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Abstract

For the past 10 years, the topic of set identification has been much studied
in the econometric literature. Classical inference methods have been gen-
eralized to the case in which moment inequalities and equalities define a
set instead of a point. We review several instances of partial identification
by focusing on examples in which the underlying economic restrictions are
expressed as linear moments. This setting illustrates the fact that convex
analysis helps not only for characterizing the identified set but also for in-
ference. From this perspective, we review inference methods using convex
analysis or inversion of tests and detail how geometric characterizations can
be useful.
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1. INTRODUCTION

The importance of the standard notion of point identification, which appears in standard econo-
metric textbooks (for instance, Wooldridge 2010), has been questioned for the past 30 years,
especially by Manski and his coauthors (initiated in Manski 1989), who reintroduce and develop
the notion of set or partial identification in the literature. Many other scholars have followed
up, contributing to a blossoming literature on selection models, structural models, and models of
treatment effects. Seminal work has been developed by Gini (1921) and Frisch (1934) for the simple
regression model with measurement errors, Reiersol (1941) and Marschak & Andrews (1944) for
simultaneous equation models, Hoeffding (1940) and Fréchet (1951) for bounds on the joint distri-
butions of variables when only marginal distributions are observed (in two different surveys, for ex-
ample), and Klepper & Leamer (1984) and Leamer (1987) for the linear regression model with mea-
surement errors on all variables. This work remained little known or used until the work of Manski,
which he himself has summarized (Manski 2003). Many of Manski’s students helped to develop
this literature [see, in particular, the surveys by Tamer (2010) and Molchanov & Molinari (2015)].

The general reasoning that leads to partial identification is the notion of the incomplete-
ness of data or models. First, the data may be incomplete because of censorship mechanisms,
the use of two different databases, or the existence of two exclusive states of treatment. For the
evaluation of public policies, observational treatment data are necessarily incomplete because in-
dividuals can never be observed simultaneously in treatment and off treatment. Second, structural
models can be incomplete if they do not specify unambiguous solutions. A classic example of this
scenario is provided by multiple equilibria in games (e.g., Tamer 2003). The economic model
does not specify the selection mechanism (stochastic or not) of the observed equilibrium.

The most common procedure in the applied literature is to make assumptions or add new
information to complete the data and obtain point-identified models. For example, we would
specify additional latent variables and their distributions to supplement the data (as in models of
censorship or treatment) or mechanisms that make the solution unique in economic models (as
an equilibrium selection mechanism in a game). However, choosing a single completion of the
model is arbitrary, and point identification becomes implausible.

Even so, this approach provides the first insight into partial identification. Data analysis could
still be conducted by examining all acceptable arbitrary assumptions that are consistent with the
model assumptions and by collecting all values of point-identified parameters implied by each
of these assumptions. The acceptability of an hypothesis depends on the application, and these
assumptions either refer to sets (e.g., a probability of equilibrium selection belongs to the interval
[0, 1], or censored values are bounded) or are functional (like monotonicity or concavity). The
identifying power of different assumptions may be compared in terms of the size of the set that is
identified.

As presented above, partial identification seems to be very different from the traditional setting.
However, when we include the other steps in empirical work of estimating and constructing
confidence intervals, this notion of partial identification fits naturally, at least when the identified
set is connected. At the estimation stage, we can replace point estimates of the parameter of interest
with point estimates of the boundary of the set. In inference, the presentation using confidence
regions does not change because results naturally express themselves in terms of intervals or
confidence regions. Only their interpretation changes, as these confidence regions are not only
the result of sampling variability but also of radical uncertainty about the identification of the
underlying parameters.

Sections 2 and 3 are devoted to identification and Section 4 to a review of inference methods.
Two important elements in this literature are the issues of sharp identification and of uniform
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inference, both of which we define. For simplicity, we focus mainly on partial observability settings
in which the original moment restrictions are linear. This setting is very attractive because these
examples illustrate that convex analysis helps in identification, estimation, and inference. The idea
that the geometry of the problem might be used in partial identification has received little coverage
in the literature.

It is indeed often the case [as shown by Beresteanu et al. (2011)] that the identified set is
convex or that all points in the identified set can be characterized using an auxiliary convex set.
This reduces the dimensionality of the problem tremendously because the space of convex sets,
by being homeomorphic to their support functions (as we define below), has a much smaller
dimensionality than the space of general sets. Furthermore, convex analysis helps not only in
proving the efficiency of inference procedures but also, in practice, in constructing standard test
statistics. This is one of the threads that we follow in this review by devoting Section 3 to what
we call convex set identification. This section prepares the ground for discussing its implications
for inference.

In Section 5, we briefly review the empirical literature that, although growing, still lags behind
the recent expansion of the theoretical literature. We believe that the way in which empiricists use
these methods will lead to further improvements in theoretical developments. We try to explore
the specific challenges that the empirical literature faces when trying to apply the theoretical
recommendations. Finally, Section 6 concludes.

2. POINT AND SET IDENTIFICATION

As is usual, we begin by abstracting from sampling issues and analyzing how the parameters
of economic models can be recovered from the probability distribution functions of economic
variables. We reserve capital letters to denote sets, e.g., �I ⊂ R

d for the identified set, and
lowercase letters for elements of these sets, e.g., θ . We use lowercase bold letters to denote single
or multidimensional random variables, e.g., w. We focus on the practical and empirical issues
implied by partial identification without paying much attention to the mathematical foundations
(see Molchanov & Molinari 2015) or the theory of random sets (see Molchanov 2005).

This section defines, first, concepts of observational equivalence and point identification and,
second, the notions of complete and incomplete models as well as of sharp identification. We then
link these concepts with moment inequalities that, in most if not all of the partial identification
literature, characterize the identified set. In other words, estimating equations are expressed as
inequality restrictions on population moments or probabilities.

We start by presenting definitions and a simple example and then broadly refer to the literature
on partial identification.

2.1. Setup and Definitions

We adopt a setting in which random variables, say w, the interrelationships of which are described
by an economic model, are defined on a probability space in which the space of elementary
events is, for simplicity, a subset of the Euclidean space, R

p , and the probability measure is a
family of probabilities Pθ ,η. Our framework covers semiparametric models because the population
probability distribution depends on the finite-dimensional parameter of interest θ ∈ � ⊂ R

d , the
true value of which is θ0, and on other nuisance parameters η. These nuisance parameters, the
true values of which are η0, can be as general as one wants (for instance, they can be distribution
functions). They are the source of partial identification, as defined below. Furthermore, some of
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those nuisance parameters are kept in the background and are supposed to be point identified (for
instance, the marginal distributions of exogenous covariates).

When nuisance parameters η are fixed at the supposedly known true value η0 or, more simply,
when there are no such nuisance parameters, we can first define the concept of observational
equivalence. Parameters θ and θ ′ are said to be observationally equivalent if and only if

Pr(w ≤ w; θ , η0) = Pr(w ≤ w; θ ′, η0) almost surely.

Second, the parameter θ is said to be point identified if there is no θ ∈ � that is observationally
equivalent to the true parameter θ0, holding η0 fixed. This definition can be global or local de-
pending on the assumptions about the range of variation of θ . We could also be interested in a
subset of parameters θ .

In this definition, we maintain that the specification is correct and unique, i.e., that the popula-
tion probability measure is given by a unique set of parameters (θ0, η0), and η0 is known. It is easy
to extend this concept to misspecified models by using a notion of distance between the population
probability measure and the family of semiparametric probability distributions generated by (θ , η).
In particular, if the assumption that η = η0 is incorrect, the model is misspecified and, even if
point identified, will generally generically deliver an incorrect parameter θ . We see below that
the partial identification technique is a way to protect oneself against this type of misspecification.
However, the notion of partial identification lends itself less well to cases of misspecification of
the family Pθ ,η (Ponomareva & Tamer 2011).

Point identification can break down if the nuisance parameters η0 are not known or cannot be
point identified using the relationship between the population probability distribution Pθ0,η0 and
the family Pθ ,η. The model is said to be incomplete when it delivers several probability measures
Pθ ,η that are all compatible with the population distribution function. In contrast, a model is said
to be complete when its parameters are point identified.

2.1.1. Completing the model or the data. Completing a model might require some ingenuity
on the part of the researcher. There are two ways to make a model complete. First, we can specify
the unobserved parameter η as above and set it to η0 (sometimes by augmenting θ with a few
parameters). For instance, assuming normality of the error term completes a binary model into a
probit model. Second, we may adopt a completion process by augmenting the data with a random
variable t so that observables are now (w, t). For example, an interval-censored variable can be
completed by an arbitrary but compatible random variable t, which describes the true unknown
position of the variable within the interval. This additional variable can also describe the selected
equilibrium in games with multiple equilibria. This completion fixes the value of the unknown
nuisance parameter η, which is now interpreted in the most general sense as the distribution of
variable t conditional on observable w.1

This dual presentation makes clear that incompleteness is related to both the data and the model.
Completing the data can make the model complete. Completing the model can make the data
informative about the model. In this deeper sense, partial identification is related to the credibility
of models and their assumptions and to the exploration of the impact of these assumptions (Manski
2003). It distinguishes the core economic variables, w, from auxiliary variables, t, and aims to study
the impact of the specification of the distribution function of variables t on the parameter θ . This
is expressed in the literature by saying that the nuisance parameter η is not specified by economic
theory or by the statistical model, even if some restrictions might apply to it.

1The population probability function is the marginal distribution function of the complete function.
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2.1.2. Set identification. If we define the identified set as the set of all possible values of the
point-identified parameter when the completion is described by a value of η belonging to a set E ,
which is specific to each application, we find that

�I = {θ ; ∃η ∈ E , Pr(w ≤ w, t ≤ t; θ , η) = Pr(w ≤ w, t ≤ t; θ0, η0), ∀(w, t) ∈ W × T }
=
⋃
η∈E

{θ ; Pr(w ≤ w, t ≤ t; θ , η) = Pr(w ≤ w, t ≤ t; θ0, η0), ∀(w, t) ∈ W × T }. 1.

In other words, the identified set contains all values of the parameter of interest that can be
reconciled with the data for at least one value of the parameter that completes the data or model.

In the absence of other restrictions on set E , it is unlikely that �I is different from the whole
possible set �. First, there can be restrictions on the support, say T , of the random variable t, for
example, an interval in the case of interval censoring or in the case in which the conditional prob-
ability (on exogenous variables) of the equilibrium selection, in a game with multiple equilibria, is
bounded between 0 and 1. Further restrictions can be imposed, e.g., on the shape or monotonicity
of functional forms or by excluding variables. All of these restrictions are written as restrictions
on the parameter η ∈ E that can be analyzed according to their degree of credibility:

η ∈ E1, η ∈ E2 ⊂ E1, . . . , η ∈ {η0} ⊂ Em.

Finally, the sharp identification of a set is defined as asserting that all points in the identified set,
�I , correspond to an acceptable or credible assumption that completes the partially identified
model.

The following simple example serves to illustrate this construction and to introduce the con-
cepts. This example is developed further in Section 3.

2.2. Example 1: Interval Censoring and Best Single-Dimensional
Linear Prediction

Stoye (2007) analyzes the case of linear prediction,

y∗ = β0 + β1x + u, E(u) = E(ux) = 0,

in which the dependent variable is interval censored:

y∗ ∈ [yL, yL + d]. 2.

Only the lower bound yL, the length d, and a single covariate x are observed.2 The extension to
linear prediction in a multivariate model is presented in the next section. To simplify further, we
assume that Ex = 0 and Ex2 > 0 and suppose that there are no other restrictions.

This is a fairly common scenario when using data on income or household wealth because many
surveys proceed through a two-stage approach. First, researchers ask households or individuals the
exact level of their income or assets, and second, if households do not want to answer for privacy
reasons, they ask the same question but in the form of intervals (e.g., “Is your income between
$0 and $500? Or between $500 and $1,000?”). Even if $0 is a natural lower bound for income,
an upper bound is not clearly defined. Most studies then make an arbitrary assumption about the

2We consider the closure of the interval, although it would be natural to opt for a cadlag assumption for the true interval and
open it on the right. These topological distinctions are neglected in this literature or are treated in technical appendices. In
this example, it is clearly legitimate if the distribution of y∗ is continuous because the right end is of measure 0. This is the
purpose of the assumption stating the nonatomicity of probability distribution functions that is introduced below.
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maximum amount of the dependent variable, such as the highest observed income (e.g., Lee 2009,
in which the most conservative bounds are used).

We focus on parameter β1 alone and proceed first by completing the data to obtain point
identification. Using the bounds in Equation 2 on the unobserved outcome y∗, we augment the
data by choosing random t on support T = [0, 1], so that we can write

y∗ = yL + td.

Note that the unknown parameter η is the conditional distribution of t, η = F (t ≤ t | yL, d, x),
so that it covers cases of parametric completion. If we were to use ordered probit or logit, for
instance, the unobserved variable, y∗, would be specified as normal or logistic conditionally on x,
and η would be set to an interval-truncated normal or logistic distribution. Under any of these
assumptions, the parameter of interest β1 is generically identified if there are more than three
intervals.3 If we do not want to adopt such parametric assumptions, the identified set is much
larger than the singletons identified by ordered probit or logit. This set includes point-identified
parameters derived by considering all possible distribution functions η of the variable t.

The analysis with nonparametric completion proceeds as in the general definition. First, iden-
tify parameter β1 in every completed model. Second, consider the union of all point-identified
values.

As we can write

y∗ = yL + td = β0 + β1x + u,

we can derive the value of parameter β1 as4

β1 = E((yL + td)x)
E(x2)

= E(yLx)
E(x2)

+ E(tdx)
E(x2)

.

As d ≥ 0 and t ∈ [0, 1], we find that

E(tdx) = E(tdx1{x > 0}) + E(tdx1{x < 0})
≤ E(dx1{x > 0}),

where 1{·} is the indicator function of the bracket. Symmetrically, we obtain

E(tdx) ≥ E(dx1{x < 0}).
The identified interval for β1 is then the union of all possible values,

β1 ∈ �I =
[

E(yLx) + E(dx1{x < 0})
E(x2)

,
E(yLx) + E(dx1{x > 0})

E(x2)

]
. 3.

Its length is always positive if
E(d |x|)
E(x2)

> 0

and, specifically, when the interval length d is a nonnegative random variable not always equal to
zero, so that both exact and interval-censored values are observed.

Conversely, one can show through a constructive argument that any point in this range corre-
sponds to a possible distribution of t over its support [0, 1]. This shows that the interval is identified
sharply (e.g., Stoye 2007, Magnac & Maurin 2008).

3The parameter β0 and the variance of u are also identified. This requires having a strictly negative definite Hessian of the
log-likelihood in a neighborhood of θ0 = (β0, β1, σ 2) (see Rothenberg 1971).
4Recall that Ex = 0 and the variance of x is E(x2) > 0.
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Finally, note that parameter β1 can also be defined as the solution to two unconditional moment
inequalities,

E(yLx) + E(dx1{x < 0}) − β1 E(x2) ≤ 0,
β1 E(x2) − E(yLx) − E(dx1{x > 0}) ≤ 0.

4.

Alternatively, the assumption of uncorrelated errors could be strengthened into mean-
independent errors. This yields conditional moment inequalities of the form

E(β0 + β1x − yL | x) ≤ 0,

E(yL + d − β0 − β1x | x) ≤ 0.

2.3. Discussion

The resulting setup of moment restrictions obtained in the above example extends to many partially
identified economic models. They express the identifying restrictions on parameters as inequal-
ity constraints on expectations of linear or nonlinear functions of variables and parameters and
therefore lead to a finite or infinite number of moment inequalities. A more difficult issue is sharp
identification, in which the characterization by moment inequalities is equivalent to the charac-
terization of the set by the completeness restrictions. If this is not the case, what is identified is a
so-called outer set, which is generally much easier to determine because the number of restrictions
is smaller (see Ciliberto & Tamer 2009 for such an empirical strategy).

These extensions require more sophisticated tools than those we used in the very simple example
above. In the case of structural models, in particular those derived from game theory, Galichon
& Henry (2009, 2011) explain how to use tools from optimal transport methods to solve the
issue of sharp identification and derive moment inequalities that are necessary and sufficient for
characterizing the identified set. Alternatively, Beresteanu et al. (2012) explain how the theory of
random sets also enables one to find a solution to these issues. We briefly summarize the tools of
random set theory in the next section.

These tools are applicable to models analyzing censorship, such as those developed by Horowitz
& Manski (1995), Manski & Pepper (2000), or, more generally, all the works reviewed by Manski
(2003). Many topics are connected with the framework of partial identification. Ridder & Moffitt
(2007) offer a comprehensive overview of models of data coming from multiple sources, such as two
surveys or two mutually exclusive states of the world, and Pacini (2017) develops a particular case.
Models with discrete variation within a framework of simultaneous equations are investigated by
Chesher (2005, 2010). Polytomous discrete models are treated by Chesher & Smolinski (2012),
and Chesher & Rosen (2015a) generalize instrumental variable models. Binary models with a
“very exogenous” regressor, observations of which are interval censored, are analyzed by Magnac
& Maurin (2008). Davezies & d’Haultfoeuille (2012) deal with attrition and departures from the
missing at random assumption. Partial identification of variance and covariance parameters is
studied by Horowitz & Manski (2006), Fan & Park (2010), Fan & Wu (2010), and Gomez &
Pacini (2013). Nevo & Rosen (2012) and Conley et al. (2012) introduce what they call “imperfect
instruments,” which are variables that are not excluded from the equation of interest but are less
correlated with the error term than the endogenous variable they are supposed to instrument.

3. DIRECT AND INDIRECT USES OF CONVEXITY ARGUMENTS

Some reminder of random set theory is useful to make this review self-contained, and we start
by borrowing notation from the survey of Molchanov & Molinari (2015). We turn next to the
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definition of the support function of a convex set. More substantially for our topic, we develop
three cases in which direct and indirect approaches with these tools help in deriving conditional
or unconditional moment inequalities.

3.1. Random Sets and Random Selections

In Section 2, we saw the importance of defining the completion of data by a random variable t, the
support of which is restricted or to which other restrictions are applicable. In the theory of random
sets, a specific random variable satisfying these restrictions is called a selection, and this selection
is from a random set that gathers all possible random variables that satisfy these restrictions, say a
random set T.5 We assume that the random set T is closed and bounded, and therefore compact,
if the support of t is included in a finite-dimensional Euclidean space.

As parameter θ = θ (t) is point identified when the completion is given by t, the definition of
the sharply identified set can be rephrased as

�I = {θ ; θ = θ (t); t ∈ T}.
Random set theory helps us to do two things. First, it relates what are called the capacity and

containment functionals of a random set T to the distribution function of observed variables, w.
Second, it relates the identified set �I with the so-called Aumann expectation of specific random
sets either directly or indirectly, as shown below. As explained by Beresteanu et al. (2011), the choice
between these two methods depends on the type of restrictions that are imposed in each economic
application. Best linear prediction or, more generally, mean independence restrictions are usually
easier to deal with using Aumann expectations. In contrast, games of complete or incomplete
information or independence restrictions are easier to deal with using capacity functionals (see
also Chesher & Rosen 2015a).

3.2. Aumann Expectations and Support Functions

As we focus our survey on partial identification derived from moment restrictions, we concentrate
on the use of Aumann expectations, although Section 4, which deals with inference, generally
encompasses both frameworks. Defining the concept of Aumann expectation comes first. As in
the work of Molchanov (2005), the Aumann expectation of a random set T is the set formed by
the expectations of all its selections:

E(T) = {E(t); t ∈ T}.
A key property of this expectation is that the resulting set is closed and convex in R

p under weak
conditions. This opens up the possibility of using standard tools of convex analysis (Rockafellar
1970). Although a convex set can be uniquely characterized by several functions, the literature
has focused on using support functions because the most commonly used distance between two
convex sets, the Hausdorff distance, is the supremum of the difference of their respective support
functions.6

5In this review, we identify a random set with the set of its random selections and write t ∈ T. A rigorous approach is given
by Molchanov (2005).
6The embedding theorem of Hörmander (see Molchanov 2005) between convex sets and support functions is also an important
motivation.
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q

–q

δ*(q; ΘI)

δ*(–q; ΘI)

δ*(q; ΘI) = sup (qΤθ)
θ∈ΘI

ΘI

Figure 1
The support function of �I , a convex set, in the direction q is the distance between the origin and the
supporting hyperplane orthogonal to vector q . It is positive if both the convex set and the origin belong to
the same half space bounded by this hyperplane and negative otherwise. We report the support function
values for q and −q .

The support function of a convex set � is defined as

δ∗(q ; �) = sup
θ∈�

(q
θ )

for all directions q ∈ R
d , which uniquely characterizes the convex set � (e.g., Rockafellar 1970):

θ ∈ � ⇔ ∀q ∈ R
d , q
θ ≤ δ∗(q ; �). 5.

This construction is illustrated in Figure 1. The support function of a convex set is defined by
the location of its supporting hyperplanes in all directions.

Furthermore, support functions are sublinear functions, i.e., positive homogeneous and convex.
The previous characterization can therefore be equivalently written for directions on the unit
sphere S

d−1 = {q ∈ R
d ; ‖q‖ = 1}:

θ ∈ � ⇔ ∀q ∈ S
d−1, q
θ ≤ δ∗(q ; �).

The same property also leads to theorem 2.1.22 of Molchanov (2005), which says that the support
function of an Aumann expectation is equal to the expectation of the support function of the
underlying random set:7

E [δ(q ; T)] = δ(q ; E(T)). 6.

There are various uses of these results in the literature. First, a direct approach using Aumann
expectations is developed by Beresteanu & Molinari (2008) in the case of best linear prediction with
interval-censored outcomes studied by Stoye (2007). In this case, the identified set is a function
of the Aumann expectation of a random set T, and realizations of this random set are observed
quantities in the sample. Second, another direct approach is used by Bontemps et al. (2012) in

7Its conditions of validity are that T is integrably bounded and convex and that the underlying probability space is nonatomic.
This does not seem restrictive in most economic applications (Beresteanu et al. 2011).
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the same case of best linear prediction with censored-by-interval outcomes, although the number
of moment conditions in this case is larger than the number of parameters. The identified set is
the intersection between two convex sets, one of which is a transform of an Aumann expectation.
Finally, an indirect approach is proposed by Beresteanu et al. (2011). In this case, for any value
of θ , there exists a convex set M (θ ) that is itself an Aumann expectation of a random set, and the
identified set can be characterized as

θ ∈ �I ⇐⇒ 0 ∈ M (θ ).

We next review these approaches through simple examples and derive the moment inequalities
that each of them imply.

3.3. Convex Identified Sets: A Direct Approach

Example 1 in Section 2.2 can be extended to a multidimensional framework starting from the
same linear prediction (e.g., Stoye 2007):

y∗ = xβ + u, y∗ ∈ [yL, yL + d],

where E(x
u) = 0. If we complete the data, parameter β belongs to the identified set, �I ⊂ R
d , if

and only if there exists a variable t whose distribution function is η = F (· | x, d, yL) on [0, 1] such
that

y∗ = yL + td.

The point-identified parameter β using complete data is

β = [
E(x
x)

]−1 E[x
(yL + td)], 7.

and the identified set is the collection of such expressions. It is convex because the support [0, 1]
of t is convex.

The random set of interest is defined by

M = {x
(yL + td); t ∈ T},
which is also convex with Aumann expectation E(M). Its estimation and the construction of con-
fidence intervals are derived by Beresteanu & Molinari (2008) using laws of large numbers and
central limit theorems for random sets. They also deal with the complication that the identified
set is a transformation of this Aumann expectation [i.e., premultiplying by

(
E(x
x)

)−1].
In addition, Equation 7 allows us to write that for all q ∈ S

d−1,

δ∗(q ; �I ) = sup
β∈�I

q
β = sup
t∈T

q
 [E(x
x)
]−1 E[x
(yL + td)].

Simple calculations by Stoye (2007) yield the support function as a function of population moments,

δ∗(q ; �I ) = q
 (E(x
x)
)−1 E

(
x
(yL + 1

{
q
 (E(x
x)

)−1 x
 > 0
}

d)
)

,

and the estimation of the identified set can be equivalently achieved by estimating support
functions.

The geometry of the set �I has consequences for inference, as developed by Bontemps et al.
(2012). Specifically, two important characteristics of frontiers of convex sets are exposed faces,
which are nontrivial (i.e., not reduced to singletons), and kinks (or corner points). An exposed face
is the intersection between a supporting hyperplane, defined by its outer normal vector q0, and
convex set �I :

B(q0) = {β ∈ �I ; q

0 β = δ∗(q0; �I )}.
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When �I is strictly convex, the previous set is trivial because it is reduced to a singleton in every
direction.

The second characteristic is that convex sets can have kinks (or corner points) when the set of
supporting hyperplanes orthogonal to q at a point β0 of the frontier of �I ,

C(β0) = {q ∈ S
d−1, q
β0 = δ∗(q ; �I )},

is not reduced to a singleton.
In the specific example of best linear prediction, the first characteristic arises when at least

one covariate has a mass point, and the second characteristic arises when the density function of
covariates is not positive everywhere on its support (Bontemps et al. 2012).

The existence of nontrivial exposed faces has an impact on the asymptotic distribution of
estimates, which we review in the next section. The existence of kink points affects the number of
moment inequalities that are binding, an important point in inference also developed in the next
section. Indeed, as Equation 5 makes clear, necessary and sufficient moment inequalities at any
point of the identified set are

∀β ∈ �I , ∀q ∈ S
d−1; q
β − δ∗(q ; �I ) ≤ 0.

Consequently, for interior points of �I , no inequality restriction is binding. For frontier points
of �I that are not kinks, a single inequality is binding. And finally, for any kink frontier point of
�I , many inequalities indexed by directions q in the nonsingular cone, C(β0), are binding.

3.4. Convex Identified Sets: A Two-Step Approach

In this section, we consider another extension of Example 1, with a single covariate, x, such that
Ex = 0. Restrictions E(xu) = E(u) = 0 are now completed by another restriction E(zu) = 0, and
we analyze how this additional information restricts the information set. For the sake of exposition,
we also suppose that the covariate z is single dimensional, E(z) = 0, and uncorrelated with x.8

To begin, observe that the presence of this instrument imposes a restriction on the random
selection parameter t. For instance, consider the selection t = 1{x > 0} that leads to the largest
value for β1 in Equation 3, say βU

1 . It corresponds to the true outcome

y∗ = yL + 1{x > 0}d = βU
1 x + uU

and

E(zuU ) = E[z(yL + 1{x > 0}d − βU
1 x)]

= E(zyL) + E(zd1{x > 0}).
Note that π = E(zyL) + E(zd1{x > 0}) is observable and that, if π �= 0, the orthogonality
condition E(zuU ) = 0 is not satisfied. Selection t is no longer admissible. This is also true for
other selections, and the interval of identified slopes, β1, shrinks because some random selections
are ruled out.

The general geometric construction of the sharp identified set (Bontemps et al. 2012) is readily
adapted to this simple example. We augment the regression by adding z as an additional explanatory
variable,

y∗ = β1x + γ z + u,

8By relabeling z as the residual of the linear prediction of z on x, this is without loss of generality.
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Figure 2
Geometry of different cases in which the straight line γ = 0 (a) can cross the interior of the unrestricted
identified set, �U

I , resulting in interval identification of β1; (b) can be tangent to this set, restoring point
identification of β1; and (c) can have no intersection with �U

I , a case of misspecification.

and note that parameter γ should be zero under the above assumptions.
Without restrictions on γ , there are as many parameters, (β, γ ), as restrictions: E(xu) =

0, E(zu) = 0. Therefore, the unrestricted identified set, say �U
I , is obtained, as in Section 3.3, by

deriving its support function.9 If we reconsider restriction γ = 0, the restricted identified set is the
intersection of the two convex sets �U

I and the hyperplane γ = 0. A standard formula (Rockafellar
1970) for the support function of the intersection of two convex sets is given by

∀qβ ∈ S
d−1; δ∗(qβ ; �I ) = inf

qγ ∈R

δ∗ ((qβ , qγ ); �U
I

)
, 8.

where qβ is associated with β1 and qγ with γ .
Moreover, the usual Sargan condition of the validity of moment restrictions, in this case

E(zu) = 0, is satisfied if this intersection is not empty, i.e., when γ = 0 is an acceptable re-
striction. Let us call BSargan the orthogonal projection of �U

I on the space of parameter γ . The
Sargan set is an interval [γL, γU ] in which

γL = E[z(yL + 1{z < 0}d)] and γU = E[z(yL + 1{z > 0}d)],

and the Sargan condition can be written as

0 ∈ [γL, γU ].

If it is not verified, the model is misspecified, and moment restrictions are incompatible with the
data (see Figure 2).

3.5. Nonconvex Identified Sets: An Indirect Convexity Approach

There are other cases in which direct approaches cannot be used. A third extension of our original
example was originally developed by Horowitz et al. (2003) and revisited by Beresteanu et al.
(2011). We return to the single-dimensional best linear prediction

y∗ = β0 + β1x∗ + u, E(u) = E(ux∗) = 0

9As z is orthogonal to x, �U
I is the collection of points in R

2 whose coordinates are, respectively, β1 = E(x2)−1 E[x(yL + td)]
and γ = E(z2)−1 E[z(yL + td)] for the same t.
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and assume now that both outcome and covariate are censored by interval:

y∗ ∈ [yL, yL + dy ], x∗ ∈ [xL, xL + dx].

We complete the data by associating ty on [0, 1] with y∗ = yL + ty dy and tx on [0, 1] with
x∗ = xL + txdx . The identified set can still be characterized as

�I =
{
β; β = [

E
(
(xL + txdx)
(xL + txdx)

)]−1 E
(
(xL + txdx)
(yL + ty dy )

)
; (ty , tx) ∈ T

}
,

but it is not necessarily convex because of the first term.
The alternative is to proceed as follows. First, fix θ = (β0, β1) ∈ �. Consider the random set

M(θ ) =
{

mθ =
(

u
ux∗

)
; (ty , tx) ∈ T

}
,

=
{

mθ =
(

yL + ty dy − β0 − β1(xL + txdx)
(yL + ty dy − β0 − β1(xL + txdx))(xL + txdx)

)
; (ty , tx) ∈ T

}
.

Its Aumann expectation, E(M(θ )), is convex even though the random set itself might not be, and
its support function, δ∗(q ; E(M(θ ))), characterizes E(M(θ )). Furthermore, if θ ∈ �I , defined by
the moment restrictions E(u) = E(ux∗) = 0, there exists a random selection in M(θ ) whose
expectation is equal to 0. Therefore, we have

θ ∈ �I ⇐⇒ 0 ∈ E(M(θ )) ⇐⇒ 0 ≤ min
q∈S1

δ∗(q ; E(M(θ )))

because of Equation 5. As in Equation 6, E [δ(q ∗; M(θ ))] = δ(q ∗; E(M(θ ))), we can write

θ ∈ �I ⇐⇒ 0 ≤ min
q∈S1

E(δ∗(q ; M(θ ))).

This provides a set of moment inequalities. The support function, δ∗(q ; M(θ )), is easy to evaluate
and can be minimized by standard techniques, although this has to be done for any candidate value
of θ . In this sense, this case is significantly more costly than the cases reviewed in the previous two
sections.

4. INFERENCE METHODS

Inference principles for parameters in set-identified models follow closely from those used in
point-identified models. For example, estimating an interval, as in Example 1, consists of estimating
its upper and lower bounds (e.g., Imbens & Manski 2004). In higher-dimensional spaces, this is
somewhat more difficult unless this set is convex. These constructions are the object of this section.

In the literature, confidence sets are derived using two alternative routes. The classical approach
consists, first, of estimating the identified set and, second, of constructing the confidence region
as the set of points that are close to this estimate. What differs from the point-identified case is
that the distribution of the distance between the confidence set and the estimated set is generally
nonstandard.

In a seminal article, Chernozhukov et al. (2007) first estimate the identified set as the collection
of points defined by values close to zero of a nonnegative criterion function. For a given level of
confidence, they similarly define confidence regions as the set of points, the criterion value of
which is smaller than a critical value that is adjusted by subsampling techniques. Alternatively,
Beresteanu & Molinari (2008) and Bontemps et al. (2012) estimate the support function of the
convex identified set �I , as defined in Section 3.3, using empirical counterparts of population
moments. Next, they construct confidence regions using the estimated sampling variability of
those empirical moments.
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The second approach consists of inverting a test statistic. This method has been widely used in
models that are characterized by moment inequalities (see, in particular, Romano & Shaikh 2008,
Andrews & Soares 2010, Andrews & Shi 2012). For any given value of θ , a test of level α of

H 0 : θ ∈ �I , H a : θ /∈ �I ,

is inverted by gathering all nonrejected values of the parameter θ in the confidence region of level
1 − α. Note that the classical approach detailed above also depends on the inversion of a test but
is made easier by the estimation of the identified set.

We study these approaches in this section. As a preliminary, we discuss two issues that format
the debates. First, it often seems reasonable to require that the inference is robust to changes in
the actual, albeit unknown, probability distribution of the data. Many authors consider that this
distribution varies in a wide range of probability distributions, and the inference procedure is
constructed to be robust to this variation. In this case, it will be said that the inference is uniform
(with respect to the considered set of probability distributions). Second, researchers must consider
whether the confidence region should cover a single true value or the true identified set.

Next, we detail the general inference techniques in a moment inequality setup. In the case of
the test-inversion approach, we pay attention to the issue of selecting relevant moment inequalities
(Andrews & Soares 2010, Andrews & Barwick 2012). We also present techniques adapted to the
convexity arguments developed in Section 3. We also review the interesting case of intersections
of bounds (Chernozhukov et al. 2013), which occurs when parameters are bounded by an infinity
of moments. We end this section by turning to the recently investigated issue of inference on a
subvector of parameters and to a brief review of Bayesian methods.

4.1. Coverage of a Point or a Set and Uniformity

We begin with the issue of coverage of a point or a set. Suppose that the distribution function of
the data is denoted P and let �I (P ) be the identified set, that is, all values compatible with P and
structural restrictions. If we want to cover a single point θ by an interval or a confidence region In

using an asymptotic level of confidence at least equal to 1 − α, we have to find In as a solution of

lim inf
n→∞

(
inf

θ∈�I (P )
Pr(θ ∈ In)

)
≥ 1 − α. 9.

We see that the consequence of partial identification is to replace the true value of the point-
identified parameter θ0(P ) in this expression by all values in the identified set �I (P ).

In Example 1, developed above, of censorship of the dependent variable interval, the confidence
interval will take the form In = [β̂L

1,n − ĉ L
n , β̂U

1,n + ĉ U
n ], where β̂L

1,n and β̂U
1,n are the estimators of

the lower and upper bounds of the quantities defined by Equation 3 and ĉ L
n and ĉ U

n are estimators
depending on the joint distribution of the estimators of the bounds and a critical value that is
adjusted using Equation 9. This adjustment is made for all possible values of θ in the identified
interval defined in Equation 3 and is exposed in detail by, for instance, Imbens & Manski (2004).

This construction covers a point, the supposedly single true value of the parameters. But now
that the identified set has some thickness, one might want to cover regions or intervals I instead
of singletons {θ}. This is why we could search for regions In that satisfy the asymptotic level of
confidence of at least 1 − α,

lim inf
n→∞

(
inf

I⊂�I (P )
Pr(I ⊂ In)

)
≥ 1 − α.

Most econometric applications aim to cover a point, but there are differing opinions, and the
two presentations are common in the literature. For example, Romano & Shaikh (2008, 2010)
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study both presentations in two different articles. Note, however, that the second condition is
more restrictive than the first because singletons are degenerate regions (e.g., Henry & Onatski
2012). Confidence regions covering sets are therefore generally larger than those covering points,
θ ∈ �I (P ).

In addition, the issue of uniformity can be approached in the single-dimension inference frame-
work of Example 1. The identified interval is described by a lower and an upper bound, as in Equa-
tion 3, and these bounds are functions of population moments, which are estimated by empirical
counterparts. If the two bounds are far from each other, in the sense of the metrics induced by
their covariance matrix, the confidence intervals for each bound do not intersect. Consequently, a
confidence region for the set (or any point of the set) is then defined by the lower value of the con-
fidence interval of the lower bound on one side and the higher value of the confidence interval of
the upper bound on the other side. However, it is clear that this construction no longer holds when
the true set is small, the limiting case being a singleton. The solution to this problem is proposed
by Imbens & Manski (2004) and extended by Stoye (2009). The authors construct confidence
intervals, the statistical properties of which are robust to the true diameter of the identified set,
that are particularly attractive when the model is point identified or close to being point identified.

Returning to the general case of covering a point uniformly, we suppose that the true data-
generating process belongs to a family P . In Example 1, which describes an interval-censored
dependent variable, this family includes the case in which there is no censorship, so that the width
of the observed interval is zero, d = 0, and the parameter β1 is identified. To accommodate this
case, we would then search for a confidence interval In at an asymptotic level at least equal to 1−α

that satisfies

lim inf
n→∞

(
inf

P∈P ,θ∈�I (P )
Pr(θ ∈ In)

)
≥ 1 − α. 10.

In this case, too, the condition is more stringent than in the nonuniform case, and uniform
confidence regions are larger than those that have been previously defined. Yet this case seems the
most interesting because researchers seldom have clear ideas about the true distribution P and its
range of variation. Uniformity, however, is as varied as the class of distributions, P .

4.2. Inference in Moment Inequality Models

In this section, we describe inference techniques proposed in the recent literature mainly dealing
with microeconometric models. This is why we assume, in this section, that observations are
independent and identically distributed. Most of the literature has focused on sets that are defined
by moment inequalities—possibly combined with moment equalities, each of which are treated as
two opposite moment inequalities—and has started with a finite number of inequality conditions.
Next, it was extended to the case of an infinite number of moment inequalities derived, in particular,
from conditional moment inequalities.

4.2.1. Moment inequalities in finite number. Suppose that the identified set is defined by a
finite number of moment inequalities:

θ ∈ �I ⇐⇒ E(h j (y, x, θ )) ≤ 0 for j = 1, . . . , J.

For example, in Example 1, the arguments in Equation 4 are the two functions

h1(yL, x, δ, β1) = yLx + δx1{x < 0} − β1x2,

h2(yL, x, δ, β1) = β1x2 − yLx − δx1{x > 0},
the expectations of which are nonpositive.
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Chernozhukov et al. (2007) were the first to consider inference for a set defined by a nonnegative
criterion function that takes value zero at each point of the set. This aggregator of inequality
restrictions generalizes the usual generalized method of moments (GMM) criterion for moment
equalities. These authors were followed by Rosen (2008), Romano & Shaikh (2008), Andrews &
Soares (2010), and many others.

Chernozhukov et al. (2007) propose the criterion

Q(θ ) =
J∑

j=1

a j (θ )
[
Eh j (y, x, θ )

]2 1{Eh j (y, x, θ ) > 0} 11.

for a positive sequence of weights a j (θ ). The value of the criterion for all points outside set �I is
thus quadratic in the distance to 0 of moments at this point, and therefore, we find that

θ ∈ �I ⇐⇒ Q(θ ) = 0.

An estimate of this criterion function for a sample of size n and observations (yi , xi )i=1, ... ,n is
derived from the empirical counterparts of the moments. For example, h jn(θ ) = 1

n

∑n
i=1 h j (yi , xi , θ )

and the population criterion Q(θ ) above is replaced by its empirical analog

Qn(θ ) =
J∑

j=1

a j (θ )
[
h jn(θ )

]2 1{h jn(θ ) > 0}. 12.

Chernozhukov et al. (2007) propose to estimate the identified set by

�̂n = {θ ; Qn(θ ) < τn},
where τn is a smoothing parameter that satisfies the limit conditions10

τn/
√

n → 0,
√

ln ln n/ τn → 0.

They also propose a direct estimation of the confidence region as

�̂C
n = {θ ; Qn(θ ) < c (1−α)

n }
at level 1 − α. We can see this construction as the inversion of a test of the hypothesis that the
estimated set covers the true set. As noted by Chernozhukov et al. (2015), the test statistic Qn(·)
can be interpreted as a likelihood ratio test statistic.

The difficult part is to determine the critical value c n; this is done by subsampling
(Chernozhukov et al. 2007, Romano & Shaikh 2010) or by bootstrap (Bugni 2010). Canay (2010)
adopts an empirical likelihood approach and also proposes an adapted bootstrap method. The
authors listed in this paragraph show that the confidence region thus constructed respects the
asymptotic coverage condition given by Equation 9 or by Equation 10. Nonetheless, subsampling
techniques are notoriously costly in terms of computations and could perform badly in small
samples.

4.2.2. Generalized moment selection. Chernozhukov et al. (2007) do not exploit the partic-
ular structure given by moment inequalities. Following the literature on inequality testing (see
Silvapulle & Sen 2005), Andrews & Soares (2010) propose a method—which they call generalized

10Because of sampling variability, points may belong to the estimate of the identified set even if the criterion is slightly above
zero. It is generally not recommended to take τn = 0 as it might lead to an empty estimated set when the true identified
set is small. This is similar in spirit to the GMM point-identified case. A positive value of the criterion is admissible for the
estimated point.

118 Bontemps · Magnac



EC09CH05-Magnac ARI 25 July 2017 16:9

moment selection (GMS)—for calculating the critical value in an effective manner. This method
is derived from the observation that the asymptotic distribution of Qn(θ ) depends only on the mo-
ments that are binding. However, because of sampling, the identity of the binding moments is un-
known. One solution consists of considering that they are all binding. This solution controls for size
but is too conservative when only a few moments are binding because it increases the critical value.

In contrast, GMS is a data-driven selection of which moments matter and is based on the
distance of the empirical moments to zero. Andrews & Soares (2010) construct a critical value c n

associated with such a procedure and compare its performance with different resampling tech-
niques. First, the naive bootstrap does not work (Andrews & Guggenberger 2009). Second, GMS
procedures have better finite distance properties than the subsampling techniques proposed by
Chernozhukov et al. (2007) or Romano & Shaikh (2010). Sophisticated bootstraps are also available
in the work of Bugni (2010) and Henry et al. (2015).

Another way to get better finite distance behavior is to redefine the criterion Q(θ ). Andrews &
Barwick (2012) compare different criteria. First, criterion Q(θ ) in Equation 12 is of a Cramér–von
Mises type, as it sums the squared positive deviations from zero. Alternatively, a Kolmogorov–
Smirnov (KS)-type statistic constructed as the maximum of those deviations could be retained.
Andrews & Barwick (2012) illustrate the better performance of the KS-type statistic using simula-
tions. Also, weighting each moment condition by the inverse of its variance is also recommended
by the authors, as in a GMM approach using moment equality restrictions.

Moreover, Andrews & Barwick (2012) refine the selection procedure of Andrews & Soares
(2010) to ensure better finite sample behavior. Moments are selected using a more flexible criterion
that does not vary with the number of observations while still correcting the size of the test. Romano
et al. (2014) offer a simplification of this very computationally intensive method, particularly when
the number of moments is large, at the price of a possibly conservative procedure and, therefore,
a slight loss of power.

4.2.3. Infinitely many moment inequalities. The most recent literature extends this topic to
an infinite number of moment inequalities. Andrews & Shi (2013) are specifically interested in the
transformation of a finite number of conditional moment inequalities into unconditional moment
inequalities, the number of which grows with the sample size. This is also the case in the work of
Lee et al. (2014), who propose a test of functional inequalities or conditional moments.

Armstrong (2014, 2015) also considers conditional moment inequalities and analyzes simulta-
neously the optimality of the chosen statistic and that of the chosen instruments that are used to
transform conditional moment inequalities into unconditional ones. He proves that, as in the work
of Andrews & Barwick (2012), a KS statistic is more powerful than a Cramér–von Mises one. Ad-
ditionally, kernel-based instruments outperform bounded ones in terms of rates of convergence,
and Armstrong proposes a method for selecting the optimal bandwidth.

Other authors, such as Menzel (2014) and Ponomareva (2010), study the case of many moments
and the way in which they should be selected and used. In particular, Chernozhukov et al. (2016)
use large deviation theory to provide simple yet reasonably efficient critical values for testing many
moment inequalities.

4.3. Estimation and Inference of Convex Sets

In the examples in Section 3, convex analysis enables inference from a different perspective, as in
the work of Beresteanu & Molinari (2008). In regular cases, what makes this approach attractive
is that it avoids computationally costly resampling procedures because the distribution of the
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test statistic is standard. Specifically, an estimator of the support function in each direction q , as
developed in Section 3.3, can be expressed as an ordinary least squares (OLS) estimator.

Namely, the expression of a point on the boundary of the identified set, the supporting hyper-
plane of which is perpendicular to the direction q (see Figure 1), is written

βq = (E(x
x))−1 E(x
(1{xq > 0}d + yL)).

Its estimate, β̂q , is obtained by OLS when the dependent variable is constructed as

1{xn,qi > 0}di + yLi , with xn,qi = q

(

1
n

n∑
i=1

x

i xi

)−1

x

i

and the covariates are xi . The estimate of the support function is then derived as δ̂∗
n (q ; �I ) = q
β̂q .

Inference methods are developed by Beresteanu & Molinari (2008) and Bontemps et al. (2012).
These methods exploit the convex structure of the identified set, and under certain technical
conditions, inference is efficient (Kaido & Santos 2014).

As discussed in Section 3.3, the method is based on the fact that the process on the unit sphere

T(q ) = q
θ0 − δ∗(q ; �I )

is always nonpositive when the point tested, θ0, belongs to the identified set. In practice, T(q ) is
estimated by its empirical counterpart Tn(q ), derived by plugging in the previous estimate of the
support function. Chernozhukov et al. (2015) interpret this test statistic as a Wald statistic because
it measures the distance between θ0 and �I . Note that this test statistic can be studentized because
the variance of δ̂∗

n (q ) has a closed form.
Bontemps et al. (2012) prove that the identified set is smooth and strictly convex and therefore

has no exposed faces and no kinks when covariates x are continuously distributed and have a
probability density function (PDF) positive everywhere. In this case,

√
n(Tn(q ) − T(q )) tends

uniformly in distribution, as n approaches infinity, to a Gaussian stochastic process, and the
argument of its maximum is asymptotically unique. This is the direction q for which βq = θ0.
Note that we can interpret the search for a maximizer of T(q ) as a moment selection procedure
that fully exploits the geometry of the set. A direct application of the moment inequality literature
to this issue would lead to the selection of too many moments around the true one and would
cause efficiency losses.

Furthermore, the test statistic maxq
√

nTn(q ) is asymptotically normally distributed, and a
plug-in estimate of the variance is proposed by Bontemps et al. (2012) based on OLS residuals.11

When the PDF of covariates x is not strictly positive, the identified set might have a kink at
the tested point, θ0. The argument of the maximum of T(q ) is no longer unique and belongs to a
nontrivial cone. The asymptotic distribution of maxq

√
nTn(q ) is no longer standard. This result is

similar to what is found in the maximum likelihood (ML) literature (see Redner 1981). What is key
is that the ML estimator is valid even under loss of identification (because, even if the argument of
the maximum, θmax, is not unique, the likelihood function of θmax is unique), although the implied
likelihood-ratio (LR) test statistic is no longer a χ2 distribution. Liu & Shao (2003) derive the
asymptotic distribution of the test in this case. Conceptually, this is akin to a moment inequality
setup when we do not know the identity of binding moments, although we deal in this case with
a connected continuum of such inequalities.

11Beresteanu & Molinari (2008) also propose estimates of the covariance operator of the support function estimator, but they
are slightly more complicated to compute than with Bontemps et al.’s (2012) method.
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Bontemps et al. (2012) propose to add a perturbation in Tn(q ) that makes the limit of the
sequence of the argument unique and the asymptotic distribution of the statistic standard. Alter-
natively, Chandrasekhar et al. (2012) propose to smooth the variable of interest by adding a small
continuous noise, the support of which is infinite, to recover a smooth and convex identified set
and therefore a unique maximizer.

This latter method is also helpful when x is composed of discrete random variables because, in
this case, the identified set has exposed faces not reduced to singletons and the empirical process
is no longer asymptotically normal.12

Finally, the estimates of the support function of the convex set EM(θ0) used in the indirect
method developed in Section 3.3 are asymptotically normally distributed even when variables are
discrete. All the technology developed by Beresteanu & Molinari (2008) or Bontemps et al. (2012)
can be brought in for these models, in which the identified set may be nonconvex but for which
the indirect approach works.

4.4. Intersection of Bounds

Section 3.4 develops an example in which the slope parameter β1 is bounded by an infinite number
of moments. From Equation 8, we have that, for qβ = 1,

β1 ≤ inf
qγ ∈R

E
((

E(x2)−1x + qγ E(z2)−1z
) (

yL + x1{E(x2)−1x + qγ E(z2)−1z > 0}d)) .
In other examples, bounds result from independence restrictions (e.g., Manski & Pepper 2000)

and satisfy conditions as

θ ≤ inf
z

[
E(h(y, x, z) | z = z)

]
.

If we designate hn(z) an estimator for a sample of size n, for example, a nonparametric estimator
of E(h(y, x, z) | z = z), the estimation of this bound by the quantity

inf
z

(hn(z)) 13.

is severely biased downwards in small samples because sampling variability, and specifically the
variation of the variance of hn(z) as a function of z, is not controlled. The argument of the infimum
of the estimated function in Equation 13 has a strong tendency to be a point z at which the estimate
is very noisy.

Chernozhukov et al. (2013) propose to solve this inference problem by using the estimator

inf
z

[hn(z) + c nvn(z)] ,

where vn(z) is an estimator of the variance of the empirical counterpart hn(z) at point z. The
addition of this term to the objective function penalizes regions in which the conditional variances
of the objective function are large. Again, the difficulty is the calculation of the critical value c n.

Observe that, even if the two examples above appear identical, the first exhibits more regularity
than the second. The role played by function h in the first example is the support function of the
unrestricted set �U

I , the variance of which has a closed form that can be exploited (see Bontemps
et al. 2012). More importantly, the control variable qγ is not a random variable, unlike z. The

12In the direct approach, this is due to the premultiplication by matrix E[x
x]−1 that, because this matrix is estimated,
introduces sampling variability in the directions orthogonal to the exposed faces. This is also why Kaido & Santos (2014)
assume that, if the convex set has exposed faces, then these directions are known.
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calibration of c n is therefore much easier to handle in the first example. This remark applies to
any convex set that is identified using the two-step approach developed in Section 3.4.

4.5. Inference for Subvectors

In many cases, empirical researchers are only interested in a subvector of parameters or in specific
functionals of parameters. One solution to the problem of narrowing down the parameters to
a subvector consists of projecting confidence sets on the dimensions of interest, although it is
likely to be (very) conservative. It is worth noting that similar issues arise in the weak instrumental
variable literature, where Anderson-Rubin-type statistics are used to test whether some given
values are admissible (see, for example, Guggenberger et al. 2012 for an improvement of the
projection method). Romano & Shaikh (2008) and Bugni et al. (2017) propose another approach,
where the statistic of interest is concentrated out in the dimensions that are of no interest. Again,
the resulting test statistics are not standard. Romano & Shaikh (2008) propose computation of
the critical values by subsampling techniques, whereas Bugni et al. (2017) propose a bootstrap
approach. Furthermore, Kaido et al. (2016) exploit a local linear approximation of the moment
inequalities to provide an alternative method for computing the critical values.

It is worth noting that inference for subvectors or linear functions of the full vector is straightfor-
ward when the identified set is convex. Appropriately choosing one or several directions is enough
for inference on the corresponding subvectors. Inference on, say, the first component of parameter
θ using the direct approach requires choosing q = (1, 0, . . . , 0)
 and q = (−1, 0, . . . , 0)
 as the
directions of interest and studying the behavior of the support function in these directions only.

4.6. Bayesian Estimation

Several authors have developed Bayesian methods for set identification. Liao & Jiang (2010) work
in a standard setting of moment inequalities. An interesting aspect of their study is that the slackness
of each moment inequality is assumed to be an auxiliary parameter, and some prior distribution
is used for them as well as for the structural parameters. The posterior densities for the latter are
obtained by integrating out the former. The authors also develop methods for moment and model
selection in order to select the most parsimonious and precise model.

Moon & Schorfheide (2012) work in a setting in which some reduced-form parameters are
point identified and in which partial identification is generated by the relationship between this
parameter and the structural form parameters that generates partial identification. An entry game
provides such an example because probabilities of simultaneous actions by agents are point iden-
tified. The posterior distribution function of structural parameters is derived from posteriors of
the reduced-form parameters. The authors’ main finding is that the Bernstein–von Mises theorem
does not hold. Bayesian credible regions, covering a true parameter and defined by the highest
posterior density, do not coincide with the corresponding frequentist confidence region and in
fact, under appropriate conditions, are strictly contained in this frequentist region.

Kitagawa (2012) solves this problem by introducing a more general class of priors and using an
inferior envelope of the posteriors to reconcile the Bayesian and frequentist approaches, at least
asymptotically. The partial prior knowledge is modeled as a class and distinguished by whether
the priors are revisable by the data. Indeed, the lack of point identification is associated with flat
regions of the likelihood function, and this translates into the absence of revision of priors in
this region. Usual priors are considered for identified parameters, whereas all possible priors are
considered for unidentified parameters. The author then uses a posterior gamma minimax which
minimizes the worst-case posterior risk over the class of all posteriors generated by this general
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class of priors. Another way of solving this problem is developed by Kline & Tamer (2016). They
show that there is an asymptotic equivalence between Bayesian and frequentist analyses when the
inference concerns the identified set rather than the partially identified parameter.

Liao & Simoni (2016) consider the estimation of closed and convex sets in a similar setting
to that of Moon & Schorfheide (2012). Under some conditions, they derive a uniformly linear
approximation of the support function as a function of reduced-form parameters. This result allows
them to prove an analog to the Bernstein–von Mises theorem for the support function. Bayesian
credible sets coincide asymptotically with frequentist regions. The intuitive reason for which the
Bernstein–von Mises theorem holds is that the last three studies mentioned focus on the posterior
distribution of the identified set and not on the specific value of the partially identified parameter.

5. A SAMPLE OF EMPIRICAL APPLICATIONS AND RELATED TOPICS

Even though the number of empirical applications in the literature is steadily increasing, most
papers do not use these recent inference methods that we have reviewed above. A notable exception
is the use of these methods for the estimation of treatment models and, more generally, the
estimation of reduced-form models with selectivity. Because of the low dimensionality of the
random variable that completes the model, bounds can be easily characterized and efficiently
estimated. By contrast, the empirical literature on set-identified structural models has not yet
reached a mature level. These models are often estimated by using moment inequalities that
exploit players’ rational behavior, combined with equilibrium constraints. The issue of sharpness
is set apart in order to alleviate estimation costs. In addition, convexity, though promising, has
not yet been fully exploited. In this section, we briefly present these streams of empirical research
(for a more complete and elaborate review of empirical applications, see Ho & Rosen 2015).

Among the first authors to use partial identification concepts in an empirical framework are
Hotz et al. (1997). They use a reduced-form model that sets questions of treatment evaluation in
a setting where the main instrumental variable does not fully respect the usual conditions for its
validity. The parameter of interest is the causal effect of early pregnancy—the age during adoles-
cence at which the first child was born—on subsequent behavior and outcomes. The instrumental
variable in question is the occurrence of a miscarriage during pregnancy. Miscarriages do indeed
provide a valid instrument, but only for a subsample of the population, and are therefore con-
taminated in the sense of Horowitz & Manski (1995). The literature on treatment and selection
also includes the work of Manski & Pepper (2000), who analyze the returns to education at all its
levels (these levels are considered as multiple treatments). They use monotonicity assumptions on
the effect of treatment or the existence of a variable that monotonically affects income. The same
authors analyze the deterrent effects of the death penalty in the United States (Manski & Pepper
2013) and show that different assumptions lead to dramatically different conclusions.

Another example of reduced-form estimation in a model with selectivity is the work of Honoré
& Lleras-Muney (2004). The authors estimate bounds on the evolution, over the past 40 years
in the United States, of the two main causes of death: heart disease and cancer. These causes
are treated as competing risks in a duration model, and the correlation between these risks is the
parameter that is not point identifiable. The authors show that progress in the fight against cancer
seems to have been hidden by the important progress against heart disease in analyses that assume
independent competing risks.

The evaluation of public policies such as internships offered to certain populations takes center
stage in the recent literature in applied econometrics, and some authors have used bounds. For
example, Lee (2009) shows how to overcome the problems of selection in employment to assess the
effects of a training program, the Job Corps in the United States. Lee uses controlled experimental
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data and an assumption of monotonicity of the treatment effect on employment to infer the effects
of the treatment on wages conditional on employment. The framework proposed by Manski for
dealing with selection issues is also applied by Blundell et al. (2007) in the case of changes in the
returns to education for men and for women in the United Kingdom over the past 30 years while
dealing with nonparticipation. The empirical literature in those cases of treatment and selection
is quite well developed, and other references could have been given.

Most examples of set-identified structural models are borrowed from empirical industrial orga-
nization. Entry games have been used as a case study in the theoretical literature. They provide an
example of a simultaneous equation model with discrete endogenous outcomes, i.e., the decisions
of firms to enter or not enter into a collection of independent markets (see Berry & Reiss 2007
for a survey). An entry game may be set identified because of the existence of multiple equilibria
that we do not know how to select.13 Ciliberto & Tamer (2009) use US data and the method of
Chernozhukov et al. (2007) to estimate parameters of a linear profit function in an entry game
played by airlines on routes connecting two airports. They do not sharply characterize the iden-
tified set because of its complexity in the many-player case. Grieco (2014) generalizes the infor-
mational structure of Ciliberto & Tamer (2009) and allows for both complete and incomplete
information. He estimates the impact of supercenters on competition in rural grocery markets.

Several contributions have also been developed in the literature on auctions. One of the first
examples is presented by Haile & Tamer (2003). The authors develop a structural model for
ascending auctions, for which parameters are notoriously difficult to identify because of poor
observed information. The authors only exploit rationality constraints on agents’ behavior and do
not make any assumption on the distribution of bidders’ private values. They assume that potential
buyers bid up to the value that they give to the object and do not let the item be sold at a price
lower than this value. In a more recent study, Chesher & Rosen (2015b) develop methods to derive
sharp identification in this model. Komarova (2013) relaxes the assumption of independent private
value in second-price and ascending auctions and exploits rationality constraints, as do Haile &
Tamer (2003). Armstrong (2013) derives bounds in the presence of unobserved heterogeneity,
and Gentry & Li (2014) consider entry costs in auctions and derive bounds for the distributions
of interest.

Many studies exploit rationality constraints in games and situations. Examples are provided
by Pakes (2010) and Pakes et al. (2015). Pakes et al. (2015) develop the estimation of structural
models under general rationality constraints upon ordered choices (such as the number of bank
ATMs) or in noncooperative games between hospitals and HMOs. Inequality constraints on the
parameters of interest governing profit functions of firms are derived from the restriction that
firm choices should bring them profits that are higher than they would have earned had they made
other decisions.

Finally, a few applications of structural models in other subfields use set identification.
Specifically, Blundell et al. (2008) exploit revealed preferences and smooth Engel curves to
bound demand functions in a case where the distribution of prices is discrete. This prevents
point identification of price elasticities. This work is extended by Blundell et al. (2014). Henry
& Mourifié (2013) study political competition and the spatial voting model and show how to
test this model despite partial identification. The authors reject the model using US data. Recent
work on networks exploits pairwise stability to estimate models of network formation. De Paula
et al. (2015) adapt the solution of Ciliberto & Tamer (2009) to this problem, whereas Sheng
(2014), due to the curse of dimensionality because of the (exponentially) increasing number of

13Having regions of multiple equilibria does not preclude having point identification, as shown by Tamer (2003).
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moment inequalities generated, only considers pairwise stability in subnetworks (see de Paula
2016 for a complete review of the econometrics of network models).

6. CONCLUSION

In general, we can describe the empirical strategy of an applied econometrician as a choice of
implicit or explicit structural assumptions that are used in the analysis of data to estimate economic
parameters. The traditional approach seeks to complete this list of assumptions so that only a single
parameter value could be the result of this approach. For example, using censored data, we can
readily identify parameters of interest by assuming normality of errors and using ordered probit,
as in Example 1 of Section 2.2. The concept of partial identification allows us to abandon this ad
hoc completion at the cost of admitting that credible structures are loose enough to lead to the
identification of a set of parameter values only. Instead of a normality assumption, we could use
other assumptions such as independence, mean independence, or the absence of correlation with
respect to covariates. Despite this extension of the concept of identification, reporting inference
results through confidence regions is conducted in a similar way to the point-identified case, and
the usual empirical reasoning of applied econometricians remains the same.

Note, however, that this approach seems to go in the opposite direction to the one Popper
(2005) would have recommended. Popper (2005) suggests that the quality of a theory is to make
sufficiently restrictive assumptions that are easy to falsify or to reject. The partial identification
approach instead seems to develop a protective belt against any rejection by weakening the re-
strictions that are made. Easing restrictions in an unbridled way gives rise to a phenomenon of
regression to infinity that is slightly discouraging because, with no restrictions, we cannot identify
anything. Weak assumptions also lead to the risk of having imprecise policy recommendations at
the cost of a strength that might seem extreme in other scientific fields.

This is why this approach should be interpreted otherwise. A natural direction suggested by
Manski is to compare hypotheses that are increasingly binding and that reduce the size of the
identified set [e.g., the empirical strategy used by Manski & Pepper (2000)]. The data will not be
what justifies the credibility of research results because the data remain the same. This is the set of
assumptions that researchers must justify. If the approach is open enough that readers can evaluate
the credibility of stronger and stronger restrictions, readers will have the option of conducting
empirical reasoning that is rich enough to determine that this assumption leads to an empirical
conclusion or even to the absence of an empirical conclusion. Indeed, the bounds of identified
intervals or regions may be large under weak hypotheses. This lack of conclusion should then
motivate the search for new credible assumptions or the collection of new data, which would
strengthen the credibility of empirical approaches in economics.

Despite a blossoming number of theoretical papers during the past 15 years, there are still
too few empirical applications. Empirical researchers are reluctant to use techniques that are
nonstandard and computationally challenging even though program codes are now available in
standard softwares: Stata for the methods of Beresteanu & Molinari (2008) and Chernozhukov
et al. (2013) and Matlab and Stata for the GMS procedure of Andrews & Shi (2013).

In general moment inequality settings, inference is conducted by inverting a test. There are two
dimensionality issues with this method. First, the dimension of the parameter space increases with
the number of explanatory variables. Second, in most structural models, the number of moment in-
equalities that characterize the sharp identified set exponentially increases with the number of con-
trol variables, as well as with other dimensions such as the number of players in games or networks.

Test inversion might seem costly to applied researchers because, for each point on a thin grid in
the parameter space, a test statistic using very many moment inequalities has to be constructed and
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compared to a critical value that is specific to the point tested. This practical issue clearly attenuates
the attractiveness of sharp identification and of efficient inference methods. One challenge for the
near future is to facilitate the handling of inference techniques for reasonably large-dimensional
parameter spaces and a large number of conditional moment inequalities that generate many
moment inequalities.

The geometry of the identified set, and specifically its convexity, could be exploited more
systematically, and the resulting simplifications in terms of the number of relevant moment in-
equalities are attractive. Convexity reduces the curse of dimensionality by replacing a large number
of moment inequalities with the analysis of a process on the unit sphere. Many models, such as
regressions with interval censoring, selection models, sample combination, or entry games, can
be transformed into convex problems. This is not always easy, however, and certainly requires
ingenuity on the part of the researcher.
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