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Abstract

Species tree estimation is a basic part of many biological research projects,
ranging from answering basic evolutionary questions (e.g., how did a group
of species adapt to their environments?) to addressing questions in functional
biology. Yet, species tree estimation is very challenging, due to processes
such as incomplete lineage sorting, gene duplication and loss, horizontal
gene transfer, and hybridization, which can make gene trees differ from each
other and from the overall evolutionary history of the species. Over the last
10–20 years, there has been tremendous growth in methods and mathemati-
cal theory for estimating species trees and phylogenetic networks, and some
of these methods are now in wide use. In this survey, we provide an overview
of the current state of the art, identify the limitations of existing methods
and theory, and propose additional research problems and directions.
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NP-hard: a problem is
said to be NP-hard if
every other problem in
the class NP reduces
to it; it is generally
believed that no
NP-hard problem can
be solved exactly in
polynomial time

Statistically
identifiable:
a parameter is
statistically identifiable
if the distribution over
the data defined by the
model uniquely
determines the
parameter

1. INTRODUCTION

A species tree provides a context in which many biological questions can be addressed. For ex-
ample, when the species tree is known, it is possible to learn how a given gene evolved through a
sequence of duplications and losses (and in some cases horizontal transfers), estimate divergence
dates, detect and understand adaptation, etc. Methods for these analyses typically depend on rec-
onciling gene trees to the species tree, and some of these methods also enable improved gene tree
estimation (for an entry into this literature, see Christensen et al. 2019, Doyon et al. 2011, Hahn
2007, Nakhleh 2013).

However, despite the increasing availability of genomic sequence data from across the tree of
life, species tree estimation remains challenging for a variety of computational and statistical rea-
sons. From the computational side, the most accurate approaches use statistical methods based on
likelihood and are generally computationally intensive on large data sets. For example, maximum
likelihood tree estimationmethods, such as RAxML (Stamatakis 2014), attempt to findmodel trees
that optimize the likelihood criterion, but this is a nondeterministic polynomial-time (NP)-hard
optimization problem (Roch 2006), and hence, these methods employ local search heuristics to
search for optimal trees [note that NP-hardness has the practical consequence that exact solutions
are not guaranteed for polynomial-time methods (Garey & Johnson 1979)]. Another common
type of method uses Bayesian MCMC (Markov chain Monte Carlo) to sample from the posterior
distribution and needs to run until the chains converge to the stationary distribution. In contrast,
while polynomial-time methods are also in use [e.g., neighbor joining (Saitou &Nei 1987)], these
methods are not generally as accurate as likelihood-based methods.

Species tree estimation is also challenging because genome-scale evolution is very heteroge-
neous, with different genes having different evolutionary histories. For example, as illustrated in
Figure 1a, genes can evolve under one or multiple processes, including incomplete lineage sort-
ing (ILS), gene duplication and loss (GDL), and horizontal gene transfer (HGT), that make their
trees different from the species tree (Degnan & Rosenberg 2006, Maddison 1997).

In response to documented evidence of gene tree discordance (Burleigh et al. 2010, Jarvis et al.
2014, Sanderson & McMahon 2007, Smith et al. 2015) and reduced accuracy of standard species
tree estimation methods (such as concatenated maximum likelihood) in the presence of discor-
dance (Kubatko & Degnan 2007), substantial effort has been put toward developing theory and
algorithms for estimating species trees and phylogenetic networks. Much of the theory is based
on hierarchical statistical models where genes evolve within a species tree/network and then se-
quences evolve down the gene trees (Figure 1b), thus treating phylogeny estimation (either from
the sequences or from the estimated gene trees) as a statistical estimation problem. In all of the
work we describe hereafter, it is assumed that there is no recombination within a locus (justifying
a single gene tree per locus) and there is free recombination between loci (justifying indepen-
dence among loci). A key statistical question is whether the species tree topology (generally in
its unrooted form) is statistically identifiable from the probability distribution it defines over gene
trees. Furthermore, for those models under which species trees are indeed identifiable, we may ask
whether a given method for estimating the species tree is statistically consistent, which asserts that
as the amount of data increases, the correct species tree is inferred with probability converging to 1.

There has been substantial development of theory addressing species tree estimation when
the source of gene tree discordance is exclusively ILS, a population-level process modeled by the
multispecies coalescent (MSC) (Maddison 1997,Rannala &Yang 2003,Takahata 1989).TheMSC
extends Kingman’s coalescent process (Kingman 1982) to multiple species by assigning a fixed-
size population to each branch of the species tree. Within the species tree, the root is at the top
and the leaves at the bottom, which allows us to refer to the top and bottom of a branch. Given
this, Kingman’s coalescent process is run on each branch, and all lineages surviving at the top of
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Positively
misleading:
a phylogeny estimation
method is positively
misleading under a
model if it converges
to a tree other than the
true tree with
probability converging
to 1 as the amount of
data increases

Empirical accuracy:
phylogeny estimation
methods are tested
with respect to
accuracy on simulated
data sets and on
biological benchmark
data sets; a method has
good empirical
accuracy when the
estimation error is
considered sufficiently
low

a b

ii   Incomplete lineage sorting (ILS)

A CB D

i   Gene duplication and loss (GDL)

iii   Horizontal gene transfer (HGT) iv   Multi-process discordance

ACTGCACACCG
ACTGC-CCCCG
AATGC-CCCCG
-CTGCACACGG

CTGAGCATCG
CTGAGC-TCG
ATGAGC-TC-
CTGA-CAC-G

AGCAGCATCGTG
AGCAGC-TCGTG
AGCAGC-TC-TG
C-TA-CACGGTG

GGCACGCACGAA
C-CACGC-CATA
GGCACGC-C-TA

Sequence evolution model

Gene evolution model

Species tree

Sequence
 data

(alignments)

Gene trees

A CB D

A CB D A CB D

A CB D

A C
B D

A C
B

D
AC

B D CB D

Duplication

Loss

Transfer

Alleles

Figure 1

(a) A gene tree may differ from the species tree due to (i) gene duplication and loss, (ii) incomplete lineage sorting, (iii) horizontal gene
transfer, or (iv) a combination of these processes. (b) A hierarchical model of evolution where gene trees evolve within or across the
branches of a species tree according to processes illustrated in panel a and molecular sequences of individual loci evolve down their
respective trees. A–D represent example species; two copies of a gene are shown in red and blue.

the branch (i.e., closer to the root) are moved to the bottom of the branch corresponding to the
parent population. Lineages from two different species can first coalesce in the population of their
most recent common ancestor, but if they fail to coalesce there, they coalesce further up the tree
(creating deep coalescence).

Research over the last 10 years has established that the standard approach of concatenating
the alignments and then running maximum likelihood on the combined superalignment is not
statistically consistent under the MSC and can be positively misleading (Roch & Steel 2015). In
response, new methods have been developed that are statistically consistent under the MSC, and
several of these have good scalability and accuracy on simulated data sets.While there is still clear
room for improvement, there are now several popular methods in wide use that have both good
empirical accuracy and also strong theoretical guarantees when heterogeneity is due solely to ILS.

However, as described above, discordance between gene trees in biological data sets may also
be due to other causes, includingGDL,HGT,hybridization, etc. Estimation of species trees under
any one of these processes presents challenges, and estimation under two or more is particularly
difficult. Compared to species tree estimation under ILS-only scenarios, much less is understood
about how to estimate species trees when GDL is present or when two or more processes that
create gene tree discordance are present. Furthermore, under some scenarios (e.g., hybridization),
a species tree is an inadequate model of the evolutionary history of a data set; in such cases, instead
of a phylogenetic tree, we need a phylogenetic network.

In this review, we describe approaches for estimating species trees and phylogenetic networks
that address gene tree discord due to ILS andmultiple other causes.Rather than providing a survey
of the differentmethods that can be used,we discuss the different techniques used in thesemethods
and the computational and empirical challenges they address. Furthermore, because data sets for
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species tree estimation are increasing in size, with hundreds to many thousands of loci and up to
many hundreds or thousands of species ( Jarvis et al. 2014, One Thousand Plant Transcriptomes
Initiative 2019, Tarver et al. 2016), we focus our attention on methods that can analyze large
data sets. Section 2 discusses methods for species tree estimation, mainly (but not exclusively)
focused on methods that are proven to be statistically consistent under the MSC. In Section 3,
we turn to methods for phylogenetic network estimation, specifically addressing estimation in
the presence of hybridization and potentially also ILS. We finish in Section 4 with a discussion
of lessons learned, remaining issues that need to be addressed, and thoughts about the future of
phylogenomic estimation.

This review provides a theoretical frameworkwithinwhich to understandmethods that attempt
to estimate species trees and phylogenetic networks. However, theory is not everything when it
comes to understanding methods. For example, the relative accuracy of concatenation analyses,
especially when performed using good maximum likelihood methods, and the better methods that
address ILS is mixed—even when restricted to data sets in which the only source of gene tree het-
erogeneity is ILS—and seems to depend on the model conditions (e.g., amount of gene tree het-
erogeneity, number of genes, etc.) (Molloy & Warnow 2018). Thus, although this review focuses
on methods that explicitly address gene tree heterogeneity, we caution the reader that the relative
performance of methods is hard to predict, and so careful review of the literature and examinations
of both theoretical guarantees and empirical performance are needed to choose between methods.

2. SPECIES TREE ESTIMATION METHODS

2.1. Overview

There are essentially three types of methods for species tree estimation that explicitly address ILS
and have been proven statistically consistent under the MSC. The input in all of these cases is a
multi-locus data set, where for each locus we assume we have a multiple sequence alignment. The
three categories are as follows:

� Summarymethods,which operate by first estimating gene trees (one for each locus) and then
using the information in these gene trees to estimate the species trees.Themost well-known
such method is ASTRAL (Mirarab et al. 2014b).

� Site-based methods, which calculate small trees (typically unrooted quartet trees or rooted
triplet trees) from the site patterns and then combine these small trees into a tree on the full
data set. The most well-known such method is SVDquartets (Chifman & Kubatko 2014),
which is available through PAUP∗ (Swofford 2002).

� Coestimationmethods,which coestimate the species tree and the set of gene trees.Themost
well-known such methods are StarBEAST (Heled & Drummond 2010) and its improved
version, StarBEAST2 (Ogilvie et al. 2017).

While there are statistically consistent examples of each type of method, from an empirical
standpoint, they have very different properties.We begin with the summary methods, as these are
generally the fastest (although site-based methods can be even faster for small enough numbers of
species), followed by the site-based methods, and then the coestimation methods, which are the
slowest.

2.2. Summary Methods

Many methods that are proven statistically consistent estimators of the species tree under the
MSC operate by using summary statistics in the input gene trees. For example, MP-EST (Liu
et al. 2010) requires the gene trees to be rooted and then seeks a rooted species tree that maximizes
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the pseudolikelihood of gene trees, which is the product of the likelihood of induced rooted triplet
tree topologies in the gene trees.NJst (Liu&Yu 2011) and ASTRID (Vachaspati &Warnow 2015)
operate by computing a distance matrix (the internode distance matrix) from the gene trees and
then applying distance-based methods. ASTRAL (Mirarab et al. 2014b) and BUCKy-pop [the
population tree in BUCKy (Larget et al. 2010)] operate by assigning scores to quartet trees for
every four species and then using quartet amalgamation methods to construct the species tree
from these weighted quartet trees. Yet other methods, such as GLASS (Mossel & Roch 2010),
use as input not just tree topologies but also their branch lengths. However, methods that rely on
branch lengths have been less accurate, perhaps because they do not account for deviations from
a strict molecular clock (Degiorgio & Degnan 2013) and so are less widely used.

Thus, summary methods vary in terms of approach, with some based onNP-hard optimization
criteria (and so employing heuristics that make them computationally intensive on large data sets)
and others able to run in polynomial time. Moreover, many of these methods are able to analyze
very large data sets, and some have shown excellent accuracy. Among these methods, the ASTRAL
family of methods is now very commonly used, especially for data sets with large numbers of
species. NJst and ASTRID, which are very similar in design, are not as commonly used but are
among the few alternative methods that are very fast and scalable, and they have been able to
provide accuracy that is competitive with ASTRAL under many model conditions.

2.3. Site-Based Methods

By design, site-based methods do not require the estimation of gene trees and can be used when
only a very small number of sites per locus are available (and even when only a single site per locus
is available).While several site-based methods exist (e.g., Bryant et al. 2012, Dasarathy et al. 2015,
Richards & Kubatko 2020), we use SVDquartets as an example, since it is the most popular of the
site-based methods.

SVDquartets uses linear algebra techniques to estimate the unrooted species tree on every set of
four species, thus producing a set of quartet trees.Each quartet tree can be computed in polynomial
time, so that the entire set of quartet trees also requires only polynomial time. Furthermore, the
technique used in SVDquartets to estimate quartet trees is statistically consistent under the MSC
(Wascher & Kubatko 2020).

Next, these quartet trees must be combined into a tree on the full data set, which requires the
use of an amalgamationmethod (e.g., a supertree method specifically designed to assemble quartet
trees). These amalgamation methods, such as Quartets MaxCut (Snir & Rao 2012), typically use
heuristic search strategies that do not scale well to large data sets. [An alternative approach, based
on constrained optimization using dynamic programming, is enabled in SVDquest (Vachaspati &
Warnow 2018).]

Independent of the technique used to combine quartet trees, a major limitation of methods that
use SVDquartets to compute quartet trees and then combine them is that the time to compute
all of the quartet trees, although polynomial, increases quickly as the number of species increases.
One approach to using SVDquartets on data sets with large numbers of species (or individuals,
depending on the application) is to compute only a subset of the possible quartet trees. This ap-
proach improves running time, but it is not yet clear if accuracy is impacted by using only a subset
of the quartet trees. As a result, the site-based methods are currently mainly suited to data sets
with perhaps at most 100 species or individuals and many sites.

Despite the computational challenges, a significant advantage of site-based methods over other
methods is that they do not rely directly (as summary methods do) or indirectly (as coestimation
methods do) on the ability to estimate highly accurate gene trees. Given the substantial evidence
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Statistical
consistency: a method
is a statistically
consistent estimator of
a parameter under a
model if, as the
amount of data
increases, the error in
the estimated
parameter converges
to 0 with probability
converging to 1

that summarymethods are negatively impacted by gene tree estimation error (Mirarab et al. 2014a,
Molloy & Warnow 2018, Patel et al. 2013), this may be a very important point.

2.4. Coestimation Methods

The coestimation methods, which are the most computationally intensive, typically rely on a
Bayesian approach to jointly sample the posterior distribution of parameters defined by a hier-
archical combination of MSC and sequence evolution models such as GTR (Figure 1b). The
hierarchical models include many variables, including topology and branch lengths of all gene
trees and the species tree and numerical parameters such as population sizes and rates of evolu-
tion. The combination of all of these discrete and continuous variables creates a huge space that is
hard to fully sample, leading to the computational challenges faced by coestimation methods. For
example, StarBEAST and StarBEAST2 use MCMC to sample from the joint distribution and so
need to converge before their results are considered reliable. As a result, they are generally limited
to small numbers of species (perhaps as many as 50) and loci (up to 50) but can take a long time
to converge at the higher end of these ranges (e.g., weeks).

2.5. Scalable Methods

Of the methods currently available, only the more computationally efficient summary methods
are able to analyze data sets with hundreds of species and thousands of loci. We have selected
ASTRAL and ASTRID as examples of different types of summary methods that can analyze large
data sets and have shown high accuracy under a range of conditions, including missing data (where
some gene trees lack species).

2.5.1. ASTRAL. Here we describe the theoretical foundation and the methods that have been
developed for the ASTRAL family of methods, which began in 2014 with ASTRAL (Mirarab
et al. 2014b) and now includes also ASTRAL-II (Mirarab & Warnow 2015) and ASTRAL-III
(Zhang et al. 2018b) (both for single individual data sets), ASTRAL-multi (Rabiee et al. 2019) (for
multi-individual data sets), and ASTRAL-MP (Yin et al. 2019) (for multi-processor usage).

The design of ASTRAL, and its proof of statistical consistency under the MSC, is based on
the observation that there are no anomalous unrooted quartet trees; that is, although for every
four species the three possible unrooted gene trees each have strictly positive probability, the
most probable such quartet tree is topologically identical to the species tree (Allman et al. 2011,
Degnan 2013). As a result, given a set of unrooted gene trees, the unrooted species tree topology
that has the highest quartet support from the input gene trees is likely to be a good estimate of
the true species tree topology. Furthermore, as the number of genes increases, then this estimate
converges to the true species tree topology with probability converging to 1. In other words,
maximizing the Quartet Support score is a statistically consistent estimator of the true species
tree topology under the MSC (Mirarab et al. 2014b).We formalize this maximum quartet support
species tree (MQSST) problem as follows. Given a set of k unrooted gene tree topologies, G, on
(subsets of ) n species, find the species tree T ∗ that shares the maximum total number of quartet
trees with the set of gene trees. That is, find T ∗ = arg maxT S(T ), where

S(T ) =
∑

g∈G
|Q(T ) ∩ Q(g)|,

and Q(T ) gives the set of all quartet tree topologies induced by a tree T.
Bryant & Steel (2001) were the first to study the MQSST problem, and it was proved

NP-hard by Lafond & Scornavacca (2019). Although exact algorithms and heuristics exist [e.g.,
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Avni et al. (2015)], these do not run in polynomial time. The key to ASTRAL’s approach is
that it addresses the challenge of solving MQSST by constraining the search space. Specifically,
ASTRAL specifies an allowed set, X, of bipartitions (i.e., splits of the set of species into two sets)
and requires that the species tree that is produced draw all of its bipartitions (one for each branch
in the tree) from this set, X. As proven in Bryant & Steel (2001) and Mirarab et al. (2014b), by
constraining the set of allowed bipartitions, theMQSST problem becomes solvable in polynomial
time. (Specifically, these methods use a dynamic programming formulation that allows the prob-
lem to be solved exactly without explicitly exploring the entire set of feasible species trees that
satisfy the constraints.) Moreover, since every bipartition of the species tree has a strictly positive
probability of appearing in the gene trees, an exact solution to the constrained MQSST problem
is a statistically consistent estimator of the species tree under the MSC whenever X is guaranteed
to have all of the bipartitions from the input gene trees (Mirarab & Warnow 2015). All of the
versions of ASTRAL are statistically consistent under the MSC because they are able to define a
constraint set, X, that satisfies this condition.

Here we describe some of the changes to ASTRAL since it was first introduced in Mirarab
et al. (2014b). In the first version of ASTRAL (Mirarab et al. 2014b), which we refer to here
as ASTRAL-I, X was simply the set of bipartitions in the input gene trees. The second version,
introduced in Mirarab &Warnow (2015) as ASTRAL-II, differed from ASTRAL-I by expanding
X using several heuristics and also added heuristic methods to handle missing data and polytomies
in input trees. The third version, ASTRAL-III (Zhang et al. 2018b), further tweaked these rules to
ensure that the size of X was bounded from above by a constant times nk [where n is the number
of species and k is the number of genes; this is denoted by |X | = O(nk)]. In addition, Zhang et al.
(2018b) proved that ASTRAL-III has a worst-case running time of O((nk)2.726). However, Zhang
et al. (2018b) found empirically that the running-time growth is closer to quadratic with the values
of n and k found in typical data sets.

Several features were added to ASTRAL after the initial publication. Sayyari &Mirarab (2016)
added branch length estimation (in coalescent units) and introduced a notion of support called the
local posterior probability based on quartet scores. This measure was later extended to provide a
test of whether species branches should be collapsed to a polytomy (Sayyari &Mirarab 2018).This
polytomy test is also useful for species delimitation: When multiple individuals are available, but
their delimitation is not known, amethod called SODA can use ASTRAL results and the polytomy
test to suggest a delimitation (Rabiee & Mirarab 2020). For cases in which species delimitation is
known for multiple individuals, Rabiee et al. (2019) developed ASTRAL-multi to allow multiple
individuals (ormultiple alleles) to be used as inputs.The algorithm is similar, except the constraints
are set up in a way that ensures all individuals of the same species are monophyletic, and the
dynamic programming stops recursion as soon as all individuals below a node all belong to the
same species. Heuristics for building the set X are also changed to allow multiple individuals.

While ASTRAL-III is sufficiently fast for most data, for very large data sets, one can use a
vectorized, randomized, and parallelized [both for central processing units (CPUs) and graphics
processing units (GPUs)] version of it called ASTRAL-MP (Yin et al. 2019). ASTRAL-MP can
speed runs by two orders of magnitude compared to ASTRAL-III, and its running-time advan-
tages are most visible for data sets with large numbers of input gene trees.

As we have noted, ASTRAL is statistically consistent when the input gene trees are sampled
from the distribution defined by the MSC model. In addition, ASTRAL is statistically consistent
under an identically and independently distributed model of species missing from gene trees, as
well as under a clade-based model (Nute et al. 2018). Beyond these positive results, two negative
results regarding the consistency of ASTRAL have also been proved. First, Roch et al. (2019) have
shown that ASTRAL (or any reasonable summary methods that use gene tree topologies as input)

www.annualreviews.org • The Multispecies Coalescent and Phylogenomics 253



is statistically inconsistent when gene trees are computed using maximum likelihood from gene
sequence alignments of arbitrarily bounded length, even under conditions without any gene tree
incongruence. This negative result was established for a genome-wide variant of the long-branch
attraction (LBA) phenomenon that makes some methods (e.g., maximum parsimony) inconsistent
and also applies to partitioned concatenation using maximum likelihood (i.e., when a single tree
topology is sought but the numeric parameters can differ across the loci). Practically, this nega-
tive result should lead to caution in estimating a species tree using partitioned concatenation or
ASTRAL (or other summary methods) under LBA conditions and more generally when the dif-
ferent loci have low phylogenetic signal (e.g., very short gene alignments or very low rates of
evolution). The second negative result is from Solís-Lemus et al. (2016), who proved ASTRAL
can be statistically inconsistent when gene trees evolve on a phylogenetic network through a com-
bination of ILS and gene flow.Thus,when gene flow is expected, phylogenetic network estimation
methods (see Section 3) should be considered instead of ASTRAL or other species tree estimation
methods.

2.5.2. Distance-based methods. Another type of summary method for species tree estimation
operates by first computing a distancematrix from the input gene trees and then constructing a tree
from the distance matrix. Examples of this type of approach include STAR (Liu et al. 2009) (which
assumes the input gene trees are rooted) and NJst (Liu & Yu 2011) and ASTRID (Vachaspati &
Warnow 2015) (which can be usedwith unrooted gene trees).Here we focus onNJst and ASTRID,
which use the same distance matrix but then compute trees using different methods. The distance
matrix is the average internode distance matrix, which uses the average number of nodes (across all
of the gene trees) between a given pair of species as the distance between the species. As shown in
Allman et al. (2016), this distance matrix converges, as the number of genes increases, to a matrix
that is additive for the true species tree (i.e., for which there are branch lengths on the true species
tree that realize the matrix of leaf-to-leaf distances). Given this distance matrix, NJst computes a
tree using neighbor joining (Saitou & Nei 1987), while ASTRID computes a tree using FastME
(Lefort et al. 2015).NJst and ASTRID have the same theoretical guarantees: They are statistically
consistent under the MSC, run in polynomial time, and have been extended to allow for multiple
individuals in each species through a minor adjustment to the internode distance matrix (and are
statistically consistent in this setting).

By design, ASTRID and NJst are nearly identical, and in many cases the differences between
themethods are negligible; however,FastME is typically at least as fast as neighbor joining,making
ASTRID the more scalable of the two methods. Several studies have compared ASTRID and
ASTRAL (e.g.,Molloy &Warnow 2018,Vachaspati &Warnow 2015) and found the twomethods
to have close accuracy, with neither generally outperforming the other. However, ASTRID can
be much faster than ASTRAL [e.g., by an order of magnitude (Vachaspati & Warnow 2015)],
especially on data sets with large numbers of species and loci and also high ILS.

2.6. Species Tree Estimation under Other Models

Section 2.5 discussed species tree estimation in the presence of heterogeneity due only to ILS
and presented many methods that have strong theoretical guarantees (e.g., statistical consistency
under the MSC) and excellent empirical performance on both biological and simulated data sets.

However, these methods do not address other sources of gene tree heterogeneity, such as
GDL, HGT, etc. Furthermore, most can handle only single-copy input gene trees. As a result
of this limitation, most biological analyses restrict themselves to genes that happen to be single-
copy. For some groups, like plants, this approach can discard the vast majority of the data. For
example, two studies on plant transcriptomes had to discard thousands of available multi-copy
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genes (Wickett et al. 2014, Leebens-Mack et al. 2019) and use only the 400–800 single-copy gene
trees. As the number of genes greatly impacts accuracy (Mirarab et al. 2014b,Mirarab &Warnow
2015), it has been argued (Smith & Hahn 2020) and shown (Zhang et al. 2020) that restricting
analyses to single-copy genes can dramatically decrease the accuracy of the species tree estimation.

2.6.1. Species tree estimation under gene duplication and loss. Species tree estimation in
the presence of GDL presents a different set of challenges that require new mathematics and
techniques. Because of gene duplication, each gene can have multiple copies of some species, so
that each gene has a gene family tree. Since it is often very difficult to determine orthologous
groups (i.e., a set of genes that all deviated from one another in speciation events), the inference of a
species treemay require the ability to combine these gene family trees (also calledMUL-trees) into
a species tree. Several methods for combining these MUL-trees were developed [e.g., gene tree
parsimony, which attempts to minimize the total number of GDL events (Chaudhary et al. 2010),
and MulRF (Chaudhary et al. 2014), which is an adaptation of the Robinson-Foulds (Robinson &
Foulds 1981) supertree problem to theMUL-tree setting]. These methods are based on heuristics
for NP-hard optimization problems, and some are slow on large data sets. Furthermore, none of
thesemethods have been proven statistically consistent under anyGDLmodel. Statistical methods
based on parametric GDLmodels [e.g., PHYLDOG (Boussau et al. 2013) andMixTreEM-DLRS
(Ullah et al. 2015)] are highly appealing but aremuchmore computationally intensive thanMulRF
and the gene tree parsimony methods.

Several recent method developments have occurred that are relevant to species tree estima-
tion when GDL is present. ASTRAL-multi (Rabiee et al. 2019), a variant of ASTRAL designed
for multiple individuals per species, was proven to be statistically consistent under an established
model of GDL if gene copies are encoded as different individuals (Legried et al. 2020). Sub-
sequently, FastMulRFS (Molloy & Warnow 2020) was developed, a method for the Robinson-
Foulds Supertree problem adapted to the MUL-tree setting (Chaudhary et al. 2014) and proven
to be statistically consistent under some restricted conditions (i.e., when no adversarial GDL oc-
curs). In addition, FastMulRFS was shown to be very fast and more accurate than ASTRAL-multi
(Molloy & Warnow 2020).

Another recent development is ASTRAL-Pro (Zhang et al. 2020), a new variant of ASTRAL
developed specifically to address GDL and ILS. ASTRAL-Pro depends on a technique to tag the
internal nodes of the gene trees as either duplication nodes or speciation nodes, and when this
tagging is correct, then ASTRAL-Pro is statistically consistent under GDL models. In addition,
ASTRAL-Pro has been found both to have better accuracy than ASTRAL-multi and to match or
improve on other methods on simulated data sets where GDL and ILS are both present (Zhang
et al. 2020).

2.6.2. Species tree estimation under horizontal gene transfer. While HGT implicitly sug-
gests that a phylogenetic network (rather than a tree) is needed, it can be argued that when HGT
is sufficiently random, there can still be a well-defined underlying species tree, on top of which
the HGT events occur. Therefore, we ask, What is known about the estimation of an underlying
species tree given random HGT?

Here, theoretical results established in Roch & Snir (2013) and Daskalakis & Roch (2016)
show that when the amount of random HGT is not too large, then the underlying species tree is
statistically identifiable from the gene tree distribution, in much the same way that the species tree
is identifiable under the MSC, given the gene tree distribution. Most interestingly Daskalakis &
Roch (2016) show that under these conditions, for every four species, the most probable quartet
tree topology is the true species tree. Hence, methods like ASTRAL that seek to optimize the
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MQSST optimization problem are provably statistically consistent under these models (Davidson
et al. 2015).

Furthermore, simulation studies have shown that when HGT is present, the empirical perfor-
mance of ASTRAL is superior to other methods, including concatenated maximum likelihood,
and that this advantage increases with the level of HGT (Davidson et al. 2015). Thus, from both
an empirical and a theoretical perspective, methods that combine gene trees and are based on
quartet tree frequencies can provide improved accuracy over concatenation analyses when HGT
is present.

2.6.3. Species tree estimation under combined models. So far, our discussion has addressed
only species tree estimation when heterogeneity is due to a single process—ILS, GDL, or HGT.
Yet, most empirical data sets exhibit heterogeneity due to multiple causes, so understanding their
performance when two or more processes are at play is important. Models of gene tree evolution
that capture multiple causes of discordance have been designed [e.g., DLCoal by Rasmussen &
Kellis (2012)], and developing methods that are based on these models has been a long-standing
challenge (Szöllsi et al. 2014).

A recent advance toward methods that are provably statistically consistent under two or
more processes is the (unpublished) result that ASTRAL-multi is statistically consistent under
the DLCoal model of both GDL and ILS (Markin & Eulenstein 2020). Beyond theoretical
considerations, however, simulation studies have shown that ASTRAL, ASTRAL-Pro, and
other quartet-tree methods have low topological errors under conditions that explored multiple
concurrent sources of gene tree discord (e.g., Davidson et al. 2015, Yan et al. 2020b, Zhang et al.
2020), and this suggests that these quartet-tree approaches may be statistically consistent under
other combinations.

3. PHYLOGENETIC NETWORK ESTIMATION

In the previous section, we presented methods that can be used to estimate species trees when ILS
is present. Even when HGT is present, the discussion in the previous section focused on species
tree estimation despite HGT, rather than on estimating HGT itself. Here we extend this work to
the case of phylogenetic network estimation when ILS and hybridization are both present.

We note that there are two types of phylogenetic networks used in biology: explicit phyloge-
netic networks (which are graphical models of evolutionary events that include reticulations) and
implicit phylogenetic networks (which are also graphical models but aim to represent the input
data and so are better seen as data-display networks).Here we focus the discussion on methods for
explicit phylogenetic networks and the challenges in developing improved methods of this type,
as theMSC has been extended to this type of networks. For further discussion about the two types
of methods, see Morrison (2011).

3.1. The Multi-Species Network Coalescent Model

Hybridization is the process of reproduction between individuals in different species (Barton &
Hewitt 1985). When hybridization occurs, the evolutionary history of the set of species is best
represented by a phylogenetic network. A phylogenetic network includes nodes with two parents
to capture hybridizations between pairs of species (including ancestral species).Note that the path
that an allele takes going backward in time toward the root is not unique (which is the case if the
evolutionary history of the species is modeled by a tree). In hybridization between two divergent
species, reproduction between two individuals from the two species produces an offspring, referred
to as an F1 hybrid, whose genome is inherited, in equal quantities, from the two parents.However,
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after several rounds of interbreeding and backcrossing, the genetic materials in descendants of the
F1 hybrid do not necessarily trace back in equal proportions to the original parents. In other
words, the number of loci in descendants of the F1 hybrid that trace back their lineages to one
species could very well be different from the number of loci that trace back their lineages to
the other. Indeed, the number of introgressed alleles in the genome of a descendant of a hybrid
individual could be very rare after a large number of generations has passed since the hybridization
event (Folk et al. 2018). This fact is very important to take into account when developing models
and algorithms for inference of evolutionary histories that include hybrid species, as the signal of
hybridization in the genomes of extant species could be too small to infer the hybridization events,
particularly ancient ones.

Figure 2 illustrates the evolutionary histories of two loci in the genomes of six individuals, two
from each of the three species A, B, and C. Figure 2a and b together illustrate the evolutionary
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Figure 2

Hybridization and the multispecies network coalescent. (a) The evolutionary history of three species (populations)—A (green),
B (brown), and C (dark blue)—that includes hybridization between B and C. Solid circles in the extant populations correspond to
sampled individuals (two per species), and solid circles of ancestral nodes correspond to coalescence events. Orange circles and lines
denote the genealogy of the six sampled individuals. (b) The gene tree of a locus whose coalescence events are shown in panel a. A1, A2,
B1, B2, C1, and C2 correspond respectively to the six solid circles from left to right in the extant populations in panel a. The solid circle
of individual B2 is colored both brown and blue to indicate that its genomic material is inherited from both B ancestors and C ancestors
due to hybridization. (c) The gene tree within the branches of the phylogenetic network corresponding to the species evolutionary
history in panel a. (d) The same as panel a but showing the evolution of an introgressed locus. (e) The gene tree of the introgressed
locus. ( f ) The gene tree of the introgressed locus within the branches of the phylogenetic network. The gray lines in panels c and f
visually define the boundary of the phylogenetic network. Light blue circles in panels a and d correspond to ancestral alleles before the
split of A and B from their common ancestor.
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history of a locus in individual B2 whose genealogy reflects the species tree in that the locus in
B2 coalesces with a locus from individual A2 in the ancestral population of A and B, with the
genealogy of this locus shown in Figure 2b. Figure 2c shows the genealogy of a locus that does
not involve an introgression signal within the branches of the phylogenetic network. Figure 2d
illustrates the evolutionary history of a locus in B2 that was inherited from an individual in species
C through introgression. The genealogy of this locus is shown in Figure 2e. Figure 2f shows the
genealogy of an introgressed locus.

It is important to note that hybridization and ILS could cooccur, as Figure 2 illustrates. For ex-
ample, in the case of both loci, an allele from individual A2 coalesces with an allele from individual
B1 before it coalesces with the allele from individual A1, which is an instance of ILS.

More generally, the topology of a phylogenetic network is a directed, acyclic graph that has a
unique node as the root (all other nodes are descendants of the root) and two different types of
nodes: nodes that have single parents (which denote speciation events) and nodes that have two
parents (which denote hybridization or other reticulation events). As in the case of species trees,
the leaves of a phylogenetic network are labeled uniquely by the species of interest.

To model evolutionary histories of species that potentially include species of hybrid ancestry
while accounting also for the stochasticity of the coalescent process, theMSC was extended to op-
erate within the branches of a phylogenetic network, rather than a phylogenetic tree, giving rise to
the multispecies network coalescent (MSNC) (Wen et al. 2016; Yu et al. 2012, 2014). This process
is illustrated in Figure 2a and d. Just like inference of species trees under the MSC, there are
three categories of methods for inferring phylogenetic networks under the MSNC (for a detailed
survey of recent advances in this area, see Elworth et al. 2019):

� Summary methods, which estimate the phylogenetic network from gene tree estimates.
� Site-based methods, which estimate the phylogenetic network from bi-allelic markers.
� Coestimation methods, which coestimate the phylogenetic network and gene trees of the

individual loci from sequence alignment data.

Before we discuss these three categories, we briefly discuss work on estimating phylogenetic net-
work topologies by summarizing gene trees.

3.2. Inferring Network Topologies Using Discrete Optimization

The earliest work on phylogenetic network inference viewed a network as a structure that sum-
marizes the potentially conflicting signals in a set of gene trees that are assumed to correspond
to different loci. Furthermore, to have a well-defined problem formulation, networks with the
smallest number of hybridizations were always sought by inference methods. More formally, a
phylogenetic network displays a set of phylogenetic trees, where each tree is obtained by re-
moving some of the reticulation edges in the network; see Figure 3 for an example. This no-
tion of displayed trees was the basis for maximum parsimony and maximum likelihood inference
methods of phylogenetic networks from sequence alignment data without accounting for ILS ( Jin
et al. 2006,Nakhleh et al. 2005). Furthermore, methods for inferring phylogenetic networks from
gene trees without accounting for ILS sought to solve the following problem:

� Input: A set of gene trees, G = {g1, g2, . . . , gm}, where gi is a gene tree for locus i.
� Output: A phylogenetic network, �, with the smallest number of reticulation nodes such

that each of the m trees in the input is displayed by �.
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Figure 3

A phylogenetic network and its displayed trees. (a) A phylogenetic network whose leaves are labeled by taxa
A, B, and C. The root of the network is labeled r, the node corresponding to hybridization is node h, and its
parents are nodes x and y. The edges connecting x to h and y to h are called reticulation edges. (b) One of the
two trees displayed by the network. This tree captures gene genealogies of loci that are not introgressed and
would often be referred to as the species tree. (c) The second displayed tree, which captures gene genealogies
of introgressed loci.

This problem is NP-hard (Wang et al. 2001), and several methods were developed to solve
it, mostly heuristically (Park & Nakhleh 2012; Van Iersel et al. 2010; Wu 2010, 2013). However,
since these methods did not account for ILS, all incongruence among gene trees was attributed
to hybridization, which would lead to overly complex, and often wrong, networks when ILS is
a factor behind gene tree incongruence. To account for ILS in addition to hybridization while
staying within the framework of parsimonious inference, a modified criterion of embedding gene
trees inside phylogenetic networks was introduced (Yu et al. 2013).

3.3. Statistical Inference of Phylogenetic Networks

The body of work discussed in the previous section has at least four limitations. First, minimizing
the number of reticulations is not necessarily biologically plausible in all scenarios. Second, this
work allows only for inferring the phylogenetic network topologies without the ability to esti-
mate other parameters of interest, such as divergence times. Third, the work does not allow for
incorporating the stochasticity of the coalescent process in a principled manner—the work of Yu
et al. (2013) could still result in arbitrarily complex phylogenetic networks. In particular, except
for very simple cases, the set of trees displayed by a network does not capture all possible gene
genealogies (Zhu et al. 2016). To address these challenges, statistical inference methods under the
MSNC (Wen et al. 2016) were introduced.

To enable statistical inference, a phylogenetic network is parameterized as follows. First, associ-
ated with each reticulation node is a reticulation time, and with each other node, a divergence time
(all leaves have time 0). Furthermore, associated with each branch in the network is a population
mutation rate parameter. Time here could be measured in years, generations, or coalescent units.
Finally, associated with the reticulation edges are inheritance probabilities that, under theMSNC,
correspond to an intermixture model (Long 1991) and indicate the ratios of genetic materials of
a hybrid coming from its two parents. A phylogenetic network—topology and parameters—now
defines the MSNC and a distribution over gene trees. When the phylogenetic network is a tree,
i.e., it has no reticulation nodes, the MSNC reduces to the MSC. The probability mass and den-
sity functions of gene genealogies under the MSNC have been derived (Yu et al. 2012, Wen &
Nakhleh 2018), which has allowed for developing several inference methods under the MSNC.

www.annualreviews.org • The Multispecies Coalescent and Phylogenomics 259



As discussed in Section 3.1, these methods fall into three categories, depending on the input type:
sequence alignments, biallelic markers, or gene tree estimates.

3.3.1. Coestimation methods. As discussed in Section 2.4, StarBEAST (Ogilvie et al. 2017) is
the most commonly used tool for coestimating species and gene trees from sequence alignment
data under the MSC. StarBEAST implements a Bayesian MCMC that estimates the posteriors
over the trees and their various parameters. Bayesian coestimation under the MSNC was devel-
oped independently by Wen & Nakhleh (2018) and Zhang et al. (2018a), who implemented it
in the PhyloNet software package (Than et al. 2008) via the command MCMC_SEQ and as the
BEAST2 package SpeciesNetwork, respectively. These two methods estimate the posterior dis-
tribution over phylogenetic networks, gene trees, and their parameters. Mostly recently, Flouri
et al. (2020) implemented a similar inference method in the software package BPP.

Coestimation under the MSC is computationally very challenging, which has limited the ap-
plicability of the method to small data sets. In the case of the MSNC, coestimation is even more
challenging, as the space is transdimensional, with the Markov chains having to consider models
with differing numbers of parameters due to changes in the number of reticulation nodes consid-
ered. A heuristic method for coestimating species trees and gene trees was introduced byWang &
Nakhleh (2018), and the same method could in principle apply to phylogenetic networks as well.
Furthermore, the efficiency of Bayesian MCMC could be improved by carefully restricting the
space of the gene trees (Wang et al. 2020).

3.3.2. Biallelic marker methods. Bryant et al. (2012) introduced a novel method for infer-
ring species trees under the MSC when the data consists of biallelic markers. Assuming inde-
pendence among the markers, the authors provided an algorithm for analytically integrating over
all possible gene histories, thus bypassing the need for sampling gene trees in Bayesian MCMC
inference of species trees. Zhu et al. (2018) extended the work of Bryant et al. (2012) so that the
inference is done under the MSNC while still analytically integrating over, rather than sampling,
gene histories. Given the computational complexity of this method, Zhu &Nakhleh (2018) intro-
duced a method for maximum pseudolikelihood inference of phylogenetic networks from biallelic
markers under theMSNC that scales to larger data sets.More recently, Rabier et al. (2020) derived
a faster algorithm for computing the full likelihood than the algorithm of Zhu et al. (2018).

In addition to inference of phylogenetic networks, biallelic markers have been used to deter-
mine the presence of hybridization by testing deviation of site pattern frequencies from those
expected under the MSC. The most widely known and used test in this category is the D-statistic
(Durand et al. 2011), which was then extended to larger data sets (Elworth et al. 2018, Pease
& Hahn 2015). Furthermore, phylogenetic invariants using biallelic markers were derived to test
the presence of hybridization by Kubatko &Chifman (2019) and implemented in HyDe (Blischak
et al. 2018).

3.3.3. Summary methods. Yu et al. (2014) introduced two methods for maximum likelihood
inference of phylogenetic networks under the MSNC, one that uses rooted gene tree topologies
alone and another that also uses gene tree branch lengths. Wen et al. (2016) extended this work
into a fully Bayesian framework.Given the prohibitive likelihood computations under the MSNC
using gene tree topologies alone, Yu &Nakhleh (2015) and Solís-Lemus & Ané (2016) introduced
maximum pseudolikelihood methods that assume rooted and unrooted gene trees, respectively.
These pseudolikelihood methods can be viewed as the network counterparts of the MP-EST
method (Liu et al. 2010) for species tree inference and can be applied to data consisting of gene
tree topologies alone.
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3.4. Gene Duplication and Loss and Polyploidy

The models and methods described thus far in this section assume diploid hybridization. The
model of Rasmussen & Kellis (2012) was recently extended to allow for modeling GDL, in ad-
dition to diploid hybridization, on phylogenetic networks (Du et al. 2019). Furthermore, a few
methods were developed for inferring phylogenetic networks that model allopolyploidy; these in-
clude parsimony methods (Huber & Moulton 2006, Thomas et al. 2017, Yan et al. 2020a) along
the lines of methods described in Section 3.2 and statistical inference methods that explicitly ex-
tend the MSC to handle polyploidy ( Jones et al. 2013, Oxelman et al. 2017). Yet, much remains
to be done in this area.

4. SUMMARY AND FUTURE DIRECTIONS

This review has described methods for species tree and phylogenetic network estimation that
address gene tree heterogeneity due to various causes, beginning with ILS but also including
GDL, HGT, and hybridization. Of particular concern have been the challenges involved in using
these methods on data sets that contain either many loci or many species or individuals.

Most of the focus has been on ILS-only scenarios, where there is the greatest theoretical
understanding and the most advanced methods. In this setting, coestimation methods, such as
StarBEAST, may provide the best accuracy but are the most computationally intensive. The
summary methods are the most popular because of their scalability to large numbers of both loci
and species, but their accuracy is generally reduced when gene tree estimation error is high (a
common occurrence in biological data sets). Site-based methods are likely to be the most helpful
for data sets where the loci lack sufficient phylogenetic signal for summary methods to provide
good accuracy; however, these are computationally intensive on data sets with large numbers of
species or individuals.

In contrast, method development for GDL-only scenarios or for scenarios involving two or
more processes (e.g., ILS and GDL, or ILS and hybridization) is much less advanced. Given the
importance of addressing multiple processes, there is an urgent need to extend the mathematical
modeling of evolution to address these model combinations and then to establish the theoretical
properties (e.g., statistical consistency) of species tree and phylogenetic network estimation under
these models. However, as we have noted, computational issues are significant when selecting be-
tween methods for species tree estimation under ILS-only scenarios, and the importance of these
issues will increase as model complexity (through incorporation of additional processes) increases.

To conclude, it is worth noting that all of the methods discussed in this review assume that
species have already been delimited. Species delimitation is a very challenging problem, and the
MSC has been used as one model for solving it (Yang & Rannala 2010). However, the accuracy
of this approach is also debated (Sukumaran & Knowles 2017), so the general problem of species
delimitation is best considered an open one.

SUMMARY POINTS

1. Heterogeneity in evolutionary histories between loci is to be expected and arises from
multiple biological processes, including incomplete lineage sorting (ILS), gene duplica-
tion and loss (GDL), horizontal gene transfer (HGT), and hybridization. While some
combinations of processes can be adequately modeled by a phylogenetic tree, other
combinations require phylogenetic networks. Therefore, phylogeny estimation meth-
ods should be evaluated under a range of conditions that include heterogeneity.
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2. Methodological developments over approximately the last 10 years have resulted in
many methods for species tree estimation that have been proven statistically consistent
under the multispecies coalescent (MSC) model. In contrast, research has also estab-
lished that concatenation analyses (where the multiple sequence alignments for the
different loci are combined into one superalignment and a tree is then estimated on the
superalignment using maximum likelihood or other such methods) are not statistically
consistent under the MSC.

3. Relative accuracy on biological or simulated data setsmay not reflect whether amethod is
statistically consistent or not; for example, concatenation analysis using maximum like-
lihood, although not statistically consistent under the MSC, may be more accurate in
some conditions than methods that are proven to be statistically consistent.

4. Species tree estimation under other evolutionary scenarios, including GDL or HGT, is
much less advanced than species tree estimation that addresses ILS. For example, only
ASTRAL-multi has been proven statistically consistent under a GDL model to date.

5. Phylogenetic networks are necessary models for evolution under scenarios where hy-
bridization is present; yet, very few methods are available to estimate such networks.

6. When preparing to estimate a phylogeny on a particular data set, it is best to consider
the properties of your data set in choosing the method (or methods) to use. For those
data sets where heterogeneity across the genome seems very low (as suggested by
comparisons of the estimated gene trees to each other and/or to an estimated species
tree), concatenation may be sufficient to provide high accuracy. When heterogeneity
is present but is consistent with ILS alone, then using several different methods (e.g.,
the better summary methods, site-based methods, and even coestimation methods)
can be helpful, and even concatenation can be useful if ILS is not too high. When
heterogeneity exists but is suggestive of causes other than ILS, then other approaches
may be needed, ranging from methods that address GDL to phylogenomic network
methods. By using several different methods, it becomes possible to discover those
aspects of the phylogeny that are consistent across different analyses and then focus
attention on the areas where methods differ.

FUTURE ISSUES

1. Phylogenetic network estimation methods are available that provide excellent accuracy
on small data sets, and some can address multiple sources of discord. However, the lim-
itation to very small data sets is a very significant challenge. New methods for scaling
these network estimation methods to larger data sets are needed.

2. Many methods for phylogenomic estimation are restricted to single-copy gene trees and
so depend on accurate prediction of orthology. Since orthology prediction is challeng-
ing, advances in detecting orthology would be very helpful. Alternatively, methods that
estimate the species tree from gene family trees (which can contain multiple copies of
each species) would obviate the need for orthology detection and represent a substantial
advance. While some such methods have been developed that have been established as
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statistically consistent under GDL models, this approach is generally in its infancy, and
further work is needed.

3. Current coestimation and site-basedmethods have limited scalability, but future research
can seek to develop alternative methods that eliminate some of those limitations.While
existing coestimation methods use Bayesian approaches, there is no reason other forms
of coestimation that do not need a full sampling of the posterior distributions cannot
be developed. Similarly, while current site-based methods rely on explicitly dividing the
set of species into quartets and triplets, there is no inherent reason site-based methods
cannot operate on the entire alignment directly, eliminating the need to iterate through
all triplets or quartets. Future work should further explore such possibilities.

4. All types of methods used in practice assume the multiple sequence alignments and/or
gene trees that comprise their input are free of errors. Yet, neither multiple sequence
alignment nor gene tree estimation is reliably accurate, and this can be for many dif-
ferent reasons (including heterotachy and other violations of model assumptions, even
within a single gene). In addition, many forms of error such as incorrect annotations,
misalignment, and undetected paralogy can creep into the data sets during various steps
of the long pipeline used to prepare data. Better understanding of how to detect and
eliminate such errors, perhaps by relying on expectations under the MSC model to de-
tect outliers, also requires further research.

5. Modeling of gene tree discordance across the genome can be further complicated by
biases caused bymisspecifiedmodels of sequence evolution. In particular, if biases appear
consistently across genes, species tree estimation methods may be misled. Future work
should further characterize the effects of model misspecification on existing methods
and seek to develop models and methods to alleviate the negative impacts.

6. In addition to the species tree topology, we are often interested in estimating branch
support, branch length, and perhaps dating of internal nodes.While Bayesian coestima-
tion methods can produce these quantities, much less is known about how to estimate
support or date internal nodes under complex evolutionary histories including gene tree
heterogeneity using other types of methods.
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