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Abstract

This review focuses on properties related to the robustness and stability of
Nash equilibria in games with a large number of players. Somewhat surpris-
ingly, these equilibria become substantially more robust and stable as the
number of players increases. We illustrate the relevant phenomena through
a binary-action game with strategic substitutes, framed as a game of social
isolation in a pandemic environment.
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1. INTRODUCTION

The vast interconnectedness of present-day economic, social, and political activities often mag-
nifies the degrees of uncertainty and complexity that are inherent in human interaction. To study
such interactions—in order to understand the underlying strategic forces, predict outcomes, and
recommend policy interventions—one may turn to game theory. However, a common critique of
game theory is that, while it has excelled at providing precise analyses of small, fully specified, and
idealized interactions, many real-life conditions are rarely so clean. It is thus not clear whether the
predictions it produces are robust and stable. Instead, they are often seen as fragile and as unable
to withstand departures from full specification and rationality.

The issues arise both in normative and in descriptive analyses. From a normative perspective,
when one designs mechanisms or institutions with a strategic element, robustness and stability
are clear desiderata: In practice, since participants rarely interact only within the context of the
particular mechanism under design, the mechanism must function well even in a broader context.
From a descriptive perspective, when analyzing interactions, one would most likely expect to see
robust, stable equilibria.

In this review we argue that, within the context of large games, the critique is much less salient
and the robustness and stability properties much more prevalent. In particular, we focus on the
most widely used concept in game theory—Nash equilibrium—and show that in large games it is
sound, robust, and reasonable. Furthermore, we argue that economics needs this tool to address
important economic problems. We illustrate this latter point with a timely example about social
isolation.

1.1. Related Literature on Large Games

There are several somewhat overlapping branches of the literature on what might be called large
strategic games.1 The first is one that considers a continuum of players. The foundational papers
in this branch focus on the existence of pure-strategy equilibria (Schmeidler 1973), but they have
also found many applications to economic problems. Much of the earlier work on continuum-
player games is surveyed by Khan & Sun (2002), but Khan et al. (2017), Cerreia-Vioglio et al.
(2020), and the references therein offer more recent contributions.

A second branch of the literature considers a large number of players but is concerned with
properties of the limit (see, e.g., Al-Najjar 2008 and the references therein). In particular, its fo-
cus is on whether the limit of these games resembles their idealization as either countably many
players or as a continuum of players, and, as such, on when the idealization serves as an accurate
approximation and when it does not.

This review is concerned with a third branch of the literature, which focuses on the robustness
and stability of large, finite games (see, e.g.,Kalai 2004 and the references therein, as well as follow-
up references cited in this review). While the robustness and stability properties of such games
will generally hold only when there are sufficiently many players, the requisite number of players
will typically be finite and depend on primitive parameters of the game under study.

1.2. Related Literature on Mechanism Design

The literature on mechanism design is also related to the current review, both in terms of settings
with many participants and in the analysis of robustness. The former case includes, for example,

1We do not discuss the older literature on large cooperative games (see Aumann & Shapley 1974). There, in
parallel with the results reported in this review, theoretical predictions also becomemore robust as the number
of players increases.
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the work of Azevedo&Budish (2019) on incentives in largemechanisms and of Kearns et al. (2014)
on recommender mechanisms. Additionally, researchers have examined specific mechanisms with
many participants, including the work of Cole & Tao (2016) on market games, of Lee (2016) and
Che & Tercieux (2019) on matching markets, and of Bodoh-Creed (2013) on auctions.

A different, emerging branch of the literature analyzes issues of robustness in the context of
mechanism design and contract theory (see Carroll 2019 for a survey). One main difference be-
tween that work and the current review is that amajor focus of the former is the design and analysis
of mechanisms that are robust to beliefs, and especially to non-Bayesian uncertainty. In contrast,
we are concerned here with the inherent robustness of equilibria in large games.

2. MAIN ILLUSTRATIVE EXAMPLE: SOCIAL ISOLATION

We illustrate many of our points through a binary-action game with strategic substitutes. To help
keep track of the ideas, we interpret the game as one of social isolation, motivated by the recent
social and policy debates surrounding the COVID-19 pandemic.

Although the behavioral and strategic aspects of disease transmission and policy responses have
been studied extensively in economics,2 the recent COVID-19 pandemic has intensified this re-
search.Much of this work takes as its baseline the dynamic epidemiological SIRmodel of Kermack
& McKendrick (1927), which models the change in the spread of an infection within a popula-
tion over time. Researchers have extended this model to incorporate strategic behavior by the
populace—i.e., whether people decide to stay home or go out and their level of social activity—
and examined various policy interventions, such as full or partial targeted lockdowns.3 These eco-
nomic models emphasize the importance of strategic behavior by individuals in driving both the
spread and the containment of infection, as well as the effects of various policies.

The social isolation (henceforth, SI) games we analyze highlight this strategic behavior. Given
the fundamentals of the environment, such as the costs and benefits of isolation and of social
activity, will individuals tend to stay home, in social isolation, or will they go out and engage in
social activities? And how will changes in the environment, brought about by government policies
or changing fundamentals, affect their behavior? Our focus will be on the robustness and stability
of these predictions.

In addition to illustrating the robustness and stability of large games, the examples also draw at-
tention to the importance of these properties. In the disease transmission models described above,
behavioral predictions are typically used as inputs. If the predictions are fraught with uncertainty,
then the conclusions of the epidemiological models are called into question. And the behavioral
predictions may well be fraught with uncertainty, as the environment is far more complex than the
idealized variant: Individuals can communicate with their peers and learn from others, they can
change their behavior over time, they are exposed to news and other information through social
media, and muchmore.Thus, whether or not predictions in the idealized model remain stable and
robust to such features may well be the factor that determines the viability of the epidemiological
models’ conclusions.

In this review we address these issues of robustness and stability. As noted above, we illustrate
them through a binary-action game of strategic substitutes that we interpret as a game of social

2Readers are referred to, for example, Geoffard & Philipson (1996), Gaffeo (2003), Goenka & Liu (2012),
Adda (2016), and Greenwood et al. (2019).
3Acemoglu et al. (2020), Alvarez et al. (2020), Farboodi et al. (2020), and Keppo et al. (2020) are a few repre-
sentative contributions.
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isolation.We consider two basic benchmark variants of the SI game: one with complete informa-
tion and one with incomplete information. Both are played in an environment E = (n, h, o) that
consists of a set N of n players, where n is a (typically large) positive integer. Each player may
choose to be in one of two possible locations: at home (H) or out (O). Each player type is de-
scribed by a pair of payoff functions (hi, oi), where hi ∈ R represents the payoff of player i � N at
home and oi(p) ∈ R is i’s payoff of being out when the proportion of the other players who are out
is p. We assume that each oi is a continuous and strictly decreasing function with oi(0) ≥ hi and
oi(1) ≤ hi.

2.1. Complete Information

We begin with the simplest game in the environment E = (n, h, o), one with complete information
and symmetric utilities.

Example 1 (symmetric SI game with complete information). Consider the environ-
ment E in which hi = h � [0, 1] and oi(p) = o(p) = 1 − p for all players i. That is, each player
obtains utility h from staying home and utility 1 − p from going out, where p is the fraction
of the other players who are also out.

Let c = o−1(h) = 1 − h. Then, in the unique symmetric Nash equilibrium, each player
chooses O with probability c and H with probability 1 − c.4

How robust is this equilibrium, and is it still a sound prediction in nonidealized, real-world
settings? For instance, if a player obtains some ex-post estimate of the number of other players
going out (for example, via the news or social media), will that compel them to change their own
action? This is a question about rational expectations: A player’s equilibrium strategy is optimal
given their expectation about the future behavior of others. But if the player were allowed to
change their mind after observing others’ actions, at which point some or all uncertainty would
get resolved, would they still stick with their initial plan?

Relatedly, what if the player hears about some others who do not act as expected?What if they
have other considerations, for example, whether or not their family or neighbors are out: Do these
affect their choice of action? Are there other equilibria? How robust are they? And what happens
in more complex environments in which players are not symmetric and utilities from O are not
linear?

Since the predictions of the simplemodel are likely to be used in a policy debate and to generate
policy recommendations, additional questions arise. For example, how close is the actual number
of people who are out to the expected number of people out in the idealized setting? To what
degree would different policies that change the costs and benefits of staying home (such as support
for telecommuting or enhanced food delivery services) or going out (such as fines, restrictions, or
limited transportation) affect these numbers? And how much uncertainty surrounds the effects of
such policies? A policy that leads to a definite but minor decrease in the number of people out is
very different from one that leads to the possibility of a major decrease but also to a significant
chance of an increase, even if the expected change is the same for both.

In order to be compelling, predictions in the game should answer these questions, and we
will study the conditions under which they do. Before that, however, we turn to an incomplete-
information version of this game, in which the issues above are further exacerbated.

4To see this, fix a player i and observe that the expected fraction of other players out is c = 1 − h. Hence, i’s
expected utility from O is o(1 − h) = h, which is equal to their utility from H.
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2.2. Incomplete Information

Example 2 (symmetric SI game with incomplete information). Consider the environ-
ment E = (n, h, o), in which each hi is the type of player i. These types are drawn in an
independent and identically distributed (i.i.d.) manner from a continuous, strictly increas-
ing cumulative function L that has full support on the interval [0, 1]. Also, fix oi(p) = 1 − p
for every player i.

Define the cutoff type to be the unique C such that C = Pr(hi ≥ C). Consider a symmetric
cutoff strategy Ĉ in which a player chooses H if hi ≥ C and O if hi < C.

Claim 1. The ex-ante symmetric profile in which every player uses Ĉ is a Nash equilibrium.

Proof. At the profile above, the expected payoff of a player i who chooses O is oi(p) = 1 −
E(p) = 1 − Pr(hj < C) = C. So H is preferred to O if and only if hi ≥ C, which is precisely
the player’s strategy under Ĉ. �

Again, we should ask: How robust is this equilibrium, and how sound is it in nonidealized
settings? The questions relating to the complete information game of Example 1 are relevant
here as well. But now there are additional issues. For instance, if a player obtains some information
about the types of other players (for example, via conversations with friends and family, perhaps
through social media), will that compel them to change their own action?

From a policy perspective, to what extent will providing relevant information to individuals, in
an attempt to change their types, affect the number of people who go out? And again, how much
uncertainty is there surrounding this effect?

2.3. Asymmetric Social Isolation Games

We will use the symmetric SI games of Examples 1 and 2 to illustrate the ideas in the review.
Sometimes it will be helpful to refer to more general variants of these games, and so we formally
describe two of them here.

The complete-information SI game of Example 1 is symmetric, with linear utilities to players
who are out. More generally, we consider an environment in which each player i has their own hi,
and where oi is an arbitrary decreasing function of the fraction p of others who are out.

Example 3 (asymmetric SI game with complete information). Consider the environ-
ment E , where each player i’s utilities are hi ∈ R and oi : [0, 1] �→ R. That is, each player i’s
utilities hi from staying home and oi(p) from going out may be different from those of other
players.

We also consider a more general version of the incomplete-information SI game of Example 2.
Such a variant incorporates asymmetric distributions over types as well as different benefits and
costs to being out.

Example 4 (asymmetric SI game with incomplete information). Consider the environ-
ment E = (n, h, o), in which each player i’s type is (hi, bi, ci). Types are independent across
players but may be drawn from nonidentical distributions. Player i’s utility from staying
home is hi and from being out is oi(p) = bi − p · ci, where bi can be interpreted as the benefit
and ci the cost of being out.
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2.4. Outline

Consider the complete-information SI game of Example 1 and observe that, when there are only
two players, this is a simple coordination game. In this case, the equilibrium predictions are per-
haps fragile in the sense discussed above; for example, the simultaneous-move assumption may be
questionable, since a player in such a game would prefer to wait and observe the choice of their
opponent before choosing their own action. At the other end of the spectrum, one might consider
a variant in which the population of players is a continuum. In this case, adopting an assumption
of price-taking behavior—an approach common in economic theory—might make sense. How-
ever, when one designs policies for social isolation, the relevant communities might be smaller
and hence not adequately modeled as a continuum. Additionally, the assumption in price-taking
models that individuals exert zero influence on others is not always valid.

The research on large games that is surveyed in this article bridges the two ends of the spec-
trum. On the one hand, it allows us to retain the structure and simplicity of price-taking models,
but without imposing price-taking behavior as an assumption nor assuming a continuum of play-
ers. On the other hand, the precise equilibrium analysis it facilitates is robust and stable—when
the number of players is large.

We proceed as follows. In Section 3 we describe the properties of games that render them large
and the conditions under which their equilibria are robust and stable. We show that these condi-
tions hold in the simple SI games above but also in rather broad generalizations of these baselines.
In Section 4 we then describe the stability and robustness properties inherent in large games
by illustrating them in variants of the SI game. This is accompanied by formalization of these
properties, a description of the relationships between them, and an examination of the necessary
conditions on games under which they hold. Finally, we conclude in Section 5 with a discussion
of directions for further research.

3. CLASSES OF GAMES

In trying to analyze strategic situations, predict their outcomes, or design institutions for strategic
participants, one may hope that the sheer size of these interactions renders their equilibria robust
and stable (in the sense to be described in Section 4). Of course, a game is not large simply by
virtue of the number of players—one can always take a small game and add dummy players. To
address this issue, one might consider different classes of games for which the robustness and
stability properties hold.

We begin by discussing a class of games that has been studied extensively in the literature as
representing largeness, namely, anonymous games. We then turn to another class, which features
the property of low strategic sensitivity that has been identified as crucial to guarantees of robust-
ness and stability. We show that the simple SI games of Examples 1 and 2 belong to both classes,
but various extensions and generalizations might not.

3.1. Anonymous Games

A game is anonymous if a player’s utility depends on their own type and action as well as on the
realized empirical distribution of other players’ type-action pairs. More formally, for any player i,
any pair of other players j and k, any type profile t, and any action profile a, the utility of player i is
ui(t, a) = ui(t′, a′), where t′ and a′ are identical to t and a except that the type-action pairs of players
j and k are swapped. We note that Kalai (2004) calls this condition semianonymous to emphasize
that the utility of player i may depend on i’s specific type and action, and that i’s utility remains
unchanged when the types and actions of players j and k who are different from i are swapped.
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The symmetric SI games of Examples 1 and 2, as well as the asymmetric variants of Examples 3
and 4, are anonymous games, since each player’s utility depends only on the fraction of others who
are out and not on their identities. For an example of a game that is not anonymous, one might
consider network game variants (Galeotti et al. 2010) of these examples, in which players’ utilities
from being out are determined not by the fraction of all others, but only by a fraction of neighbors
in some social network who are out.

A useful generalization of anonymous games is that of aggregative games, which capture many
applications in industrial organization,macroeconomics, political economy, and public economics
(see, e.g., Jensen 2010, Acemoglu & Jensen 2013). In aggregative games, a player’s payoff depends
on their own action and some function that aggregates others’ actions. Anonymous games are the
special case in which the (multidimensional) aggregator is the fraction of players who play each
action. Because of their importance, many properties of anonymous and aggregative games have
been examined, such as the existence of pure equilibria (e.g., Jensen 2010), comparative statics
(e.g., Acemoglu & Jensen 2013), and equilibrium characterization and computation (e.g., Blonski
1999, Daskalakis & Papadimitriou 2015).

3.2. Games with Low Strategic Sensitivity

The strategic sensitivity of a game is a measure of the influence that players’ types and actions
have on other players’ utilities. A game features low strategic sensitivity if players do not have an
outsized influence on others’ utility functions. The most extreme example is the case in which we
have n decision problems, i.e., each player’s payoff depends only on their own type and action. A
less extreme case is illustrated by Example 1, which also has low strategic sensitivity: If player i
chooses H, others’ actions have no effect on their payoff. Moreover, if player i chooses O, then a
change in the action of some other player leads to a change in player i’s utility from oi(p) to oi(p′),
where p′ = p + 1/(n − 1) or p′ = p − 1/(n − 1). In Example 1 we assumed that oi(p) = 1 − p, so the
change in utility is a gain or loss of at most 1/(n − 1).

There are various ways to define strategic sensitivity. Here we present the variant of Azrieli &
Shmaya (2013), which they call the Lipschitz constant of the game. Other variants, some slightly
stronger and some slightly weaker, were utilized by, for example, Milgrom &Weber (1985), Kalai
(2004),Deb&Kalai (2015), andmany others, sometimes under the name of continuity or equicon-
tinuity of payoffs.

Definition 1 (Lipschitz constant). The Lipschitz constant of a complete information
game G is δ(G) = max

{∣∣ui(ai, a′
−i ) − ui(ai, a′′

−i )
∣∣}, where the maximum is taken over all i,

ai, a′
−i, and a

′′
−i, subject to the constraint that a′

−i and a
′′
−i differ on exactly one coordinate.

In words, the Lipschitz constant of a game is the maximal change one player’s action can cause
to the utility of another player, given any action profile.

The analysis at the beginning of this subsection demonstrates that the Lipschitz constant of
the game in Example 1 is 1/(n − 1). In contrast, the asymmetric SI game of Example 3 may have
a larger Lipschitz constant. For example, if there is a player i for whom oi(1/2) = 1/2 and oi(1/2 +
1/(n − 1)) = 3/4, then the Lipschitz constant is at least 1/4. Nonetheless, if for all i’s the function
oi has bounded slope, then for a sufficiently large number of players low strategic sensitivity will
be satisfied.5

5More formally, suppose there is some M ≥ 0 such that o′i (p) > −M for all i’s and p’s. Then, for any n and
p � [0, 1 − 1/(n − 1)], the difference oi(p) − oi(p + 1/(n − 1)) < M/(n − 1). Thus, for any ε > 0, the Lipschitz
constant of the game is at most ε whenever n > M/ε + 1.
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Furthermore, a game may have a small Lipschitz constant despite not being anonymous. For
example, the network game variant (Galeotti et al. 2010) of Example 1 discussed in Section 3.1
above, in which each player’s utility from being out is determined by the fraction of neighbors in
a social network who are out, is not anonymous. Nonetheless, if all players have many neighbors
in the social network, then this game has low strategic sensitivity.

The definition of a Lipschitz constant can be generalized to games of incomplete information
by defining δ(G) = max

{∣∣ui(ri, r′
−i ) − ui(ri, r′′

−i )
∣∣}, where rj denotes the type-action pair of player j,

and where r′
−i and r

′′
−i differ on exactly one player’s type-action pair. For example, the incomplete

information SI game of Example 2 has a Lipschitz constant of 1/(n − 1): For any realization of
types and actions, changing one player’s type and/or action leads to a change in at most 1/n of the
fraction of players out, and so it changes the utility of a player who is out by at most 1/(n− 1) (and
that of a player who is home by zero).

4. ROBUSTNESS AND STABILITY

In this section we delve into four robustness and stability properties of large games: the existence of
pure-strategy equilibria, hindsight stability, structural robustness, and fault tolerance.We illustrate
each property within the context of the SI games. We then formalize the properties, discuss the
relationships among them, and examine the conditions on games under which they hold.

4.1. Pure Equilibria

A first desideratum of complex games is that their equilibria be simple. Due to the complexities
and conceptual issues associated with mixed-strategy equilibria (see, e.g., Rubinstein 1991), one
might ask if there always exists an equilibrium in pure strategies. This, in fact, is the main focus
of the older literature on games with a continuum of players (Schmeidler 1973). But what if the
number of players is large but not infinite?

Let us first return to the complete-information SI game of Example 1, and recall that its sym-
metric equilibrium is not pure. However, this game does have a pure, asymmetric equilibrium.6

In fact, pure equilibria also always exist in the more general, asymmetric SI game of Example 3,
in which players’ hi values are possibly distinct and their oi functions are arbitrary. Readers are
referred to the Supplemental Appendix for a proof of this fact.

The existence of pure equilibria in large games goes well beyond SI games, especially if we also
consider pure approximate equilibria. Recall that a strategy profile σ in a normal-form game G is
an ε-Nash equilibrium if no player can increase their utility by more than ε by deviating. Many
authors have studied various necessary conditions for pure ε-Nash equilibria to exist. Papers that
study games whose type and action spaces are finite include those by Rashid (1983),Wooders et al.
(2006), and Cartwright & Wooders (2009). Carmona (2008) considers compact type and action
spaces and shows that pure approximate equilibria exist in games that are anonymous and have
low strategic sensitivity. Azrieli & Shmaya (2013) show that low strategic sensitivity suffices for
the existence of such equilibria, but a stronger result holds (in the sense of not requiring strate-
gic sensitivity to be as low) in games that also satisfy anonymity. Finally, Carmona & Podczeck
(2020) study the existence of strict pure strategy Nash equilibria and show that such equilibria
exist in large games that are anonymous, have low strategic sensitivity, and satisfy some additional
differentiability conditions.

6In particular, let Cn = �(n− 1) ·C	 and consider the pure profile in which Cn + 1 players choose O and the
rest choose H.
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In a further generalization, onemight consider strategies that are simple but not quite as simple
as pure ones: namely, strategies that are mixed but have small support. Additionally, one might
require that the strategies be mixed uniformly over that small support (e.g., Lipton et al. 2003,
Babichenko et al. 2014). For example, Babichenko et al. (2014) show that any finite game has an
approximate equilibrium in which players mix uniformly over roughly log n+ logm actions,where
m is the size of each player’s action space.

4.2. Self-Purification, Hindsight Stability, and Rational Expectations

Let us return to the complete-information SI game of Example 1. On further examination of its
symmetric equilibrium, we may observe a stronger property than the existence of a pure equi-
librium. Since players randomly choose whether to go out or stay home, the expected fraction
of players who choose O is c. But the law of large numbers guarantees that, for sufficiently many
players, the realized fraction of players who chooseO is close to c. Note also that when the fraction
of other players who choose O is close to c, the utilities of a player from choosing action H and
from choosing action O are very close. The implication is that in this case, the realized profile
of actions forms a pure approximate Nash equilibrium. The symmetric, mixed equilibrium in the
game is thus self-purifying (Kalai 2004): Nearly all realizations of the symmetric equilibrium are,
in fact, pure approximate equilibria themselves.

An alternative interpretation of self-purification is that each player, after choosing their own
action and observing the realized actions of the others, can gain little by revising their choice. In
Example 1, the symmetric, mixed equilibrium is thus hindsight stable or ex-post Nash.

More formally, a strategy profile is (ε, ρ)-stable if the probability that the realized action profile
is one in which some player can unilaterally deviate and improve their payoff by more than ε is at
most ρ. In the symmetric equilibrium of Example 1, tight concentration-of-measure bounds, such
as those of Chernoff or Hoeffding (see, e.g., Alon & Spencer 2004), imply that the probability
that the realized fraction of players who are out is not within [c − δ, c + δ] is roughly e−δn. Thus,
for a 1 − e−δn fraction of realizations of the symmetric, mixed profile, each player’s difference in
utility between O and H is at most δ. The probability that this difference in utilities is small for
all players simultaneously is at least 1 − ne−δn, implying that the symmetric equilibrium here is
(δ, ρ)-stable, with ρ = ne−δn. Note that for any fixed δ > 0, the probability that any player has a
profitable deviation in the realized profile decreases to zero exponentially with n.

The notion of hindsight stability can be extended to games of incomplete information. Con-
sider the incomplete-information SI game of Example 2, and observe that the expected number of
players whose type hi ≥ C is C. Again, concentration bounds guarantee that the realized number
of players with such a type is around C. Thus, after the game is played, a player who observes the
realized types and chosen actions of the others probably has little to gain by deviating from their
own equilibrium strategy.

Hindsight stability is closely related to rational expectations. Loosely, having rational expecta-
tions means that after uncertainty has been resolved, and after what happens in some interaction
has been observed, it is optimal for the economic agents to proceed with the planned continua-
tion strategy (see, e.g., Jordan & Radner 1982). But the condition that “what happens has been
observed” can be specified in different ways. Hindsight stability can be viewed as rational expec-
tations, assuming that players can revise their strategies ex post, after observing the realized types
and chosen actions of the other players.

As is true with purification, this notion of hindsight stability or rational expectations holds in
much more general games. Kalai (2004) studies games (a) that satisfy both anonymity and low
strategic sensitivity, (b) in which types are independent, and (c) in which the type and action spaces
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are finite, and shows that all their equilibria are (ε, ρ)-stable, where ε > 0 is arbitrarily small and ρ

decreases to zero exponentially with n.Carmona&Podczeck (2012) generalize this result to games
with infinite type and action spaces. Deb & Kalai (2015) dispense with anonymity and show that
the hindsight stability result holds in games that have low strategic sensitivity and in which the
type and action spaces are finite-dimensional Euclidean spaces.

We can apply the results of Carmona & Podczeck (2012) or Deb & Kalai (2015) to the asym-
metric incomplete-information game of Example 4, in which each player’s parameters are chosen
independently of, but not necessarily identically to, those of other players. The results imply that,
for a sufficiently large number of players, all equilibria of this asymmetric SI game are hindsight
stable.

Despite the generality of the results, hindsight stability generally holds only in games with low
strategic sensitivity. To address this concern, Gradwohl & Reingold (2010) study games in which
low strategic sensitivity may fail and propose a weakening of hindsight stability called partial hind-
sight stability: Rather than allowing players to revise their strategies after observing the realized
types and chosen actions of all others, they consider the possible benefit to a player from deviating
after observing the types and actions of a randomly chosen subset of others. They show that, in
all equilibria of all large games with finite action spaces and independent types, if the size of the
observed subset of players is not too large, then with high probability the possible benefit from
deviation is small.

Although this result does not restrict players’ utility functions, it does require types to be inde-
pendent. This is a main limitation also of the results of Kalai (2004), Carmona & Podczeck (2012),
and Deb & Kalai (2015) described above. In Section 5 we discuss some recent progress along this
front.

We conclude this section with a final observation about the policy implications of hindsight
stability. In the SI games, for example, policies might change players’ incentives in order to affect
the equilibrium fraction of players who are out. However, policies are differentiated not only
by the expected proportion of people they incentivize to go out but also by the stability of this
proportion. So, for example, a policy that leads to 1/2 of the population going out is very different
from one that leads to an equal chance of 1/4 or 3/4 of the population going out.

Hindsight stability can help here. Consider again the complete-information SI game of Ex-
ample 1. Hindsight stability implies that in any equilibrium, with high probability the fraction of
people who are out is very close to c = 1 − h. Now consider a policy that, for example, increases
the benefit of staying home to, say, h′ = h + α. Then, hindsight stability implies that in any equi-
librium, the fraction of people who are out is very close to 1 − h − α. A similar conclusion holds
in the incomplete-information SI game of Example 2 as well as in the asymmetric SI games of
Section 2.3.7

4.3. Structural Robustness

Consider the SI game,but enriched this timewith additional options.For example, before deciding
whether to go out or not, a player may read political forecasts and communicate with others by
phone and on Facebook. If a player decides to go out, after stepping out and seeing the traffic in
the street, the player may change their mind and step back into their home.

7For example, in the game of Example 3, in any equilibrium the fraction of players who are out is very likely
close to cq, where q is the quantile player described in the Supplemental Appendix. Different policies could
lead to changes in the identity of that player—for example, to q′—with the result that the equilibrium fraction
of players out would very likely be close to cq′ .
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The notion of structural robustness captures these possible changes in the order of play, the
leakage of information and communication between players about realized types and actions, and
the addition of other actions, such as delegation of choices to opponents and commitments to
choose certain actions. Specifically, an equilibrium profile is structurally robust if it remains an
(approximate) equilibrium despite such changes.

Alternatively, structural robustnessmay be viewed as a stronger version of rational expectations:
However the game is enriched with changes, the players’ original strategies remain optimal, even
when conditioned on the individual information and actions available at all the information sets
of the enriched game.

More formally, a Nash equilibrium profile σ in a normal-form game G is structurally robust
if an appropriate adaptation σA of σ remains an equilibrium (or an approximate equilibrium) in
every alteration GA of G. A structural alteration of G is any extensive-form game GA that satisfies
the following conditions (adapted from Kalai 2008):

1. Original players are included: The players in GA are a superset of the players in G.
2. Type structure is unaltered: The distribution over the types of players in GA, restricted to

those players also in G, is the same as the distribution over those types in G.
3. Playing GA means playing G: For every payoff node z in GA there is an associated pure

profile a(z) = (a1(z), . . . , an(z)) in G, such that the payoffs to the G players at z is equal to
their payoffs in G under (a1(z), . . . , an(z)).

4. Original strategies are preserved: Every pure strategy ai of player i in G has at least one
adaptation to GA, namely, a strategy aAi that guarantees that, regardless of the strategies of
other players, play ends at a node z for which ai(z) = ai.

The appropriate adaptation σA of σ to the game GA is the profile of mixed strategy in which
each player i plays aAi in GA with the same probability with which they play ai in G under σ .

As is true for approximate notions of equilibrium, it is helpful to also consider approximate
versions of structural robustness. In particular, an equilibrium σ in G is (ε, ρ)-structurally robust
if, for every player i and in every alteration GA, the probability that i reaches an information set of
GA in which they can deviate and improve their payoff bymore than ε is at most ρ.This probability
is taken over (a) the distributions of types of all players and (b) the strategies of all players other
than i. Of course, for this to be a relevant notion we want both ε and ρ to be as small as possible.
Kalai (2004) proves the following structural-robustness theorem: If a game is anonymous and has
low strategic sensitivity, finite type and action spaces, and independent types, then its equilibria
are (ε, ρ)-structurally robust, with ε > 0 arbitrarily small and ρ tending to zero exponentially as
the number of players grows large.

The properties of purification and hindsight stability discussed in the previous sections are
special cases of structural robustness. To see this, consider the alteration GA of G in which players
play the game in two stages. In the first stage, they each announce a type and an action (ti, a1i ) from
G; then, after being fully informed of the outcomes of the first stage, each chooses a final action a2i
from G. Consider any equilibrium σ of G with an adaptation σA in which in the first stage players
reveal their true types and use their σ i strategy to choose their a1i actions; then, in the second stage,
the players do not revise their action but rather choose a2i = a1i . Structural robustness implies that
if σ is an (approximate) equilibrium of the normal-form game, then each player has an incentive
to play σA in the altered game, which implies (approximate) hindsight stability.

The relationship between structural robustness and hindsight stability is actually bidirectional.
In particular, Kalai (2004) shows that the converse of the above also holds, namely, that asymp-
totic hindsight stability implies asymptotic structural robustness. Thus, subsequent results about

www.annualreviews.org • Large Games 49



hindsight stability also apply. Applied to Examples 1–4, this conclusion implies that all the equi-
libria of these games are not only hindsight stable but also structurally robust.

4.4. Fault Tolerance

Consider again our player in the SI game, contemplating whether or not to go out. But now
suppose the player hears that some of their neighbors, against all expectations and contrary to
their own best interests, insist on going out. Given this unexpected, nonequilibrium play, should
our player stick to their initial decision?

These questions relate to notions of fault tolerance from cryptography and distributed com-
puting, which study the design of mechanisms that are robust against unexpected, faulty behavior
by a subset of participants. In our setting, we are interested in the fault tolerance of equilibria: Is
a player’s equilibrium strategy still optimal even if a subset of other players deviate arbitrarily?

One version of fault tolerance is well known in economics: Specifically, a dominant-strategy
equilibrium is a profile in which each player’s strategy is optimal regardless of the actions of others.
Hence, it is fault-tolerant to deviations by all other players.Dominant-strategy equilibria are often
desirable in economic design and analysis, and it is widely recognized that such equilibria are
more realistic than Nash equilibria. The problem, of course, is that often they do not exist. Fault
tolerance can then be viewed as spanning the spectrum between dominant-strategy equilibria and
Nash equilibria. They are optimal regardless of the actions of a subset of the other players, but
when the remaining players do play according to their Nash equilibrium strategies. The level of
fault tolerance is then equal to the maximal number of players who may play arbitrary actions;
specifically, a t-fault-tolerant equilibrium is one in which the equilibrium strategy of any player
remains optimal when at most t others deviate arbitrarily. A dominant-strategy equilibrium is thus
(n − 1)-fault-tolerant. Furthermore, an approximate version of fault tolerance is also often useful:
A (t, ε)-fault-tolerant equilibrium is one in which no player can gain more than ε by deviating,
regardless of the actions of any t other players, as long as the remaining n − t − 1 players play
their equilibrium strategies.

Although notions of fault tolerance for strategic settings originated in mechanism design
frameworks (see Eliaz 2002, Abraham et al. 2006), the equilibria of many large games turn out
to be naturally fault-tolerant. In particular, Gradwohl & Reingold (2014) show that the equilibria
of large games are (t, ε)-fault-tolerant, where ε > 0 is any small constant and the magnitude of t is
either �(

√
n) or �(n), depending on the properties of the games.8 In particular, the authors prove

the following results: If a game has low strategic sensitivity, then all its Nash equilibria are (t, ε)-
fault-tolerant,with t= �(n); and if a game is anonymous, then it has at least one (t, ε)-fault-tolerant
Nash equilibrium for which t = �(

√
n).

A different interpretation of fault tolerance is the notion of viability, which is intended to cap-
ture the likelihood that an equilibrium arises or is maintained in any social or economic system.
Kalai (2018) proposes two related indices to assess the viability of a Nash equilibrium σ .We focus
on one of them here, the defection index D(σ ), defined as the smallest integer d for which the
following holds: There are d players and a strategy for these players such that, when they play this
strategy instead of σ , the strategy σ i of some other player i is no longer a best response. Observe
that a profile σ satisfies D(σ ) = d if and only if it is (d − 1)-fault-tolerant but not d-fault-tolerant.

8The asymptotic notation �(f(n)) here means that there is some constant c� (0, 1] independent of n for which
the actual value of t is at least c · f(n).
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Based on observations from behavioral economics,Kalai (2018) argues that the defection index,
along with other related indices, concisely captures the viability of equilibria: the greater the value
of D(σ ), the more viable the equilibrium σ . If we consider an approximate version of this index—
letting D(σ ) be the smallest d under which some other player’s strategy is no longer an ε-best
response—then the results of Gradwohl & Reingold (2014) imply that equilibria of large games
are viable, with a defection index as high as �(

√
n) or �(n), depending on the class of the game.

Since the symmetric SI game of Example 1 has low strategic sensitivity, the result of Gradwohl
& Reingold (2014) implies that its equilibria are (t, ε)-fault-tolerant, with t = �(n). Hence, they
are also viable, with defection index�(n). Additionally, since the asymmetric SI game of Example 3
is anonymous (but may not have low strategic sensitivity), it has at least one (t, ε)-fault-tolerant
Nash equilibrium for which t = �(

√
n). This equilibrium is thus also viable, with defection index

�(
√
n).

5. DIRECTIONS FOR FURTHER RESEARCH

5.1. The Independence Assumption

The assumption of independence imposed on the types of the players in the Bayesian game G
limits the applicability of hindsight stability and related properties.

To see the difficulties associated with interdependent player types, consider the followingmod-
ified incomplete-information SI game. On the day on which the game is to be played, a television
programwill be broadcast.The program’s quality is unknown and is equally likely to be high (HQ)
or low (LQ). There are two kinds of players: program-indifferent ones (INDIF), who are like the
players in Example 2, with hi = 0.5 and oi(p) = 1 − p (that is, they prefer to be out if and only if
the proportion of people out is less than 0.5); and discriminating ones (DIS), who prefer to be out
if and only if the program is of low quality. The distribution over each player’s type is the same:
The player is program indifferent with probability 1/3 and is a discriminator with probability 2/3.
In the latter case, the player is told the realized quality of the program. The identical but not in-
dependent distribution over each player’s type is thus uniform on INDIF, (DIS, HQ), and (DIS,
LQ).

Notice that the discriminating types in this game have a dominant strategy: to be out if and
only if they are told that the program’s quality is LQ. This means that the only hindsight-stable
outcome of any equilibrium occurs in the case in which no discriminating players are realized, a
very unlikely event even for moderately large values of n.9

A natural and important direction for further research is to examine the extent and necessity of
the independence limitation. One goal would be to identify properties of the interdependencies
across types that capture real-world situations and under which robustness holds.

Some initial progress along these lines has been made. For example, Gradwohl & Reingold
(2007) show that robustness holds in large games in which the types are only pairwise indepen-
dent, while Gradwohl & Yehudayoff (2008) show the same for large games in which dependencies
are captured by a dependency graph. Alternatively, one might turn to concentration-of-measure
bounds that accommodate mild dependencies, such as those of Pelekis & Ramon (2017), and uti-
lize them to derive hindsight stability.

9The only ε-hindsight-stable outcome of any equilibrium occurs when fewer than 2εn discriminating players
are realized. If more are realized, then with probability 1/2 the program is LQ and they are out, and with
probability 1/2 the program is HQ and they are home. Indifferent players will have a deviation that increases
their utility by at least ε in at least one of these cases.
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A different approach is motivated by the observation that the lack of hindsight stability can
be partially overcome when the game G, with its interdependent types, is played repeatedly. For
instance, consider a variant of Example 2 in which players have interdependent types, and in which
the SI game is played daily with these same types. Suppose that, at the end of every day, players
obtain public information about the proportion of players who chose to be out that day. Finally,
each player’s utility for the day depends on the player’s type, their chosen daily action, and the
public information about that day’s distribution of choices in the population.

For the case in which the number of players is large,Kalai & Shmaya (2018) develop aMarkov-
perfect imagined-continuum (MPIC) Nash equilibrium that captures the important strategic and
informational aspects of the evolving equilibrium, despite the usual difficulties of updating private
information in repeated games of this type. In a subsequent working paper,Kalai & Shmaya (2017)
argue that with time the play of the MPIC equilibrium becomes predictable and hindsight stable,
as if the players “learn to be independent.” If we return now to our example with the television
program, suppose the program is a television series with daily episodes, and such that the quality
does not change much over time. After many daily repetitions of this SI game, the players will
learn to predict the proportion of players who will choose to be out the next day, and at the end
of that day no player would have a significant incentive to change their own choice even after
observing others’ actions.

A challenging important question for future research in this context is to address the issue
of dynamically changing types. In the model of Kalai & Shmaya (2018), player types are fixed
throughout the dynamic interaction. In many economic systems, however, player types change
dynamically. For example, a player’s type may describe resources that the player has available for
that period’s interaction in a market, or information that is available to the player but not to their
opponents. Are there useful general models with changing types in which play converges to some
kind of partial predictability and stability?

5.2. Game Embeddings

When studying a game, players and analysts often model the essentials of the game as if it were
played in isolation. While such simplifications are useful and often unavoidable, in some situa-
tions they lead to distorted solutions. In the SI game, for example, if players are motivated to go
out because they seek employment, the strategic interaction between employment seekers and
employment providers should be included in the analysis.10

This example leads to a natural question: When is it proper to analyze a focal game G in
isolation, despite its being embedded in a bigger metagameM? The structural robustness property
described in the previous section provides a simple starting point.

Consider a pair (G, M) consisting of a focal game G and a metagame M, in which the latter
satisfies the conditions ascribed in Section 4.3 to an alteration GA of G. Consider any equilibrium
profile σ of G and its adaptation σM toM. If all the G players play their σM

i strategies inM, then
each one of them is maximizing their payoff nomatter what strategies are chosen by non-G players
ofM. This is a desirable embedding property, since no strategies of the outsiders incentivize any
of the G players to defect from their σ i strategies.

This observation is useful from the perspective of both the players and the analysts attempting
to predict the outcome of the interaction. From the players’ perspective, if a game G is embedded

10The provision of financial assistance to unemployed workers in the United States may be viewed as a policy
tool that disentangles such considerations.
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inM, then the participants need not worry about the external effects of their actions inG. Instead,
they have the option of using much simpler strategies, namely, the adaptation of their strategies
from G toM. From an analyst’s perspective, if one believes that players are more likely to choose
simpler strategies, then it is possible to predict the outcome of the focal gameG without worrying
about the distortions introduced byM.

The interpretation above is limited by two issues: (a) the start ofM, in which the types of the
G players are assumed to be independent, and (b) the end ofM, in which there is an assumption of
payoff agreement between the G players’ payoffs at the end of the metagameM with their payoffs
in G. Both issues restrict the generality of metagamesM in which G may be properly embedded.
Independence rules out metagames in which the history of play that leads to the start of G creates
dependencies among the types of theG players, and it is discussed in Section 5.1. Payoff agreement
(specifically, the condition that playingGA means playingG) rules out longer metagames in which
the terminal payoffs at G are not the same as the continuation values inM. Removing this second
limitation would be useful in broadening the applicability of game embeddings.

Repeated games may serve as a first step in tackling the payoff agreement issue. Consider a
metagame M in which a game G is played twice: In the first stage, G1, players play the game G;
in the second stage, G2, after being fully informed of the realized actions in G1, the same players
with the same realized types playG again. Suppose players’ payoffs are the sums of their respective
utilities in the two games. Here, one might wish to analyze the two games separately. However,
extensive robustness does not follow immediately, even in large games, because payoff agreement
can fail.

Suppose G1 and G2 are the incomplete-information SI games of Example 2, with the modifi-
cation that players’ types do not change in G2. Consider the following embedded-games analysis:
First, fix any equilibrium σ 1 ofG1. Then, suppose types are drawn again, and let σ 2 be any equilib-
rium of this modified variant ofG2. Then the hindsight stability of equilibria inG1 andG2 implies
that the profile σ of the combined game, in which players play σ 1 in G1 and then σ 2 in G2, is an
approximate equilibrium in G, even though types stay fixed after the first stage.

To see this, observe that, when n is sufficiently large, the fraction of players with types hi ≥ C
is close to C. Hence, for each σ j, the fraction of realized players who are out must be close to C
as well. It is straightforward to see that such a profile is an approximate equilibrium that is also
hindsight stable.

One question for future research is: To what extent does this embedded-games analysis hold?
Another question is the converse: Given any structurally robust, perfect equilibrium in the com-
bined game, is it always the case that the strategies, when restricted to a stage game, also form an
equilibrium?11

5.3. Aggregative Games

Finally, another direction for future research is a more thorough analysis of the general robustness
properties of equilibria in aggregative games. As described in Section 3, such games are a general-
ization of anonymous games and have many applications in economics. Thus, questions about the
strategic sensitivity of different classes of aggregative games (i.e., ones with different aggregation
functions), and hence their robustness and stability properties, are important.

11This question is related to the work of Al-Najjar & Smorodinsky (2001) (building onGreen 1982, Sabourian
1990), which shows that in large infinitely repeated games most players play myopically in each stage game.
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SUMMARY POINTS

1. The Nash equilibria of games with many players are robust and stable.

2. They are hindsight stable, structurally robust, fault-tolerant, and viable.

3. Different classes of games—such as anonymous games, games with low strategic sensi-
tivity, and general games—satisfy these robustness properties to varying degrees.
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