant across the life span, thus gave researchers a tool
for time travel: They could know something about what a person’s risk for higher BMI was prior to
a policy reform that was instituted in the 1970s, on the basis of a variable (DNA) that was collected
in the 2000s and that was not subject to retrospective recall biases. Additionally, the integration
of polygenic scores provided valuable—and otherwise invisible—information regarding whether
those interventions were helping the individuals most vulnerable to adverse outcomes.

Third, several studies have used polygenic scores as an inert molecular tracer that connects
data on development at different parts of the life course (Belsky et al. 2016, Belsky & Harden
2019,Nivard et al. 2017). For example, polygenic scores of Alzheimer’s disease are associated with
smaller hippocampal volume throughout the life span in pediatric and adult samples (Walhovd
et al. 2019). By examining the association between a single polygenic score with an array of devel-
opmental outcomes in separate samples of differing ages, researchers can highlight developmental
precursors of highly heritable diseases and other phenotypes, and these precursors could become
new targets of intervention.

Note that the immutability of a polygenic score does not mean that phenotypes are immutable.
In fact, polygenic scores can be useful for improving interventions designed to change the phe-
notype that a polygenic score predicts. Including polygenic scores in randomized controlled trials
is likely to increase statistical power to detect average treatment effects (Rietveld et al. 2013).
Moreover, as with the educational policy reform example described above, polygenic scores can
be used to investigate whether interventions are indeed decreasing preexisting health differences
and promoting greater health equity (Freese & Shostak 2009).

In summary, polygenic score applications can (a) improve inferences about environmental
mechanisms for intergenerational transmission, (b) trace the developmental precursors of adult
life course outcomes, and (c) evaluate whether interventions, policies, or treatments are mitigating
versus exacerbating genetic disparities in health and well-being. But, like any method, polygenic
score applications have their limitations. To fully understand how polygenic scores may advance
developmental psychology research and what their limitations are, we first need to take a closer
look at how they are generated.

3. A PRIMER ON GENOME-WIDE ASSOCIATION STUDIES

3.1. Beyond the Black Box of Heritability

For nearly a century, behavior genetic research in humans relied primarily on partitioning phe-
notypic variation among family members with known degrees of biological relatedness. Research
has found that relatives who are more closely biologically related tend to more strongly resemble
one another in essentially every human trait, including appearance, physical and mental health,
personality, and educational attainment (Polderman et al. 2015). Consider twins as an example.
If monozygotic (identical) twins sharing ∼100% of their genes are more similar for a given
phenotype than dizygotic (fraternal) twins sharing ∼50% of their genes, then that phenotype is
considered to be heritable. Heritability is a fundamental concept in genetics, referring to the pro-
portion of variation in a particular phenotype that can be attributed to genetic factors (Visscher
et al. 2008). It is a population parameter that enables comparison of the relative importance of
environmental and genetic factors within that population at the time of study. Recent advances
in genetics have enabled the estimation of heritability using genome-wide data from unrelated
individuals, providing further evidence of the association between genotypic and phenotypic
similarity. Indeed, the finding of nonzero heritability is so ubiquitous that it has been termed the
first law of behavior genetics—“everything is heritable” (Turkheimer 2000).
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Single-nucleotide
polymorphisms
(SNPs): differences
between people at a
single DNA letter, or
nucleotide

Principal
components of
ancestry: linear
combinations of SNP
genotypes, where each
SNP has a loading
giving its contribution
to a principal
component; they are
used as covariates in
GWASs to address the
problem of population
stratification

Genetic ancestry:
a description of a
person’s relationship
with other people in
their genealogical
history as reflected in
their DNA; ancestry is
not the same as race

Heritability estimates from twin and family studies, however, are black boxes that do nothing
to reveal which specific genes are relevant for individual differences. In order to identify spe-
cific genetic variants, GWASs conduct hypothesis-free tests of association between millions of
measured genetic variants and a phenotype of interest (such as a psychiatric disorder). Most com-
monly, GWASs measure single-nucleotide polymorphisms (SNPs; pronounced snips), which are
differences between people at a single DNA letter, or nucleotide. Large-scale GWASs, which in-
clude hundreds of thousands of people, are now routine, because of (a) technological changes that
allow for cheap and noninvasive measurement of the human genome and (b) social changes that
permit the accumulation of huge sample sizes, including the formation of international consortia
(e.g., Psychiatric Genomics Consortium), national biobanks (e.g., UK Biobank), and direct-to-
consumer genetic testing companies (e.g., 23andMe).

Even with more than a million people, though, the number of SNPs measured in a GWAS
typically exceeds the number of people in the study. A GWAS, then, estimates a series of linear re-
gressions, each of which regresses the phenotype onto a SNP and a standard set of covariates, such
as age, sex, and birth cohort, as well as the interactions among them. One important set of covari-
ates is what is referred to as principal components of ancestry, which are statistical representations
of patterns of genetic similarity among people due to having shared ancestors. Psychologists are
likely familiar with principal components analysis, a technique that summarizes the pattern of cor-
relations among variables in a data set by using one or more orthogonal dimensions. Analyses of
principal components of ancestry work similarly, except the variables in one’s data set are people’s
genetic variants rather than, say, their responses to items on a personality inventory.

The inclusion of principal components of ancestry as covariates is important, because a GWAS
aims to identify genetic associations with individual differences in a specific trait within a popu-
lation that is homogeneous with regard to genetic ancestry, not to explain between-population
differences. Here, we are using the word population as a geneticist might, which is different from
the definitions common in psychology and the other social sciences (Waples & Gaggiotti 2006).
Psychologistsmight use the term to refer to the group of people to whom they expect their sample-
specific results to be generalizable or to a group of people living within culturally proscribed
boundaries (e.g., college students in Texas). In contrast, genetic definitions of population empha-
size reproductive continuity and the availability of random mating. When people are divided by
physical or social barriers from mating and reproducing, their populations diverge. In the next
section, we consider the genetic concept of a population and its relation to genetic ancestry more
closely. Again, these ideas are important because they help us understand what GWASs and poly-
genic scores do and do not say about the causes of social inequalities in important developmental
outcomes like education.

3.2. Within-Population Versus Between-Population Differences

Results from genetic studies have been misused by right-wing extremists and white supremacists
to argue that racialized disparities in income and educational attainment are genetic in origin
and thus are likely intractable to intervention or social policy (e.g., Herrnstein & Murray 1996,
Murray 2020b). This conclusion is based on a serious misunderstanding of the goals and methods
of GWASs and of earlier twin studies. As many psychologists’ suspicions of genetic methods stem
from their misappropriation by white supremacist movements, it is necessary to clarify the errors
that pseudoscientific racists make in their interpretation of genetic results (Martin et al. 2017a,
Novembre & Barton 2018, Rutherford 2020, Yudell et al. 2016).

Importantly, a GWAS identifies genetic variants that are associated with phenotypic differences
between individuals within a population, but, in and of itself, a GWAS is silent about the source
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Racial/ethnic
identity: the outcome
of context-specific,
dynamic social
processes that connect
individuals with
socially constructed
groups

of differences, genetic or otherwise, between populations (Coop 2019). Understanding why this is
true requires, in turn, understanding how a population is defined, how populations differ in their
genetics, and how GWASs deal with between-population differences in gene frequencies.

The genomics field typically refers to five superpopulations (admixed American, African,
East Asian, European, and South Asian; see https://www.internationalgenome.org/category/
population/). Importantly, these superpopulations are determined on the basis of analyses of pat-
terns of genetic similarity and dissimilarity across the globe. They can be further divided into
so-called ancestral subpopulations, such as the Southern Han Chinese, Chinese Dai in Xishuang-
banna, Yoruba in Ibadan in Nigeria, Gujarati Indians from Houston in the USA, Americans of
African ancestry in the southwestern USA, or British in England and Scotland. Notably, there are
fine-grained genetic differences within ancestral subpopulations, which reflect histories of migra-
tion and mating even within an apparently homogeneous group (e.g., “White British” people in
the United Kingdom; Abdellaoui et al. 2019, Sohail et al. 2019).

Populations differ genetically in terms of which variants are present, how common or rare
those variants are, and how those variants are correlated with one another across the genome.
These genetic differences reflect the demographic history of humans, including patterns of
mating, migration, and mortality. For instance, analyses of genetic similarity and dissimilarity in
people living in the USA reveal a geographical pattern of genetic similarity among Black Amer-
icans that reflects a North–South barrier to migration, with people living on either side of this
geographical barrier more similar to one another than to people on the other side (Dai et al. 2020).
Genotypes are records of both of these types of relatively recent migration events, but also of
much deeper human history (e.g., the African diaspora). See the sidebar titled Racial/Ethnic Iden-
tity Versus Genetic Ancestry for a discussion of how genetic ancestry differs from racial/ethnic
identity.

In GWASs, genetic differences between populations and subpopulations can seriously con-
found associations of genetic variants with phenotypes (for an illustrative example, see Hamer &
Sirota 2000). If groups differ, even a little bit, in how frequently people have a particular version
of a gene (allele), and also differ in a phenotype for entirely cultural/environmental reasons, it can

RACIAL/ETHNIC IDENTITY VERSUS GENETIC ANCESTRY

Genetic ancestry is not the same thing as racial/ethnic identity (Rutherford 2020, Yudell et al. 2016). Racial/ethnic
groups as they are defined in the USA today were inventions used as a political tool benefiting White people
to justify the enslavement of Africans and genocide of indigenous Americans (Davis 2001, Kendi 2017). An adult’s
racial/ethnic identity is the outcome of dynamic social processes largely occurring during childhood and adolescence
(Meeus 2011). Racial/ethnic identity is context specific in terms of both how people self-identify (Pauker et al. 2018)
and how they are categorized by others (Abascal 2020). In contrast, genetic ancestry describes patterns of gene
frequencies that people have inherited from their genetic ancestors (see Section 2.2), and people’s genetic ancestry
does not change across social contexts or over the life span.

The lack of biological “reality” underlying race does not mean that race is unimportant: Racial/ethnic identity
remains relevant as it pertains to people’s lived experiences, culture, community, social challenges, and opportunities.
Indeed, these social constructs might affect how genetic variation is expressed. But the social identity of race will
never be reducible to those patterns of genetic variation. In scientific practice, labels based on biogeographical
ancestry (e.g., predominantly recent European ancestries) may be well suited for many genomic studies, socially
based labels (e.g., White) may be more appropriate for health disparities and clinical research, and both types of
information may be valuable for studies of gene–environment interactions (Olson et al. 2005).
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Population
stratification: genetic
differences between
populations and
subpopulations which
could be confounded
with environmen-
tal/cultural differences
and could thus result
in a GWAS producing
false positive
associations between a
genotype and a
phenotype

GWAS summary
statistics: the millions
of estimated statistical
associations
(regression weights)
between analyzed
genetic variants and
the phenotype of
interest; used to
calculate polygenic
scores in an
independent sample

induce a spurious association. This is called the problem of population stratification. Generally,
GWASs attempt to account for population stratification by restricting analyses to more or less
homogeneous populations (e.g., only people who identify as being solely of recent European
ancestries) and by including multiple principal components of ancestry as covariates (Price et al.
2006). It is not uncommon for analyses to include 10 or more of these components. (Consider
that principal component 37, based on an analysis of genome-wide similarity among people who
all identify as “White British,” has no relationship to any form of racial/ethnic identity; see the
sidebar titled Racial/Ethnic Identity Versus Genetic Ancestry.) Yet even this approach might
not be entirely successful in eliminating population stratification. Accordingly, researchers are
increasingly turning to within-family GWAS approaches, which compare siblings to one another
rather than to unrelated people (Brumpton et al. 2020).

In this way, GWASs compare people who are as homogeneous as possible with regard to their
genetic ancestries, even to the point of being family members. In doing so, these methods help
minimize the threat of population stratification biasing very small but real effects of individual
SNPs within the studied population, but they are silent about the source of between-population
differences in phenotypes. If, for example, a GWAS finds genetic loci that are associated with
higher BMI among Americans who have predominantly European ancestries it does not follow
that differences in BMI between groups of Americans who may differ more in their genetic ances-
tries (e.g.,White versus Black Americans) are genetic in origin (for more discussion of the logical
flaws of such an argument, see Coop 2019). And, as we discuss further in the next section, the
results of a GWAS conducted in one population are not portable to another population.

3.3. Genome-Wide Association Studies Are Just the Beginning:
Using Summary Statistics

Themillions of estimated statistical associations between analyzed genetic variants and the pheno-
type of interest are collectively referred to as GWAS summary statistics. These summary statistics
are regression weights between phenotypes and genetic variants and are typically available in the
supplementary materials of GWASs, but many have also been collected and compiled in various
repositories, such as the Polygenic Score Catalog (http://www.pgscatalog.org/) and the GWAS
Catalog (https://www.ebi.ac.uk/gwas/). See the sidebar titled Computing Polygenic Scores for
a brief overview of how to calculate polygenic scores.

GWAS summary statistics serve as the starting point for a variety of subsequent research
endeavors, such as (a) fine-mapping statistical associations to identify the particular genetic
variants that most likely exert a causal influence on the phenotype, (b) conducting biological
annotation to map genetic discoveries with insights from biology (e.g., analyzing how genes are
expressed in different tissues during different developmental epochs; Watanabe et al. 2017, 2019),
and (c) calculating genetic correlations to estimate the extent of genetic sharing across phenotypes
that have all been subjected to GWASs, even if those phenotypes were never measured in the
same sample (Bulik-Sullivan et al. 2015a,b). The third use of GWAS results, which is called
LD score regression, might be particularly surprising to psychologists. How can one calculate a
genetic correlation between, say, infant head circumference and total life span if there is no group
of people for whom both phenotypes have been measured? Here, the genome serves as a sort of
Rosetta Stone that reveals connections between phenotypes that are otherwise never observed
together. Two phenotypes, measured in two different samples (or samples of varying overlap), are
regressed on the same set of SNPs, permitting inferences about the extent to which they share the
same genetic underpinnings. Furthermore, once LD score regression is used to generate genetic
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COMPUTING POLYGENIC SCORES

The common steps required to calculate polygenic scores in a target sample are as follows (for a more technical and
in-depth description of these procedures, see Choi et al. 2020):

1. Collect biological samples from the participants that can be used for genotyping. SNP genotyping can
be performed using noninvasively collected saliva samples and can be relatively inexpensive (i.e., less than
$70 per sample).

2. Perform a series of standard quality control procedures to remove genetic variants and participants who
were not successfully genotyped (for a thorough description of quality control procedures, see Anderson
et al. 2010 and Turner et al. 2011). Also, estimate principal components of ancestry to account for popu-
lation stratification and cryptic relatedness in your sample.

3. Impute missing genotypes to improve genomic coverage. One relatively easy way to impute the data
is to use an imputation service such as the Michigan or Sanger Imputation Server (see https://
imputationserver.sph.umich.edu/ and https://imputation.sanger.ac.uk/).

4. Obtain GWAS summary statistics for the polygenic score you wish to calculate from sources such as the
Polygenic Score Catalog (see http://www.pgscatalog.org/). It is critical that the target sample not be
included in the GWAS discovery sample.

5. Finally, compute the polygenic scores. PLINK can be used to calculate a polygenic score for each individ-
ual, which is a weighted sum of that individual’s genetic propensities for the designated phenotype.

correlation matrices, these matrices can in turn be subjected to structural equation modeling
(Grotzinger et al. 2019) and other multivariate statistical techniques familiar to psychologists.

We focus on using GWASs to create polygenic scores in a new sample of people who were
not included in the original GWAS but who have similar genetic ancestry as people from the
original GWAS. Technically speaking, an individual’s polygenic score is calculated as the sum of
the number of their alleles multiplied by the effect estimate reported in the GWAS summary
statistics.

Notably, polygenic scores can be computed for any phenotype for which GWAS summary
statistics are available, such as schizophrenia (Ripke et al. 2014), well-being (Okbay et al. 2016),
risk tolerance (Karlsson Linnér et al. 2019), and educational attainment (Lee et al. 2018). Fur-
thermore, polygenic scores require information only from DNA; the phenotype that was the
subject of the original GWAS from which summary statistics were obtained does not have to be
measured in a new data set in order for a polygenic score to be calculated in that data set. For
instance, our group used summary statistics from a GWAS of schizophrenia to calculate polygenic
scores for schizophrenia in a sample of typically developing university students, about whom we
had no information related to schizophrenia symptoms or psychotic symptoms (Mallard et al.
2019).

Again, note that polygenic scores are based on GWAS summary statistics, so they share with
GWAS results an exclusive concern with individual differences within a population. Simply com-
paring average polygenic scores across populations, as has been done in some pseudoscientific
research published by right-wing extremists, is scientifically meaningless. Reflecting the non-
Hispanic Eurocentric bias of most genetic research (Martin et al. 2019), all of the examples of
polygenic score research that we describe here are specifically concerned with individual differ-
ences among people of non-Hispanic European genetic ancestries who likely identify as White in
terms of their racial identity.
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3.4. The Proof of the Pudding Is in the Eating

Psychologists are, by training, often suspicious of so-called fishing expeditions, and thus are often
skeptical of the hypothesis-free approach of GWASs, in which every measured genetic variant
is tested in relation to a phenotype. In addition, psychologists have a long tradition of valuing
measurement, whereas the phenotypes examined in GWASs are typically quite crudely measured
(e.g., with answers to a single survey item). As such, psychologists often embraced the hypothesis-
driven candidate gene paradigm rather than GWASs (Duncan et al. 2014). In candidate gene
studies, a few genetic variants, such as a polymorphism in the serotonin transporter gene, are
examined in relation to a rich variety of well-measured psychological phenotypes on the basis of
a priori reasoning about the gene’s functions.

But 10 years of GWAS research have definitively shown that many psychologists’ intuitions
about what genetic research strategy would be successful were mistaken. Candidate gene research
turned out to yield almost no replicable insights into human psychology (Border et al. 2019,Hewitt
2012),whereas very large-scale GWASs have identified thousands of replicable hits—that is, SNPs
that are reliably associated with human phenotypes at very stringent levels of statistical significance
(p< 5× 10−8) and that replicate across independent samples (Visscher et al. 2017). A major reason
that candidate genes failed, we now realize in the face of GWAS results, is that nearly all human
traits are highly polygenic, meaning that they are influenced by many loci dispersed across the
genome—each with very small individual effects (Chabris et al. 2015). Accordingly, GWASs re-
quire very large sample sizes (i.e., hundreds of thousands to millions of individuals) to accurately
estimate effects. In the face of all that we do not know about the human genome, it turns out that
genetic discovery has been better advanced by using brute statistical force—surveying the entire
genome in as many people as possible—than by careful phenotypic measurement and a priori
hypotheses.

The best validation of the GWAS approach is that polygenic scores from well-powered
GWASs can now predict nonnegligible amounts of variation in outcomes in independent sam-
ples (Figure 1). Indeed, polygenic scores for some diseases and disorders have even reached a
level of predictive power that has prompted the biomedical community to consider their clinical
utility in medical settings (Khera et al. 2018, Lello et al. 2020). For social science outcomes, we
do not expect polygenic scores to ever be so accurate at an individual level as to warrant their use
for treatment or educational decisions for a specific person. At the same time, on a population
level, polygenic scores now often have predictive power that is directly comparable in magnitude
to commonly used variables in developmental psychology, such as family income (Harden et al.
2020, Lee et al. 2018). For instance, polygenic scores from one of the best-powered GWASs, on
educational attainment, can account for ∼10% of the variance in educational attainment (Lee
et al. 2018) and related psychological phenotypes, such as cognitive skills (Allegrini et al. 2019)
and persistence in taking mathematics classes in school (Harden et al. 2020). Similarly, current
polygenic scores can capture ∼8% of the variance in body size, 5% in liability to schizophrenia,
and ∼3% of the variance in smoking behavior and depression (Howard et al. 2019, Khera et al.
2019, Liu et al. 2019, Pardiñas et al. 2018).

These effect sizes for polygenic scores are sometimes trivialized as negligible, but trivializing
R2 values in the 1–10% range belies ignorance about how weakly correlated any variable—genetic
or otherwise—is with complex human behavior. As a point of comparison, consider the outcome of
the Fragile Families Challenge, in which 160 teams of researchers were given access to 12,942 vari-
ables collected from participants from birth to age 9 and asked to build predictive models of grade
point average (GPA), grit, and other outcomes at age 15 (Salganik et al. 2020). The best-fitting
models were still not very accurate: In holdout samples, the combined R2 for models (potentially
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Figure 1

Out-of-sample variance in height, schizophrenia, and educational attainment captured by polygenic scores
(R2) created by genome-wide association studies (GWASs) of progressively increasing sample size. R2 values
for height were obtained from Yengo et al. (2018), for educational attainment from Harden & Koellinger
(2020), and for schizophrenia from Ripke et al. (2014). Note that the R2 values are from studies that draw
from different samples and are not methodologically identical (e.g., polygenic scores of schizophrenia have
differing ratios of cases to controls and are calculated as Nagelkerke R2).

including thousands of survey-based demographic variables gathered across up to six survey waves)
captured only 20% of the variance in GPA and only 5% of the variance in grit. On the basis of
these results, the architects of the Fragile Families Challenge suggested that “our understanding
of child development and the life course is actually quite poor” (Salganik et al. 2020, p. 8402).
Any evaluation of the success of genetics in predicting developmental outcomes must be made in
comparison to this humbling lack of success using nongenetic variables.

4. A TRANSACTIONAL PERSPECTIVE ON GENETIC ASSOCIATIONS

4.1. Four Sources Contributing to Polygenic Score Correlations

The ability to create DNA-based measures of an individual’s likelihood of developing a partic-
ular phenotype, which might not emerge until years or even decades after conception, has been
the cause of both excitement and dismay. In the excitement camp, the conservative provocateur
Charles Murray opined in theWall Street Journal that polygenic scores are “impervious to racism
and other forms of prejudice. . . .That means polygenic scores will offer social scientists something
they’ve never had before: a secure place to stand in assessing what is innate” (Murray 2020a). On
the dismay side, the sociologist Catherine Bliss told theMIT Technology Review that “[t]he idea is
we’ll have this [polygenic score] information everywhere you go, like an RFID tag. Everyone will
know who you are, what you are about. To me that is really scary” (Regalado 2018). In our view,
both the excitement and the dismay are, unfortunately, fueled by misunderstandings about what
polygenic scores represent and what processes contribute to their correlation with psychological
phenotypes.
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Figure 2

Potential contributions to a polygenic score association. First, direct genetic effects are ones that transpire
largely through inside-the-skin processes that are best described in terms of the actions of molecules and
cells within the body. A physical characteristic like hair texture is an example of a phenotype where
inside-the-skin processes predominate. Second, transactional genetic effects originate from a person’s own
genome but require interaction with the environment, thereby transpiring through processes both inside and
outside the skin. Most traits of interest to developmental psychologists, such as mental health, physical
health, personality, cognitive skills, and academic achievement, will depend on transactional gene–
environment effects. Third, caregivers’ genes, even those that are not transmitted during reproduction, can
affect child outcomes through correlated environmental processes; this process is referred to as genetic
nurture or indirect genetic effects. Fourth, associations of polygenic scores with developmental outcomes
may derive from confounding due to unaccounted population stratification and nonrandom mating.

Polygenic scores do offer developmental psychologists a promising new research tool, but the
reasons to be excited do not include the idea that polygenic scores are an assessment of what
is “innate.” They are not. With highly polygenic phenotypes, genetic effects do not reflect an
innate liability or endowment or even a wholly biological process. Rather, associations between
polygenic scores and developmental phenotypes correspond to four types: direct genetic effects,
transactional genetic effects, indirect genetic effects, and confounded genetic effects (Figure 2).
We describe these different types of effects and their developmental processes below.

First, direct genetic effects transpire largely through inside-the-skin processes. By inside the
skin, we mean that the chain of causal events connecting genotype to phenotype can be satisfac-
torily described with reference to biological components that exist within an individual’s body
(e.g., molecules, cells, organs) and their interactions. For instance, genes regulate cells called
melanocytes, which produce melanin within the skin, thereby affecting skin tone. Direct genetic
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effects do not imply that the trait is genetically simple. For instance, skin tone is a polygenic trait,
especially among African populations (Martin et al. 2017b).

Second, transactional genetic effects, like direct genetic effects, originate from a person’s own
genome, but transpire through processes that take place both inside and outside the skin (Plomin
et al. 1977, Scarr &McCartney 1983). By outside the skin, we mean that the chain of causal events
connecting genotype to phenotype cannot be satisfactorily described without reference to social
behaviors and the interactions among people in society. For instance, variants in theCHRNA genes
affect lung cancer risk through their association with smoking quantity (Ware et al. 2011). Thus,
the connection between genotype and phenotype (lung cancer) depends on the behavior of an
individual (smoking), a behavior that is dependent on interactions among people in a society (e.g.,
laws regulating the affordability and availability of tobacco).Most traits of interest to developmen-
tal psychologists, such as mental health, physical health, personality, cognitive skills, and academic
achievement, will depend on transactional gene–environment effects.

Figure 3 depicts a hypothetical example that highlights the transactional interplay among
genetic propensities, environmental opportunities, and developmental idiosyncrasies. Imagine a
young child who struggles to concentrate on books read by adults and prefers exploring thrilling
activities. Their linguistic skills fall behind those of other children at the beginning of school,
thereby decreasing their motivation to participate in school. Yet, they were born into a wealthy
family and attend a well-resourced school that inhibits them from leaving before graduating with
a high school diploma. Indeed, not graduating from university was never even presented as an op-
tion, even though they fathered a child in high school. Their genetic predisposition for thrilling
activities is funneled into a career in risky investment banking, a field in which they find easy
inclusion on the basis of other traits, such as skin tone.

Third, in addition to the child’s own genotype, caregivers’ genetic dispositions can affect
child outcomes through indirect genetic effects that are not transmitted during reproduction
(Koellinger & Harden 2018, Kong et al. 2018). Recall that parents have two copies of every gene,
only one of which is inherited by a child. Genetic studies of trios of parents and offspring have
shown that even those genetic variants that are not transmitted to offspring are nevertheless corre-
lated with offspring outcomes. For example, mothers with higher education polygenic scores tend
to have children who exhibit higher levels of academic performance and educational attainment
and reach developmental milestones earlier, even after accounting for direct genetic transmission
(Armstrong-Carter et al. 2020, Wertz et al. 2019). Such genetic nurture effects might be medi-
ated by experiences during pregnancy or by cognitively stimulating and warm parenting behav-
iors (Armstrong-Carter et al. 2020,Wertz et al. 2019). Indirect genetic effects necessarily involve
outside-the-skin processes, as the genotype–phenotype relationship transcends the boundaries of
a single person.

Fourth, outside-the-skin processes, including unaccounted population stratification and non-
random mating, can confound associations of polygenic scores with child development (Selzam
et al. 2019, Sohail et al. 2019). Specifically, subpopulations may differ genetically in ways that are
not fully accounted for by ancestry-related principal components (see Section 2). If those sub-
populations also differ in environmental or behavioral measures, then those genetic variants may
be correlated with a phenotype, despite the lack of a causal genetic effect on the phenotype. In
contrast, differences between genetically related individuals (e.g., full biological siblings) who live
within the same family cannot arise from family-level population stratification, nonrandom mat-
ing, or indirect genetic effects. The assortment of genetic variants within families is random. Ac-
cordingly, a rigorous test of polygenic–phenotype associations is to examine whether they predict
phenotypic differences between siblings, and indeed they do (Belsky et al. 2018,Morris et al. 2019,
Selzam et al. 2019).
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Polygenic pinball. A polygenic score is conceptualized as an inert molecular marker (a pinball) that can be
used to trace how an individual moves through the environment (a gamescape). In this game, success is
defined as a lucrative career and is determined by three factors. First, chance determines the inheritance of a
specific combination of genetic variants, represented by the size of the pinball. A larger pinball makes for an
easier game, within the context of a particular gamescape, as it is more likely to hit targets that score points,
whereas a smaller pinball is more likely to fall into a hole. Second, chance determines the environmental
conditions experienced at the start of the game, represented by the funnel that leads the pinball into the
gamescape. Third, development itself is a source of phenotypic variability, such that the ball’s trajectory
cannot be perfectly predicted given genetic and environmental information. In the example depicted, a
polygenic pinball with average genetic propensity for higher educational attainment enters the game with
ample environmental resources to support higher educational attainment and social status. Despite moderate
genetic propensity to do well academically, the polygenic pinball’s movements are cushioned by wealth and
privileges that move it away from illness and interactions with the police and toward a university degree.

The astute reader will have noticed by now that there is no bright line separating direct, indi-
rect, and transactional genetic effects. Rather, they exist on a spectrum. Even direct genetic effects
that can be satisfactorily explained in terms of biological processes are affected by the environ-
ment. For example, skin tone can be changed through sun exposure or with highly prevalent and
potentially health-damaging skin-lightening procedures (Sagoe et al. 2019). Indeed, all genetic
causes have to work in the context of an environment of some kind (Dawkins 1982).
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4.2. A Transactional Perspective on the Portability of Polygenic Scores

Transactional genetic effects, which involve human behavior and interactions among people in so-
ciety, are expected to depend on environmental contexts that are known to differ between groups
of people. Sociological (Crenshaw 1989, hooks 1995), economic (Chetty et al. 2020; see https://
opportunityinsights.org/), and epidemiological (Creanga 2018, Hargrove 2018) research shows
that different environmental challenges and opportunities occur at the intersection of socially
constructed dimensions of race, ethnicity, skin tone, gender, wealth, education, physical ability,
sexuality, nationality, and age, among others (see https://www.intersectionaljustice.org/). Ge-
netic effects depend on these large-scale environmental contexts, rather than determining fixed
phenotypes in a biodeterministic manner (Raffington et al. 2019).

A transactional perspective presumes that polygenic scores created from GWASs of largely
White samples from high-income countries will have lower predictive validity in samples who
live in different environments, even if disparate genomic ancestries were no longer a barrier to
portability. For instance, a polygenic score of neuroticism predicts a 20-year burden of depressive
symptoms forWhite but not Black Americans (Assari et al. 2020). Because the neuroticism genetic
score does not capture an innate risk for mental health disorders, and because Black Americans
are exposed to environmental challenges not experienced by White Americans (e.g., race-based
interpersonal discrimination; Goosby et al. 2018), different genetic variants may be relevant to de-
veloping depression forWhite versus Black Americans. Accordingly, even if causal genetic variants
were to be identified in a GWAS of depression, the causal pathways between genes and depression
would depend on highly social mechanisms that differ across environments.

5. USING GENETICS TO SPOTLIGHT ENVIRONMENTAL PRIVILEGE

Existing GWAS research does not come close to representing the genetic and environmental
diversity of the world. Indeed,∼79% of all GWAS participants (Martin et al. 2019) and ∼67% of
studies (Duncan et al. 2019) involve people of solely non-Hispanic European ancestries, whomake
up only 16% of the global population (Martin et al. 2019). GWASs also overrepresent individuals
with higher socioeconomic status and better health (Fry et al. 2017,Mostafavi et al. 2020,Munafò
et al. 2018). Several calls for greater diversity in genomic studies have been made (Goosby et al.
2018, Martin et al. 2019), and multiancestral GWASs are beginning to emerge (Lam et al. 2019,
Mahajan et al. 2014, Peterson et al. 2019, Walters et al. 2018), but progress is slow.

Genetically informed research that is limited to White people is not representative of human
development, because environmental opportunities systematically differ for White people com-
pared with People of Color (Chetty et al. 2020). While we optimistically await genomic research
on more diverse samples, developmental psychology research can use genetically informed studies
to unpack the “invisible knapsack” that constitutes “White privilege” (McIntosh 1988) at the inter-
sections of other environmental opportunities (Crenshaw 1989). In particular, early applications
of polygenic scores to developmental psychology have provided novel findings that highlight the
ways in which genetic effects depend on environments, which can be used to diagnose inequalities
in social opportunity.

Figure 4 visualizes the theory that the expression of genetic variation is constrained by en-
vironmental opportunity. For some phenotypes a restricted environment may be beneficial (e.g.,
reducing the risk of developing health disorders), whereas in other cases it will limit an individ-
ual’s chances to self-actualize genetic propensities (e.g., attaining more education). For instance,
a wealthy White person who attained their education in the latter half of the twentieth century in
a democratic country and has a moderate to strong genetic propensity for educational attainment
is more likely to attain high levels of socioeconomic status and longevity.
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Visualization of the theory that the phenotypic expression of genetic variation is constrained and enhanced
by environmental opportunity. The small upside-down cup imposes a glass ceiling effect, such that there is
an attenuated association of genotypes with phenotypes imposed by restrictive environments. For some
phenotypes a restricted environment may be beneficial (e.g., reducing the risk of developing health
disorders), whereas in other cases it will limit an individual’s chances to self-actualize genetic propensities
(e.g., attaining more education).

For example, one study comparing different birth cohorts found that education polygenic
scores were better predictors of attained education in men relative to women in White Amer-
ican cohorts of the early twentieth century (Herd et al. 2019). As socioeconomic opportunities
improved for White women, the predictive power of education polygenic scores matched and be-
gan to exceed those of White men. Similarly, studies have found that education polygenic scores
became more predictive of attained education following the fall of the Soviet Union in Estonia
(Rimfeld et al. 2018) and Hungary (Ujma et al. 2020). Family-based heritability studies provide
corresponding evidence that genetic influences on academic outcomes and cognitive skills are
maximized by environmental contexts that afford more opportunities (Heath et al. 1985, Selita &
Kovas 2019, Tucker-Drob & Bates 2016).

Conversely, there is also evidence that higher socioeconomic status can buffer against genetic
risk for negative health outcomes. Polygenic scores of BMI are less predictive of body size in
White Germans who report higher educational attainment and income (Frank et al. 2019). These
results correspond to quasi-experimental research showing that policies to increase the age of
compulsory schooling preferentially benefit people with higher BMI polygenic scores (Barcellos
et al. 2018).

Recent polygenic score research also helps inform how individuals with higher education poly-
genic scores attain their higher socioeconomic standing. Children with higher education poly-
genic scores achieve developmental milestones earlier and develop reading skills faster (Belsky
et al. 2016). They are also more likely to enroll and persist in mathematics classes, more so when
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they attend a socioeconomically advantaged school (Harden et al. 2020; see also Trejo et al. 2018).
At the same time, socioeconomically advantaged schools buffer students with lower education
polygenic scores against dropping out of math (Harden et al. 2020). Across the life span, people
born with a higher number of education-associated variants show greater upward mobility, rela-
tive to their family of origin, in occupational status, income, educational attainment, and wealth
at retirement—even when they are being compared with their siblings (Belsky et al. 2016). This
wealth association persists when controlling for education and income and is partially mediated
by financial decision making (Barth et al. 2020). Thus, education-associated genetic variants pre-
dict socioeconomic attainment and longevity, in part because they capture individual differences
in both cognitive and noncognitive skills (Demange et al. 2020). As parents, people with higher
education polygenic scores provide more cognitively stimulating and warm environmental nur-
turance for their children, thereby transmitting their environmental privilege over generations
(Armstrong-Carter et al. 2020,Wertz et al. 2019).Considered together, these genetic studies high-
light the myriad intermediate phenotypes (e.g., linguistic and persistence skills) and environmen-
tal contexts (e.g., stimulating caregiving, school resources) that could be targeted to create more
equitable outcomes.

6. CONCLUSION

There are clearly many risks of using polygenic scores: The limited portability of polygenic scores
and a bias toward non-Hispanic European ancestries may increase existing health disparities, if
polygenic scores confer a medical advantage, or may improve the development of interventions,
but those benefits can be leveraged only by individuals of similar ancestries (Martin et al. 2019). As
long asmultiancestral polygenic scores are not technically feasible, polygenic score researchers will
have to deal with the risks involved in defining and restricting their analyses within “populations”
of similar genomic ancestries. Furthermore, because of the history of misuse of genetic concepts
(Eigen & Larrimore 2006), researchers have a special responsibility to examine carefully the use
and the language of racial and ethnic categories in their research.

Currently, biomedical research that focuses on genetic difference is garnering attention
from political extremists and white nationalists, particularly when the phenotype under study
is a psychological phenotype like cognition (Carlson & Harris 2020). Investigations that fail to
acknowledge the full range of social mechanisms through which genetic differences can come to
be correlated with phenotypes threaten to reinforce widely held stereotypes. It is not standard
for either developmental psychologists or genomic researchers to be trained to handle these
politically motivated misinterpretations of their work. While studying genetic propensities of
individual differences in psychological phenotypes, we need to grapple with psychology’s racist
past by clearly expressing that group differences in highly social outcomes (e.g., academic skills)
arise from environmental disparities (e.g., racism, sexism, classism), not hypothetical genetic
differences between groups.

Applying polygenic scores to individual-level decision making carries further risks of misuse.
While polygenic scores for some diseases and disorders have reached a level of predictive power
that has prompted the biomedical community to consider their clinical utility in medical settings
(Khera et al. 2018, Lello et al. 2020), this is not true for predicting individual educational per-
formance or personalized education (Morris et al. 2020). Therefore, discussions of the usage of
polygenic scores on an individual level need to consider the potential risks and rewards of their
use, which will depend on the phenotypic domain (e.g., health versus education), empirically es-
tablished predictive validity for individuals, and the motivation of the organizations considering
its usage. To reduce the risk of some forms of potential misuse, legislation aimed at prohibiting
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the discrimination of identifiable groups could include genome-based categorizations (Selita et al.
2020).

However, not using polygenic scores carries the risk of missing opportunities to understand
and improve social influences on human development. For instance, when individuals receive
information on their genetic risk for complex diseases alongside transactional rather than
biodeterministic messaging, this can enhance positive behavioral changes (Frieser et al. 2018).
In research, we finally have a tool to examine directly transmitted and environmentally mediated
genetic effects of parenting on child development (Armstrong-Carter et al. 2020, Wertz et al.
2019). Moreover, we can examine the developmental precursors of highly heritable diseases
(Walhovd et al. 2019) as well as the environments that effectively mitigate genetic risk for the
most susceptible (Frank et al. 2019, Kuo et al. 2019). Polygenic scores therefore offer a novel
opportunity to integrate genetic and environmental dimensions relevant to human development.

In summary, incorporating polygenic scores into developmental psychology has the potential
to advance the identification and optimization of human development when these are cautiously
interpreted in appreciation of existing social inequality and a transactional developmental per-
spective. The social challenge in response to genomic research lies in recognizing human genetic
variation in a way that respects individual differences (Lorde 1984). If it is the “equality of oppor-
tunity” that “makes the genetic diversity among men meaningful” (Dobzhansky 1962), then only
a world with equitable opportunity will allow us to make creative use of our genetic differences.
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