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Abstract

Signals of local adaptation have been found in many plants and animals,
highlighting the heterogeneity in the distribution of adaptive genetic vari-
ation throughout species ranges. In the coming decades, global climate
change is expected to induce shifts in the selective pressures that shape this
adaptive variation. These changes in selective pressures will likely result in
varying degrees of local climate maladaptation and spatial reshuffling of the
underlying distributions of adaptive alleles. There is a growing interest in
using population genomic data to help predict future disruptions to locally
adaptive gene-environment associations. One motivation behind such work
is to better understand how the effects of changing climate on populations’
short-term fitness could vary spatially across species ranges. Here we review
the current use of genomic data to predict the disruption of local adapta-
tion across current and future climates. After assessing goals and motivations
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Species distribution
modeling (SDM):
numerical modeling
linking species
occurrences or
abundances and
environmental
variables to predict
species distribution
across space and/or
time

Local adaptation:
higher fitness of local
genotypes compared
to nonlocal ones
resulting from
divergent selection due
to environmental
variation across the
landscape

Standing genetic
variation: genetic
variation (i.e., multiple
alleles) already present
in the population

Adaptive landscape:
variation in relative
fitness as a result of
different combinations
of allele frequencies,
genotypes, or
phenotypes

Maladaptation: when
local genotypes do not
produce the optimal
phenotypes in a local
environment

underlying the approach, we review the main steps and associated statistical methods currently in
use and explore our current understanding of the limits and future potential of using genomics to
predict climate change (mal)adaptation.

1. INTRODUCTION

Anthropogenic climate change is already affecting the biosphere, with uncertain consequences
for biodiversity (Brondizio et al. 2019, Parry et al. 2007, Stocker et al. 2013). Given the expected
widespread and detrimental effects of rapid climate change, research is increasingly focused on
forecasting the nature and magnitude of these impacts across multiple scales, from long-lived in-
dividuals to populations, species, and entire communities. Studies have shown that climate change
has already led to species range shifts (Chen et al. 2011, Parmesan & Yohe 2003), loss of fitness in
natural populations (Brady etal. 2019a), and changes in population genetic composition (Bradshaw
& Holzapfel 2006, Franks et al. 2018, Jump et al. 2006).

At the level of single species or communities, spatial predictions of climate change impacts
have largely been investigated through species distribution modeling (SDM), in which the suit-
able climatic envelope of a species is modeled from species occurrence records and climatic data
before being projected across space and/or through time (Guisan & Thuiller 2005, Thuiller et al.
2008). While SDM has several advantages, the methods typically do not consider the variation
in physiological tolerance, reproductive output, and survival ability that occur within and among
populations that span the climatic range of a species (Alberto et al. 2013a, Benito Garzén et al.
2019, Jay et al. 2012). Indeed, it is common for different populations of both plant and animal
species to exhibit substantial genetic variation that has resulted from evolution of locally optimal
phenotypes in response to spatially varying environments (i.e., local adaptation) (Davis & Shaw
2001, Hereford 2009, Jump et al. 2006, Kawecki & Ebert 2004, Leimu & Fischer 2008, Savolainen
& Pyhijirvi 2007).

Heterogeneity in the spatial distribution of adaptive standing genetic variation could miti-
gate or accentuate the biological impacts of climate change in the coming decades, depending
on how adaptive alleles are distributed and on the nature and magnitude of climate change in a
given location (Aitken et al. 2008, Chhatre et al. 2019, Jump & Pefiuelas 2005, Info Flora 2020,
Rehfeldt et al. 2002). In general, we expect climate change to perturb locally adapted populations
off their fitness peaks on the adaptive landscape, creating varying levels of disruption between ex-
isting genotypes and optimal values of fitness under the changed environment (Aitken et al. 2008,
Hoffmann & Sgré 2011). Accordingly, the magnitude of this disruption can be thought of as an
adaptation debt that requires a given amount of change in local genotype frequencies in order to
minimize maladaptation under the new fitness landscape.

A growing number of studies have begun employing population-level genomic data to esti-
mate the magnitude of disruption in gene-environment relationships that may be triggered by a
change in climate (Table 1). These studies typically relate current patterns of adaptive genomic
composition of populations to climate; the predicted optimal population genomic compositions
are then projected across a species’ range (space), onto future climatic conditions (time), or both to
estimate the magnitude of genetic shift (in allele or genotype frequencies) required by populations
to maintain the current fitness status quo under different climates. Some studies have also inte-
grated data from field experiments or historical demographic records to investigate more directly
the relationship between fitness, genotype, and climate.

The ease of generating genomic data sets along with the availability of dedicated modeling pro-
cedures has greatly facilitated predictions of climate adaptation and maladaptation in nearly any
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Fitness optimum:
combination of
phenotypes that
maximize the survival
and reproduction (i.e.,
fitness) of a local
population

Genomic prediction:
prediction of
phenotypic breeding
values based on
genotype-phenotype
associations, extended
here to include
prediction of
(mal)adaptation based
on gene-environment
associations

nonmodel species (Fitzpatrick & Keller 2015). As such, genome-informed distribution models of
climate adaptation and maladaptation have immense potential to benefit biodiversity conservation
efforts and management strategies, for example, by identifying populations most at risk of local
extinction (Bay et al. 2018, Gougherty et al. 2020, Martins et al. 2018, Ruegg et al. 2018), focusing
ex situ conservation efforts on areas containing unique climate-adaptive germplasm, or assessing
the efficacy of assisted gene flow between existing populations (Aitken & Bemmels 2016, Aitken
& Whitlock 2013, Steane et al. 2014). However, like SDM, projecting gene-climate relationships
is inherently correlative and ultimately relies on space-for-time substitution of statistical associ-
ations between genomic and climatic variation. For these reasons, genome-informed prediction
models are potentially prone to a host of errors (Fitzpatrick et al. 2018b) and must be correctly
performed and validated (e.g., using robust experiments).

Here, we review the use of genome-informed prediction models to quantify and map the dis-
ruption in local adaptation due to climate change. We identify the main objectives and motivations
associated with such predictions and review recent case studies, including the methods used and
primary results. Finally, we outline promising future research directions for genome-informed
predictions of climate maladaptation along with the main methodological challenges associated
with this field of research.

2. CONCEPTS AND OBJECTIVES
2.1. Goals, Motivation, and Scope

The main goal of integrating genomic data into predictive models is to attempt to accommodate
population- or individual-level variation in environmental tolerances, which is otherwise ignored
in SDM. Ideally this is accomplished by identifying the relationship(s) between fitness, genotype,
and environment in a diverse range-wide sample and evaluating whether the fitted relationship(s)
can predict loss or gain of fitness across the landscape in the context of climate change (Figure 1).
The first step involves identifying populations or regions of the landscape where the frequencies
of adaptive alleles in local gene pools reflect an inferred fitness optimum in relation to local cli-
mate conditions. The identified spatial patterns of adaptive allele frequencies can then be used to
make predictions about a population’s potential loss of fitness (maladaptation) in response to cli-
mate change in the absence of an immediate evolutionary response (i.e., assuming no change in
allele frequencies, recombination, migration, or mutation).

Importantly, these predictions of maladaptation do not explicitly incorporate population evo-
lutionary dynamics or trajectories but rather are estimates of a static potential deviance from the
assumed or estimated local fitness optimum given an abrupt change in the environment and as-
suming the genetic makeup of the population does not change accordingly. We also emphasize
that the genomic prediction models we describe address a different problem from that of try-
ing to predict a longer-term population response over multiple generations (for a discussion of
limitations, see Shaw 2019), which depends on a suite of complex interactions between multiple
evolutionary and ecological processes. Rather, we seek to answer the question, What would be the
predicted change in the strength and direction of climate-driven selection under altered climatic
conditions (Exposito-Alonso et al. 2019)? This question is particularly important for organisms
with long generation times, for which the threat of climate change is likely to occur within the
lifetimes of individuals.

2.2. Local Adaptation and Maladaptation as Two Sides of the Same Coin

Predicting fitness outcomes after a sudden change in climate relies on knowledge of adaptive
genetic variation and the functional consequences that arise when that variation becomes

Capblancq et al.
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Figure 1

The different steps of a study performing genome-informed predictions of climate (mal)adaptation. Steps 1 and 2 correspond to the
discovery phase mentioned in the main text; steps 3 and 4 describe the prediction phase (see Section 2.3); and step 5 gives two ideas for
validating the predictions (see Section 3.3). Fst is the fixation index quantifying genetic differentiation among subpopulations.
Abbreviations: GEA, genotype-environment association; GWAS, genome-wide association studies.
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a Thermal tolerance b Phenology variation

Balsam poplar (Populus balsamifera)’s adaptation to shorter
growing seasons and earlier onset winters

Coral bleaching due to water Resistance to water

temperature increase temperature increase
Bud phenology —
I
Seasons
C Drought survival Migration E—

Variation in migration

Responses to the same drought treatment of timing in some bird species

Arabidopsis thaliana from different regions of Europe

Ficedula hypoleuca

Luscinia megarhynchos

Figure 2

Examples of genetic variation in climate responses in plant and animal species. (#) Thermal tolerance. Bleaching susceptibility
associated with increasing temperature varies among genotypes for Acropora byacinthus in American Samoa (Palumbi et al. 2014). Photos
in panel # courtesy of Rachael Bay. () Phenology variation. Northern populations of the forest tree balsam poplar (Populus balsamifera)
break bud later and set bud earlier than southern populations as an adaptation to shorter growing seasons (Olson et al. 2013). In birds,
circadian clock genes are known to be involved in variation in seasonal migration timing (Saino et al. 2015). Photos in panel &
reproduced courtesy of Matthew Fitzpatrick and Stephen Keller (poplars); from https://commons.wikimedia.org/wiki/
File:Common_Nightingale_(Luscinia_megarhynchos)_(25936816473).jpg (CC BY-SA 2.0) (Luscinia megarhynchos); from
https://commons.wikimedia.org/wiki/File:Saxicola_rubetra_-Belgium_-male-8_(1).jpg (CC BY 2.0) (Saxicola rubetra), and from
https://commons.wikimedia.org/wiki/File:Ficedula_hypoleuca_Munkedal.jpg (CC BY-SA 2.0) (Ficedula hypoleuca). (c) Drought
survival. Shown are results of a drought experiment performed on Arabidopsis thaliana from different regions of Europe
(Exposito-Alonso et al. 2018). Photos in panel ¢ courtesy of Moises Exposito-Alonso.

Common garden:

an experiment where disconnected from its historic environment. Traditionally, evolutionary ecologists have focused
genotypes from on testing for and quantifying local adaptation using reciprocal transplant experiments, in which
different populations individuals from multiple locations are transplanted into both home and away environments,

d
z:)emii‘:ltzf/lirz;;ent and fitness, or some proxy, is quantified (Blanquart et al. 2013, Kawecki & Ebert 2004). In a

to test the relative metapopulation of locally adapted demes, we should observe a home-site advantage for each deme
contributions of (Kawecki & Ebert 2004). Field experiments confirm that local adaptation of climate-responsive
genetic and phenotypes is common in nature (Figure 2); two separate meta-analyses of reciprocal transplant
environmental

ot studies found evidence for local adaptation in greater than 70% of cases (Hereford 2009, Leimu &
variation on . . . . .. .
phenotypic traits using Fischer 2008). Common garden experiments comparing the fitness of individuals from different
quantitative genetics populations experiencing the same developmental environment also provide valuable insights
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into the fitness-environment relationship without explicitly testing for home-site advantage (De
Villemereuil et al. 2016). Because local adaptation across spatially heterogeneous environments
results in a type of spatially varying balancing selection, it helps maintain standing genetic
variation that can form the basis of an evolutionary response to rapid environmental change
(Aitken et al. 2008, Barrett & Schluter 2008).

Although the concept of local maladaptation may have previously been seen as simply an obvi-
ous flip side of local adaptation, recent perspectives highlight the value of studying maladaptation
directly, especially in the context of rapid environmental change (Brady et al. 2019a). In part,
the need to study maladaptation stems from the fact that evolutionary biologists have historically
focused on relative fitness to quantify adaptation. However, in conservation applications, one is
often concerned with the potential for population decline, so the ability to integrate measures of
absolute fitness becomes important (Derry et al. 2019). Although maladaptation can have many
formulations, here we define local maladaptation in the context of an adaptive landscape in which
a focal population experiences suboptimal fitness, quantified as the distance in genotypic or phe-
notypic space between the population’s current position within the adaptive landscape and its local
fitness optimum (Brady et al. 2019b, Rehfeldt et al. 2002). Under rapid climate change, we expect
maladaptation to primarily occur due to a change in the environment (i.e., the moving target sce-
nario depicted in Brady et al. 2019a, figure 2) that causes populations to become distanced from
local fitness optima.

From a genomic perspective, local adaptation should occur when a population has a genome-
wide complement of available alleles that maximizes fitness in the local environment (Savolainen
et al. 2013). Maladaptation therefore occurs when fitness is reduced below the optimum for a
particular environment, given the range of adaptive or conditionally adaptive alleles present within
the species (Rehfeldt et al. 2002). The availability of dense population-level genomic data sets
offers a new lens through which to view the genetic basis of local adaptation (Berg & Coop 2014,
Tiffin & Ross-Ibarra 2014, Tigano & Friesen 2016) and the spatial distribution of adaptive alleles
in natural landscapes (Hoban et al. 2016). Like evolutionary ecology studies, ecological genomics
has primarily focused on identifying local adaptation (Savolainen et al. 2013, Vitd et al. 2013), and
few studies have specifically investigated the other side of the coin (i.e., local maladaptation). The
rationale behind applying genomic data to the study of maladaptation is straightforward. That
is, if a genome scan for selection effectively captures a signal of local adaptation, then it should
also be informative on the potential for maladaptation if the associations between adaptive allele
frequencies and their environments are disrupted. To emphasize this point, we hereafter refer to
the reciprocal concepts of adaptation and maladaptation using the notation (mal)adaptation.

2.3. Why Attempt to Predict Genomic (Mal)Adaptation to Climate?

An early emphasis of the field of landscape genetics (later landscape genomics) was understanding
the distribution of selectively neutral genetic variation across species ranges (Manel et al. 2003).
Attention has since shifted to the study of associations between genetic, phenotypic, and climatic
variation and to the identification of the functional genetic components underlying species adap-
tation along environmental gradients (De Kort et al. 2014, Rellstab et al. 2016, Steane et al. 2014).
This led naturally to studies aimed at incorporating the effect and distribution of alleles associated
with adaptive traits into predictive models (Alberto et al. 2013b, Jay et al. 2012).

More recently, a primary motivation behind predicting the genomic basis of climate adaptation
has been to better evaluate the exposure of natural populations to climate change effects. First, by
incorporating information on intraspecific adaptive variation, model predictions can be weighted
as a function of the magnitude of genetic change and/or allele migration within the species range
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Landscape genetics:
the study of the
processes shaping the
spatial distribution of
genetic variation
across a geographic
landscape
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Genome-wide
association studies
(GWAS): studies that
use a variety of
statistical procedures
aiming to identify
associations between
genetic data and
phenotypic traits
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(Capblancq et al. 2020, Gougherty et al. 2020, Rellstab et al. 2016). Knowing the distribution
of adaptive alleles and their effect on population fitness would allow more refined predictions of
species distributions, both now and under future climates. Second, spatially explicit predictions of
patterns of climate (mal)adaptation can help highlight the relative vulnerability of populations to
climate change (Bay et al. 2018, Fitzpatrick & Keller 2015, Gougherty et al. 2020, Martins et al.
2018, Supple et al. 2018), which may serve to guide conservation policies. Finally, predicting the
overall fitness of individuals in a particular environment based on their genotypes could help in-
form a number of applications, from agriculture to conservation. For example, environment-based
predictions of growth or productivity could predict which genotypes will provide the best crop
yields under a targeted planting environment (agriculture) or which natural populations would
require long-distance dispersal to reach areas of suitable climate in the future and would there-
fore benefit from assisted migration (conservation) (Aitken & Bemmels 2016, Aitken & Whitlock
2013, Gougherty et al. 2020, Hohenlohe et al. 2011, Keller et al. 2018, Steane et al. 2014, Supple
etal. 2018).

3. IN PRACTICE: USING GENOMIC DATA TO PREDICT
CLIMATE (MAL)ADAPTATION

Using genomic data to predict (mal)adaptation of populations as a result of climate change re-
quires first identifying the population-level genetic associations underlying local adaptation to
climate across landscapes and then using these associations to predict the outcome if individuals
or populations were transferred to a new climate, either in space or through time. The process
might reasonably be divided into an initial discovery phase, predicated on careful identification of
genomic signals of climate adaptation, and a follow-up prediction phase, focused on interpolat-
ing or extrapolating the identified gene-climate associations to geographically unstudied areas or
future climates to understand relative changes in (mal)adaptation (Figure 1).

3.1. Discovering the Genomic Variation Associated with Adaptation to Climate

The discovery phase requires sampling individuals from multiple populations distributed along the
climatic gradients of interest and using dense genome-wide sequencing or genotyping to sample
single nucleotide polymorphisms (SNPs) across the genome of each individual or pool of indi-
viduals. It is important to obtain a sufficient density of SNPs, relative to the extent of linkage
disequilibrium in the genome, so as to have good statistical power to detect loci involved in lo-
cal adaptation either directly or through indirect signals in neutral variants located near a causal
one (hitchhiking selection) (Lowry et al. 2017, Tiffin & Ross-Ibarra 2014). These SNPs are then
used in genome scan analyses to identify the genomic signatures left by spatially varying local
selection.

Several approaches exist to identify genomic regions associated with local adaptation to
climate, differing principally in whether they focus directly on association with a phenotype of in-
terest or instead on nonrandom patterns of population divergence along spatial or environmental
gradients. When researchers have prior knowledge of potential physiological, morphological, or
behavioral mechanisms underlying climate adaptation (Figure 2), the combination of phenotypes
measured under common garden environments along with genomic data on the same individuals
can be used to identify SNPs associated with climate adaptative traits. Because there may not
be much a priori knowledge of the specific genes or regulatory sequences underlying these
phenotypes, another approach is to search for causal variants using genome-wide association
studies (GWAS) to test each SNP for association with trait variation. A related approach, using

Capblancq et al.



genotype-environment associations (GEAs), tests for association between SNPs and climate
variables measured where the sampled individuals were collected. Other approaches do not rely
on a genetic association with phenotype or environment and instead assess locus-specific signals
of local selection in the form of elevated allele frequency divergence (Fsr) across populations or
skewed allele frequencies in a genomic window within populations (selective sweeps) (Jones et al.
2012, Nielsen et al. 2005, Sabeti et al. 2002). Although these genome scan approaches for local
adaptation are not without issues (Hoban et al. 2016), they have helped identify promising genes
and genomic regions involved in local adaptation across contemporary climate gradients (Franks
& Hoffmann 2012, Hancock et al. 2011, Prunier et al. 2011, Sork et al. 2016).

Identifying the genetic basis of local adaptation is a burgeoning field within ecological and
population genomics, and a rich body of theory, statistical tests, simulation testing, and empirical
work has begun to emerge (Lotterhos & Whitlock 2015). It is beyond the scope of this review
to discuss in detail the various association methods that can be used to discover local adaptation
in genomic data (introduced in Section 2.3), and we refer interested readers to several excellent
reviews on the subject (Forester et al. 2016, Francois et al. 2016, Hoban et al. 2016, Josephs et al.
2019, Rellstab et al. 2015, Santure & Garant 2018, Tiffin & Ross-Ibarra 2014). Rather, we focus
our discussion here on when one might prefer to perform GWAS versus GEA, selective sweep, or
Fsr studies to investigate climate adaptation and on the potential for using candidate loci iden-
tified in these studies to make predictions about the stability of gene-climate associations under
environmental change.

An essential consideration when identifying adaptive genomic variation is whether to focus on
finding the genetic basis of climate-adaptive phenotypes (using GWAS) or instead on identify-
ing selection-shaping allele frequencies along climatic gradients (using GEA, selective sweep, or
Fgr studies) (Hoban et al. 2016). GWAS are intended to identify loci associated with a particular
phenotypic trait, which in the case of climate adaptation could be a physiological, morphologi-
cal, phenological, or life history trait relevant to the ecology of the organism being studied. This
emphasis on phenotypes is appealing since it provides a potentially more direct view of the target
of selection and uses an investigator’s a priori knowledge of the traits most important to climate
adaptation in the study species (Figure 2). However, GWAS may be less insightful in the absence
of this a priori knowledge, or when expression of the trait under selection occurs at developmental
stages or in environments, in the case of genotype-by-environment (G x E) interaction, that make
measuring the phenotype difficult. The issue of developmental timing is especially challenging for
long-lived organisms, for which the effects of selection on suites of fitness traits may be integrated
over decades or even centuries, given that most common garden studies will be restricted to early
life history traits.

An alternative is to use tests for GEAs, selective sweeps, or Fsr outliers, which are phenotype-
free approaches that identify candidate genomic regions whose allelic variation is inferred to have
arelationship to fitness that varies spatially or along an environmental gradient. Since these meth-
ods are essentially agnostic to phenotype, they do not require choices regarding which traits to
measure and in which developmental stages or environments. Consequently, these tests may be
more informative than GWAS for species that are long lived or have complex life histories or
where the phenotypes under climate selection are not well known. With GEA studies, the em-
phasis is instead placed on choosing a suite of climate variables that capture the most important
drivers of selection at the appropriate spatial and temporal scales. Choosing relevant climatic vari-
ables, given the life histories of the organisms, can also be a challenge. For example, while for trees
the magnitude and duration of extreme climate events (e.g., heat waves, droughts) may be impor-
tant drivers of selection, for an annual plant, the timing of precipitation during the growing season
might be more important. Including climatic predictors that effectively capture the likely drivers
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of selection is therefore key, but as more predictors are considered in univariate GEA models, the
problem of multiple testing increases. Recent applications using multivariate GEAs offer promis-
ing solutions to this problem (reviewed in Forester et al. 2018) and also apply to GWAS analyses
involving multiple correlated phenotypes (Zhou & Stephens 2014).

3.2. Predicting the Genomic (Mal)Adaptation of Populations

Once candidate loci or genomic regions for climate adaptation have been identified, it is sta-
tistically possible to generalize the genetic-environment relationship across the landscape using
raster climate maps and thereby investigate the spatial pattern of (mal)adaptation in the prediction
phase (Figure 1). The original use of genomic prediction (also known as genomic selection) was
pioneered by molecular quantitative geneticists aiming to accelerate plant and animal breeding.
Genomic prediction of quantitative traits from SNP data estimates genomic-enabled breeding
values (GEBVs), either by summing the pre-estimated marginal associations of many loci on a
trait (the sum is sometimes also called a polygenic risk score) or by modeling the overall ran-
dom effect values of individuals whose genomes are nonindependent (i.e., a relatedness or kinship
covariance matrix is inferred from genome-wide SNP similarities) (de los Campos et al. 2013).
Recently, application of GEBVs has moved beyond breeding to the study of ecologically relevant
adaptive traits or climate sensitivities in natural populations (Gienapp et al. 2019). In the con-
text of genomic prediction of climate (mal)adaptation, GEBVs can be used to capture associations
between genomic variation and functional responses (phenotypes and/or local fitness in a given
environment) and generate predictions of individual or population performance under alternative
climate scenarios (Browne et al. 2019).

Genomic (mal)adaptation to climate could also be predicted using GWAS or GEA studies in
which the genome-wide association between genotypes or allele frequencies with phenotypes or
climate is estimated in a training sample and then projected to a new set of genotypes or climate
data. The resulting predictions can then be validated with an independent testing population. This
enables the population-level adaptive genetic composition across the landscape to be predicted as
a composite frequency turnover of many adaptive allele frequencies (Bay et al. 2018, Capblancq
et al. 2020, Fitzpatrick & Keller 2015, Jaramillo-Correa et al. 2015, Martins et al. 2018, Steane
et al. 2014) or allele counts (Exposito-Alonso et al. 2018) and eventually allows the potential for
genomic (mal)adaptation of populations under environmental change to be investigated.

When focusing on current climate conditions, modeling the spatial distribution (or turnover)
of adaptive alleles along climatic gradients can provide a continuous prediction of allele frequen-
cies at climate-adaptive loci across a species range, including extrapolation to areas where climate
data are available but no individuals or populations have been genotyped. These results can be used
to estimate the mismatch (i.e., the residual) between the modeled and observed genetic makeup of
a focal population, which could serve as an index of its maladaptation (Aitken et al. 2008, Rehfeldt
etal. 2002), sometimes also called its nonadaptedness (Rellstab et al. 2016). Patterns of maladapta-
tion could represent adaptation lags resulting from a failure of populations to migrate (Svenning
& Skov 2007) or adapt fast enough to historical changes in climate (Aitken et al. 2008). Estimat-
ing the degree of (mal)adaptation of focal genotypes transferred outside their home climate could
also be useful for planning restoration genetics, predicting invasive species success, or optimizing
agricultural yield (Steane et al. 2014). In addition to predicting (mal)adaptation resulting from
translocations in space, predictions can also be made using analogous transfer distance through
time to estimate the potential impact of future climate change (Figure 1).

At a locus-specific scale, SDMs have been used to estimate future (mal)adaptation by predict-
ing the distribution of alleles within the species range under future climates (Exposito-Alonso
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et al. 2018, Rellstab et al. 2016). By looking at the difference in predicted allele probabilities
(frequencies) between the current and future climatic conditions, Rellstab et al. (2016) showed
that it is possible to estimate a risk of nonadaptedness (RONA). When performed for many
adaptive alleles, an estimate of the number of alleles that must arrive into the population to
adapt to climate change in the coming decades can be obtained (Exposito-Alonso et al. 2018).
However, a major constraint is that, to capture polygenic effects, SDM-based approaches that
model one locus at a time need to be fitted iteratively and the predictions summed, a cumbersome
and computationally demanding approach. Furthermore, these combined predictions would not
account for the interactive effects of loci contributing to climate adaptation.

An alternative is to create a composite frequency turnover of many genome-wide alleles along
climate gradients, enabling the difference in genomic composition between current and future
climates to be estimated for all loci en masse (Fitzpatrick & Keller 2015). One such method con-
sists of fitting a statistical model using the observed spatial pattern of genomic variation across
multiple outlier loci in local adaptation scans and then projecting this model over time to estimate
changes in the optimal genetic composition for any given population-environment combination
between current and future climatic conditions (Figure 1; Table 1). This predicted difference in
the genetic composition of populations, which Fitzpatrick & Keller (2015) termed genetic off-
set, corresponds to the change in genetic composition required to maintain the existing gene-
environment relationships observed under current environmental conditions (Figure 3). Genetic
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Adaptive genetic component turnover
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Can' Cep'

Climatic gradient (e.g., temperature)

Figure 3

An illustration of the concept of genetic offset based on turnover of the estimated adaptive genetic
component (e.g., the cumulative, monotonic increase in allele frequency differences or population
differentiation, FsT) along one or more climatic gradients. A shift along the climate gradient (for example,
from low to high temperature) can be due to a spatial transfer of individuals on the climatic landscape or to a
temporal (i.e., past or future) change in climatic conditions for a focal location. The climatic difference is
associated with a corresponding shift in the adaptive genetic component, the magnitude of which is
quantified by the genetic offset. For example, a change from A to A’ on the climatic gradient occurs in a
region of high turnover in the adaptive genetic component, producing a large predicted genetic offset
(Gaw’), whereas the same change of climate between B and B’ produces a smaller predicted genetic offset
(Ggp'). This highlights intraspecific variability in the potential impact of climate change on locally adapted
populations. Figure adapted from Fitzpatrick & Keller (2015).
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offset is a metric of maladaptation and is similar to the RONA concept detailed above, with the
primary difference being that genetic offset reflects a large number of loci simultaneously in an at-
tempt to model the composite effects of many putatively adaptive candidate loci, whereas RONA
is estimated at the level of a single locus (Pina-Martins et al. 2019).

Model fitting involves characterizing turnover functions, i.e., the turnover of the identified
adaptive alleles along environmental gradient(s) (Fitzpatrick & Keller 2015), and it is these
turnover functions that are used to predict the expected genetic composition for a given set
of current and/or future climatic conditions. Recent studies aiming to predict future genomic
(mal)adaptation of populations have mostly used a method called gradient forest (GF) (Ellis et al.
2012) that is commonly used in community ecology to model species turnover (Bay et al. 2018,
Fitzpatrick & Keller 2015, Ingvarsson & Bernhardsson 2018, Martins et al. 2018, Ruegg et al.
2018). This method, originally developed to model spatial variation in community composition,
was first used on SNP data by Fitzpatrick & Keller (2015) to model turnover in allele frequencies
and estimate the genetic offset that climate change would induce for balsam poplar (Populus bal-
samifera) populations across North America (Figure 4). GF is an extension of the random forest

a Phenology-associated genes in Populus balsamifera b Climate-associated genes in Setophaga petechia
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Predicted genetic offset for loci involved in () locally adaptive phenology in populations of Populus balsamifera in North America;

(b) climate adaptation of Setophaga petechia populations in North America; and (¢) future change in selection on drought-associated
genes in Arabidopsis thaliana populations in Europe. For P, balsamifera and S. petechia, values represent the genetic offset quantified as the
change in cumulative importance of gradient forest (GF) models between current and future climates. For A. thaliana, values represent
the predicted changes in selection intensity under future climates based on a genome-wide environment selection model. Panel #
adapted from Fitzpatrick & Keller (2015), panel # adapted from Bay et al. (2018), and panel ¢ adapted from Exposito-Alonso et al. (2019).
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machine learning approach that uses regression trees to fit a model of associations between in-
dividual response variables (e.g., individual loci) to a multivariate set of predictors (e.g., climate
variables). GF uses site-wise climatic data to explain changes in population allele frequencies for
the set of adaptive loci (determined in the discovery phase of a study) by fitting a model that itera-
tively splits populations into groups along values of the environmental gradients that best explain
their allele frequency differences. The cumulative sum of the resulting split importance values is
used to construct a turnover function for each locus; these functions are then combined based
on their weighted importance (e.g., allele frequency variance explained) to produce a compos-
ite turnover function for the entire sample (see Ellis et al. 2012 and Fitzpatrick & Keller 2015
for additional details). Once trained, GF models can be used to create continuous predictions of
allelic turnover across a species range and, when projected in time to a future set of climatic con-
ditions, to estimate the mismatch between current and future allelic turnover as a proxy of future
population maladaptation (i.e., genetic offset). The projections are often visualized as landscape
maps of genetic offset to highlight regions where the climate is predicted to disrupt local adapta-
tion most severely (Bay et al. 2018, Fitzpatrick & Keller 2015, Ingvarsson & Bernhardsson 2018,
Martins et al. 2018, Ruegg et al. 2018). Redundancy analysis (RDA) has also been used to pro-
duce spatial extrapolations of intraspecific adaptive genetic variation (Steane et al. 2014), predict
adaptive genotypes for reforestation sites (Carvalho et al. 2019), and spatially predict a genetic
offset associated with climate change (Capblancq et al. 2020). RDA has the advantage of decom-
posing the genetic-environment relationship into orthogonal axes that identify different patterns
of gene-environment covariation (Capblancq et al. 2018, De Kort et al. 2014, Forester et al. 2018).
Another new method called spatial areas of genotype probability (SPAG) uses multivariate logistic
regressions to compare the adaptive landscape under current and future climatic conditions (e.g.,
Rochat & Joost 2019). We anticipate that the general approach of modeling spatial turnover in
adaptive alleles and comparing turnover functions between sets of current and future (or past)
environments will be an active area of research and method development.

A related approach estimates the disruption of local adaptation by predicting genetic dif-
ferentiation (Fst) between current and future populations as a function of the environmental
distance between current and future climatic conditions (Fitzpatrick & Keller 2015, Ingvarsson
& Bernhardsson 2018, Supple et al. 2018). This is the approach used in generalized dissimilarity
modeling (GDM), the second community-level modeling (Ferrier & Guisan 2006) method
adapted by Fitzpatrick & Keller 2015 to extrapolate genetic-environment relationships. GDM
fits a nonlinear relationship between geographical, environmental, and genetic distances; the
response variable is a matrix of pairwise Fst values among populations, averaged for a set of adap-
tive loci (ascertained in the discovery phase of study), while the explanatory variables are matrices
of environmental (e.g., climatic) distances among sites and optionally other matrices that describe
potential confounding effects (e.g., a matrix of geographic or cost distances). The resulting
model relates pairwise genetic distances among populations to their multivariate environmental
distances. Once the initial model is fit, GDM can then be used to predict pairwise Fsr values
between any pair of locations in space or time, using the same set of environmental variables
used in initial model fitting. The predicted Fsr provides an estimate of genetic offset, formulated
as the expected divergence in allele frequencies (Fsr) at adaptive loci due to the difference in
climatic conditions between two places or times (e.g., current versus future climates).

The above approaches all rely on the assumption that alleles found in a given environment
must provide some adaptive advantage under that environment, without considering phenotypes
or directly measuring individual fitness. Using an alternative approach to model fitness explicitly,
Exposito-Alonso and colleagues (2019) used a multi-environment GWAS to predict the change
in selection intensity and direction (i.e., relative fitness changes) in Arabidopsis thaliana associated
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with climate change (Figure 4¢). That is, they estimated the fitness effects of alleles in a given
environment rather than predicting whether such alleles would be present or absent. To do that,
they first used common garden experiments to estimate the influence of each allele on plant fit-
ness depending on the environment (the allelic selection differential). Then they studied whether
the association of an allele with the environment of origin could explain the empirically measured
fitness effects at two field sites along an environmental gradient. Finally, they trained a random for-
est model to predict locus-specific relative fitness from a matrix of per-allele climate associations.
This approach, named genome-wide environment selection (GWES) modeling by the authors,
allows the direct prediction of the mean change across loci in the selection intensity or direction
caused by a change in climatic environment. Spatial projection allows the visualization of where
selection will be the most perturbed by climate change across the species range (Figure 4).

3.3. Validating Predictions of (Mal)Adaptation

The genomic predictions of (mal)adaptation to climate described above are based on a statistical
simplification of genetic-environment relationships and so must be viewed cautiously as model
predictions in need of experimental validation. As such, any use of these methods should consider
several key assumptions that underlie the different approaches described above for predicting
short-term climate (mal)adaptation: (#) The adaptive genetic component has been correctly
identified and included in the prediction model, (5) the magnitude of genetic offset (or change in
selection intensity) is proportional to the expected decrease in fitness, (c) the genetic-environment
relationship identified reflects the current optima between the standing genetic variation and
the available set of climatic conditions, and (d) the current GEAs can be used to predict the
(mal)adaptation response to a change in climate across time [e.g., a space-for-time substitution
(Blois et al. 2013)]. Promising approaches to validate these assumptions and the accuracy of the
resulting predictions include controlled experiments on living organisms (common gardens),
simulation studies (experiments in silico), and observational studies (historical records).

Confirming that the identified loci (see Section 3.1) are really involved in local adaptation
(assumption #) is a concern of many studies using GWAS or GEA methods to find candidate genes
(Ioannidis et al. 2009, Oetting et al. 2018). It can be done by adding several layers of corroborating
evidence, for example, by verifying the initial genotype-phenotype association or GEA with data
from independent samples (Bay et al. 2018) or testing whether the same set of climatic variables
identified in GEA is important for shaping clines in fitness in common gardens or provenance tests
(Aitken etal. 2008, De Kort et al. 2014, Mahony et al. 2020, Rehfeldt et al. 2002, Steane et al. 2014).
More direct experimental support can be garnered by growing genotypes containing the putatively
adaptive alleles under controlled conditions (Exposito-Alonso et al. 2019, Yoder et al. 2014) or by
functionally validating phenotypic effects through genetic transformation of candidate loci into
specific mutant backgrounds, gene editing of putatively causal sites, or knocking back expression
of candidate genes (Curtin et al. 2017, Monroe et al. 2018, Rohde et al. 2018).

The assumption of equilibrium between current allele frequencies and climate conditions (as-
sumption b) is implicitin all GEA tests yet rarely discussed (but see Lasky et al. 2018). This equilib-
rium assumption could be tested indirectly by asking whether phenotypic adaptation (i.e., fitness)
is maximal when genotypes experience climates most similar to their collection site and decreases
upon transfer to a climatically dissimilar environment. Such adaptational lags may be caused by
insufficient dispersal in response to historical climate change (Browne et al. 2019). Using common
gardens with broadly distributed A. thaliana ecotypes, Exposito-Alonso et al. (2019) found that al-
leles from environments close to those experienced at the common garden sites tended to display
higher relative fitness, although the relationship was complex and often genotypes from faraway
regions had the highest performance. This finding mirrors that of Fournier-Level et al. (2011).
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If assumption & is correct, it is then critical to validate the relationship between genetic offset
and the predicted decrease in fitness (assumption ¢) to evaluate whether the model is indeed infor-
mative in the face of demographic complexity (i.e., the effects of other processes on spatial variance
in allele frequencies, such as expansion history and gene flow) as well as the genetic architecture
of climate adaptation (polygenic trait architectures, GXE interactions, nonadditive genetic vari-
ance). Formal tests linking genetic offset with observed losses in fitness (or population declines) are
needed to provide a rigorous validation of the predictions. Bay et al. (2018) took an initial step in
this direction by associating genetic offset with spatial extrapolations of historic population trends
for the yellow warbler (Sezophaga petechia). They found a correlation between the mapped patterns
of population decline (based on the North American Breeding Bird Survey) and predicted genetic
offset under future climate conditions; this correlation could indicate that yellow warbler popu-
lations may already be declining due to a failure to adapt to climate change. Common gardens
or controlled environment experiments could also be used for this purpose under the assumption
that climate change is equivalent to an environmental transfer distance (Exposito-Alonso et al.
2019, Jaramillo-Correa et al. 2015, Lasky et al. 2018). The use of historical collections (Lang et al.
2019) or even resurrection studies (Etterson et al. 2016) using seed banks could also provide in-
teresting possibilities for validating the (mal)adaptation predictions based on the genetic offset
between historical and contemporary climates.

A great deal of uncertainty exists surrounding the climatic conditions populations will en-
counter in the future and how current adaptive genetic variation may recombine into novel geno-
typic combinations (assumption d). One major source of uncertainty is the variation in climate
forecasts among different general circulation models (GCMs). These uncertainties can and should
be integrated into the genomic prediction approach, for example, through the use of ensemble
modeling based on multiple GCMs (Forester et al. 2013, Gougherty et al. 2020).

4. FUTURE DIRECTIONS AND CHALLENGES FOR GENOMIC
PREDICTION OF (MAL) ADAPTATION UNDER CLIMATE CHANGE

4.1. Toward Integrating the Relative Importance of Different Short-Term
Responses to Climate (Mal)Adaptation

Standing (i.e., pre-existing) genetic variation is not the only factor that determines population
persistence, and future efforts should focus on integrating genomic prediction models with other
ecological and physiological processes and data sources. For example, individuals might tolerate
exposure to rapidly changing environments through physiological plasticity. In many species, ex-
posure to sublethal environmental change can decrease the magnitude of the response to more
extreme subsequent stressors (Somero 2010, Stillman 2003). Thus, plasticity could help mitigate
maladaptation predicted by genetic offset, potentially allowing population persistence until an
adaptative response is possible (Chevin et al. 2010, Price et al. 2003). Measuring plasticity under
multiple relevant climatic environments and combining organismal data (morphology, physiology,
etc.) with variation at the transcriptomic and epigenomic levels could prove a more nuanced view
of vulnerability to climate (mal)adaptation that could improve predictions based on genetic offset
alone.

While current methods of genome-informed prediction of climate (mal)adaptation focus pri-
marily on the match between standing genetic variation and future environments, there are in
fact multiple potential sources of new adaptive variation. Standing genetic variation is the most
likely source of adaptation in the short term (Barrett & Schluter 2008), but beneficial mutations
can arise, especially in organisms with very large population sizes and short generation times. In
addition, gene flow among populations could act to redistribute the spatial arrangement of genetic
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variation within the landscape. Gene flow could have either positive or negative consequences for
population persistence under environmental change, either by redistributing climate-adaptive al-
leles to areas where they maintain high fitness or by swamping existing populations through the
immigration of climate maladaptive alleles (Lenormand 2002). Estimates of migration distances
for climate adaptive alleles could add to our understanding of the potential for standing genetic
variation to mitigate genetic offset (Capblancq et al. 2020, Gougherty et al. 2020).

In addition, climate change and other anthropogenic factors might alter rates of secondary
contact between species (Bleeker & Hurka 2001, Harbicht et al. 2014, Seehausen et al. 1997), in-
creasing the potential for hybridization and introgression. Adaptive introgression has the potential
to produce novel allelic combinations that may be adaptive under changing environments (Grant
& Grant 2016, Grant et al. 2004). A clear example of this is brown coat color in snowshoe hares,
a phenotype that is beneficial in regions with decreased snowpack. The genetic variant encoding
this beneficial phenotype originated through introgression from jackrabbits (Jones et al. 2018). In
this case, introgression of the brown allele into snowshoe hares was adaptive under climate change
conditions that otherwise led to decreased crypsis.

4.2. The Role of Future Novelty in Climate, Genotypes, and Biotic
Interactions in Genomic Prediction of (Mal)Adaptation

Among quantitative geneticists using genomic prediction of phenotypes, there is common agree-
ment that accurate predictions are dependent on using samples with similar relatedness or ances-
try structure and growing in conditions similar to those used when developing the model (e.g.,
Resende etal. 2012). This expected dependence of prediction accuracy on relatedness and environ-
mental similarity between training and testing populations is also likely to affect studies predicting
genomic (mal)adaptation of natural populations under novel climates.

Novel environments are expected to be widespread in some regions under future climate con-
ditions (Williams et al. 2007). Climate-analog mapping studies suggest the future formation of sea-
sonal patterns of temperature and precipitation that do not currently exist, known as no-analog
climates (Fitzpatrick et al. 2018a, Williams & Jackson 2007). No-analog climates are known to
have also existed in the recent geologic past (Veloz et al. 2012), but how these environments will
interact with standing genetic variation is unknown. Even if analogous climates exist between
current and future conditions, the range that populations of a species occupy along a current cli-
matic gradient may become extended to more extreme portions of the gradient in the future. This
could potentially result in dramatic changes in the shape and direction of the functional form
of the fitness response to the environment (Figure 5) and bias any extrapolation based on cur-
rent genetic-environment relationships. Prediction of climate (mal)adaptation into regions where
genetic ancestry or climatic environments are beyond the range used to train the model could
therefore lead to poor prediction accuracy.

In addition, future changes in the abiotic climatic environment will surely induce changes in
biotic interactions such as competition, predation, herbivory, disease, and symbiosis (Blois et al.
2013). The effect of changed biotic interactions under future environments may be an especially
important influence contributing to maladaptation of populations by altering the relative fitness
of climate-selected alleles in the presence of interacting species (Benning & Moeller 2019). For
example, a recent modeling paper demonstrated that under the warmer temperatures expected in
future climates, insect crop pests will experience accelerated metabolism and increased population
growth, leading to greater loss of crop yields than predicted under climate losses alone (Deutsch
et al. 2018). Biotic interactions may also weaken the accuracy of genomic predictions if the ge-
netic architecture of climate adaptation contains genes exhibiting pleiotropic responses to both
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Figure 5

Unsampled gene-environment associations under novel climates may hamper genomic prediction. Genomic
prediction into new environments may involve climate values beyond the occupancy of contemporary
populations used to train the model (blue circles). Some populations are predicted to occupy new portions of
the climate gradient beyond the contemporary range (red diamonds on the right of the current climate
maximum). This may generate biased or misleading predictions if the fitness function underlying the
gene-climate association differs between contemporary (so/id /ine) and future portions of the climate gradient
(dashed lines). Different modeling approaches may vary in the assumptions made when predicting climate
(mal)adaptation under novel climates, including (A4) linear extrapolation or (B) no change in relative fitness,
leading to biased and inaccurate predictions of climate adaptation when the true fitness function (C) departs
from the model extrapolation.

abiotic and biotic stress. One such example involves the plant circadian clock, which controls mul-
tiple aspects of the timing of growth and reproduction through diurnal and seasonal regulation of
gene expression. While clock genes regulate responses to photoperiod, temperature, and osmotic
stress, they also respond to biotic stress through temporal regulation of inducible defense genes
(Greenham & McClung 2015). Genomic prediction of (mal)adaptation under future climates is
therefore likely to be impacted by both novel abiotic conditions and novel biotic interactions that
those new environments might induce.

Quantifying these uncertainties and integrating them into our confidence in the predictions of
climate (mal)adaptation should be a priority for future work. We see several opportunities to help
address these challenges, such as (#) simulation testing, (b)) mapping regions of predicted gene-
climate novelty, and (¢) experimental quantification of climate (mal)adaptation under extreme or
novel environments.

First, a potentially powerful way to assess the sensitivity of genomic predictions to different ge-
netic architectures or extrapolation into novel climate space is through the use of spatially explicit
genetic simulations. Testing the response of simulated populations to (mal)adaptation under novel
and shifting climates, including simulation of conditions beyond the historic range of values, can
be a useful approach to probe the limitations of genomic methods to predict climate
(mal)adaptation and their associated uncertainties. While simulations have been useful for
highlighting issues that arise when trying to identify the genetic basis of local adaptation (e.g.,
Lotterhos & Whitlock 2014), there is a need for simulations testing the methods for genetic offset
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prediction discussed here under a range of demographic, genetic, and climate change scenarios.
It could be especially informative to test how different methods for offset prediction (GF, GDM,
RDA, etc.) behave given different possible shapes of the fitness functions under future climatic
conditions (Figure 5). Ultimately, simulating scenarios where gene flow is possible among
populations could also provide an idea of the magnitude of genetic migration required to avoid
the predicted genetic offset.

Second, identifying regions of the landscape most likely to experience novel gene-environment
associations due to no-analog climates is a first step toward assessing the importance of this issue.
For example, Gougherty et al. (2020) used GDM to define and quantify a reverse genetic offset.
The reverse genetic offset is the minimum genetic offset between a focal population under future
climatic conditions and all possible locations within the range under current climate conditions. In
other words, this approach asks the question, “Is there a location (population) within the current
range of the species that harbors gene-environment associations similar to those expected at a
focal location under future climate?” Regions that show the greatest reverse offset could help
guide predictions of where we might expect changes along existing gradients of genotype-climate
associations rather than the emergence of novel associations outside of those observed among
contemporary populations.

Finally, in line with the importance of validating genomic predictions, common garden ex-
periments or controlled environment tests of genotyped individuals measured for fitness (or its
proxies) could be extended to measure the response of individuals to extreme or novel climate
conditions. Such experimental manipulations are already part of many common garden experi-
ments in which additional climate manipulations are added to simulate future conditions. Recent
examples include treatments that increased temperatures via infrared heaters (Reich et al. 2018),
lowered soil moisture and increased drought through rainfall exclusion (Exposito-Alonso et al.
2019), or decreased snowpack through snow removal (Anderson & Wadgymar 2020). Similarly,
the effect of novel biotic interactions on genomic predictions of climate (mal)adaptation could
be assessed by subjecting genotyped test populations to common gardens with either spatial or
temporal manipulations of the interacting species (e.g., Morton & Rafferty 2017).

5. CONCLUSION

Using genomic data to predict the future climate (mal)adaptation of populations is a rapidly evolv-
ing field of research that has provided a different perspective for ecologists and evolutionary bi-
ologists working to understand the role of intraspecific genetic variation on species responses
to climate change. However, efforts at genomic prediction of climate (mal)adaptation are still in
their infancy and face numerous challenges and uncertainties that have not yet been fully investi-
gated. Future studies will need to move toward not only estimating but also validating predictions
in complex and natural landscapes. Testing the modeling procedures and their assumptions will
hopefully help improve the accuracy of predictions while also taking into account the uncertainty
in climate forecasts, the presence of no-analog climates, the importance of plastic responses, and
even the potential impact of admixture or hybridization among species. The recent increase in the
number of studies exploring such concepts will undoubtedly broaden and help refine the statistical
approaches employed and provide more empirical examples from increasingly diverse taxa.
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