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Abstract

We survey the recent, fast-growing literature on peer effects in networks. An
important recurring theme is that the causal identification of peer effects de-
pends on the structure of the network itself. In the absence of correlated ef-
fects, the reflection problem is generally solved by network interactions even
in nonlinear, heterogeneous models. By contrast, microfoundations are gen-
erally notidentified. We discuss and assess the various approaches developed
by economists to account for correlated effects and network endogeneity in
particular. We classify these approaches in four broad categories: random
peers, random shocks, structural endogeneity, and panel data. We review an
emerging literature relaxing the assumption that the network is perfectly
known. Throughout, we provide a critical reading of the existing literature
and identify important gaps and directions for future research.
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1. INTRODUCTION

Human beings are by nature social animals. We are affected by others on many dimensions and
in many contexts. As parents, we bear witness to our influence and to the influence of teachers,
friends, and classmates on our children’s language, beliefs, and behaviors. As academic researchers,
we interact frequently, and these interactions affect our research, collaborations, and technology
adoption. Most empirical studies of peer effects, indeed, document strong positive correlations be-
tween an individual’s outcomes and those of their peers. Personal experience and correlation are,
of course, not causation, and researchers who wish to credibly assess the causal effect of peers face
some formidable econometric challenges. Correlation in outcomes among peers may be caused by
correlated unobserved characteristics due, for instance, to endogenous choice of peers or to com-
mon shocks. This is the central problem of correlated effects. Even when this problem is addressed,
however, distinguishing between the impact of peers’ outcomes (endogenous peer effects) and of
peers’ characteristics (contextual peer effects) may be impossible because of simultaneity in the
behavior of interacting agents. This is the reflection problem, clarified by Manski (1993). Overall,
the combination of widespread indirect evidence and methodological challenges has given rise to
an immense and still expanding literature, which spans all the different realms of applied analysis
in economics and other social sciences.!

The analysis of peer effects has recently expanded in a new direction, stimulated by a fast-
growing interest in networks. Historically, and because of data availability, many studies of peer
effects have considered peer groups that partition the population, such as classrooms or villages.
However, agents generally have distinct sets of peers, leading to a network of interactions. How
do network interactions affect the analysis of peer effects and the treatment of correlated effects
and of the reflection problem? About 10 years ago, four studies independently understood that the
reflection problem is naturally solved by network interactions (Bramoullé et al. 2009, De Giorgi
etal.2010,Lin 2010, Laschever 2013). In Bramoullé et al. (2009), we characterize the identification
conditions of the benchmark linear-in-means model of peer effects when agents interact through
a network. We show that once the problem of correlated effects has been addressed, endogenous
and contextual peer effects are identified under intransitivity, when peers of peers are not peers.
Their characteristics then have an impact on individual outcomes only through their effect on
peers’ outcomes, providing valid instruments. An important insight is that identification depends
on the structure of the network itself and exploits holes in the structure.

Since those initial studies, the literature on peer effects in networks has grown quickly and in
many directions. In this review, our objectives are to provide a structured discussion of this evolving
literature, to critically assess its achievements, and to identify important gaps and natural directions
for future research. Doing so, we develop a number of novel formal and informal arguments. The
review, of course, does not pretend to be exhaustive. Given space constraints, we focus on intuition
and main identification issues in the empirical analysis of peer effects.?

We do not cover, in particular, a large theoretical literature on social interactions in which re-
searchers explicitly model how agents’ choices depend on their peers—such as studies of games
played on networks, notably reviewed by Jackson & Zenou (2015) and Bramoullé & Kranton
(2016). There are, of course, interesting connections between theoretical and empirical analy-
ses of peer effects. In some contexts, econometric models of peer effects can be obtained as best

Tn economics, the reader is referred to the work of Manski (2000), Epple & Romano (2011), and Sacerdote
(2011) on education; Graham (2018) on neighborhood effects; and Angrist (2014) for a critical review. In
sociology and social psychology, the reader may consult the work of Alexander et al. (2001) on smoking,
Salmivalli (2010) on bullying, and Kreager et al. (2011) on delinquency.

2Our review complements other recent surveys on networks (e.g., Fafchamps 2015, Boucher & Fortin 2016,
de Paula 2017, Advani & Malde 2018).

Bramoullé « Djebbari « Fortin



responses of games played on networks. Well-designed theoretical models of social interactions
can be structurally estimated (see Banerjee et al. 2013). We discuss the microfoundations of the
empirical models of peer effects in Section 2.

The review is organized in three parts. In Section 2, we start from the linear-in-means frame-
work of Bramoullé et al. (2009). Assume that the problem of correlated effects is fully solved:
The network of interactions and observed characteristics are exogenous. Are endogenous and
contextual peer effects identified despite simultaneity? We briefly restate the main results and in-
sights of our original analysis. We show that the network-based identification strategy holds much
more generally. We consider group interactions and relate the surprising identification results for
groups to the broader study of group size. We discuss how identification can also be obtained by
restrictions on the error terms. We then discuss the influential overview by Angrist (2014) and
show that the counterexample proposed in that work simply illustrates a well-known case of non-
generic identification failure. We finally clarify often misunderstood issues on mechanisms and
microfoundations. Building on work by Blume et al. (2015), we show that the microfoundations
underlying peer effect regressions are generally not identified, even under strong restrictions. An
important implication is that contrary to widespread belief, the endogenous peer effect may not
give rise to a social multiplier (Boucher & Fortin 2016).

In Section 3, we focus on the central problem of correlated effects. Assume now that the net-
work may be endogenous and that, more generally, correlated unobserved characteristics may
affect outcomes. How can researchers account for correlated effects and causally identify peer
effects when agents interact through networks? Researchers have employed diverse strategies to
address this problem. We classify them in four broad categories: random peers, random shocks,
structural endogeneity, and panel data. We clarify, first, the identification possibilities opened up
by random assignment of peers. We show that endogenous peer effects are identified under net-
work interactions through a variant of the peers-of-peers idea. By contrast, we emphasize that
with random peers the impact of peers’ characteristics may not be identified because of a classical
problem of omitted variables. Second, we consider a randomized treatment affecting outcome. We
show that contextual and endogenous peer effects are identified with a randomized treatment in a
linear-in-means framework even when the network is endogenous, if the network is not affected
by the treatment. We discuss an emerging literature on randomized treatments and spillovers
that relaxes parametric assumptions. Third, we review an active literature proposing structural
frameworks to address correlated effects. A main idea here is to account for network endogene-
ity by explicitly modeling network formation and its connection to the peer effect regression.
This literature has strong ties with the fast-growing econometric literature on network forma-
tion. Fourth, we discuss how panel data can help account for correlated effects. We observe that
the analysis of peer effects in networks in a panel context is underdeveloped, both empirically and
methodologically.

In Section 4, we review an emerging literature relaxing the assumption that the network of
interactions is perfectly known. Imperfect knowledge of the network may arise because of sam-
pling, measurement error, and general uncertainty on the relevant peers. This literature is small
but fast-growing, and the first results are encouraging. Peer effects can, in principle, be identified
even with very limited knowledge on the network. Much more research is needed, however, to
better understand the implications of such imperfect knowledge. Section 5 concludes.

2. IDENTTIFICATION OF PEER EFFECTS THROUGH NETWORKS

The following discussion is based on work by Bramoullé et al. (2009). A researcher has data on
n agents, their characteristics x, their outcomes y, and a binary directed network connecting the
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agents. Let IV; denote the set of agents who affect 4, of size d; = |N;|. Denote by G the following
interaction matrix: g; = 1/d; if j € N; and g; = 0 otherwise. We assume that characteristics,
outcomes, and the network (x,y, G) have been generated by a stochastic process.’ In a linear-in-
means model of peer effects, agents’ outcomes depend on their own characteristics, their peers’
characteristics, and their peers’ outcomes, as follows. Consider a unique characteristic and assume
that no individual is isolated, that is, V7, d; > 0. We obtain

1 1
y,-:oz—l—yx,-—l—SZij—l—ﬂEZyj-i-& L.
" jeN; " jeN;

under the assumption E(g;|x,G) = 0. With one characteristic, there are four parameters to
estimate: the intercept «, individual effect y, contextual peer effect 8, and endogenous peer effect
B. With k characteristics, there are 2k + 2 parameters to estimate.

The strict exogeneity assumption E(g;x, G) = 0 means that characteristics x and the network
G are both exogenous relative to outcome y. In other words, the problem of correlated effects
has been solved. We discuss below the various strategies used in the literature to address this
central problem, and we show that this assumption can be relaxed. In particular, exogeneity of
either some characteristic (random shocks) or of the network (random peers) can be sufficient to
identify endogenous peer effects.

In some contexts, agents are partitioned in communities, such as classrooms or villages, with
no connection between agents in different communities. The overall network is then partitioned
in disconnected subnetworks, and agents’ outcomes may be affected by community fixed effects.
We obtain

1 1
yi=ac+]/xi+BJinj+ﬁsz’j+3i 2.
JeN; JeN;

for agent 7 in community C, under the assumption that E(¢;|e, x, G) = 0, where « is the vector of
community fixed effects a¢.
Equation 1 can be written in matrix notations:

y=al +yx+38Gx+ Gy +e.

When the matrix I — G is invertible and no individual is isolated, this system of simultaneous
linear equations is equivalent to the reduced-form equation expressing outcomes as a function of
structural parameters, the interaction matrix, and characteristics. That is, we have

y= ﬁl +A-BG) ' (yI+38G)x+ A - G) 'e.
In particular, E(y|x, G) is an affine function of x. Model 1 is identified conditional on network G if
the function («, 8, y,8) — (lf—ﬂ 1,d — BG)~' (y1 + 8G)) is injective. In that case, the structural pa-
rameters (@, B, y, §) can be uniquely recovered from the reduced-form relation between E(y|x, G)
and x. We characterize the relevant identification conditions in our previous work (Bramoullé
et al. 2009).

3In a number of papers (e.g., Lee et al. 2010), G is fixed (nonstochastic). One limitation of this assumption is
that links between individuals are not allowed to be affected by a (policy) shock in x, such as in the paper by
Comola & Prina (2019).
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Theorem 1 (Bramoullé et al. 2009). Consider network G without isolated individuals
and suppose that § + ¥ 8 # 0. Model 1 is identified if and only if I, G, and G? are linearly
independent. Model 2 is identified if I, G, G?, and G* are linearly independent.

To see where these conditions come from, consider || small enough and develop the matrix
inverse as an infinite series, I — BG)™! = I+ BG+B?G*+....In Equation 1, when no individual
is isolated, we can express expected peers’ outcomes as follows:

E(Gylx) = %1 +yGx+ (@ +yB)G + G +.. )x.

When § + y B # 0, peers’ outcomes are affected by their characteristics y Gx, their peers’ charac-
teristics (8 + y B)G?x, their peers’ peers’ characteristics (§ + ¥ 8)BG’x, and so on. Identification
holds under intransitivity, when some peers of peers of an agent are not the agent’s peers. The
variable G?x can then be used as an instrument for Gy in the estimation of Model 1. Other valid
instruments can be built, some of which may be more robust to misspecification. These include
the average characteristics of peers’ peers who are not peers; other moments of these characteris-
tics, such as the sum or the variance; and the average characteristics of agents at distance 3 or more
in the network. Models 1 and 2 can also be estimated by maximum likelihood under additional
assumptions on the error terms (see, e.g., Lee et al. 2010).

2.1. Broader Validity of the Identification Strategy

The main insight behind Theorem 1 is that, conditional on having addressed the problem of
correlated effects, the characteristics of peers of peers who are not peers affect an individual’s
outcome only through their effect on peers’ outcomes. This insight applies quite generally in
network contexts. Let xy; = (x;);en; denote the vector of peers’ characteristics, and let the same
be true for yy;. This identification strategy operates in any model of the form

_yi=(p(yN,'yxi,XN;’ﬂ)—’—w(xi,XN,‘y y)+8i7 3.

where an agent’s outcome is affected by their peers’ outcomes in a way that could be nonlinear,
involve other moments than the average, and depend on their own and their peers’ characteristics.*
The critical assumption is that an agent’s outcome can only be affected a priori by the outcomes
and characteristics of their peers. Since the characteristics of agents located at distance 2 or more
in the network do not appear on the right-hand side of Equation 3, they can be used to build valid
instruments for peers’ outcomes.

In the literature, researchers have considered many extensions of Models 1 and 2 and have
generalized the identification results of Bramoullé et al. (2009), maintaining the assumption that
the problem of correlated effects has been solved. In particular, the interaction matrix may not
be row-normalized, peer effects could be heterogeneous, outcomes could be discrete, and there
could be multiple outcomes.

2.1.1. The matrix of interactions may not be row-normalized. This notably happens in the
presence of isolated individuals and in a linear-in-sums formulation where individual outcome

*Under nonlinearity, Equation 3 defines a fixed-point system in outcomes y that may have multiple or no
solutions, yielding an incomplete econometric model. The researcher must first address this issue, for instance

by specifying a selection mechanism, before analyzing identification and estimating the model (see de Paula
2013).
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is affected by the sum of the agents’ peers’ characteristics and outcomes.” An implication of
relaxing row-normalization is that intercepts in the reduced-form equations now vary across
individuals depending on their positions in the network. The vector of intercepts is equal to
a(I — BG)™'1 = a(1 + Bb), where b is the vector of Katz-Bonacich centralities (see Bonacich
1987, Calv6-Armengol et al. 2009). These variations can then be exploited for identification and
estimation (see Liu & Lee 2010).6

For instance, in a linear-in-means model with undirected links and isolated individuals, the
intercept is « for isolated individuals and «/(1 — B) for nonisolated individuals. The endogenous
peer effect can then, in principle, be identified by contrasting intercepts in the reduced-form re-
gressions of isolated and nonisolated agents. This identification strategy, however, may raise con-
cerns in practice. Apparently isolated individuals may, in fact, be socially connected if the network
is measured with error (see Section 4), and truly isolated individuals may differ in systematic ways,
generating another source of intercept differences. The treatment of apparently isolated individ-
uals in empirical studies generally requires empirical care, given their quantitative importance in
many data sets. For instance, apparently isolated individuals represent 23 % of the Add Health data
set used by Dieye & Fortin (2017).

2.1.2. Peer effects may be heterogeneous. Beugnotetal. (2019) consider a variant of Model 1
in which men and women are subject to different peer effects. Individuals could also be subject
to different effects from male peers and from female peers, potentially leading to four kinds of
endogenous peer effects (see Bramoullé 2013; Arduini et al. 2019a,b). Masten (2018) incorpo-
rates heterogeneity in peer effect analysis by assuming that endogenous peer effect coefficients
are random in a linear-in-means model. He notably shows that the marginal distributions of these
random endogenous peer effects can be point-identified if there is no contextual peer effect with
respect to an exogenous characteristic. Can the network-based identification strategy be adapted
to a random coefficient framework? Whether Masten’s (2018) results extend to a network model
with both endogenous and contextual peer effects is, at this stage, an open question.

2.1.3. Outcome could be discrete. Smoking, for instance, is often analyzed as a binary out-
come. Discreteness deeply affects the econometric analysis (see Kline & Tamer 2019). Models
of endogenous peer effects with discrete outcomes generally display nonlinearities and multiple
equilibria under group interactions (see Brock & Durlauf 2001). While nonlinearities help iden-
tification, multiplicity complicates the analysis. Lee et al. (2014) extend Brock & Durlauf’s (2001)
framework and analysis to networks.” They consider a network game of incomplete information
and show that the model has a unique equilibrium if the endogenous peer effects parameter is
small enough in magnitude. They apply their framework to analyze peer effects in smoking on
Add Health data. They find evidence that both contextual and endogenous peer effects matter.
Identification in their analysis exploits both nonlinearities and the network structure.

2.1.4. Multiple outcomes may be affected by peer effects. Friends of a high school student
may influence the student’s consumption of both alcohol and tobacco. Moreover, alcohol and to-
bacco may be complements in the student’s preferences (Tauchmann et al. 2013), and peer effects
may also involve cross effects. For example, an individual could be more likely to smoke when their

SIndividual 7 is isolated if g = O for any j. In a linear-in-sums formulation, the interaction matrix G is the
adjacency matrix of the network: g; = 1ifj € N; and gj; = 0 otherwise.

SIndividual outcome could also depend on both the mean and the sum of peers’ outcomes (see Liu et al. 2014).
Li & Zhao (2016) propose an alternative approach based on partial identification.
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friends consume more alcohol. Cohen-Cole et al. (2018) develop a linear-in-means model of peer
effects with two outcomes. One outcome depends on community fixed effects, on the other out-
come (“self-simultaneity”), on the average of this outcome among peers (“within-activity endoge-
nous peer effect”), on the average of the other outcome among peers (“cross-activity endogenous
peer effect”), and on individual and contextual peer effects. The authors extend the identifica-
tion analysis of Bramoullé et al. (2009) to their setting. They show that the model is generally
not identified because of self-simultaneity. Identification holds, however, with classical exclusion
restrictions and if the matrices I, G, G?, G*, and G* are linearly independent.

2.2. Groups and Size Effects

Suppose that agents interact in groups and that mean peer characteristics and outcomes are com-
puted over every agent in the group. This formulation is equivalent to the linear-in-expectations
model considered by Manski (1993) when analyzing identification without further assumptions
on the error terms. Under such inclusive averaging, G* = G and Model 1 is not identified. The
researcher can recover the reduced-form impact of average peer characteristics on individual out-
come but cannot disentangle endogenous and contextual peer effects. This is the essence of the re-
flection problem discussed by Manski (1993). And this reduced-form impact s, of course, not iden-
tified in the presence of group fixed effects, which are undistinguishable from common shifters.

Surprisingly, however, identification under group interactions critically relies on the way the
average is computed. Assume instead, as usually done in empirical studies, that mean peer charac-
teristics are computed over everyone else in the group. Under exclusive averaging, Models 1 and 2
are identified if there is sufficient variation in group sizes. This result was first discovered by Lee
(2007), and the corresponding model was first estimated on data by Boucher et al. (2014) (see also
Davezies et al. 2009). This result appears, at first sight, to be quite extraordinary. How could peer
effects be identified at all, let alone in their contextual and endogenous components, when agents
interact with everyone in their group and outcomes can be affected by common correlated shocks?
Unlike what happens with a network structure, identification is not immediately transparent here,
and this might explain a relative lack of exploration of this identification strategy in recent studies.

As it turns out, identification in that case exploits effects of group size induced by the linear-in-
means formulation. Under exclusive averaging, higher-ability agents have lower-ability peers and
vice versa. This mechanical negative correlation tends to reduce the dispersion in outcomes under
positive peer effects, and this reduction is larger in smaller groups.® Formally, if agent i belongs
to group C of size n¢, Equation 2 reduces to

8
_ V- ne—

1 _
U (¥ — &c) + Vi,

ne—1

1
e
structural parameters B, y, and § do not depend on group size.” Empirical applications of this

model then fall, in fact, within the broader study of size effects (e.g., Angrist & Lavy 1999, Hoxby
2000, Krueger 2003).1° Note that Equation 2 is a particular case of the following equation,

where jo = ;-3 ,.cy; (and similarly for ic). A critical identifying assumption is then that the

yi = ac + y(me)xi + vi,

8A similar mechanical correlation underlies the exclusion bias analyzed by Caeyers & Fafchamps (2019).
“Identification of course tends to be weak when groups have large sizes, although group size variation helps
(see Lee 2007, Boucher et al. 2014).

19Tn Graham’s (2008) conditional variance restrictions model (see discussion below), an important identifying
assumption is also that the structural parameters are not affected by group size.
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where o is a group fixed effect, and the impact of characteristic x on outcome y, indicated by
y(n¢), can depend in an arbitrary way on group size n¢. The function y(-) can be estimated non-
parametrically if the researcher has enough observations of groups of every size. Linear-in-means
peer effects provide a key candidate explanation for the presence of size effects in characteristics’
impacts, and they induce testable restrictions on the function y(-). If they are the only source of
size effects, y(-) is monotone in n¢ and its shape depends on contextual and endogenous peer ef-
fects. When B =0, y(-) is linear in 1/(n¢ — 1) with slope —§. By contrast, y (-) is strictly concave or
strictly convex in 1/(n¢ — 1) when B8 # 0, and its curvature is more pronounced when endogenous
peer effects are larger in magnitude.

2.3. Identification Based on Assumptions on the Error Terms

The benchmark model in Equation 1 does not impose any restriction on conditional covariances
between the error terms, and more generally, on their distributions. Introducing such restrictions
of course helps identification.!! In particular, since v = (I — BG)~ e, the endogenous peer effect
B can potentially be identified from features of v induced by assumptions on &. For instance, when
agents interact in pairs, Moffitt (2001) shows that Model 1 is identified if the error terms are un-
correlated, that is, E(e;e;[x, G) = 0,Vi # j. Liu (2017) extends this idea. He assumes that agents
interact in groups of the same size and that errors are uncorrelated. He shows that Model 1 is
identified and can be consistently estimated using a root estimator (see Ord 1975). The assump-
tion of uncorrelated errors is strong and is more likely to be satisfied in experimental contexts,
when individuals are randomly assigned to groups by the experimentalist (e.g., Fortin et al. 2007).
As pointed out by Moffitt (2001), however, the error terms are likely to be correlated in most
applications, due for instance to endogenous group formation.

Graham (2008) shows that peer effects can be identified from conditional covariance restric-
tions, even in the absence of exogenous variations in observed characteristics among agents. He
considers a linear-in-means model of peer effects in a group context including contextual peer
effects relative to the error term but no endogenous peer effects and random effects at the group
level under a number of assumptions. His setup notably applies to education contexts under dou-
ble randomization of students and teachers to classrooms. He shows that the magnitude of the
peer effect can be identified by contrasting outcome variance between and within groups across
groups of different sizes. Rose (2017) extends Graham’s (2008) ideas to network interactions. He
considers a model with contextual and endogenous peer effects and unrestricted group fixed ef-
fects, but no impact of observables. Extending the arguments advanced by Bramoullé et al. (2009),
he shows how the structure of the network can be used to identify contextual and endogenous peer
effects. A key argument is that outcome covariance between peers of peers who are not directly
connected only depends on the endogenous peer effect, once unobserved group heterogeneity is
accounted for.

2.4. Knife-Edge Identification Failure

In an influential overview of the literature, Angrist (2014) presents sharp criticisms of various
econometric approaches and empirical studies of peer effects. In section 6 of his article, in par-
ticular, he criticizes the approach developed by Bramoullé et al. (2009). He builds a specific
case of Model 1 in which apparent peer effects “reflect tautological relationships and quotidian

' There exists an important literature on identification in simultaneous equation models with covariance re-
strictions (e.g., Hausman et al. 1987).
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correlation in unobservables, in a world otherwise characterized by social indifference” (Angrist
2014, p. 107). We show next that his example simply illustrates a well-known situation of identi-
fication failure.

To see why, reproduce equation 30 by Angrist (2014) using our notations:

yi=a+ Byt +yxi —yBxi1 + &

This is, indeed, a particular case of Equation 1. Note, however, that Angrist imposes § + y8 = 0,
which violates the identification condition spelled out by Bramoullé et al. (2009, proposition 1).
More generally, when § + y 8 = 0, Equation 1 is equivalent to

yz—l_ﬂ Y Xi Vi.

In this knife-edge situation, contextual and endogenous peer effects exactly cancel out, and mod-
els with or without peer effects are observationally equivalent for any network without isolated
agents. In other words, Angrist’s (2014) example simply confirms that the condition § + y 8 # 0
is necessary for identification. This identification failure is nongeneric and disappears under sign
restrictions, in the presence of isolated individuals, or under restrictions on the error terms. It
cannot happen, for instance, when y and é have the same sign, thatis, 8 > 0 and y # 0. In our
view, the arguments developed by Angrist (2014) thus do not invalidate the use of the network
structure to help identify peer effects.

By contrast, Angrist (2014) highlights some important issues in other sections of this article. He
emphasizes, in particular, that measurement error on observed characteristics can artificially inflate
peer effect estimates (Angrist 2014, table 3; see Moffitt 2001, pp. 23-24 for an early discussion). To
see why, note that averaging in general reduces noise. Average peer characteristics are then better
measured than individual characteristics. When true characteristics are correlated across peers,
average peer characteristics can act as a proxy for the true individual characteristics. Apparent
estimates of peer effects may then simply be picking up part of the individual effect. This expansion
bias operates in an opposite way to the standard attenuation bias and may well be a first-order
empirical problem in many contexts. The literature is still missing a comprehensive analysis of
measurement error on observed characteristics and outcomes in regressions of peer effects in
networks based on Models 1 and 2.

2.5. Mechanisms and Microfoundations

A well-identified estimation of peer effects only constitutes a first step in the analysis of social in-
teractions. Peer effects can have different causes, including complementarities, conformism, social
status, social learning, and informal risk sharing. Any of these motives could, potentially, gener-
ate the kind of peer effects considered in Models 1 and 2. The distinction between contextual
and endogenous peer effects, while informative, is generally too coarse to identify precise causes.
Different mechanisms have different welfare implications and could further interact in complex
ways. Making progress on this issue is an important next step for researchers. Identifying the pre-
cise causes behind peer effects will require econometric, experimental, and empirical creativity.
Relatedly, researchers have proposed various microfoundations of linear models of peer
effects. A natural idea here, at least when outcomes represent actual choices, is to interpret the
econometric equation describing individual outcome y; as a function of others’ outcomes y_; as
the best response of a noncooperative game. This connects the estimation of peer effects to the
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econometrics of games. A fundamental problem with this approach, however, is that different
preferences are generally compatible with a given best response. This is a main reason that the
literature on revealed preferences in strategic contexts is much less developed than in the usual
consumer framework.

The problem of preference nonidentification holds even when making strong restrictions, for
instance, when focusing on quadratic utility functions (see Blume et al. 2015). To illustrate, assume
X = di’ ZjEN,- x; (and similarly for y;), and denote by o; = a + yux; + 8%; + ¢; the part of the right-
hand side of Equation 1 that does not depend on peers’ outcomes. Then Equation 1 describes the
best response of a game with quadratic utilities if and only if there exist real numbers A4; > 0 and
quadratic functions v; : R"~! — R such that

1 _
wi(yi,y—i) = A; <a1yi - 53’12 + ﬂj’zj’i) + vi(y-i). 4.

An empirical researcher exploiting data on best responses cannot recover the functions v;(-). While
these functions have no effect on individual actions, they critically affect the externality patterns
and the welfare properties of these games.

Underlying preferences also affect counterfactual reasoning. This concerns, in particular, the
existence of a social multiplier. Applied researchers estimating variants of Models 1 and 2 often
claim that endogenous peer effects give rise to a social multiplier. This widespread belief turns
out to be incorrect, as shown by Boucher & Fortin (2016). Standard reasoning runs as follows.
Suppose that, before peer effects operate, individuals are subject to a shock that changes outcomes
by amount A. This initial shock is then transformed through endogenous peer effects, yielding an
outcome change of A/(1 — B) for any network without isolated agents. This reasoning is indeed
valid, for instance, for utilities with complementarities ;(y;,y_;) = ay; — 1y? + Biyi.

This reasoning may not apply, however, for other utility functions compatible with the same
econometric model. The problem lies in the implicit assumption that the initial shock directly
affects the intercept of the econometric equation. To see why, consider utilities for conformity
wi(yi,y—i) = ofy; — 1y — 11(y; — 3i)?, where o/ depends on individual and peers’ characteristics
and A captures preference for conformity. The corresponding econometric equation is now

ol A

Tx T

_yi=1

which is a version of Equation 1 with o; = o//(1 + 1) and 8 = A/(1 + A).!? The initial shock
increases o by amount A, leading to an increase in the intercept of Equation 1 by amount
A/(1 4+ A). Once endogenous peer effects operate, this becomes A again. Thus, common shocks
on individuals are passed on outcomes and generate no multiplier. This is due to the conformity
motive: If all actions change by a common amount, |y; — y;| is unaffected. Since agents care about
the absolute value of the difference between their action and their peers’ average action, common
shocks do not generate indirect effects. Under conformity preferences, endogenous peers effects
do not give rise to a social multiplier.

This example teaches us some important lessons. Applied researchers should generally refrain
from making counterfactual predictions based on specifications like those in Models 1 and 2.
Counterfactual predictions require a precise, structural understanding of the causes behind
peer effects. This concerns many issues ranging from social multiplier computations to optimal

12The utility for conformity is thus a case of quadratic utility (see Equation 4) leading to the same best re-
sponses, with 4; = 1 + A and vi(y_;) = —%A}?lz.
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classroom composition. Indeed, this is likely a main reason behind the failure of the social
engineering experiment by Carrell et al. (2013).

3. CORRELATED EFFECTS AND NETWORKS

Researchers who wish to provide credible causal estimates of peer effects and to exploit the iden-
tification possibilities generated by interaction networks must address, somehow, the problem of
correlated effects. Individual unobserved characteristics may be correlated with peers’ charac-
teristics and the interaction matrix because of common shocks or network endogeneity (e.g., an
individual and their peers tend to have similar preferences). In the literature, researchers have de-
veloped at least four broad strategies to address this critical issue: random peers, random shocks,
structural endogeneity, and panel data. We present each of these identification strategies in turn
and discuss how they can be combined with the identification of contextual and endogenous peer
effects via the network structure. We review relevant applied and econometric studies.

3.1. Random Peers

To estimate the causal impacts of peers, researchers have been studying contexts where peers are
randomly allocated through natural or artificial experiments. Many studies consider random peers
with a group structure. Sacerdote (2001) looks at roommates in pairs, triples, or quads as well as
dormmates among students entering Dartmouth College. Carrell et al. (2013) consider squadrons
of freshmen at the Air Force Academy. Falk & Ichino (2006) randomly match workers in pairs in
the lab. Note that researchers have generally not tried to identify contextual and endogenous peer
effects from data on random groups of peers. Instead, they focus on one or the other effect.

More recently, researchers have analyzed network data where peers are formed at random.
De Giorgi et al. (2010) look at the choice of a major among Bocconi undergraduates. Students
initially attend lectures in randomly assigned classes for nine compulsory courses. This allows
researchers to build interaction matrices from common class assignments. In their preferred spec-
ification, they assume that two students are peers if they attended at least four of the seven common
compulsory courses in the same classes. In this context, the network of interactions itself is ran-
dom. In other contexts, the network is predetermined and individuals are randomly positioned in
it (see Beugnot et al. 2019 in the lab and Mas & Moretti 2009 in the field).

3.1.1. Random peers and omitted variables. With random peers, what can be causally identi-
fied, precisely? We believe that the literature has been, overall, quite unclear on this central ques-
tion. Start with a simple case, and assume that individuals interact in random pairs. A researcher
has data on past smoking behavior and is interested in assessing the impact of peer smoking on
grades. Contrasting grades of individuals paired by chance with a smoker to grades of individu-
als paired with a nonsmoker allows the researcher to identify the causal impact of being paired
with a smoker relative to a nonsmoker on grades. This causal statement lies at the heart of the
interpretation of results in most studies based on random peer groups.

We should be careful about interpretation, however. The researcher here does not estimate
the causal impact of peers’ smoking behavior. This is due to omitted variables: Even if being
paired by chance with a smoker leads to a drop in grades, this may have nothing to do with peer
smoking. Perhaps smokers, on average, have lower ability or drink more, and peers’ ability or
drinking behavior is what really drives peer effects. Random allocation of peers does not solve
this problem. To estimate the causal impact of peer smoking on grades, an exogenous shock on
peer smoking is needed. In our view, this important issue limits the relevance of random peers to
identify and estimate contextual peer effects.
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More generally, potential problems of omitted variables pervade empirical research based
on random matching between agents. To illustrate, consider an important analysis by Breza &
Chandrasekhar (2019). The authors conduct an experiment to study whether individuals in rural
Indian villages save more when information about the progress toward their self-set savings goal
is shared with another village member, a monitor. In some treatments, the monitor is randomly
assigned, and the authors find that savings increase when the monitor has a more central position
in the village’s social network. The authors make use of innovative high-dimensional econometric
techniques to verify that the apparent impact of monitor’s centrality is not caused by correlated
observables. It could, however, potentially be caused by correlated unobservables. Even with
random peers, then, researchers who wish to identify causal impacts of peers’ characteristics face
a classical problem of omitted variables. Absent other sources of exogenous variation, they must
address this problem in classical ways: They must ascertain likely confounders, depending on the
context, and control for relevant variables and proxies.

3.1.2. Identification with random network peers. By contrast, we now show that under net-
work interactions, random peers do allow researchers to identify endogenous peer effects. The key
property is that with random peers an agent’s observed and unobserved characteristics are uncor-
related with their peers’ observed and unobserved characteristics. To illustrate, consider, again, the
relation between smoking, peers, and academic achievement. Suppose that any two students are
linked with the same probability. The proportion of smokers among peers of peers who are not
peers is uncorrelated with individual observed and unobserved characteristics. This proportion
thus affects individual achievement only through its effect on peers’ outcomes and hence provides
a valid instrument for peers’ outcomes in the main regression. By contrast, as with groups, esti-
mates of contextual peer effects may not capture the causal impact of the proportion of smoking
peers &;. Rather, they capture the causal impact of being connected, by chance, to peers with av-
erage smoking rate ¥;, and this impact may have nothing to do with smoking because of omitted
variables.
Formally, consider the following variant of Equation 1,

Yi = o + ViXj + Voulti + 8% + 8,1; + By + €, 5.

where E(g;|x,u, G) = 0 and #; is unobserved and potentially correlated with x;, #; = a + bx; + 1,
with E(n;]x;) = 0. Denote by ; the average value of x among peers of peers of i who are not peers
of i. With random peers, observed characteristics of agents two steps away in the network are
uncorrelated with unobserved characteristics of the individual and their peers. That is, we have

cov(X;, u;) = cov(%;, ;) = 0.

This implies that x; provides a valid instrument for j; in Equation 5, and endogenous peer
effects are identified. To see what happens for contextual peer effects, rewrite Equation 5 in terms
of observables. With random peers, we obtain E(;|x;, &;) = 0 and @; = 4 + b¥; + 7;. This yields

Ji=«o + (yx + yu)ﬂ + (Vx + )/ub)xi + (53( + Sub)jz + ﬁyz + Vi,

with E(v;|x;, %;) = 0. We recognize the classical formula for omitted variables. The apparent con-
textual peer effect 8, + 8,0 aggregates the causal impact of peers’ observed characteristics 8, and
the causal impact of peers’ unobserved characteristics 8, multiplied by the conditional correlation
between the unobserved and the observed characteristics 4. In particular, 8, + 8,6 # 0 implies
that 8, # 0 or §, # 0. Detecting apparent contextual peer effects indicates that some average peer
characteristics, observed or unobserved, have a causal impact on individual outcomes.
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These conclusions also hold under group interactions. With random peer groups, and if
Model 5 is the correct model, researchers can empirically recover apparent contextual peer ef-
fects 8, + 8,4 and endogenous peer effects 8 from group size variation. Identification then relies
on size effects in the reduced-form impact of individual and average group characteristics, as dis-
cussed in Section 2. To our knowledge, no study has tried to estimate Models 1 or 2 on data with
random peer groups. It would be interesting to reanalyze the data from key studies on random
peer groups to estimate variants of Models 1 and 2. This would help advance our understand-
ing of the validity, performance, and robustness of the identification strategy based on group size
variation.

3.1.3. Observational data. In the literature, many studies of peer effects based on observa-
tional data rely on quasi-random peers to address the problem of correlated effects. In the best
cases, peer assignment is as good as randomization conditional on observables, and our previous
arguments apply. The endogenous peer effect is identified under network interactions, and es-
timates of contextual peer effects may not capture the causal impact of peer characteristics. For
instance, a standard identification strategy in an education context and under group interactions is
to exploit quasi-random variations in observable characteristics across cohorts within a school (see
Hoxby 2000). The identifying assumption here is that, conditional on school fixed effects, varia-
tions in cohort characteristics such as the share of female students are as good as random. Indeed,
many studies analyzing gender effects in education rely on this identification strategy, (e.g., Feld
& Zolitz 2017, Hoekstra et al. 2018, Cools et al. 2019). Because of omitted variables, however,
estimates of the impact of the share of female peers on individual outcomes may not capture the
causal impact of peers’ gender.

Studies of peer effects in networks that do not rely on some explicit exogenous shock (see
Section 3.2) also address the problem of correlated effects, implicitly or explicitly, by assuming
that the network is as good as random conditional on the observables. This notably concerns most
papers analyzing peer effects in networks using data sets from the National Longitudinal Study of
Adolescent to Adult Health (Add Health) (e.g., Trogdon et al. 2008, Calv6-Armengol et al. 2009,
Liu et al. 2017). Are self-reported friendships in Add Health conditionally quasi-random? Given
the importance of this data set in the analysis of peer effects, we believe that this question deserves
a separate, focused investigation.

3.2. Random Shocks

When peers are not random, researchers have been trying to identify peer effects using other
sources of exogenous variations. This connects the analysis of peer effects to the large literature
on randomized interventions. In this section, we first discuss how researchers can combine a ran-
domized treatment with the network structure to identify contextual and endogenous peer effects
in a linear-in-means framework. Identification holds even with endogenous peers as long as the
network is not affected by the treatment. The linear-in-means model imposes strong restrictions,
however. We then discuss another strand of the literature, closer to the statistical tradition preva-
lent in the analysis of treatment effects, which tries to avoid parametric restrictions. Researchers
in that literature analyze what can be learned on spillovers from randomized treatments and how
this depends on assumptions made on the structure of these spillovers.

3.2.1. Random shocks and linear-in-means peer effects. As shown by Dieye et al. (2014),
treatment randomization allows researchers to address the problem of correlated effects and,

within a linear-in-means framework, to identify the causal impacts of the treatment and of peers’
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treatments and peers’ outcomes even when the network is endogenous. To see why, consider a
variant of Equation 5 with unobserved characteristics and under the assumption that there is no
isolated individual. Assume that each individual is treated with probability ¢, that individual treat-
ments are independent, and that the network of interactions is not affected by the treatment.
Assume t; = 1 if 7 is treated and #; = 0 otherwise. We obtain

Vi = o + yiti + yutti + 8,8 + 8,1 + Byi + e,

with E(e;|t,u, G) = 0. The network may be endogenous, that is, E(#,|G) # 0. Here #; represents
the share of treated peers. Incorporate individual and peers’ unobserved characteristics in the error
term, &; = y,u; + 8,4; + e;, to obtain

Yi =0l+)/ttj+8tf,‘+,3_)7j+81'.

Randomization implies that cov(t;, #;) = O for every pair 7, j. Because the interaction matrix is
row-normalized, applying the law of iterated expectations leads to'?

cov(ti, u;) = cov(ti, u;) = cov(t;, ;) = cov (i, ;) = 0,

which means that individual treatment and the share of treated peers are uncorrelated with the
error term: We have cov(t;, ¢;) = cov(f;, &;) = 0.1* More generally, for any power k of the interac-
tion matrix, cov((G*t);, &;) = 0. In particular, the weighted share of treated peers of peers, (G*t);,
is uncorrelated with the error term and hence provides a valid instrument for peers’ outcomes.
Therefore, the three parameters y;, 8;, and B are causally identified with random shocks in a
linear-in-means framework and even when the network is endogenous.

This conclusion also holds in a model with individual and contextual peer effects from pre-
determined observed characteristics. These effects can be included in regressions, although their
estimates do not generally have a causal interpretation. In addition, predetermined characteristics
of peers of peers who are not peers may not provide valid instruments for peers’ outcomes when
the network is endogenous. Therefore, only instruments built from the treatment of indirectly
connected agents should be included in instrumental regressions of peer effects exploiting the
network structure.

Interestingly, the identification of peer effects may not hold when the network is endogenous
and the interaction matrix is not row-normalized. For instance, in a linear-in-sums model, and
if u; is positively correlated with degree, we obtain cov(u;, Y ;g;itj) > 0. Agents with more friends
tend to have more treated friends, and the estimate of the impact of the number of treated friends
on outcomes is biased, even with a randomized treatment. This shows that the identification of
peer effects with randomized treatments depends on the specific model of peer effects consid-
ered. Peer effects may be identified in one model (linear-in-means) but not in another (linear-in-
sums).

Because of peer effects, the impact of the treatment cannot be estimated by the naive difference
in average outcomes between treated and untreated individuals. Dieye et al. (2014) propose a
measure of treatment effect that can be decomposed into a direct effect and indirect effects due

BFor instance, note that E(uif;) = ]E(Z] gijuity) = EG(E(Z]‘ gijuitj|Q)) = ]EG(Z]- 2iiB(ui|G)E())) =
7EG([Ei|G)) = E(u;)E(;), where the second equality comes from the law of iterated expectations, the third
equality from the fact that t 1L u, G, and the fourth equality from row-normalization.

4By contrast, we can have E(x;|f;) # 0 when unobserved characteristics are correlated with degree.
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to contextual peer effects and to changes in outcomes mediated by endogenous peer effects. They
also compute the difference in expected outcomes between treated and untreated individuals as
a function of the parameters of the model (see Dieye et al. 2017, proposition 2). This provides a
testable prediction that can be used to validate the model, complementing overidentification tests.

Arduini et al. (2019b) analyze the impact of a randomized treatment under group interactions
and in a linear-in-means framework with heterogeneous peer effects. An important limitation of
their framework, however, is that they assume that there is no contextual peer effect associated
with the treatment. An individual is thus not directly affected by their peers’ treatments, and this
assumption greatly facilitates identification.

Comola & Prina (2019) analyze a situation where the network is also affected by the random-
ized intervention. They consider a linear-in-means model with two periods and two networks:
before and after the intervention. Outcome in the first period depends on individual fixed effects
and average outcomes among old peers. Outcome in the second period depends on individual
fixed effects, individual treatment, the shares of treated agents among old and new peers, and
average outcomes among old and new peers. The authors provide identification conditions and
associated instrumental variable strategies, extending those of Bramoullé et al. (2009). They as-
sume that the networks before and after intervention are conditionally exogenous. This condition
may fail to hold, however, if some time-varying unobservable affects both network change and
outcome. They propose a measure of treatment impact, which can be decomposed into a direct
effect and indirect effects coming both from the treatment of baseline peers and from the change
in the network. They use their model to estimate the impact of an intervention in rural Nepal
providing randomized access to savings accounts. Their results suggest that neglecting network
changes leads to underestimating the impact of the intervention. This paper contributes to an
emerging literature analyzing the impact of interventions on social networks (see Banerjee et al.
2018).

3.2.2. Observational studies. In empirical studies of peer effects in networks based on ob-
servational data, researchers have exploited naturally occurring shocks. In the best cases, these
shocks are as good as conditionally random and hence allow researchers to identify peer effects.
De Giorgi et al. (2020) study peer effects in consumption based on administrative panel data on
households in Denmark. They build a measure of household consumption based on tax records
and assets and consider a network of coworkers. They assume that an individual is affected by peo-
ple who work in the same plant and have similar education and occupation. An important feature
of their framework is that consumption is shared among spouses and is defined at the household
level, while working relationships are individual based. They consider a linear-in-means model
with two kinds of endogenous peer effects: log household consumption depends on household
fixed effects, average log consumption of the husband’s coworkers, average log consumption of the
wife’s coworkers, and individual and contextual peer effects.”” To address endogeneity issues, they
account for time-invariant household characteristics and exploit firm-level shocks. In particular,
they instrument the first difference of the average log consumption of the husband’s and the
wife’s coworkers by firm-specific variables of peers at distance 3: the coworkers of the spouses
of the coworkers. Combining professional and marital connections helps ensure that intransitiv-
ity indeed holds: Individuals have coworkers, these coworkers have spouses, and these spouses
interact with their own coworkers in another workplace. This approach is valid if the firm-specific

15The model is a variant of Model 8 introduced in Section 3.4, with no contextual peer effects associated with
time-invariant unobserved characteristics.
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variables are indeed conditionally exogenous. The authors find evidence of positive endogenous
peer effects in consumption and further explore the mechanisms at work.

Nicoletti et al. (2018) analyze peer effects on mothers’ working hours in the year after child-
birth based on administrative data from Norway. They consider a linear-in-means model of peer
effects with two kinds of peers: family peers (sisters and female cousins who gave birth before
the focal mother) and geographic neighbors (with similar education and who also gave birth be-
fore the focal mother). In their main regression, they instrument the working hours of family
peers by the working hours of the neighbors of family peers, controlling for the working hours of
neighbors. Past labor supply of family peers’ neighbors thus constitutes a kind of shock on family
peers’ labor supply. If this shock is conditionally exogenous, it can be used to identify the effect
of family peers’ working hours on mothers’ working hours. They find evidence of positive family
peer effects. They do not estimate a full-fledged extension of Model 1, however, including both
endogenous and contextual peer effects for the two kinds of peers.

3.2.3. Randomized treatments and spillovers. Linear-in-means peer effects are a particular
case of situations in which individual outcome is affected by others’ treatments. Historically, such
spillovers have been considered a nuisance in the literature on treatment effects. With spillovers,
the causal impact of a randomized treatment cannot be estimated by simply computing the differ-
ence in average outcome among treated and untreated individuals.! In light of mounting evidence
that these spillovers are widespread and have a critical impact on the evaluation and design of pub-
lic policies, the literature on treatment effects recently changed its point of view (see Miguel &
Kremer 2004, Kremer & Miguel 2007, Crépon et al. 2013). Researchers are now trying to estimate
these spillovers and to better understand their determinants, their implications, and the experi-
mental designs and assumptions under which they can be identified. In general, an individual’s
potential outcome may depend on the full vector of potential treatments, and no parameter of in-
terest is identified without further assumptions and restrictions (see Manski 2013). One possible
solution is to assume that agents are organized in groups and that spillovers take place within but
not between groups (e.g., Hudgens & Halloran 2008, Vazquez-Bare 2017). Spillovers may then be
identified by comparing the outcomes of untreated individuals in treated and in untreated groups
(e.g., Duflo & Saez 2002, Angelucci & De Giorgi 2009).

This assumption generally does not hold, however, when agents interact through a network. In
an emerging and fast-growing literature, researchers analyze detection, identification, and estima-
tion of treatment spillovers under network interactions (see Manski 2013, Aronow & Samii 2017,
Athey etal. 2018). Given information on the network of interactions, they explore the implications
of various assumptions such as “no second and higher-order effects” (i.e., treatment of agents at
network distance 2 or more has no impact) and “no peer effect heterogeneity” (i.e., the number
of treated peers may matter but not their identity). Athey et al. (2018) notably build exact ran-
domization tests for different hypotheses on the presence and structure of spillovers. How these
studies address problems of correlated effects and network endogeneity is quite unclear, however.
As shown above, the identification of peer effects in networks with a randomized treatment de-
pends on the specific model of peer effects. When the network is endogenous, linear-in-means
peer effects are identified with a randomized treatment but linear-in-sums peer effects are not

identified.

16A common assumption in the literature on treatment effects is the Stable Unit Treatment Value Assumption
(SUTVA), which rules out the possibility that potential outcomes may depend on the treatment of peers (see
Rubin 1978). The early negative view of spillovers is reflected in the use of expressions like “interference” and
“contamination of the control group” to denote such situations.
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Opverall, applied researchers interested in peer effects and spillovers face a variant of the usual
structural trade-off. Imposing structure on the data helps identification at the risk of misspecifica-
tion. With interacting agents, imposing some structure cannot be avoided (Manski 2013). Much
research is needed to understand what can be learned on peer effects and spillovers under which
assumptions and whether parametric models like the linear-in-means model and its extensions
(see Section 2) provide good representations of the data.

3.3. Structural Endogeneity

In the absence of a clear source of exogenous variation, can a researcher still address the problem of
correlated effects and identify and estimate peer effects in networks? Researchers have developed
a number of structural frameworks to do this, and we now review this growing literature. As a
preliminary remark, we observe that these studies generally rely on a specific modelization of
one kind of correlated effects. The proposed approach may be invalid, then, if the models are
misspecified or if other kinds of correlated effects matter. Relatedly, it would be interesting to
cross-validate these structural approaches with experimental data (see Griffith 2019b for a first
step in this direction).

At this stage, researchers have explored three approaches. In the first two, they combine a model
of peer effects in networks with a model of network formation. A primary objective is to account
for network endogeneity in the estimation of peer effects. Conversely, combining these two models
may allow researchers to address endogeneity issues affecting the estimation of network formation.
In the first approach, unobservable characteristics explicitly affect both individual outcomes and
network formation. In the second approach, network formation itself depends on outcomes. In
the third approach, omitted variables are introduced under some specific assumptions.

3.3.1. Network formation and common unobservables. Goldsmith-Pinkham & Imbens
(2013) first proposed a structural approach to address the problem of correlated effects. They
consider the following variant of Equation 5,

Vi = o+ VuXi + Vatt; + 8.5 + Byi + &, 6.

with E(¢;|x,u, G) = 0. They introduce an unobserved characteristic, #;, which may affect out-
come directly but does not generate contextual peer effects. This unobserved characteristic also
affects network formation, modeled through a dyadic process where undirected links are formed
independently. They consider a random utility framework under the assumptions that errors’ dis-
tribution is logistic and that links are formed through mutual consent. This leads to a variant of
the following model.!” Denote by p; the probability that 7 wants to form a link with ;. Then, the
link between 7 and j is formed with probability p;p;;, with

ln(lfiibij> = ay — ac|x; — xj| — a,lu; — u;|. 7.
This formulation is designed to capture observed and unobserved homophily. Homophily is a
key property of social networks referring to the fact that similar individuals are generally more
likely to be connected (see McPherson et al. 2001). Homophily implies that the probability of

17Goldsmith-Pinkham & Imbens (2013) also exploit information on past connections and include a dummy
for whether 7 and j were connected in the previous period and another dummy for whether they had com-
mon friends. This connects their analysis to the analysis of peer effects in networks in a panel context (see
Section 3.4).

www.annualreviews.org o Peer Effects in Networks

619



620

link formation is higher when the distance between the characteristics of the two agents is lower.
Equation 7 thus displays homophily of both kinds if #, > 0 and 4, > 0.

The authors then estimate a version of Models 6 and 7 on Add Health data using Bayesian
methods. They analyze grade-point average and data from one school with 534 students. In their
estimation, they assume that the unobserved characteristic is binary, #; € {0, 1}, with both values
equally likely. They find that accounting for this common unobserved characteristic appears to
matter for network estimation but not for peer effects. It has little impact, in particular, on the
estimates of contextual and endogenous peer effects.

While implementation of this model can be improved in many ways,'® this approach provides
a potentially powerful way to control for network endogeneity in peer effect regressions, rem-
iniscent of Heckman’s correction for sample selection. Modeling peer effects in networks and
network formation simultaneously may allow researchers to recover information on common un-
observables. One general limitation, of course, is that this may not help with unobservables that
are not common. Potential problems of omitted variables are thus reduced but not eliminated.

In addition, we observe thatidentification is not very transparent and would deserve to be better
understood (see Bramoullé 2013). Identification here likely relies both on nonlinearities present
in the dyadic regressions and on a functional exclusion restriction related to homophily: The
absolute value of differences in observed characteristics affects links but not outcomes. Relatedly, it
is unclear whether this model can generate a significant bias in peer effect regressions and precisely
how this bias would be generated. A bias appears in peer effect regression if cov(%;, #;) # 0, and the
relation between this condition and Equations 6 and 7 is not immediate. The ability to generate
a bias is, of course, a key precondition to account for such a bias empirically, and this would also
need to be further investigated.

Finally, Goldsmith-Pinkham & Imbens (2013, section 6.2) suggest that the exogeneity of the
network is testable. This is a powerful and intuitive idea, relying on homophily. Friends who
are dissimilar in terms of observed characteristics must be, on average, similar in terms of un-
observed characteristics. Formally, let 5, be the residual of the peer effect regression, estimated
without trying to account for the unobserved characteristic. Then, under network exogeneity,
E(n; — njl|lx; — x;| = x, g;j = 1) does not depend on x, while under network endogeneity and ho-
mophily, E(|n; — n;l|lx; — x;| = x,gi; = 1) decreases with x. Similar properties hold for pairs of
individuals who are not connected.!” Network exogeneity can then potentially be tested without
having to estimate the combined models. Researchers have started to implement this test in ap-
plied setups (e.g., Boucher & Fortin 2016). Indeed, we believe that testing for network exogeneity
could become standard practice in applied studies of peer effects in networks. The literature is
still missing, however, a proper econometric analysis of this test and its statistical properties.

Researchers have extended Goldsmith-Pinkham & Imbens’s (2013) analysis in many ways. In
a study developed independently, Hsieh & Lee (2016) introduce multidimensional continuous
unobserved characteristics into similar combined models. They estimate their model through
Bayesian methods on an Add Health sample composed of 2020 students divided into 73 small
school-grade groups. They also analyze grade-point average and consider one, two, and three un-
observed characteristics. They find, interestingly, that the estimate of the endogenous peer effect
is unaffected when including one unobservable, drops when including two unobservables, and is
then further unaffected by a third one. This suggests that introducing multiple common unob-
servables may be necessary to account for network endogeneity in peer effect regressions. Griffith

18For instance, #; could take continuous values and could generate contextual effects, and «;, «;, #;, and #; could
also enter additively in Equation 7.

19Non-friends who are similar on observed characteristics must be dissimilar on unobserved characteristics,
and hence E(|n; — n;lllx; — «;| = x,g;; = 0) also decreases with x under network endogeneity.
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(2019b) considers one continuous unobserved characteristic. In a first stage, he develops a dyadic
model of link formation, where links are directed and weighted: The strength of the link is a non-
negative real number. In his setup, unobserved characteristics can be identified and estimated from
the network formation model alone, as suggested by Graham (2017).2° In a second stage, he esti-
mates a variant of Model 5 without endogenous peer effects that includes estimated unobserved
characteristics from the first stage on the right-hand side, both directly and through contextual
peer effects.

Recent extensions of this approach include work by Arduini et al. (2015), Qu & Lee (2015),
Hsieh & van Kippersluis (2018), Auerbach (2019), Hsieh et al. (2019), and Johnsson & Moon
(2019), who develop econometric frameworks based on control functions, following ideas pro-
posed by Blume et al. (2015). These studies are naturally connected to the literature on the
econometrics of network formation (see Graham 2015, Chandrasekhar 2016, de Paula 2017), and
researchers are leveraging progress made in that literature, as done by Graham (2017), to help
account for the endogeneity of the network in peer effect regression.

3.3.2. Network formation and outcomes. Two recent studies propose an alternative approach
to analyze peer effects in endogenous networks, by assuming that network formation is affected
by outcomes (see Boucher 2016, Badev 2018). Boucher (2016) considers a model of conformism
where agents simultaneously choose a continuous outcome y; € R and choose which peer to con-
nect to. Conditional on the network, individual outcome depends on others’ outcomes through
a best-response equation, which is a variant of Equation 1 without contextual peer effects. Using
our notations, equation 2 in Boucher (2016) becomes

M ]
y’_1+xd1-y’ 1+ Ad;

(yxi + &),

where A is a structural parameter capturing preferences for conformity. This is a particular case
of an extension of Equation 1 in which structural parameters may depend on degree, that is, 8 =
Bd;),y = y(d;). When A > 0, agents with a higher degree are subject to a higher endogenous peer
effect B and to a lower individual effect . Conditional on outcomes, links are formed through a
variant of the dyadic model in Equation 7 accounting for homophily in outcomes. The probability
that individual 7 wants to form a link with j notably depends on observable characteristics and on
—A(y; —y,)*. In this model, the parameter A thus controls both endogenous peer effects conditional
on the network and outcome homophily in link formation. The author then derives theoretical
implications of the model and develops an econometric framework based on bounds. Identification
exploits the fact that changes in peers induce discontinuous changes in an individual’s behavior,
while changes in peer behavior, holding peers fixed, induce continuous changes. He estimates
his model on an Add Health sample of 30,241 individuals in the 100 smallest schools, analyzing
participation in extracurricular activities. He finds that accounting for the impact of outcomes on
links has little effect on the estimation of the conformism parameter, suggesting that this kind of
network endogeneity matters little in this context.

Badev (2018) develops a framework in which individuals simultaneously choose a binary action
y; €{0, 1} and their peers. Conditional on the network, agent 7’ relative utility from playing action
y; = 1 depends linearly on 7’s observable characteristics, on the total number of agents playing 1
in the population, and on the difference between the number of friends playing 1 and the number

20Tn Griffith’s (2019b) approach, the link gij depends on #;, uj, and the product #;u; rather than the abso-
lute value of the difference |#; — #;|. His model thus captures complementarities, rather than homophily, in
unobserved characteristics.
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of friends playing 0. The second term captures a global endogenous peer effect, while the third
term captures a network-based endogenous peer effect. Conditional on the actions, agent s utility
to connect with j depends on observable characteristics, on common neighbors, and on action
homophily. The second term implies that the formation of the link 7/ depends on the presence or
absence of links 7% and kj. Conditional on actions, links are then not independent, and the network
formation process does not reduce to dyadic regressions. This model and approach are thus related
to a literature accounting for interdependencies in link formation (see Chandrasekhar 2016, Mele
2017, Chandrasekhar & Jackson 2018). The third term captures homophily on outcomes: Two
agents who play the same action have an extra incentive to connect. As suggested by Boucher
(2016), a common parameter controls both peer effects conditional on the network and outcome
homophily in network formation.

The author then develops an econometric framework based on the stationary distribution of
a myopic dynamic process subject to random preference shocks, related to the frameworks of
Mele (2017) and Nakajima (2007). He estimates his model on the “saturated” Add Health in-
home sample of 16 schools, analyzing smoking behavior. He also finds that accounting for network
formation has little impact on the estimates of the peer effect parameter. He finally performs
counterfactual experiments and shows that the response of the friendship network to an increase
in tobacco price amplifies the intended decrease in smoking.

3.3.3. Structured omitted variables. In a recent analysis, and building on work by Zacchia
(2019), Pereda-Fernandez & Zacchia (2019) propose a different structural approach to address
problems of correlated unobservables. Rather than considering a model of network formation,
they impose some specific structure on the unobservables and on their correlations with observ-
ables in a variant of Model 5. In their baseline model, they assume no contextual peer effects,
homoscedasticity on #, and that Ex; = 1 )" g hiju; + n; with E[n;u;] = 0. They further assume that
the econometrician knows the structure of the correlation between observed and unobserved
characteristics H but not the extent of this correlation A. They show that Model 5 is identified
under mild conditions on the interaction network G and the correlation network H. For instance,
if g; = 0 and b; # 0, the impact of xj on y; conditioning on endogenous peer effects helps identify
the correlation parameter A. They then extend their analysis and identification conditions to
a more general framework.?! While the assumption that the researcher knows the correlation
structure seems strong, we believe that this analysis provides an interesting exploration of a
potentially important idea. In some contexts, the structure of the network can also be used to
address problems of correlated effects.

3.4. Panel Data

As is well known, panel data open up identification possibilities (see Hanushek et al. 2003). The
introduction of individual fixed effects, in particular, allows researchers to control for agents’ time-
invariant unobserved characteristics, and this should help with problems of correlated effects.
The literature on peer effects in networks with panel data is surprisingly scarce, however. We
believe that this scarcity is due both to problems of data availability and to methodological chal-
lenges emerging when extending Models 1 and 2 to a panel context. In particular, the network
itself may be evolving endogenously, individual outcome may be affected by peers’ time-invariant

2I'They consider a linear-in-means model with endogenous peer effects and contextual peer effects from ob-
servable characteristics, where unobservable characteristics follow a stationary spatial autoregressive moving
average process function of primitive shocks and where observed characteristics are linearly correlated with
these primitive shocks.
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unobserved characteristics, and lagged peer effects may matter. We expect network panel data
to become increasingly available, however, and econometricians and applied economists should
therefore devote more attention to analyze identification and estimation of panel models of peer
effects in networks.

To illustrate, a natural extension of the linear-in-means model to a panel context can be written
as follows,

*®

Yip = ;i + 8y Zgij,z”j + VaXis + Oy Zgij,txj,t +B Zgij,t_)’j,t + &is,
J J j
where observed characteristics, outcomes, and the network of interactions all depend on time #,and
with E(¢;, |u, x;, G,;) = 0. Here, #; captures time-invariant unobserved and observed characteristics
of agent i affecting outcomes. These time-invariant characteristics may give rise to contextual peer
effects, as in Equation 5, captured by the parameter §,.
In panel contexts, dynamic effects often matter, and researchers may want to include various
lags in the main regressions. An extension of Equation 8 with one-period lags can be written as
follows:

Yig =t + 8up E Gijett; + dun E Gije—1tj + YeoXip + Va1Xig—1 + 8o E LijaXjs
j J j

+ 8y Zgij,t—lxj,t—l + Bo Zgij,r}’j,r + Bi Zgij,t—lyj,z—l + 0yir—1 + &ip. 9.
J j J

In this case, individual outcome is affected by time-invariant individual characteristics, by the time-
invariant characteristics of current and past peers (8,9 and §,, 1), by current and past individual
time-varying observed characteristics (y.,o and y., 1), by the time-varying observed characteristics
of current and past peers (8,0 and §,,1), by the outcomes of current and past peers (8o and B1),
and by past individual outcome (9).

At this stage in the literature, no study has analyzed or applied full-fledged versions of
Models 8 or 9. All studies consider particular cases, missing important ingredients. In a group
context, Arcidiacono et al. (2012) consider a model where individual outcome is only affected by
individual and peers’ time-invariant characteristics.”> They propose a nonlinear least square esti-
mator and show that if peer groups change over time, and under some further assumptions, the
estimator does not run into an incidental parameter problem and yields consistent estimates of §,,.
It would be interesting to see whether their analysis extends to network interactions.

A few papers analyze peer effects in networks with panel data (see Patnam 2013, Comola &
Prina 2019, De Giorgi et al. 2020).2 Patnam (2013) analyzes the effect of corporate networks on
firms’ investment and executive pay using panel data for publicly traded companies in India. She
assumes that a firm’s reference group is composed of all other firms with whom the firm shares a
board director. She considers shocks on the board interlock network caused by directors’ retire-
ment or death. She discusses how endogenous peer effects can be identified if these shocks on the
network are exogenous, a variant of the random peers arguments presented in Section 3.1. These
three studies introduce individual fixed effects but do not consider contextual peer effects associ-
ated with these time-invariant characteristics. We view this as a potentially important limitation
of these frameworks.

22Their model is a case of Model 8 with no impact of individual and peers’ observed time-varying character-
istics and with no endogenous peer effect, thatis, y, =8, = 8 =0.

23In other studies, researchers assume that they do not know the network and exploit panel data to identify
peer effects and the network structure itself (see Section 4).
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4. IMPERFECT KNOWLEDGE OF THE NETWORK

In the previous sections, we assumed that the researcher knows the true network of interactions
between agents. This is a strong assumption, which may not hold in reality and for different rea-
sons. The researcher may have information on a sample of the population and on the links between
them, but not on individuals outside the sample and on their connections. The network in the data
may be measured with errors. More generally, even if a specific network of relationships is well
measured, how to be sure that this is the relevant network of interactions with respect to the out-
come considered? For instance, many studies analyze peer effects on grade-point average among
high school students based on self-reported friendships. Are self-reported friends necessarily the
relevant peers with respect to academic achievement?

We believe that imperfect knowledge of the network of interactions is a first-order empirical
issue that deserves more attention. For instance, difficulties raised by incomplete sampling appear
in every analysis of in-home data from Add Health on the nonsaturated sample and are generally
neglected. Misspecifying the network can, of course, invalidate the identification and estimation
of peer effects based on the network structure. As pointed out by Blume et al. (2015), incorrectly
assuming an absence of connections invalidates the exclusion restriction for instrumental variables
built from the network structure. When the network is mismeasured, peers of peers who are not
peers in the observed network can, in fact, be peers in the real network. Their characteristics then
have a direct impact on individual outcomes and cannot be used to instrument for friends’ out-
comes in peer effect regressions. This issue is particularly relevant given the documented tendency
of social networks toward clustering and transitivity: Friends’ friends are generally quite likely to
have some form of direct relationship.

How to ensure, then, an absence of direct connections between indirectly connected agents?
Applied economists have developed an ingenious potential solution to the problem by combining
information from different networks. In their study of peer effects on mothers’ working hours,
Nicoletti et al. (2018) consider both family peers—sisters and female cousins—and geographic
neighbors. In their main regression, they instrument the working hours of family peers by the
past working hours of the family peers’ neighbors. In their study of peer effects on consumption,
De Giorgi et al. (2020) combine information on spouses and on coworkers. They instrument
coworkers’ consumption by shocks on the firms of coworkers of the spouses of these coworkers.
Juxtaposing different dimensions of the social space helps ensure that indirectly connected agents
are not directly connected.** This is a conservative approach: Researchers focus on parts of the
observed social structure where intransitivity and the related exclusion restrictions are likely to
hold.

More generally, a promising idea emerging from the recent literature is that peer effects can be
identified even with very imperfect knowledge of the actual network of interactions (see in partic-
ular Blume et al. 2015, theorems 6, 7). In a panel context, peer effects can even be identified with
no knowledge of the network, under the assumption that the network does not change over time
(see Manresa 2016, Rose 2016, de Paula et al. 2018). In that case, the network of interactions itself
can potentially be identified and recovered from the data. Network time-invariance is of course
a strong assumption, unlikely to hold in many contexts. However, panel data are not necessarily
needed to identify and estimate peer effects with imperfect knowledge of the network. Boucher
& Houndetoungan (2019) propose methods to estimate Models 1 and 2 with cross-sectional data
when the network is imperfectly observed but the researcher can consistently estimate the net-
work’s probability distribution.

2#Relatedly, in a study on learning spillovers about the enforcement of a social program, Brollo et al. (2018)
find that individuals’ compliance responds to penalties incurred by siblings’ classmates.
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Sampling and measurement error are two important and underresearched topics.
Chandrasekhar & Lewis (2016) provide an econometric analysis of sampled networks (see
Conti et al. 2013 for an early contribution). They consider two sampling schemes. The re-
searcher observes a random sample of nodes and considers their connections either with other
sampled nodes or with all other nodes. They notably show that in regressions based on Model 1,
instruments built from friends of friends who are not friends in the observed network are
generally invalid (see Chandrasekhar & Lewis 2016, proposition 3.4). To see why, suppose that
i is connected to j and /, who are both connected to k. Suppose also that 7, j, and k are sampled
but / is not. Even though 7 and # are not directly connected, x; also affects y; through its impact
on the unobserved y;, and the corresponding exclusion restriction is not satisfied. They also
propose a simple analytical correction for the second scheme when the researcher also observes
the outcomes and characteristics of all agents. Griffith (2019a) explores the implications of degree
censoring—that is, the imposition of upper bounds on the number of peers when eliciting network
data—on the estimation of Model 1. He shows that degree censoring is widespread in practice, as
with Add Health data (Jackson 2013). He finds that this can significantly bias the estimates and
discusses strategies to address this issue. Overall, much more research is needed to understand
the statistical and econometric implications of network sampling, network measurement error,
and, more generally, imperfect network knowledge of peer effect regressions.

5. CONCLUDING REMARKS

An important theme emerging from our review is the adaptability of the identification strategy
based on the network structure: Peers of peers who are not peers affect individual outcome only
through their effect on peers’ outcomes. This strategy can be applied directly with a randomized
treatment even when the network is endogenous, if the network is not affected by the treatment;
it can be applied to identify endogenous peer effects with random peers even when contextual
peer effects are not identified; and it can be adapted to account for correlated effects in some
contexts. This strategy may not be valid, however, when the network is mismeasured and agents
with no apparent connection are, in fact, peers. In empirical applications, researchers have notably
combined information from different networks to help ensure an absence of connections between
peers of peers.

The literature on peer effects in networks is growing fast, with no lack of important open
questions. There is, for instance, still very little research on panel data (Comola & Prina 2019), on
measurement error (Chandrasekhar & Lewis 2016), or on combining structural and experimental
approaches (Griffith 2019b). Perhaps the most challenging open question, however, concerns the
mechanisms behind peer effects: How to disentangle the roles of conformity, complementarities,
social learning, risk sharing, and other motives behind peer effects? Recent progress on this
question has been made thanks to well-designed experiments (Beugnot et al. 2019, Breza &
Chandrasekhar 2019) and to structural estimation of theoretical models (Banerjee et al. 2013).
More generally, we believe that the development, analysis, and empirical estimation of new
theoretical models of network interactions will prove key to identify the reasons behind peer
effects. While future research will undoubtedly open up new perspectives, we conjecture that the
key insight that the network structure contains useful information for causal identification will
prove long lived.
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