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Abstract

Classic theory relates herbivore pressure to the ecology and evolution of
plant defenses. Here, we summarize current trends in the study of plant–
herbivore interactions and how they shape the evolution of plant chemical
defenses, host choice, and community composition and diversity. Inter- and
intraspecific variation in defense investment is driven by resource availability.
The evolution of defenses at deeper nodes of plant phylogeny is con-
served, yet defenses are highly labile at the tips. On an ecological timescale,
while greater specialization of tropical herbivores enhances local diversity
by reducing the performance of plants with similar defenses, in temperate
ecosystems withmore generalist herbivores, rare defense profiles are at a dis-
advantage.On an evolutionary timescale, host choice by herbivores is largely
determined by plant defenses rather than host phylogeny, leading to evo-
lutionary tracking by herbivores rather than cocladogenesis. The interplay
between plants and herbivores shapes both the origin and maintenance of
diversity.
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1. INTRODUCTION

Because plants and their insect herbivores together account for more than half of the macroscopic
diversity on land, their interactions play an extremely important role. These relationships affect
many aspects of biodiversity and ecosystem function, influencing processes as diverse as nutrient
cycling and carbon sequestration (Díaz et al. 2006), community assembly, and species diversity
(Maron et al. 2019). Here, we review recent advances in our understanding of how these defenses
shape the ecological and evolutionary interactions in the arms race between plants and herbivores.

Since the early days in the study of plant defenses, much of the research has focused on
resolving three main questions: What is the significance of plant defenses, why do defenses vary
across species, and what are their ecological and evolutionary consequences for shaping patterns
of biodiversity? Over the last decades, significant contributions have been made to resolve some
of these questions, such as proving the adaptive value of defensive traits (Dethier 1954, Fraenkel
1959) and determining the selective pressures that have led to the variety of defensive strategies
seen across and within species (Stamp 2003). For example, studies have shown that variation in
the amount and type of defense responds to the optimal balance between herbivore pressure and
access to resources (Coley et al. 1985, Feeny 1976). Over the past 50 years, development of plant
defense theory has provided an effective framework for predicting outcomes and developing
experiments (Stamp 2003).

Recently, modern ecological and evolutionary theory, coupled with methodological innova-
tions in quantifying phylogenetic relationships and defensive chemistry, has greatly expanded our
ability to critically address long-standing research questions about plant–herbivore interactions.
Thanks to these innovations, we can refine the testing of classical hypotheses, such as the con-
tribution of plant defenses to local coexistence through negative density-dependent effects of
herbivores (Connell 1978, Janzen 1970) and the role of the interactions between plants and herbi-
vores in trait divergence and coevolution (Ehrlich & Raven 1964, Futuyma & Agrawal 2009). The
general consensus is that plant chemical defenses play an essential role in community assembly
and evolution for both plants and insect herbivores.

In this review, we explore current trends in the study of the ecology and evolution of plant
defenses. First, we provide a brief summary of the conceptual frameworks that have aimed to
understand variation in plant defenses across and within species, an important research direc-
tion since the mid-twentieth century. Then, we address questions that are currently under active
investigation but that lack a recent synthesis. For example, how do plant–insect interactions di-
rect the evolution of defenses, how do defenses shape host selection, and how do plant–herbivore
interactions influence community assembly and diversity?

Rather than reviewing all classes of plant defenses,we focus on plant defensive chemistry.While
all defensive traits negatively affect herbivores, chemical defenses are among themost effective and
diverse and have been invoked as a major axis in plant and herbivore interactions (Agrawal et al.
2009, Endara et al. 2017, Futuyma & Agrawal 2009, Thompson 1988). We highlight the use of
metabolomics, a recently developed chemical analytical technique that, coupled with phylogenetic
comparative methods, has greatly enriched our ability to explore the chemical diversity of plants at
unprecedented taxonomic and geographic scales (Defossez et al. 2021, Forrister et al. 2023, Sedio
et al. 2017). This has contributed to stronger inferences and more rigorous contributions to long-
standing questions in the evolutionary ecology of plant defenses.The integration of metabolomics
with genomics and transcriptomics is also providing a mechanistic link between plant physiol-
ogy (i.e., subcellular processes) and the role it plays in mediating ecological interactions. This
broadscale, micro-to-macro perspective has proven useful in our quest to understand the ecology
and evolution of plant defenses. Throughout this review, we attempt to take this perspective by
synthesizing our understanding of plant defense theory across scales.
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2. PLANT DEFENSES

In plants, a variety of defensive traits have evolved, including physical structures (e.g., hairs,
thorns), toxic chemical compounds (secondary metabolites, e.g., saponins, nonprotein amino
acids), reduced nutritional quality, and phenological escape. These defensive traits are considered
direct defenses because they act directly on the herbivore. Plants have also evolved partnerships
with species from the third trophic level, which are termed indirect defenses. For example, plants
may provide food to predators of insect herbivores (e.g., extrafloral nectar) or produce volatile
signals to attract parasitoids of herbivores. All these defensive traits can vary independently from
each other (Endara et al. 2017) and contribute to host choice by insect herbivores (Endara et al.
2017, 2018).

Plants are widely considered to be chemical factories, with the estimated size of the
metabolome of an individual species ranging between 5,000 and tens of thousands of compounds
(Fernie et al. 2004). Across the entire plant kingdom, the total estimated chemical diversity is be-
tween 200,000 and 1,000,000 small molecules (Dixon& Strack 2003, Fang et al. 2019).Within the
singleNeotropical tree genus Inga (Leguminosae),we have catalogedmore than 9,000 compounds
(Endara et al. 2022, Forrister et al. 2023). A small portion of a species’ metabolome is involved in
primary metabolism, which is broadly conserved across all plant species and underpins all cellular
processes. In contrast, the vast majority of chemical diversity consists of specialized plant metabo-
lites, also known as secondary metabolites. These are derived from a small group of precursor
compounds used in primary metabolism, which are eventually modified into diverse end products.
For example, the >40,000 isoprenoid compounds branch out of the central carbon metabolism
(Moore et al. 2014), and another >10,000 metabolites, including alkaloids, glucosinolates, and
phenylpropanoids, are amino acid derivatives (Figure 1) (Wink 2003).

Plant secondary metabolites mediate interactions between a plant and its external environment
(Walker et al. 2022), from deterring pests and pathogens (Lokvam&Kursar 2005, Schneider et al.
2019, Tiku 2020) and attracting pollinators (Sosenski & Parra-Tabla 2019) to allowing a plant to
survive harsh abiotic conditions [e.g., UV protection and prevention of desiccation (Schneider
et al. 2019, Wang et al. 2019)]. These metabolites belong to many chemical classes, including
phenolics, terpenes, alkaloids, glucosinolates, and nonprotein amino acids (Hopkins et al. 2009;
Lokvam et al. 2004, 2007; Lokvam&Kursar 2005; Tiku 2020).The chemistry and biology of most
major classes of chemical defenses have been extensively reviewed. Therefore, we summarize only
the main classes of secondary metabolites in Figure 1. For comprehensive reviews, see Harborne
(1988), Rosenthal & Berenbaum (1991), Wang et al. (2019), and Wink (2003).

Thus, plants invest in an astonishingly diverse array of secondary metabolites, with the type
and number of defensive metabolites varying across species and even within individual plants.
For example, plants with different life history traits and habitat preferences show differences in
defense investment. Young expanding leaves invest more in secondary metabolites than mature
leaves (Wiggins et al. 2016). These patterns have been rationalized by various theories discussed
in the next section; these theories in turn have stimulated a multitude of studies and established
the basic conceptual framework linking defense and herbivory (Coley et al. 1985, Feeny 1976,
Herms & Mattson 1992, Rhoades & Cates 1976).

3. MICROEVOLUTIONARY PATTERNS OF DEFENSE INVESTMENT:
PLANT DEFENSE THEORY

For many years, the study of plant–insect interactions focused primarily on the role of secondary
metabolites in plants and on the costs and benefits of these defenses. Once it was established
that secondary chemicals were not waste products but functioned as defenses against herbivores
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Figure 1

Examples of selected plant specialized metabolite structures arranged by major classes that have been implicated in defense against
pests or pathogens. Biosynthetic origins from primary metabolism are depicted with arrows for each of the three compound groups:
(a) phenolics, phenylpropanoids, and flavonoids; (b) terpenoid compounds; and (c) nitrogen-containing compounds.

(Dethier 1954, Fraenkel 1959), interest shifted to explaining why the amount and type of defenses
differed considerably within and among species. To this end, many conceptual models have been
proposed (Stamp 2003), most of them based on the premise that variation in defense expression
across species is related to optimal levels of investment, such that the benefits outweigh the cost
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(Feeny 1976,McKey 1974,Rhoades&Cates 1976).Here,we focus on theories aimed at explaining
differences in defenses among species. Then, we discuss other influential theories that have helped
us understand differences in defenses among individuals within species.

3.1. Interspecific Patterns of Defense Investment

Plant apparency theory (Feeny 1976, Rhoades & Cates 1976) and the resource availability hy-
pothesis (Coley et al. 1985) stand out as the most prominent plant defense theories that address
interspecific variation in defense expression. Plant apparency theory proposes that differences
in defenses between species are related to a species’ predictability to herbivores (Feeny 1976,
Rhoades & Cates 1976). Thus, it proposes that species that are more apparent or conspicuous to
herbivores, such as large, evergreen, and long-lived plants, have evolved defenses that are effec-
tive against most herbivores and that reduce damage quantitatively (e.g., defenses that are more
effective at higher concentrations, such as tannins). Meanwhile, because of the ephemerality and
short lifetimes of unapparent species, such as herbs, selection is proposed to favor qualitative de-
fenses against generalist herbivores (e.g., defenses that are effective at low concentrations, such
as alkaloids). Immediately upon its publication, this theory was accepted, and it has profoundly
shaped the field. However, some of its assumptions are challenging to test, such as the classifi-
cation of plant species and defenses along the apparency and quantitative–qualitative continua,
respectively.

The resource availability hypothesis (also known as the growth rate hypothesis) (Coley et al.
1985) differs in emphasizing the role of the environment in the evolution of defenses. Based on the
observation that species from resource-rich environments exhibit inherently higher growth rates
than species from resource-poor environments (Chapin 1980; Coley et al. 1985; Grime 1977,
2006), this hypothesis predicts that species from less productive environments are selected to ex-
hibit higher levels of constitutive defenses and therefore experience lower herbivore consumption
than fast-growing species. This prediction relies on the idea that for slow-growing species, the
opportunity cost of investing in regrowth after herbivory losses would be high because of their
inherently slow growth and the low accessibility of resources in the environment to which they
are adapted. Qualitative and quantitative reviews across a wide range of species and latitudes are
consistent with the resource availability hypothesis in showing that growth rate shows a negative
correlation with defense investment and a positive correlation with herbivory levels across plant
species, independent of their apparency (Endara & Coley 2011).

3.2. Intraspecific Patterns of Defense Investment

Other important theories that make predictions about differences in defense investment are
the carbon–nutrient balance hypothesis (Bryant et al. 1983) and the growth–differentiation bal-
ance hypothesis (Herms & Mattson 1992). It is important to note that these theories pertain to
plasticity, as they address intraspecific differences in defense expression.

The carbon–nutrient balance hypothesis predicts intraspecific disparities in defenses across
different resource levels. This hypothesis suggests that resources in excess for growth are likely
shunted to defense. Thus, higher levels of carbon-based defenses are predicted in individuals
growing under high light intensities or low nutrient levels (Massad et al. 2012). While the utility
of this theory has occasionally been questioned (Hamilton et al. 2001), it has recently regained
prominence in the study of climate change effects on plant defense expression (Fabian et al. 2018,
Watanabe et al. 2021).

The growth–differentiation balance hypothesis, in contrast, rationalizes defense allocation
within individual plants in response to resource gradients. It follows predictions from optimal
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defense theory (Glynn et al. 2007; Herms & Mattson 1992; Stamp 2003, 2004), which predicts
that tissues of higher value for plant fitness will be better defended (e.g., flowers and fruits will be
better defended than leaves). In general, the growth–differentiation balance hypothesis predicts a
negative correlation between growth and differentiation (e.g., investment in defenses) for plants
that grow under conditions that range from intermediate to high resource levels. Although it is
considered one of the most theoretically mature hypotheses (Stamp 2004), testing its predictions
has proven difficult. For instance, in order to assess the curvilinear pattern of defense investment
as originally proposed by Herms &Mattson (1992), a minimum of five resource levels are needed
(Stamp 2004). In addition, it is difficult to separate allocation costs between growth and some
structural differentiation products that can belong to either the defense category (e.g., trichomes)
or the growth category (e.g., cell walls). However, it has gained considerable support in the last
few years (Ahmed et al. 2014, Chen et al. 2015, Xie et al. 2022).

Together, intraspecific and interspecific hypotheses of defense investment have provided an
effective framework for predicting outcomes and developing experiments during the last 50 years.
Currently, the field of plant defense theory is moving from organismal-level observation into
the cellular scale. Detailed molecular studies (e.g., ones that combine transcriptomic, proteomic,
and metabolomic approaches) on a few model plant species have shown that trade-offs in growth
and defense are the result of active regulation in coordinated cellular processes (e.g., cascades
of molecular signals, phytohormone cross talk) while maintaining stored resource pools for
future biotic and abiotic stresses (Monson et al. 2022). The integration of the optimization
framework that lies beneath plant defense theory with recent breakthroughs in omics is allowing
a deeper understanding of the processes and mechanisms that underlie defense expression not
only at this microevolutionary level (Monson et al. 2022, Züst & Agrawal 2017) but also at larger
scales.

4. THE EMERGENCE OF PLANT METABOLOMICS
AS AN ANALYTICAL TOOL

For many years, the study of the ecology and evolution of plant defensive compounds was limited
to examining the role of single secondary compounds [e.g., nicotine (Steppuhn et al. 2004)] or
chemical classes [e.g., phenolics (Coley & Barone 1996, Wink 2003)]. Constrained by the chem-
ical tools available between the 1950s and the 2000s, researchers were not able to perform full
characterizations of the chemical defensive profiles of individual plants. This substantially limited
their capacity to quantify chemical similarity among plant species in order to determine similar
functions with respect to antiherbivore activity, as well as to identify similar biosynthetic path-
ways of chemical evolution or the role of upstream molecules (e.g., genes, RNAs, proteins) in
physiological processes and ecological interactions. Furthermore, tests of classical plant–herbivore
interaction hypotheses often require exploration of the role of chemical diversity in the evolution
of herbivore–host associations (Endara et al. 2022, Richards et al. 2015), the causes and conse-
quences of herbivory variation (reviewed inWetzel et al. 2023), and the ecological and evolutionary
consequences of chemical variation across large taxonomic, phylogenetic, and geographic scales
(Defossez et al. 2021, Forrister et al. 2023, Sedio et al. 2017). However, this situation is rapidly
changing, as ecologists are partnering with chemists and employing the latest technological ad-
vances to explore the largely undiscovered chemical diversity of plants (Castro-Moretti et al. 2020,
Dyer et al. 2018) and to characterize the entire suite of defensive compounds expressed in different
species. Specifically, untargetedmetabolomics methods combine statistical analyses with analytical
instrumentation, including liquid chromatography, gas chromatography,mass spectrometry (MS),
and nuclear magnetic resonance. This powerful approach simultaneously provides qualitative and
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Molecular network of metabolites found in 98 species of tropical trees from the genus Inga. Each dot represents a single compound
connected and clustered in space by lines (edges) based on their spectral similarity using the Global Natural Product Social Molecular
Networking site (GNPS 2023,Wang et al. 2016). (a) Feature-based molecular networking groups related metabolites into molecular
networks based on spectral similarity. Molecular networking thus serves as a proxy for structural similarity even when compounds do
not receive annotation based on spectral database matches (light-gray dots). (b) Molecular networking is used to determine the chemical
similarity between species based on the presence or absence of compounds, as well as their structural similarity. Compounds present in
Inga sapindoides are shown as red dots, those present in Inga umbellifera as blue dots, and those present in both as yellow dots. Figure
adapted from Forrister et al. (2023).

quantitative data on dozens to hundreds of compounds per species (Defossez et al. 2021, Endara
et al. 2022, Sedio et al. 2017).

A major advantage of these metabolomic approaches is the ability to determine the chemical
similarity between species based on the presence or absence of compounds, as well as their
structural similarity (Figure 2a). This is particularly important for interspecific comparisons,
since most compounds are not shared (Figure 2b), and traditional diversity measures, such as
Bray–Curtis, do not take into account that most of these unshared compounds are biosynthet-
ically related (Endara et al. 2022, Sedio et al. 2017). Thus, chemical similarity of species can be
characterized not only by the minority of compounds that are shared but also by the chemical
similarity of the compounds that are not shared (Figure 2a). These new metabolomic methods
allow chemical similarity using the entire suite of compounds present in a species to be mapped
onto phylogenetic trees to assess patterns of defense evolution (Forrister et al. 2023). Additionally,
researchers can quantify changes in chemical investment between different plant tissues [e.g.,
between expanding and mature leaves (Wiggins et al. 2016)] or between light environments
(Schneider et al. 2019) and can identify chemotypes within plant populations (Endara et al. 2018).

While metabolomics is extremely promising in terms of its potential to quantify chemical vari-
ation across scales (Figure 3), as well as for the discovery of newmetabolites, the identification and
structural elucidation of compounds pose a daunting task for analytical chemists. As the field of
metabolomics has matured, many new analytical and computational approaches are better able to
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Figure 3

A schematic of (a) the metabolomic analysis, (b) the variation in defense profiles across temporal and spatial scales, and (c) some
ecological consequences. Differences in defenses reduce herbivory by specialists and enhance plant fitness within an individual as leaves
develop, among individuals within a population, among neighboring individuals of different species ( Janzen–Connell effects), among
species within a broader community, and among close relatives.

link spectra to structure. For example, high-resolution mass spectrometers are used to isolate and
break apart metabolites into fragments, providing anMS/MS spectrum that gives structural infor-
mation about metabolites. This technique can be used to search global spectral libraries (Treutler
et al. 2016,Wang et al. 2016) and to group similar compounds into molecular networks based on
their spectral similarity (Figure 3) (Endara et al. 2022; Forrister et al. 2023; Nothias et al. 2020;
Sedio et al. 2017, 2021; Wang et al. 2016).

As the capacity to quantify and characterize the structural composition of a metabolite ad-
vances, we greatly improve the opportunity to connect an organism’s chemical composition
(phenotype) to its underlying biosynthetic pathways, regulatory networks, and genetic architecture
(genotype). The adoption of untargeted metabolomics of wild plants by ecologists and molec-
ular biologists opens windows into long-standing and new questions related to the underlying
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selective forces shaping the micro- and macroevolutionary patterns of chemical defense
investment and variation.

5. MACROEVOLUTION OF PLANT CHEMICAL DEFENSES

5.1. Phylogenetic Patterns of Defense Expression

Ehrlich & Raven (1964) incorporated a macroevolutionary framework into the study of plant–
insect interactions. In their seminal paper, they considered the reciprocal nature of the adaptive
responses between plants and herbivores and introduced the idea that plants and butterflies are
coevolving, a concept that has dominated our understanding of the interactions between plants
and insects for the last 60 years.

According to Ehrlich and Raven’s paradigm, there is taxonomic conservatism in the expression
of defenses in plants and in the use of hosts by insect herbivores. They suggested that this results
from an ongoing coevolutionary arms race between plants and enemies. Specifically, this theory
predicts that after the evolution of a new defense in response to herbivore pressure, a plant species
is able to escape most herbivores. Once in a herbivory-free zone, this plant species radiates into a
clade in which all its descendants share the new chemical defense.Thus, closely related plants have
similar defenses. This process may be repeated with the evolution of new plant defenses. Ehrlich
and Raven suggested that this historical process of defense evolution may explain the distribution
of plant secondary metabolites we see in the plant kingdom, as well as a substantial fraction of
plant species diversity.

Although no specific model for the evolution of chemical defenses was put forth by Ehrlich
and Raven, the first evidence supporting the macroevolution of chemicals came from Berenbaum
(1983). In the Parsley–Swallowtail system (Apiaceae plants and Pieridae butterflies), Berenbaum
proposed a scenario in which plants sequentially evolved several related phenolic compounds (hy-
droxycoumarins, linear furanocoumarins, and angular furanocoumarins) in increasingly derived
taxa as a response to counteradaptations from the adapted lineage of butterflies. This pattern was
explicitly defined as an escalation of defense by Vermeij (1994), based on the observation that the
production of secondary metabolites in plant lineages is associated with a degree of phylogenetic
nesting. In other words, the evolution of novel defenses is proposed to be incremental and sequen-
tial, often through the gradual embellishment of core structures into more complex and derived
compounds, during the diversification process of a lineage (Agrawal 2007, Berenbaum & Feeny
1981).

In recent decades, our understanding of the deep evolutionary origins of metabolism has grown
considerably, providing a framework for understanding the evolution of plant chemical defenses
(Moore et al. 2014, Ober 2010, Scossa & Fernie 2020,Wang et al. 2019). To understand how nov-
elty in plant chemicals is generated, in the next section we focus on the evolutionary mechanisms
by which defensive chemicals have evolved and how these mechanisms vary at different taxonomic
scales.

5.1.1. Evolution of biosynthetic innovations: Novelty at broad phylogenetic scales. Be-
cause plant defensive chemicals are derived from a limited number of biochemical pathways
(Liscombe et al. 2005), the major mode of evolution for a novel chemical defense is assumed to
be gene duplication (Moore et al. 2014, Ober 2010, Scossa & Fernie 2020). Gene duplications are
rare, nondeleteriousmutational events that allow for the expansion of existing pathways of primary
metabolism. Although the majority of gene duplications are lost over evolutionary time, a small
portion result in gene paralogs that, under relaxed selection, can acquire potentially adaptive mu-
tations.Once fixed within populations, these genes can result in novel enzymatic functions, termed
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neofunctionalization (Scossa & Fernie 2020). Neofunctionalization may result in biosynthetic in-
novations, often as a result of a shift in substrate specificity, and/or changes in the regulation of
metabolic pathways (Moore et al. 2014, Scossa & Fernie 2020). The rare adaptive duplication
events that became fixed within populations are thought to have given rise to the major expansion
of the plant metabolome that accompanied plants’ colonization of terrestrial habitats approxi-
mately 500 million years ago (Emiliani et al. 2009, Tohge et al. 2013). Together, this succession
of rare evolutionary events suggests that the evolution of biosynthetic innovations through gene
duplication happens once or a few times during the evolutionary history of a clade. This process
produces novelty only at the level of chemical class [such as the invention of an entirely novel class
of structures, e.g., glucosinolates (Figure 1)] and at broad phylogenetic scales [e.g., clades, such
as the plant family or genus level (Agrawal 2007, Wink 2003, Zhang et al. 2021)].

Comparative studies performed at these broad taxonomic scales have found the dominance of a
particular defense class (Wink 2003). At this phylogenetic scale, the expression of lineage-specific
metabolite classes has been shown for certain plant families: coumarins for Apiaceae (Berenbaum
1983), cardenolides for the Apocynaceae (Agrawal & Konno 2009), quinolizidine alkaloids and
nonprotein amino acids in Fabaceae (Wink 2003), glucosinolates for Brassicaceae (Hopkins et al.
2009), and tropane alkaloids for Solanaceae (Griffin & Lin 2000, Wink 2003), among other
examples.

5.1.2. Evolution of novel chemical defenses: Novelty at finer taxonomic scales. With the
development of new phylogenetic tools and the ability to characterize the entire metabolome,
different patterns of defense evolution have been found at finer taxonomic scales (species level).
Examinations of the phylogenetic structure of plant chemical defenses within genera have revealed
that close relatives are not similar in their suite of defensive chemicals (Agrawal & Fishbein 2006,
Becerra 1997, Becerra et al. 2009, Forrister et al. 2023, Kursar et al. 2009, Sedio 2013). This has
resulted in a pattern of poor congruence between their phylogenetic histories and the expression
of plant defenses. For example, for the genus Inga, we have found that closely related species are
highly divergent in the expression of chemical defenses (Forrister et al. 2023, Kursar et al. 2009).
Similarly, for the genus Ficus in Papua New Guinea, evolution of defenses follows a pattern of
divergence toward the tips of the phylogeny (Volf et al. 2017). The fact that closely related species
at this phylogenetic scale are dissimilar in defenses suggests that these traits are experiencing
rapid evolutionary change. Thus, at finer taxonomic scales, secondary metabolites may evolve by
faster and simpler mechanisms than at broad taxonomic scales.Changes to regulatory mechanisms
(e.g., differential gene expression) have been suggested as possible mechanisms (Burow et al. 2010,
Durbin et al. 2003,Tewari et al. 2003,Windsor et al. 2005).Differential expression of individual or
biosynthetically related metabolites can result in the evolution of novel combinations of existing
defense compounds.Rapid changes to regulatorymechanisms can shape a species’ chemical profile
and lead to divergent defense profiles between closely related species at the tips of the phylogenetic
tree without the evolution of key biosynthetic innovations (Agrawal & Fishbein 2006, Coley et al.
2018, Courtois et al. 2016, Forrister et al. 2023). Mounting evidence from numerous plant genera
[e.g., Bursera (Becerra 1997, Becerra et al. 2009),Mimulus (Wills et al. 2016), Piper (Richards et al.
2015), Protium (Salazar et al. 2018), Psychotria (Sedio 2013)] has shown that divergence in the
profile of plant chemical defenses among close relatives is common. Our work suggests that pests
and pathogensmight be the drivers selecting for this divergence in defensive traits (see Section 4.1)
(Endara et al. 2017, Forrister et al. 2023).

We have found strong evidence for both mechanisms driving defense evolution in the genus
Inga: biosynthetic innovations at the clade level and divergence at the tips of the phylogeny. The
chemical profiles of Inga are dominated by phenolics, saponins, and nonprotein amino acids, as well
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as the overexpression of l-tyrosine and related depsides. The overexpression of tyrosine evolved
once and is restricted to a single clade consisting of 21 species that invest in 5% to 20% leaf dry
weight tyrosine (Coley et al. 2019), which is toxic to generalist herbivores at these concentrations
(Lokvam et al. 2006). The relatively recent (∼4.47 Mya) evolution of this defense is likely the re-
sult of a gene duplication event (Coley et al. 2019). Several species within this clade have evolved
more derived compounds, including tyrosine and tyramine depsides, providing evidence for the
escalation of defense through gradual modifications of core structures. In contrast, the other de-
fense classes found in most Inga species show little to no pattern of phylogenetic conservatism,
with many individual compounds and compound classes rapidly switching between presence and
absence across the phylogeny. This is likely a result of changes in the transcriptional regulation of
biosynthetic pathways (Courtois et al. 2016, Forrister et al. 2019, Moore et al. 2014).

While patterns of variation in taxonomic conservatism in the expression of chemical de-
fenses across and within clades are clear, more work is needed to integrate evolutionary theory,
macroevolutionary patterns of plant defenses, and our understanding of the evolutionary ge-
nomics of plant metabolism in order to understand the evolution of novelty in plant chemical
defenses. Metabolomics has the potential to provide the mechanistic link between metabolic pro-
files and their underlying evolutionary and biosynthetic processes (Dyer et al. 2007,Walker et al.
2022) through integration with other omics approaches such as genomics, transcriptomics, and
proteomics.

5.2. Phylogenetic Patterns of Host Use by Herbivores

Another expectation from the arms race hypothesis (Ehrlich & Raven 1964) is that host associa-
tion should be conserved in phytophagous insects at both ecological and evolutionary timescales.
Because plant defenses were assumed to be phylogenetically conserved across all levels of phylo-
genetic divergence, host shifts in insects were predicted to be rare, and if shifts happened, these
were predicted to occur between closely related plants (Agrawal 2007, Futuyma & Agrawal 2009).
Thus, at the ecological level, the assemblage of herbivores in a local community was expected to
be related to the phylogenies of the assemblages of the host plant species (Lewinsohn et al. 2005,
Ødegaard et al. 2005,Weiblen et al. 2006). At an evolutionary level, parallel cladogenesis, or sim-
ilarity in the sequence of speciation events between both groups, was expected (Mitter & Brooks
1983).

Early studies using natural history observations found results consistent with the main
premises of the theory (Benson et al. 1975, Gilbert 1982, Turner 1981). Nevertheless, with
the development of new phylogenetic tools and analytical methods that allow host phylogeny
and trait information to be combined, tests have found results that are not in full agreement
with the original expectations from the arms race hypothesis. Phylogenetic conservatism for
herbivore host association changes with the taxonomic scale of the host plant. Ecological studies
of herbivore assemblages have found the phylogeny of the hosts at the species level to be a
poor predictor of community assembly (Becerra 2007; Endara et al. 2017; Nakadai et al. 2014;
Novotny et al. 2002, 2010; Sedio 2013). Instead, similarity in defensive chemicals between plant
hosts strongly constrain host selection at the whole-community level (Becerra 2007, Endara
et al. 2017, Massad et al. 2017, Richards et al. 2015, Salazar et al. 2018, Volf et al. 2017). Our
studies with lepidopteran herbivores associated with the genus Inga across the Amazon Basin
have shown the key role that host chemistry plays in structuring herbivore community assembly
both within (Endara et al. 2017) and across (Endara et al. 2018) sites. Plant species pairs that are
more similar in the herbivore communities they host are also more similar in defensive traits,
but these plant species are not necessarily closely related. Interestingly, the phylogeny of the host
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plant community plays a bigger role in structuring herbivore communities at broader taxonomic
levels. For example, in the temperate forests of Japan and the Czech Republic, the phylogenetic
relationships between pairs of confamilial host plant species drive the assembly of generalist
herbivores, whereas relatedness between congeneric species plays a minor role (Volf et al. 2017).

At the macroevolutionary level, explicit analyses of codiversification between plants and her-
bivores have found similar patterns to those at the ecological scale. In general, host shifts among
closely related herbivores are more strongly correlated with the chemistry of the new hosts than
with their phylogenetic relationships (Becerra 1997; Becerra & Venable 1999; Berenbaum 2001;
Endara et al. 2017, 2018; Wahlberg 2001). Thus, the phylogenies of insects rarely match those
of their hosts (Agosta 2006; Brooks & McLennan 2002; Endara et al. 2017, 2018; Janz 2011).
These findings suggest that the most common pattern of evolutionary interaction between plants
and their insect herbivores is resource tracking (host trait tracking) (Agosta 2006; Brooks &
McLennan 2002; Endara et al. 2017, 2018; Janz 2011), in which herbivores associate with novel
hosts that express a resource similar to the ancestral host. Thus, associations between plants and
insects are more labile than expected under a model of tight evolutionary processes.

In summary, results from coevolutionary studies between plants and herbivores are consistent
with the idea that plant chemical defenses exert strong constraints on herbivore host choice, with
most herbivore species being restricted to a few plant hosts with similar defenses. In the next
section, we review the evidence suggesting that the interactions between both groups may also
enhance ecological coexistence and diversity in plants on an ecological timescale.

6. PLANT DEFENSES SHAPE LOCAL TREE DIVERSITY

A long-standing goal of ecological research is to understand the mechanisms that allow many tree
species to coexist in tropical forests, where the diversity of a single hectare [e.g., ∼650 species in
Yasuní National Park, Ecuador (Valencia et al. 2004)] can surpass that of the United States and
Canada combined (∼500 species). This high diversity is widely considered to be maintained by
negative density dependence (NDD) processes (Chesson 2000, Comita et al. 2014, Johnson et al.
2012, Mangan et al. 2010), in which competitive exclusion is prevented because the densities of
each species are kept in check. One possible mechanism hypothesized to drive NDD patterns in
forests is resource niche partitioning (Chesson 2000). This mechanism selects for neighbors that
have different sets of adaptations to the local abiotic environment.However, resource attributes of
habitats have been shown to selectively filter species, leading to neighbors having similar traits for
resource acquisition and tolerance to abiotic stress (Cavender-Bares et al. 2009, Fine & Kembel
2011, Hardy et al. 2012, Kraft et al. 2011, Vleminckx et al. 2019). Thus, the potential of abi-
otic niches alone to explain diversity in species-rich biomes such as tropical rain forests has been
questioned (Wills et al. 2016, Wright 2002).

Interactions with herbivores or pathogens may provide an additional explanation for NDD
patterns. Recent work suggests that specialist herbivores may play a role in maintaining the high
local diversity of rainforests by preventing most plant species from becoming abundant (Comita
et al. 2014, Forrister et al. 2019). Specifically, the probability of survival of individual plants signif-
icantly decreased near conspecific (Comita et al. 2014) and congeneric neighbors that are similar
in chemical defensive traits and shared herbivore species (Forrister et al. 2019). Under this sce-
nario, neighbors with different defense profiles do not share herbivores and can coexist, promoting
high local diversity (Coley & Kursar 2014; Comita et al. 2014; Forrister et al. 2019; Salazar et al.
2016a,b). Because plants have many types of defenses that evolve independently from one another
(Endara et al. 2017), with chemistry including hundreds or thousands of compounds that could
also evolve independently (Coley & Kursar 2014, Sedio et al. 2021), defensive traits may provide
a great number of niche dimensions and may be a key axis of ecological divergence.
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Studies measuring traits from many plant genera and testing their effects on community
assembly in tropical forests have consistently found similar patterns. Neighboring species are
more different in defenses than would be expected from a random draw of the forest [e.g., Bursera
(Becerra 1997, Becerra et al. 2009), Inga (Coley & Kursar 2014, Endara et al. 2022, Forrister
et al. 2023, Kursar et al. 2009, Sedio et al. 2017), Mimulus (Wills et al. 2016), Piper (Richards
et al. 2015, Salazar et al. 2016a,b), Psychotria, Ocotea and Eugenia (Sedio et al. 2017)]. This pattern
holds true whether or not neighboring species are closely related (Endara et al. 2022, Kursar
et al. 2009, Richards et al. 2015). In contrast, coexisting species share similar adaptations to the
abiotic environment [e.g., traits associated with resource acquisition (Baraloto et al. 2012, Sedio
et al. 2012, Wright 2002)]. These results, together with the effects of defensive chemistry and
pests on NDD patterns, suggest that herbivores and pathogens may be shaping coexistence in
plant communities and playing a critical role in the maintenance of diversity in tropical forests.

For temperate and boreal ecosystems, different mechanisms might be operating in determin-
ing coexistence patterns. Contrary to the patterns observed in tropical forests, neighbors in the
most northern sites are highly similar in defensive chemistry (Sedio et al. 2021). These results are
probably a reflection of the latitudinal gradient in biotic interactions (Schemske et al. 2009).

7. PLANT DEFENSES AND THE LATITUDINAL GRADIENT
IN LOCAL TREE DIVERSITY

The latitudinal gradient in species diversity is one of the most prevalent patterns on Earth, but
there remains considerable debate regarding its origin and the mechanisms that maintain this gra-
dient (Mittelbach et al. 2007, Schemske et al. 2009). This pattern has tentatively been linked to a
gradient in biotic interactions, with higher strength, specialization, and frequency of such inter-
actions occurring toward the equator (Schemske et al. 2009). Our review of research developed
in tropical forests and temperate and boreal ecosystems suggests that herbivores may play a very
different role in processes regulating local diversity across this gradient. In this section, we briefly
discuss how host shifts shape plant community assembly and how this relates to the maintenance
of species diversity.

Although herbivore host choice is strongly determined by plant defenses, the extent of diet spe-
cialization in herbivores varies between tropical and higher latitude ecosystems (Coley & Barone
1996). Local estimates of diet breadth for leaf-chewing herbivores along a latitudinal gradient that
included 13 sites in North, Central, and South America; Papua New Guinea; Japan; and central
Europe indicate that host association is correlated with latitude, with a higher frequency of spe-
cialized herbivores toward tropical areas (Forister et al. 2015). Generalism in host association is
more prevalent toward the northern forests (Forister et al. 2015). In addition, feeding trials with
herbivores from temperate forests have shown they have a broader diet than tropical ones (Basset
1994), probably reflecting the higher palatability of temperate plants (Coley & Aide 1991).

As we discussed in Section 6, in tropical forests, the general pattern for community assembly is
that cooccurring species aremore divergent in chemical defenses than expected by chance (Becerra
2007; Endara et al. 2022; Kursar et al. 2009; Salazar et al. 2016a,b; Sedio et al. 2017; Vleminckx
et al. 2018), with an average community similarity lower than 25% (Forrister et al. 2023). In these
forests, because of the high levels of specialization, herbivores preferentially forage on subsets of
species with similar defensive profiles (Becerra 2007; Endara et al. 2017, 2018; Sedio 2013). Thus,
not sharing herbivores with neighbors, or being chemically rare, gives a species the advantage
of reduced damage or enemy release (Forrister et al. 2019, Yguel et al. 2011). This in turn may
promote the coexistence of species that are defensively divergent, providing a high-dimensionality
niche space within which a very large number of cooccurring species might sort in ecological
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time. Together, these results suggest that in tropical forests, herbivores are selecting for divergent
defenses among neighbors, contributing to their high level of coexistence and enhancing diversity.

On the other hand, at higher latitudes such as boreal forests, cooccurring species do not show
chemical overdispersion (Sedio et al. 2018). For seven forests in temperate and boreal ecosystems
in North America, similarity in chemical expression decreases with latitude, with a mean commu-
nity similarity ranging between 80% and 95% (Sedio et al. 2021). Boreal forests show the highest
chemical similarity between neighbor species, with a similarity of approximately 95% (Sedio et al.
2021).This pattern may be related to the key role that mammalian herbivores play in these ecosys-
tems.Most mammals are generalists because of their high resource requirements and their need to
have a diverse diet in order to minimize the overingestion of specific secondary metabolites [e.g.,
the detoxification limitation hypothesis (Freeland & Janzen 1974, Hoy et al. 2019, Marsh et al.
2006)]. In boreal forests, generalist mammal herbivores show a negative frequency-dependent
foraging behavior, selectively exploiting rare resources such as plants with rare defensive profiles
(Basey 1999, Edenius et al. 2002,Hoy et al. 2019). In this scenario, and contrary to tropical forests,
being rare is not beneficial for a plant species because it increases the probability of being con-
sumed. Taken together, these results are consistent with herbivores exerting selective pressure
for convergence in defenses among neighbors in boreal forests. This in turn may minimize the
number of available niches, with a consequent reduction in forest diversity.

In summary, host shifts and diet breadth in herbivores play pivotal roles in community assem-
bly. We suggest that community composition and diversity also might be shaped by herbivores
exerting disparate selective pressures at different latitudes, resulting in divergence in defenses to-
ward the equator and convergence at the poles. Thus, plant–herbivore interactions may be key to
understanding the role that the biotic environment is playing in the latitudinal gradient in species
diversity.

8. CONCLUSIONS AND FUTURE DIRECTIONS

The availability of new chemical analytical tools and phylogenetic comparative methods has let
us advance long-standing hypotheses on the ecology and evolution of plant defenses. Thanks to
the integration of ecological theory and modern chemistry, we have been able to tap into the
great diversity of secondary metabolites at unprecedented scales and explore the causes and con-
sequences of this great diversity. However, despite the power of new methodological approaches
that can reveal the enormous diversity of compounds within a single leaf, determining the function
or mode of action of any single compound remains a formidable challenge. Much more work is
needed that explores the function of plant compounds and their adaptive significance. Molecular
networks (Figure 2) can suggest related functions for compounds with similar structures. Field
observations and bioassays with herbivores and pathogens can further shed light on particular
interactions of mixtures containing unknown compounds.

Here, we argue that the interactions between plants and their herbivores might be driving
defense evolution, as posited by Ehrlich & Raven (1964). However, different mechanisms might
be operating at different taxonomic scales. For example, at the tips of the phylogeny, the mode
and speed of evolution seem to be different from what has been traditionally accepted. We argue
that changes to the regulation of biosynthetic pathways can lead to novel combinations of existing
secondary metabolites, which would allow a faster and simpler evolution of defense profiles that
could outpace the relatively short generation time of herbivore insects.

With respect to herbivores, our review suggests that host use is more compatible with a pat-
tern of resource tracking rather than with a tight model of coevolution and cocladogenesis. We
argue that for host selection by herbivores, host defenses, or host resources (Brooks &McLennan
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2002), including food availability, are more important than host phylogeny.Hence, in order to test
hypotheses about the role of host range in herbivore ecology and evolution, characterizing host
traits is essential.

The inclusion of metabolomics in community ecology has allowed us to collect trait data at
large scales, permitting the study of the relative role of the biotic environment in community
assembly and maintenance of local diversity. These studies have yielded several patterns, such as
the significance of being rare in the community and the role of plant–herbivore interactions in
coexistence. Nevertheless, these still await additional empirical testing.

Another challenge is understanding the role of plant–herbivore interactions in driving diver-
gent evolution of plants. Specifically, almost 60 years after Ehrlich and Raven’s proposal, we have
not yet identified how the evolution of defenses is connected to the emergence of reproductive
barriers, assortative mating, or any other mechanism that leads to lineage divergence.We propose
one possible scenario for herbivore-driven divergent evolution based on the fact that herbivores
can create a moving target for defense adaptations in a way that the abiotic environment does not
(Dobzhansky 1950). For plant populations that experience partial barriers to gene flow, selection
drives divergence in defensive traits more rapidly than in resource acquisition traits. If the popula-
tions become rejoined, the greater divergence in defensive traits might lead to hybrids with lower
fitness. If so, this could set in action the initial conditions necessary for the creation of reproductive
barriers and ultimately speciation.

The promise of metabolomics, coupled with genomics and transcriptomics, opens many av-
enues for pursuing the role of plant defenses against herbivores in promoting speciation and the
extraordinary diversity of tropical forests.
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