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Abstract

Program evaluation methods are widely applied in economics to assess the
effects of policy interventions and other treatments of interest. In this article,
we describe the main methodological frameworks of the econometrics of
program evaluation. In the process, we delineate some of the directions
along which this literature is expanding, discuss recent developments, and
highlight specific areas where new research may be particularly fruitful.
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1. INTRODUCTION

The nature of empirical research in economics has profoundly changed since the emergence in the
1990s of a new way to understand identification in econometric models. This approach emphasizes
the importance of heterogeneity across units in the parameters of interest and of the choice of the
sources of variation in the data that are used to estimate those parameters. Initial impetus came from
empirical research by Angrist, Ashenfelter, Card, Krueger and others, while Angrist, Heckman,
Imbens, Manski, Rubin, and others provided many of the early methodological innovations (see, in
particular, Angrist 1990, Angrist & Krueger 1991, Angrist et al. 1996, Card 1990, Card & Krueger
1994, Heckman 1990, Manski 1990; for earlier contributions, see Ashenfelter 1978, Ashenfelter
& Card 1985, Heckman & Robb 1985).

While this greater emphasis on identification has permeated all brands of econometrics and
quantitative social science, nowhere have the effects been felt more profoundly than in the field
of program evaluation—a domain expanding the social, biomedical, and behavioral sciences that
studies the effects of policy interventions. The policies of interest are often governmental pro-
grams, like active labor market interventions or antipoverty programs. In other instances, the term
policy is more generally understood to include any intervention of interest by public or private
agents or by nature.

In this article, we offer an overview of classical tools and recent developments in the economet-
rics of program evaluation and discuss potential avenues for future research. Our focus is on ex
post evaluation exercises, where the effects of a policy intervention are evaluated after some form
of the intervention (such as a regular implementation of the policy, an experimental study, or a
pilot study) is deployed and the relevant outcomes under the intervention are measured. Many
studies in economics and the social sciences aim to evaluate existing or experimentally deployed
interventions, and the methods surveyed in this article have been shown to have broad applicability
in these settings. In many other cases, however, economists and social scientists are interested in
ex ante evaluation exercises, that is, in estimating the effect of a policy before such policy is im-
plemented on the population of interest (e.g., Todd & Wolpin 2010). In the absence of measures
of the outcomes under the intervention of interest, ex ante evaluations aim to extrapolate outside
the support of the data. Often, economic models that precisely describe the behavior of economic
agents serve as useful extrapolation devices for ex ante evaluations. Methods that are suitable for
ex ante evaluation have been previously covered in the Annual Review of Economics (Arcidiacono &
Ellickson 2011, Berry & Haile 2016).

This distinction between ex ante and ex post program evaluations is closely related to often-
discussed differences between the so-called structural and causal inference schools in econometrics.
The use of economic models as devices to extrapolate outside the support of the data in ex ante
program evaluation is typically associated with the structural school, while ex post evaluations
that do not explicitly extrapolate using economic models of behavior are often termed causal or
reduced form.1 Given that they serve related but quite distinct purposes, we find the perceived
conflict between these two schools to be rather artificial, and the debates about the purported
superiority of one of the approaches over the other largely unproductive.

Our goal in this article is to provide a summary overview of the literature on the econometrics
of program evaluation for ex post analysis and, in the process, to delineate some of the directions

1As argued by Imbens (2010), however, reduced form is a misnomer relative to the literature on simultaneous equation models,
where the terms structural form and reduced form have precise meanings. Moreover, terms like structural model or causal
inference are nomenclature, rather than exclusive attributes of the literatures and methods that they refer to.
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along which it is expanding, discussing recent developments and the areas where research may be
particularly fruitful in the near future.

Other recent surveys on the estimation of causal treatment effects and the econometrics of
program evaluation from different perspectives and disciplines include those by Abadie (2005a),
Angrist & Pischke (2008, 2014), Athey & Imbens (2017c), Blundell & Costa Dias (2009), DiNardo
& Lee (2011), Heckman & Vytlacil (2007), Hernán & Robins (2018), Imbens & Rubin (2015),
Imbens & Wooldridge (2009), Lee (2016), Manski (2008), Pearl (2009), Rosenbaum (2002, 2010),
Van der Laan & Robins (2003), and VanderWeele (2015), among many others.

2. CAUSAL INFERENCE AND PROGRAM EVALUATION

Program evaluation is concerned with the estimation of the causal effects of policy interven-
tions. These policy interventions can be of very different natures depending on the context of the
investigation, and they are often generically referred to as treatments. Examples include condi-
tional transfer programs (Behrman et al. 2011), health care interventions (Finkelstein et al. 2012,
Newhouse 1996), and large-scale online A/B studies in which IP addresses visiting a particular
web page are randomly assigned to different designs or contents (see, e.g., Bakshy et al. 2014).

2.1. Causality and Potential Outcomes

We represent the value of the treatment by the random variable W. We aim to learn the effect of
changes in treatment status on some observed outcome variable, denoted by Y. Following Neyman
(1923), Rubin (1974), and many others, we use potential outcomes to define causal parameters:
Yw represents the potential value of the outcome when the value of the treatment variable, W, is
set to w. For each value of w in the support of W, the potential outcome Yw is a random variable
with a distribution over the population. The realized outcome, Y, is such that, if the value of the
treatment is equal to w for a unit in the population, then for that unit, Y = Yw, while other
potential outcomes Yw′ with w′ �= w remain counterfactual.

A strong assumption lurks implicit in the last statement. Namely, the realized outcome for
each particular unit depends only on the value of the treatment of that unit and not on the
treatment or on outcome values of other units. This assumption is often referred to as the stable
unit treatment value assumption (SUTVA) and rules out interference between units (Rubin 1980).
SUTVA is a strong assumption in many practical settings; for example, it may be violated in an
educational setting with peer effects. However, concerns about interference between units can
often be mitigated through careful study design (see, e.g., Imbens & Rubin 2015).

The concepts of potential and realized outcomes are deeply ingrained in economics. A demand
function, for example, represents the potential quantity demanded as a function of price. Quantity
demanded is realized for the market price and is counterfactual for other prices.

While, in practice, researchers may be interested in a multiplicity of treatments and outcomes,
we abstract from that in our notation, where Y and W are scalar random variables. In addition
to treatments and potential outcomes, the population is characterized by covariates X, a (k × 1)
vector of variables that are predetermined relative to the treatment. That is, while X and W may
not be independent (perhaps because X causes W, or perhaps because they share common causes),
the value of X cannot be changed by active manipulation of W. Often, X contains characteristics
of the units measured before W is known.

Although the notation allows the treatment to take on an arbitrary number of values, we
introduce additional concepts and notation within the context of a binary treatment, that is,
W ∈ {0, 1}. In this case, W = 1 often denotes exposure to an active intervention (e.g., participation
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in an antipoverty program), while W = 0 denotes remaining at the status quo. For simplicity of
exposition, our discussion mostly focuses on the binary treatment case. The causal effect of the
treatment (or treatment effect) can be represented by the difference in potential outcomes, Y1−Y0.
Potential outcomes and the value of the treatment determine the observed outcome

Y =WY1 + (1−W )Y0. 1.

Equation 1 represents what is often termed the fundamental problem of causal inference (Holland
1986). The realized outcome, Y, reveals Y1 if W = 1 and Y0 if W = 0. However, the unit-level
treatment effect, Y1−Y0, depends on both quantities. As a result, the value of Y1−Y0 is unidentified
from observing (Y, W, X ).

Beyond the individual treatment effects, Y1 − Y0, which are identified only under assumptions
that are not plausible in most empirical settings, the objects of interest, or estimands, in program
evaluation are characteristics of the joint distribution of (Y1, Y0, W, X ) in the sample or in the
population. For most of this review, we focus on estimands defined for a certain population of
interest from which we have extracted a random sample. Like in the work of Abadie et al. (2017a),
we say that an estimand is causal when it depends on the distribution of the potential outcomes,
(Y1, Y0) beyond its dependence on the distribution of (Y, W, X ). This is in contrast to descriptive
estimands, which are characteristics of the distribution of (Y, W, X ).2

The average treatment effect (ATE),

τATE = E[Y1 − Y0],

and the average treatment effect on the treated (ATET),

τATET = E[Y1 − Y0|W = 1],

are causal estimands that are often of interest in the program evaluation literature. Under SUTVA,
ATE represents the difference in average outcomes induced by shifting the entire population from
the inactive to the active treatment. ATET represents the same object for the treated. To improve
the targeting of a program, researchers often aim to estimate ATE or ATET after accounting for a
set of units’ characteristics, X. Notice that ATE and ATET depend on the distribution of (Y1, Y0)
beyond their dependence on the distribution of (Y, W, X ). Therefore, they are causal estimands
under the definition of Abadie et al. (2017a).

2.2. Confounding

Consider now the descriptive estimand,

τ = E[Y |W = 1]− E[Y |W = 0],

which is the difference in average outcomes for the two different treatment values. ATE and ATET
are measures of causation, while the difference in means, τ , is a measure of association. Notice
that

τ = τATE + bATE
= τATET + bATET, 2.

2Abadie et al. (2017a) provide a discussion of descriptive and causal estimands in the context of regression analysis.
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where bATE and bATET are bias terms given by

bATE = (E[Y1|W = 1]− E[Y1|W = 0]) Pr(W = 0) 3.

+ (E[Y0|W = 1]− E[Y0|W = 0]) Pr(W = 1) 4.

and

bATET = E[Y0|W = 1]− E[Y0|W = 0]. 5.

Equations 2–5 combine into a mathematical representation of the often-invoked statement that
association does not imply causation, enriched with the statement that lack of association does
not imply lack of causation. If average potential outcomes are identical for treated and nontreated
units, an untestable condition, then the bias terms bATE and bATET disappear. However, if potential
outcomes are not independent of the treatment, then, in general, the difference in mean outcomes
between the treated and the untreated is not equal to the ATE or ATET. Lack of independence
between the treatment and the potential outcomes is often referred to as confounding. Confound-
ing may arise, for example, when information that is correlated with potential outcomes is used for
treatment assignment or when agents actively self-select into treatment based on their potential
gains.

Confounding is a powerful notion, as it explains departures of descriptive estimands from causal
ones. Directed acyclic graphs (DAGs; see Pearl 2009) provide graphical representations of causal
relationships and confounding.

A DAG is a collection of nodes and directed edges among nodes, with no directed cycles. Nodes
represent random variables, while directed edges represent causal effects not mediated by other
variables in the DAG. Moreover, a causal DAG must contain all causal effects among the variables
in the DAG, as well as all variables that are common causes of any pair of variables in the DAG
(even if common causes are unobserved).

Consider the DAG in Figure 1. This DAG includes a treatment, W, and an outcome of interest,
Y. In this DAG, W is not a cause of Y, as there is no directed edge from W to Y. The DAG also
includes a confounder, U. This confounder is a common cause of W and Y. Even when W does not
cause Y, these two variables may be correlated because of the confounding effect of U. A familiar
example of this structure in economics is Spence’s (1973) job-market signaling model, where W
is worker education; Y is worker productivity; and there are other worker characteristics, U, that
cause education and productivity (e.g., worker attributes that increase productivity and reduce
the cost of acquiring education). In this example, even when education does not cause worker
productivity, the two variables may be positively correlated.

The DAG in Figure 1 implies that Yw does not vary with w because W does not cause Y.
However, Y and W are not independent, as they share a common cause, U. Confounding may
arise in more complicated scenarios. In Section 4, we cover other forms of confounding that may
arise in DAGs. Confounding, of course, often coexists with true causal effects. That is, the DAG
in Figure 1 implies the presence of confounding regardless of whether there is a directed edge
from W to Y.

U W Y

Figure 1
Confounding in a directed acyclic graph. The graph includes a treatment, W ; an outcome of interest, Y ; and
a confounder, U.
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Beyond average treatment effects, other treatment parameters of interest depend on the dis-
tribution of (Y1, Y0). These include treatment effects on characteristics of the distribution of the
outcome other than the average (e.g., quantiles), as well as characteristics of the distribution of
the treatment effect, Y1 − Y0 (e.g., variance), other than its average. In Section 3, we elaborate
further on the distinction between treatment effects on the distribution of the outcome versus
characteristics of the distribution of the treatment effect.

3. RANDOMIZED EXPERIMENTS

Active randomization of the treatment provides the basis of what is arguably the most successful and
extended scientific research design for program evaluation. Often referred to as the gold standard
of scientific evidence, randomized clinical trials play a central role in the natural sciences, as well
as in the drug approval process in the United States, Europe, and elsewhere (Bothwell et al. 2016).
While randomized assignment is often viewed as the basis of a high standard of scientific evidence,
this view is by no means universal. Cartwright (2007), Heckman & Vytlacil (2007), and Deaton
(2010), among others, challenge the notion that randomized experiments occupy a preeminent
position in the hierarchy of scientific evidence, while Angrist & Pischke (2010), Imbens (2010),
and others emphasize the advantages of experimental designs.

3.1. Identification Through Randomized Assignment

Randomization assigns treatment using the outcome of a procedure (natural, mechanical, or elec-
tronic) that is unrelated to the characteristics of the units and, in particular, unrelated to potential
outcomes. Whether randomization is based on coin tossing, random number generation in a
computer, or the radioactive decay of materials, the only requirement of randomization is that
the generated treatment variable is statistically independent of potential outcomes. Complete (or
unconditional) randomization implies

(Y1, Y0) ⊥⊥ W, 6.

where the symbol ⊥⊥ denotes statistical independence. If Equation 6 holds, we say that the treat-
ment assignment is unconfounded. In Section 4, we consider conditional versions of uncon-
foundedness where the value of the treatment W for each particular unit may depend on certain
characteristics of the units, and Equation 6 holds conditional on those characteristics.

The immediate consequence of randomization is that the bias terms in Equations 4 and 5 are
equal to zero:

bATE = bATET = 0,

which, in turn, implies

τATE = τATET = τ = E[Y |W = 1]− E[Y |W = 0]. 7.

Beyond average treatment effects, randomization identifies any characteristic of the marginal
distributions of Y1 and Y0. In particular, the cumulative distributions of potential outcomes
FY1 (y) = Pr(Y1 ≤ y) and FY0 (y) = Pr(Y0 ≤ y) are identified by

FY1 (y) = Pr(Y ≤ y |W = 1)

and

FY0 (y) = Pr(Y ≤ y |W = 0).
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While the average effect of a treatment can be easily described using τATE, it is more complicated
to establish a comparison between the entire distributions of Y1 and Y0. To be concrete, suppose
that the outcome variable of interest, Y, is income. Then, an analyst may want to rank the income
distributions under the active intervention and in the absence of the active intervention. For that
purpose, it is useful to consider the following distributional relationships: (a) equality of distribu-
tions, FY1 (y) = FY0 (y) for all y ≥ 0; (b) first-order stochastic dominance (with FY1 dominating FY0 ),
FY1 (y)−FY0 (y) ≤ 0 for all y ≥ 0; and (c) second-order stochastic dominance (with FY1 dominating
FY0 ),

∫ y
0 (FY1 (z)− FY0 (z)) dz ≤ 0 for all y ≥ 0.

Equality of distributions implies that the treatment has no effect on the distribution of the
outcome variable, in this case income. It implies τATE = 0 but represents a stronger notion of
null effect. Under mild assumptions, first- and second-order stochastic dominance imply that the
income distribution under the active treatment is preferred to the distribution of income in the
absence of the active treatment (see, e.g., Abadie 2002, Foster & Shorrocks 1988).

Equivalently, the distributions of Y1 and Y0 can be described by their quantiles. Quantiles of
Y1 and Y0 are identified by inverting FY1 and FY0 or, more directly, by

QY1 (θ ) = QY |W=1(θ ),

QY0 (θ ) = QY |W=0(θ ),

with θ ∈ (0, 1), where QY (θ ) denotes the θ quantile of the distribution of Y. The effect of the
treatment on the θ quantile of the outcome distribution is given by the quantile treatment effect,

QY1 (θ )− QY0 (θ ). 8.

Notice that, while quantile treatment effects are identified from Equation 6, quantiles of the
distribution of the treatment effect, QY1−Y0 (θ ), are not identified. Unlike expectations, quantiles
are nonlinear operators, so in general, QY1−Y0 (θ ) �= QY1 (θ ) − QY0 (θ ). Moreover, while quantile
treatment effects depend only on the marginal distributions of Y1 and Y0, which are identified
from Equation 6, quantiles of the distribution of treatment effects are functionals of the joint
distribution of (Y1, Y0), which involves information beyond the marginals. Because, even in a
randomized experiment, the two potential outcomes are never both realized for the same unit, the
joint distribution of (Y1, Y0) is not identified. As a result, quantiles of Y1 − Y0 are not identified
even in the context of a randomized experiment.

To gain intuitive understanding of this lack of identification result, consider an example where
the marginal distributions of Y1 and Y0 are identical, symmetric around zero, and nondegenerate.
Identical marginals are consistent with a null treatment effect, that is, Y1−Y0 = 0 with probability
one. In this scenario, all treatment effects are zero. However, identical marginals and symmetry
around zero are also consistent with Y1 = −Y0 or, equivalently, Y1 − Y0 = −2Y0 with probability
one, which leads to positive treatment effects for half of the population and negative treatment
effects for the other half. In the first scenario, the treatment does not change the value of the
outcome for any unit in the population. In contrast, in the second scenario, the locations of units
within the distribution of the outcome variable are reshuffled, but the shape of the distribution
does not change. While these two different scenarios imply different distributions of the treatment
effect, Y1 − Y0, they are both consistent with the same marginal distributions of the potential
outcomes, Y1 and Y0, so the distribution of Y1 − Y0 is not identified.

Although the distribution of treatment effects is not identified from randomized assignment
of the treatment, knowledge of the marginal distributions of Y1 and Y0 can be used to bound
functionals of the distribution of Y1 − Y0 (see, e.g., Fan & Park 2010, Firpo & Ridder 2008). In
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particular, if the distribution of Y is continuous, then for each t ∈ R,

max
{

sup
y∈R

[
FY1 (y)− FY0 (y − t)

]
, 0
}
≤ FY1−Y0 (t) ≤ 1+min

{
inf
y∈R

[
FY1 (y)− FY0 (y − t)

]
, 0
}

9.

provides sharp bounds on the distribution of Y1 − Y0. This expression can be applied to bound
the fraction of units with positive (or negative) treatment effects. Bounds on QY1−Y0 (θ ) can be
obtained by inversion.

3.2. Estimation and Inference in Randomized Studies

So far, we have concentrated on identification issues. We now turn to estimation and infer-
ence. Multiple modes of statistical inference are available for treatment effects (see Rubin 1990),
and our discussion mainly focuses on two of them: (a) sampling-based frequentist inference and
(b) randomization-based inference on a sharp null. We also briefly mention permutation-based
inference. However, because of space limitations, we omit Bayesian methods (see Rubin 1978,
2005) and finite-sample frequentist methods based on randomization (see Abadie et al. 2017a,
Neyman 1923). Imbens & Rubin (2015) give an overview of many of these methods.

3.2.1. Sampling-based frequentist inference. In the context of sampling-based frequentist
inference, we assume that data consist of a random sample of treated and nontreated units, and
that the treatment has been assigned randomly. For each unit i in the sample, we observe the value
of the outcome, Yi ; the value of the treatment, Wi ; and, possibly, the values of a set of covariates,
Xi . Consider the common scenario where randomization is carried out with a fixed number of
treated units, n1, and untreated units, n0, such that n = n1 + n0 is the total sample size. We
construct estimators using the analogy principle (Manski 1988). That is, estimators are sample
counterparts of population objects that identify parameters of interest. In particular, Equation 7
motivates estimating τ = τATE = τATET using the difference in sample means of the outcome
between treated and nontreated,

τ̂ = 1
n1

n∑
i=1

Wi Yi − 1
n0

n∑
i=1

(1−Wi )Yi .

Under conventional regularity conditions, a large sample approximation to the sampling distri-
bution of τ̂ is given by

τ̂ − τ

ŝe(̂τ )
d−→N (0, 1), 10.

where

ŝe(̂τ ) =
(

σ̂ 2
Y |W=1

n1
+ σ̂ 2

Y |W=0

n0

)1/2

, 11.

and σ̂ 2
Y |W=1 and σ̂ 2

Y |W=0 are the sample counterparts of the conditional variance of Y given W = 1
and W = 0, respectively.

The estimator τ̂ coincides with the coefficient on W from a regression of Y on W and a con-
stant, and ŝe(̂τ ) is the corresponding heteroskedasticity-robust standard error. Inference based on
Equations 10 and 11 has an asymptotic justification but can perform poorly in finite samples, espe-
cially if n1 and n0 differ considerably. Imbens & Kolesár (2016) discuss small sample adjustments
to the t-statistic and its distribution and demonstrate that such adjustments substantially improve
coverage rates of confidence intervals in finite samples. In addition, more general sampling pro-
cesses (e.g., clustered sampling) or randomization schemes (e.g., stratified randomization) are
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possible. They affect the variability of the estimator and, therefore, the standard error formulas
(for details, see Abadie et al. 2017b, Imbens & Rubin 2015).

Estimators of other quantities of interest discussed in Section 2 can be similarly constructed
using sample analogs. In particular, for any θ ∈ (0, 1), the quantile treatment effects estimator is
given by

Q̂Y |W=1(θ )− Q̂Y |W=0(θ ),

where Q̂Y |W=1(θ ) and Q̂Y |W=0(θ ) are the sample analogs of QY |W=1(θ ) and QY |W=0(θ ), respectively.
Sampling-based frequentist inference on quantile treatment effects follows from the results of
Koenker & Bassett (1978) on quantile inference for quantile regression estimators. Bounds on the
distribution of FY1−Y0 can be computed by replacing the cumulative functions FY |W=1 and FY |W=0

in Equation 9 with their sample analogs, F̂Y |W=1 and F̂Y |W=0, respectively. The estimators of the
cumulative distribution functions FY1 and FY0 (or, equivalently, estimators of the quantile functions
QY1 and QY0 ) can also be applied to test for equality of distributions and first- and second-order
stochastic dominance (see, e.g., Abadie 2002).

3.2.2. Randomization inference on a sharp null. The testing exercise in Section 3.2.1 is based
on sampling inference. That is, it is based on the comparison of the value of a test statistic for the
sample at hand to its sampling distribution under the null hypothesis. In contrast, randomization
inference takes the sample as fixed and concentrates on the null distribution of the test statistic
induced by the randomization of the treatment. Randomization inference originated with Fisher’s
(1935) proposal to use the physical act of randomization as a reasoned basis for inference.

Consider the example in Panel A of Table 1. This panel shows the result of a hypothetical
experiment where a researcher randomly selects four individuals out of a sample of eight individuals
to receive the treatment and excludes the remaining four individuals from the treatment. For each
of the eight sample individuals, i = 1, . . . , 8, the researcher observes treatment status, Wi , and
the value of the outcome variable, Yi . For concreteness, we assume that the researcher adopts
the difference in mean outcomes between the treated and the nontreated as a test statistic for
randomization inference. The value of this statistic in the experiment is τ̂ = 6.

The sample observed by the researcher is informative only about the value of τ̂ obtained under
one particular realization of the randomized treatment assignment: the one observed in practice.
There are, however, 70 possible ways to assign four individuals out of eight to the treatment group.
Let � be the set of all possible randomization realizations. Each element ω of � has probability
1/70. Consider Fisher’s null hypothesis that the treatment does not have any effect on the outcomes
of any unit, that is, Y1i = Y0i for each experimental unit. Notice that Fisher’s null pertains to the

Table 1 Randomization distribution of a difference in means

Panel A: Sample and sample statistic

Yi 12 4 6 10 6 0 1 1

Wi 1 1 1 1 0 0 0 0 τ̂ = 6

Panel B: Randomization distribution τ̂ (ω)

ω = 1 1 1 1 1 0 0 0 0 6

ω = 2 1 1 1 0 1 0 0 0 4

ω = 3 1 1 1 0 0 1 0 0 1

ω = 4 1 1 1 0 0 0 1 0 1.5

...ω = 70 0 0 0 0 1 1 1 1 −6
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Figure 2
Randomization distribution of the difference in means. The vertical line represents the sample value of τ̂.

sample and not necessarily to the population. Under Fisher’s null, it is possible to calculate the value
τ̂ (ω) that would have been observed for each possible realization of the randomized assignment,
ω ∈ �. The distribution of τ̂ (ω) in Panel B of Table 1 is called the randomization distribution
of τ̂. A histogram of the randomization distribution of τ̂ is depicted in Figure 2. p-values for
one-sided and two-sided tests are calculated in the usual fashion: Pr(̂τ (ω) ≥ τ̂ ) = 0.0429 and
Pr(|̂τ (ω)| ≥ |̂τ |) = 0.0857, respectively. These probabilities are calculated over the randomization
distribution. Because the randomization distribution under the null can be computed without
error, these p-values are exact.3

Fisher’s null hypothesis of Y1i − Y0i = 0 for every experimental unit is an instance of a sharp
null, that is, a null hypothesis under which the values of the treatment effect for each unit in the
experimental sample are fixed. Notice that this sharp null, if extended to every population unit,
implies but is not implied by Neyman’s null, E[Y1]−E[Y0] = 0. However, a rejection of Neyman’s
null, using the t-statistic discussed above in the context of sampling-based frequentist inference,
does not imply that Fisher’s test will reject. This is explained by Ding (2017) using the power
properties of the two types of tests and illustrated by Young (2017).

3.2.3. Permutation methods. Some permutation methods are related to randomization tests
but rely on a sampling interpretation. They can be employed to evaluate the null hypothesis that
Y1 and Y0 have the same distribution. Notice that this is not a sharp hypothesis and that it pertains
to the population rather than to the sample at hand. These tests are based on the observation
that, under the null hypothesis, the distribution of the vector of observed outcomes is invariant

3In a setting with many experimental units, it may be computationally costly to calculate the value of the test statistic under
all possible assignments. In those cases, the randomization distribution can be approximated from a randomly selected subset
of assignments.
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under permutations. Ernst (2004) provides more discussion and comparisons between Fisher’s
randomization inference and permutation methods, and Bugni et al. (2018), who also include
further references on this topic, describe a recent application of permutation-based inference in
the context of randomized experiments.

3.3. Recent Developments

Looking ahead, the literature on the analysis and interpretation of randomized experiments re-
mains active, with several interesting developments and challenges still present beyond what is
discussed in this section. Athey & Imbens (2017a) provide a detailed introduction to the econo-
metrics of randomized experiments. Some recent topics in this literature include (a) decision
theoretic approaches to randomized experiments and related settings (Banerjee et al. 2017);
(b) design of complex or high-dimensional experiments accounting for new (big) data environments
such as social media or networks settings (Bakshy et al. 2014); (c) the role of multiple hypothesis
testing and alternative inference methods, such as model selection, shrinkage, and empirical Bayes
approaches (see, e.g., Abadie & Kasy 2017); and (d ) subgroup, dynamic, and optimal treatment
effect analysis, as well as related issues of endogenous stratification (see, e.g., Abadie et al. 2017c,
Athey & Imbens 2017b, Murphy 2003).

4. CONDITIONING ON OBSERVABLES

4.1. Identification by Conditional Independence

In the absence of randomization, the independence condition in Equation 6 is rarely justified,
and the estimation of treatment effect parameters requires additional identifying assumptions.
In this section, we discuss methods based on a conditional version of the unconfoundedness
assumption in Equation 6. We assume that potential outcomes are independent of the treatment
after conditioning on a set of observed covariates. The key underlying idea is that confounding, if
present, is fully accounted for by observed covariates.

Consider an example where newly admitted college students are awarded a scholarship on
the basis of the result of a college entry exam, X, and other student characteristics, V. We use the
binary variable W to code the receipt of a scholarship award. To investigate the effect of the award
on college grades, Y, one may be concerned about the potential confounding effect of precollege
academic ability, U, which may not be precisely measured by X. Confounding may also arise if V
has a direct effect on Y.

This setting is represented in the DAG in Figure 3a. Precollege academic ability, U, is a cause
of W, the scholarship award, through its effect on the college entry exam grade, X. Precollege
ability, U, is also a direct cause of college academic grades, Y. The confounding effect of U induces
statistical dependence between W and Y that is not reflective of the causal effect of W on Y.
In a DAG, a path is a collection of consecutive edges (e.g., X → W → Y ), and confounding
can generate from backdoor paths, that is, paths from the treatment, W, to the outcome, Y, that
start with incoming arrows. The path W ← X ← U → Y is a backdoor path in Figure 3a. An
additional backdoor path, W ← V → Y, emerges if other causes of the award, aside from the
college entry exam, also have a direct causal effect on college grades. The presence of backdoor
paths may create confounding, invalidating Equation 6.

Consider a conditional version of unconfoundedness,

(Y1, Y0) ⊥⊥W |X . 12.
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V

U X W Y

a   Confounding by U and V

U X W Y

b   Confounding by U only

Figure 3
Causal effect and confounding. The graphs show the result of a college entrance exam, X ; other student
characteristics affecting college admission, V ; receipt of a scholarship award, W ; precollege academic ability,
U ; and college grades, Y. (a) Confounding by U and V. (b) Confounding by U alone.

Equation 12 states that (Y1, Y0) is independent of W given X.4 This assumption allows identification
of treatment effect parameters by conditioning on X. That is, controlling for X makes the treatment
unconfounded.5 Along with the common support condition

0 < Pr(W = 1|X ) < 1, 13.

Equation 12 allows identification of treatment effect parameters. Equation 12 implies

E[Y1 − Y0|X ] = E[Y |X , W = 1]− E[Y |X , W = 0].

Then, the common support condition in Equation 13 implies

τATE = E
[

E[Y |X , W = 1]− E[Y |X , W = 0]
]

14.

and

τATET = E
[

E[Y |X , W = 1]− E[Y |X , W = 0]|W = 1
]
. 15.

Other causal parameters of interest, like the quantile treatment effects in Equation 8, are identified
by the combination of unconfoundedness and common support (Firpo 2007).

The common support condition can be directly assessed in the data, as it depends on the
conditional distribution of X given W, which is identified by the joint distribution of (Y, W, X ).
Unconfoundedness, however, is harder to assess, as it depends on potential outcomes that are
not always observed. Pearl (2009) and others have investigated graphical causal structures that
allow identification by conditioning on covariates. In particular, Pearl’s backdoor criterion (Pearl
1993) provides sufficient conditions under which treatment effect parameters are identified via
conditioning.6

In our college financial aid example, suppose that other causes of the award, aside from the
college entry exam, do not have a direct effect on college grades (that is, all the effect of V on Y
is through W ). This is the setting in Figure 3b.7 Using Pearl’s backdoor criterion, and provided
that a common support condition holds, it can be shown that the causal structure in Figure 3b

4For the identification results stated below, it is enough to have unconfoundedness in terms of the marginal distributions of
potential outcomes, that is, Yw ⊥⊥ W |X for w = {0, 1}.
5The unconfoundedness assumption in Equation 12 is often referred to as conditional independence, exogeneity, selection
on observables, ignorability, or missing at random.
6Pearl (2009) and Morgan & Winship (2015) provide detailed introductions to identification in DAGs, and Richardson
& Robins (2013) discuss the relationship between identification in DAGs and statements about conditional independence
between the treatment and potential outcomes similar to that in Equation 12.
7Notice that the node representing V disappears from the DAG in Figure 3b. Because V causes only one variable in the
DAG, it cannot create confounding. As a result, it can be safely excluded from the DAG.
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implies that treatment effect parameters are identified by adjusting for X, as in Equations 14 and
15. The intuition for this result is rather immediate. Precollege ability, U, is a common cause of W
and Y, and the only confounder in this DAG. However, conditioning on X blocks the path from
U to X. Once we condition on X, the variable U is no longer a confounder, as it is not a cause of
W. In contrast, if other causes of the award, aside from the college entry exam, have a direct effect
on college grades, as in Figure 3a, then Pearl’s backdoor criterion does not imply Equations 14
or 15. Additional confounding, created by V, is not controlled for by conditioning on X alone.

4.2. Regression Adjustments

There exists a wide array of methods for estimation and inference under unconfoundedness.
However, it is important to notice that, in the absence of additional assumptions, least squares
regression coefficients do not identify ATE or ATET. Consider a simple setting where X takes
on a finite number of values x1, . . . , xm. Under Equations 12 and 13, ATE and ATET are given
by

τATE =
m∑

k=1

(
E[Y |X = xk, W = 1]− E[Y |X = xk, W = 0]

)
Pr(X = xk)

and

τATET =
m∑

k=1

(
E[Y |X = xk, W = 1]− E[Y |X = xk, W = 0]

)
Pr(X = xk|W = 1),

respectively. These identification results form the basis for the subclassification estimators of ATE
and ATET in the work of Cochran (1968) and Rubin (1977). One could, however, attempt to
estimate ATE or ATET using least squares. In particular, one could consider estimating τOLS by
least squares in the regression equation

Yi = τOLS Wi +
m∑

k=1

β OLS,k Dki + εi ,

under the usual restrictions on εi , where Dki is a binary variable that takes value one if Xi = xk

and zero otherwise. It can be shown that, in the absence of additional restrictive assumptions, τOLS

differs from τATE and τATET. More precisely, it can be shown that

τOLS =
m∑

k=1

(E[Y |X = xk, W = 1]− E[Y |X = xk, W = 0]) wk

where

wk = var(W |X = xk) Pr(X = xk)∑m
r=1 var(W |X = xr ) Pr(X = xr )

.

That is, τOLS identifies a variance-weighted ATE (see, e.g., Angrist & Pischke 2008).8 Even in this
simple setting, with a regression specification that is fully saturated in all values of X (including
a dummy variable for each possible value), τOLS differs from τATE and τATET except for special cases
(e.g., when E[Y |X = xk, W = 1]− E[Y |X = xk, W = 0] is the same for all k).

8It can be shown that var(W |X = xr ) is maximal when Pr(W = 1|X = xr ) = 1/2 and is decreasing as this probability moves
toward zero or one. That is, τOLS weights up groups with X = xk , where the size of the treated and untreated populations are
roughly equal, and weights down groups with large imbalances in the sizes of these two groups.
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4.3. Matching Estimators

Partly because of the failure of linear regression to estimate conventional treatment effect param-
eters like ATE and ATET, researchers have resorted to flexible and nonparametric methods like
matching.

4.3.1. Matching on covariates. Matching estimators of ATE and ATET can be constructed in
the following manner. First, for each sample unit i , select a unit j (i ) in the opposite treatment
group with similar covariate values. That is, select j (i ) such that W j (i ) = 1−Wi and X j (i ) 
 X i .
Then, a one-to-one nearest-neighbor matching estimator of ATET can be obtained as the average
of the differences in outcomes between the treated units and their matches,

τ̂ATET = 1
n1

n∑
i=1

Wi (Yi − Y j (i )). 16.

An estimator of ATE can be obtained in a similar manner, but using the matches for both treated
and nontreated:

τ̂ATE = 1
n

n∑
i=1

Wi (Yi − Y j (i ))− 1
n

n∑
i=1

(1−Wi )(Yi − Y j (i )). 17.

Nearest-neighbor matching comes in many varieties. It can be done with replacement (that is,
potentially using each unit in the control group as a match more than once) or without, with only
one or several matches per unit (in which case, the outcomes of the matches for each unit are
usually averaged before inserting them into Equations 16 and 17), and there exist several potential
choices for the distance that measures the discrepancies in the values of the covariates between
units [like the normalized Euclidean distance and the Mahalanobis distance (see Abadie & Imbens
2011, Imbens 2004)].

4.3.2. Matching on the propensity score. Matching on the propensity score is another com-
mon variety of matching method. Rosenbaum & Rubin (1983) define the propensity score as the
conditional probability of receiving the treatment given covariate values

p(X ) = Pr(W = 1|X ).

Rosenbaum & Rubin (1983) prove that, if the conditions in Equations 12 and 13 hold, then the
same conditions hold after replacing X with the propensity score p(X ). An implication of this
result is that, if controlling for X makes the treatment unconfounded, then controlling for p(X )
makes the treatment unconfounded, as well. Figure 4 provides intuition for this result. The entire
effect of X on W is mediated by the propensity score. Therefore, after conditioning on p(X ), the
covariate X is no longer a confounder. In other words, conditioning on the propensity score blocks

W

X

p(X)

Y

Figure 4
Identification by conditioning on the propensity score, p(X ). The graph shows the result of a college
entrance exam, X ; other student characteristics affecting college admission, V ; receipt of a scholarship
award, W ; and college grades, Y.
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the backdoor path between W and Y. Therefore, any remaining statistical dependence between
W and Y is reflective of the causal effect of W on Y. The propensity score result of Rosenbaum
& Rubin (1983) motivates matching estimators that match on the propensity score, p(X ), instead
of matching on the entire vector of covariates, X. Matching on the propensity score reduces the
dimensionality of the matching variable, avoiding biases generated by curse of dimensionality
issues (see, e.g., Abadie & Imbens 2006). In most practical settings, however, the propensity score
is unknown. Nonparametric estimation of the propensity score brings back dimensionality issues.
In some settings, estimation of the propensity score can be guided by institutional knowledge about
the process that produces treatment assignment (elicited from experts in the subject matter). In
empirical practice, the propensity score is typically estimated using parametric methods like probit
or logit.

Abadie & Imbens (2006, 2011, 2012) derive large sample results for estimators that match
directly on the covariates, X. Abadie & Imbens (2016) provide large sample results for the case
where matching is done on an estimated propensity score (for reviews and further references on
propensity score matching estimators, see Imbens & Rubin 2015, Rosenbaum 2010).

4.4. Inverse Probability Weighting

Inverse probability weighting (IPW) methods (see Hirano et al. 2003, Robins et al. 1994) are also
based on the propensity score and provide an alternative to matching estimators. This approach
proceeds by first obtaining estimates of propensity score values, p̂(Xi ), and then using those
estimates to weight outcome values. For example, an IPW estimator of ATE is

τ̂ATE = 1
n

n∑
i=1

Wi Yi

p̂(Xi )
− 1

n

n∑
i=1

(1−Wi ) Yi

1− p̂(Xi )
.

This estimator uses 1/ p̂(Xi ) to weigh observations in the treatment group and 1/(1− p̂(Xi )) to
weigh observations in the untreated group. Intuitively, observations with large p̂(Xi ) are overrep-
resented in the treatment group and thus weighted down when treated. The same observations
are weighted up when untreated. The opposite applies to observations with small p̂(Xi ). This
estimator can be modified so that the weights in each treatment arm sum to one, which produces
improvements in finite sample performance (see, e.g., Busso et al. 2014).

4.5. Imputation and Projection Methods

Imputation and projection methods (e.g., Cattaneo & Farrell 2011, Heckman et al. 1998, Im-
bens et al. 2006, Little & Rubin 2002) provide an alternative class of estimators that rely on the
assumptions in Equations 12 and 13. Regression imputation estimators are based on prelimi-
nary estimates of the outcome process, that is, the conditional distribution of Y given (X , W ).
Let μ̂1(x) and μ̂0(x) be parametric or nonparametric estimators of E[Y |X = x, W = 1] and
E[Y |X = x, W = 0], respectively. Then, an empirical analog of Equation 14 provides a projec-
tion and imputation estimator of ATE:

τ̂ATE = 1
n

n∑
i=1

(μ̂1(Xi )− μ̂0(Xi )) .

Similarly, a projection and imputation estimator of ATET is given by the empirical analog of
Equation 15.
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4.6. Hybrid Methods

Several hybrid methods combine matching and propensity score weighting with projection and
imputation techniques. Among them are the doubly robust estimators (or, more generally, locally
robust estimators) of Van der Laan & Robins (2003), Bang & Robins (2005), Cattaneo (2010),
Farrell (2015), Chernozhukov et al. (2016), and Sloczynski & Wooldridge (2017). In the case of
ATE estimation, for example, they can take the form

τ̂ATE = 1
n

n∑
i=1

(
Wi (Yi − μ̂1(Xi ))

p̂(Xi )
+ μ̂1(Xi )

)

−1
n

n∑
i=1

(
(1−Wi ) (Yi − μ̂0(Xi ))

1− p̂(Xi )
+ μ̂0(Xi )

)
.

This estimator is doubly robust in the sense that consistent estimation of p(·) or consistent estima-
tion of μ1(·) and μ0(·) is required for the validity of the estimator. Part of the appeal of doubly and
locally robust methods comes from the efficiency properties of the estimators. However, relative
to other methods discussed in this section, doubly robust methods require estimating not only p(·)
or μ1(·) and μ0(·), but all of these functions. As a result, relative to other methods, doubly robust
estimators involve additional tuning parameters and implementation choices. Closely related to
doubly and locally robust methods are the bias-corrected matching estimators of Abadie & Imbens
(2011). These estimators include a regression-based bias correction designed to purge matching
estimators from the bias that arises from imperfect matches in the covariates,

τ̂ATE = 1
n

n∑
i=1

Wi

(
(Yi − Y j (i ))− (μ̂0(Xi )− μ̂0(X j (i )))

)
−1

n

n∑
i=1

(1−Wi )
(

(Yi − Y j (i ))− (μ̂1(Xi )− μ̂1(X j (i )))
)
.

4.7. Comparisons of Estimators

Busso et al. (2014) study the finite sample performance of matching and IPW estimators, as well
as some of their variants. Kang & Schafer (2007) and the accompanying discussions and rejoinder
provide finite sample evidence on the performance of double robust estimators and other related
methods.9

As these and other studies demonstrate, the relative performance of estimators based on con-
ditioning on observables depends on the features of the data generating process. In finite samples,
IPW estimators become unstable when the propensity score approaches zero or one, while regres-
sion imputation methods may suffer from extrapolation biases. Estimators that match directly on
covariates do not require specification choices but may incorporate nontrivial biases if the quality
of the matches is poor. Hybrid methods, such as bias-corrected matching estimators or doubly ro-
bust estimators, include safeguards against bias caused by imperfect matching and misspecification
but impose additional specification choices that may affect the resulting estimate.

Apart from purely statistical properties, estimators based on conditioning on covariates differ
in the way they are related to research transparency. In particular, during the design phase of
a study (i.e., sample, variable, and model selection), matching and IPW methods employ only

9Dehejia & Wahba (1999), Smith & Todd (2005), and others evaluate the performance of some of the estimators in this
section against an experimental benchmark.
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information about treatment, W, and covariates, X. That is, the matches and the specification
for the propensity score can be constructed without knowledge or use of the outcome variable.
This feature of matching and IPW estimators provides a potential safeguard against specification
searches and p-hacking, a point forcefully made by Rubin (2007).

4.8. Recent Developments and Additional Topics

All of the estimation and inference methods discussed above take the covariates, X, as known and
small relative to the sample size, although, in practice, researchers often use high-dimensional
models with the aim of using a setting where the conditional independence assumption is deemed
appropriate. In most applications, X includes both raw preintervention covariates and transfor-
mations thereof, such as dummy variable expansions of categorical variables, power or other series
expansions of continuous variables, higher-order interactions, or other technical regressors gen-
erated from the original available variables. The natural tension between standard theory (where
the dimension of X is taken to be small) and practice (where the dimension of X tends to be large)
has led to a new literature that aims to develop estimation and inference methods in program
evaluation that account and allow for high-dimensional X.

Belloni et al. (2014) and Farrell (2015) develop new program evaluation methods employing
machinery from the high-dimensional literature in statistics. This methodology, which allows for
very large X (much larger than the sample size), proceeds in two steps. First, a parsimonious
model is selected from the large set of preintervention covariates employing model selection
via least absolute shrinkage and selection operator (LASSO). Then, treatment effect estimators
are constructed using only the small (usually much smaller than the sample size) set of selected
covariates. More general methods and a review of this literature are given by Belloni et al. (2017)
and Athey et al. (2016), among others. Program evaluation methods proposed in this literature
employ modern model selection techniques, which require a careful analysis and interpretation but
often ultimately produce classical distributional approximations (in the sense that these asymptotic
approximations do not change relative to results in low-dimensional settings).

Cattaneo et al. (2017a; 2018c,d) develop program evaluation methods where the distributional
approximations do change relative to low-dimensional results due to the inclusion of many covari-
ates in the estimation. These results can be understood as giving new distributional approximations
that are robust to (i.e., also valid in) cases where either the researcher cannot select out covariates
(e.g., when many multiway fixed effects are needed) or many covariates remain included in the
model even after model selection. These high-dimensional methods not only are valid when many
covariates are included, but also continue to be valid in cases where only a few covariates are used,
thereby offering demonstrable improvements for estimation and inference in program evaluation.
Related kernel-based methods are developed by Cattaneo & Jansson (2018).

All of the ideas and methods discussed above are mostly concerned with average treatment
effects in the context of binary treatments. Many of these results have been extended to multivalued
treatments (Cattaneo 2010, Farrell 2015, Hirano & Imbens 2004, Imai & van Dyk 2004, Imbens
2000, Lechner 2001, Yang et al. 2016), to quantiles and related treatment effects (Cattaneo 2010,
Firpo 2007), and to the analysis and interpretation of counterfactual distributional treatment
effects (Chernozhukov et al. 2013, DiNardo et al. 1996, Firpo & Pinto 2016). We do not discuss
this work due to space limitations.

Space restrictions also prevent us from discussing in detail other strands of the literature on es-
timation of treatment effects based on conditioning on covariates. In particular, in the biostatistics
literature, structural nested models, marginal structural models, and optimal treatment regimes
estimators are employed to estimate treatment effects in contexts with time-varying treatments and
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confounders (see, e.g., Lok et al. 2004, Murphy 2003, Robins 2000). Also, a large literature on sen-
sitivity to unobserved confounders analyzes the impact of departures from the unconfoundedness
assumption in Equation 12 (see, e.g., Altonji et al. 2005, Imbens 2003, Rosenbaum 2002).

5. DIFFERENCE IN DIFFERENCES AND SYNTHETIC CONTROLS

5.1. Difference in Differences

In the previous section, we consider settings where treatment assignment is confounded but where
there exists a set of observed covariates, X, such that treatment assignment becomes unconfounded
after conditioning on X. In many applied settings, however, researchers confront the problem of the
possible existence of unobserved confounders. In these settings, difference-in-differences models
aim to attain identification by restricting the way in which unobserved confounders affect the
outcome of interest over time. Consider the following panel data regression model,

Yit =Witτi t + μi + δt + εi t ,

where only Yit and Wit are observed. We regard the mapping represented in this equation as
structural (or causal). That is, the equation describes potential outcomes, which are now indexed
by time period, t,

Y0i t = μi + δt + εi t ,

Y1i t = τi t + μi + δt + εi t . 18.

Then, we have τi t = Y1i t − Y0i t. To simplify the exposition, and because it is a common setting in
empirical practice, we assume that there are only two time periods. Period t = 0 is the pretreatment
period, before the treatment is available, so Wi0 = 0 for all i . Period t = 1 is the posttreatment
period, when a fraction of the population units are exposed to the treatment. δt is a time effect,
common across units. We treat μi as a time invariant confounder, so μi and Wi1 are not inde-
pendent. In contrast, we assume that εi t are causes of the outcome that are unrelated to selection
for treatment, so E[εi t |Wit] = E[εi t]. This condition can be weakened to E[
εi1|Wit] = E[
εi1],
where 
 is the first difference operator, so 
εi1 = εi1 − εi0. This type of structure is the same as
the widespread linear fixed effect panel data model (see, e.g., Arellano 2003). Then, we have

E[Yi1|Wi1 = 1] = E[τi1|Wi1 = 1]+ E[μi |Wi1 = 1]+ δ1 + E[εi1]

E[Yi0|Wi1 = 1] = E[μi |Wi1 = 1]+ δ0 + E[εi0]

E[Yi1|Wi1 = 0] = E[μi |Wi1 = 0]+ δ1 + E[εi1]

E[Yi0|Wi1 = 0] = E[μi |Wi1 = 0]+ δ0 + E[εi0].

In this model, the effect of the unobserved confounders on the average of the outcome variable
is additive and does not change in time. It follows that

τATET = E[τi1|Wi1 = 1]

=
[

E[Yi1|Wi1 = 1]− E[Yi1|Wi1 = 0]
]
−
[

E[Yi0|Wi1 = 1]− E[Yi0|Wi1 = 0]
]

=
[

E[
Yi1|Wi1 = 1]−
[

E [
Yi1|Wi1 = 0]
]
. 19.

The reason for the name difference in differences is apparent from Equation 19. Notice that τATET

is defined here for the posttreatment period, t = 1. Intuitively, identification in the difference-
in-differences model comes from a common trends assumption implied by Equation 18. It can be
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t = 0

Time
t = 1

E[τi1|Wi1 = 1]

E[Yit|Wi1 = 1]

E[Yit|Wi1 = 0]

Figure 5
Identification in a difference-in-differences model. The dashed line represents the outcome that the treated
units would have experienced in the absence of the treatment.

easily seen that Equation 18, along with E[
εi1|Wit] = E[
εi1], implies

E[
Y0i1|Wit = 1] = E[
Y0i1|Wit = 0]. 20.

That is, in the absence of the treatment, the average outcome for the treated and the average
outcome for the nontreated would have experienced the same variation over time.

Figure 5 illustrates how identification works in a difference-in-differences model. In this set-
ting, a set of untreated units identifies the average change that the outcome for the treated units
would have experienced in the absence of the treatment. The set of untreated units selected to
reproduce the counterfactual trajectory of the outcome for the treated is often called the control
group in this literature (borrowing from the literature on randomized controlled trials).

Notice also that the common trend assumption in Equation 20 is not invariant to nonlinear
transformations of the dependent variable. For example, if Equation 20 holds when the outcome is a
wage rate measured in levels, then the same equation will not hold in general for wages measured
in logs. In other words, identification in a difference-in-differences model is not invariant to
nonlinear transformations in the dependent variable.

In a panel data regression (that is, in a setting with repeated pre- and posttreatment observations
for the same units), the right-hand side of Equation 19 is equal to the regression coefficient on Wi1

in a regression of 
Yi1 on Wi1 and a constant. Consider, instead, a regression setting with pooled
cross-sections for the outcome variable at t = 0 and t = 1 and information on Wi1 for all of the
units in each cross-section. In this setting, one cross-section contains information on (Yi0, Wi1)
and the other cross-section contains information on (Yi1, Wi1). Let Ti be equal to zero if unit i
belongs to the pretreatment sample and equal to one if it belongs to the posttreatment sample.
Then, the right-hand side of Equation 19 is equal to the coefficient on the interaction Wi1Ti in
a regression of the outcome on a constant, Wi1, Ti , and the interaction Wi1Ti for a sample that
pools the preintervention and postintervention cross-sections.

Several variations of the basic difference-in-differences model have been proposed in the lit-
erature. In particular, the model naturally extends to a fixed-effects regression in settings with
more than two periods or models with unit-specific linear trends (see, e.g., Bertrand et al. 2004).
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Logically, estimating models with many time periods or trends imposes greater demands on the
data.

The common trends restriction in Equation 20 is clearly a strong assumption and one that
should be assessed in empirical practice. The plausibility of this assumption can sometimes be
evaluated using (a) multiple preintervention periods (like in Abadie & Dermisi 2008) or (b) popu-
lation groups that are not at risk of being exposed to the treatment (like in Gruber 1994). In both
cases, a test for common trends is based on the difference-in-differences estimate of the effect of
a placebo intervention, that is, an intervention that did not happen. In the first case, the placebo
estimate is computed using the preintervention data alone and evaluates the effect of a nonexistent
intervention taking place before the actual intervention period. Rejection of a null effect of the
placebo intervention provides direct evidence against common trends before the intervention.
The second case is similar but uses an estimate obtained for a population group known not to be
amenable to receiving the treatment. For example, Gruber (1994) uses difference in differences to
evaluate the effect of the passage of mandatory maternity benefits in some US states on the wages
of married women of childbearing age. In this context, Equation 20 means that, in the absence of
the intervention, married women of childbearing age would have experienced the same increase in
log wages in states that adopted mandated maternity benefits and states that did not. To evaluate
the plausibility of this assumption, Gruber (1994) compares the changes in log wages in adopting
and nonadopting states for single men and women over 40 years old.

The plausibility of Equation 20 may also be questioned if the treated and the control groups
are different in the distribution of attributes that are known or suspected to affect the outcome
trend. For example, if average earnings depend on age or on labor market experience in a nonlinear
manner, then differences in the distributions of these two variables between treated and nontreated
in the evaluation of an active labor market program pose a threat to the validity of the conventional
difference-in-differences estimator. Abadie (2005b) proposes a generalization of the difference-in-
differences model for the case when covariates explain the differences in the trends of the outcome
variable between treated and nontreated. The resulting estimators adjust the distribution of the
covariates between treated and nontreated using propensity score weighting.

Finally, Athey & Imbens (2006) provide a generalization of the difference-in-differences model
to the case when Y0i t is nonlinear in the unobserved confounder, μi . Identification in this model
comes from strict monotonicity of Y0i t with respect to μi and from the assumption that the distri-
bution of μi is time invariant for the treated and the nontreated (although it might differ between
the two groups). One of the advantages of their approach is that it provides an identification result
that is robust to monotonic transformations of the outcome variable [e.g., levels, Yit, versus logs,
log(Yit)].

5.2. Synthetic Controls

Difference-in-differences estimators are often used to evaluate the effects of events or interventions
that affect entire aggregate units, such as states, school districts, or countries (see, e.g., Card 1990,
Card & Krueger 1994). For example, Card (1990) estimates the effect of the Mariel Boatlift, a
large and sudden influx of immigrants to Miami, on the labor market outcomes of native workers
in Miami. In a difference-in-differences design, Card (1990) uses a combination of four other cities
in the south of the United States (Atlanta, Los Angeles, Houston, and Tampa-St. Petersburg) to
approximate the change in native unemployment rates that would have been observed in Miami in
the absence of the Mariel Boatlift. Studies of this type are sometimes referred to as comparative case
studies because a comparison group is selected to evaluate an instance or case of an event or policy
of interest. In the work of Card (1990), the case of interest is the arrival of Cuban immigrants to
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Miami during the Mariel Boatlift, and the comparison is provided by the combination of Atlanta,
Los Angeles, Houston, and Tampa-St. Petersburg.

The synthetic control estimator of Abadie & Gardeazabal (2003) and Abadie et al. (2010,
2015) provides a data-driven procedure to create a comparison unit in comparative case studies. A
synthetic control is a weighted average of untreated units chosen to reproduce characteristics of
the treated unit before the intervention. The idea behind synthetic controls is that a combination
of untreated units, as in the work of Card (1990), may provide a better comparison to the treatment
unit than any untreated unit alone.

Synthetic controls are constructed as follows. For notational simplicity, we assume that there
is only one treated unit. This is without loss of generality because, when there is more than
one treated unit, the procedure described below can be applied for each treated unit separately.
Suppose that we observe J+ 1 units in periods 1, 2, . . . , T . Unit 1 is exposed to the intervention
of interest during periods T0 + 1, . . . , T . The remaining J units are an untreated reservoir of
potential controls (a donor pool). Let w = (w2, . . . , wJ+1)′ be a collection of weights, with w j ≥ 0
for j = 2, . . . , J + 1 and w2 + · · · + wJ+1 = 1. Each value of w represents a potential synthetic
control. Let X1 be a (k×1) vector of preintervention characteristics for the treated unit. Similarly,
let X0 be a (k × J) matrix which contains the same variables for the unaffected units. The vector
w∗ = (w∗2, . . . , w∗J+1)′ is chosen to minimize ‖X1 − X0w‖, subject to the weight constraints. The
synthetic control estimator of the effect of the treatment for the treated unit in a postintervention
period t (t ≥ T0) is

α̂1t = Y1t −
J+1∑
j=2

w∗j Y j t .

A weighted Euclidean norm is commonly employed to measure the discrepancy between the
characteristics of the treated unit and the characteristics of the synthetic control

‖X1 − X0w‖ =
√

(X1 − X0w)′V (X1 − X0w),

where V is a diagonal matrix with nonnegative elements in the main diagonal that control the
relative importance of obtaining a good match between each value in X1 and the corresponding
value in X0w

∗. Abadie & Gardeazabal (2003) and Abadie et al. (2010, 2015) propose data-driven
selectors of V. Abadie et al. (2010) propose an inferential method for synthetic controls based on
Fisher’s randomization inference.

It can be shown that, in general (that is, ruling out certain degenerate cases), if X1 does not
belong to the convex hull of the columns of X0, then w∗ is unique and sparse. Sparsity means that
w∗ has only a few nonzero elements. However, in some applications, especially in applications
with a large number of treated units, there may be synthetic controls that are not unique or sparse.
Abadie & L’Hour (2017) propose a variant of the synthetic control estimator that addresses this
issue. Their estimator minimizes

‖X1 − X 0w‖2 + λ

J+1∑
j=2

w j‖X j −X1‖2,

with λ > 0, subject to the weight constraints. This estimator includes a penalization for pairwise
matching discrepancies between the treated unit and each of the units that contribute to the
synthetic control. Abadie & L’Hour (2017) show that, aside from special cases, if λ > 0, then the
synthetic control estimator is unique and sparse. Hsiao et al. (2012) and Doudchenko & Imbens
(2016) propose variants of the synthetic control framework that extrapolate outside of the support
of the columns of X0. Recent strands of the literature extend synthetic control estimators using
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matrix completion techniques (see Amjad et al. 2017, Athey et al. 2017) and propose sampling-
based inferential methods (Hahn & Shi 2017).

6. INSTRUMENTAL VARIABLES

6.1. The Framework

Instrumental variables (IV) methods are widely used in program evaluation. They are easiest to
motivate in the context of a randomized experiment with imperfect compliance, that is, a setting
where experimental units may fail to comply with the randomized assignment of the treatment.
Other settings where IV methods are used include natural experiments in observation studies;
measurement error; nonlinear models with endogeneity; and dynamic, panel data, or time series
contexts (for an overview and further references, including material on weak and many instruments,
see, e.g., Imbens 2014, Wooldridge 2010).

Imperfect compliance with a randomized assignment is commonplace in economics and other
disciplines where assignment affects human subjects, so compliance may be difficult to enforce
or not desirable (for example, in active labor market programs for the unemployed, where the
employment status of the individuals participating in the experiment may change between ran-
domization and treatment). In settings where the experimenter is the only possible provider of the
treatment, randomized assignment can be enforced in the control group. Such a setting is often
referred to as one-sided noncompliance.

In randomized experiments with noncompliance, randomization of treatment intake fails be-
cause of postrandomization selection into the treatment. Assignment itself remains randomized,
and the average effect of assignment on an observed outcome is identified. Assignment effects are
often referred to as intention-to-treat effects. In some settings, the most relevant policy decision
is whether or not to provide individuals with access to treatment, so intention-to-treat effects have
direct policy relevance. In other instances, researchers and policy makers are interested in the
effects of treatment intake, rather than on the effects of eligibility for treatment. In such cases, IV
methods can be used to identify certain treatment effects parameters.

IV methods rely on the availability of instruments, that is, variables that affect treatment intake
but do not directly affect potential outcomes. In the context of randomized experiments with
imperfect compliance, instruments are usually provided by randomized assignment to treatment.
We use Z to represent randomized assignment, so Z = 1 indicates assignment to the treatment
group, and Z = 0 indicates assignment to the control group. As in previous sections, actual
treatment intake is represented by the binary variable, W.

Figure 6 offers a DAG representation of the basic IV setting. The treatment, W, is affected
directly by an unobservable confounder, U , which also directly affects the outcome variable, Y.
Because U is unobserved, conditioning on U is unfeasible. However, in this case, there is an
instrument, Z, that affects treatment, W, and only affects the outcome, Y, through W.

The key idea underlying IV methods is that the exogenous variation in the instrument, Z,
which induces changes in the treatment variable, W, can be used to identify certain parameters of

U

Z W Y

Figure 6
Instrumental variable in a directed acyclic graph. The graph shows the treatment, W ; an unobservable
confounder, U ; the outcome variable, Y ; and an instrument, Z, affecting the treatment.
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interest in program evaluation and causal inference. Variation in Z is exogenous (or unconfounded)
because Z affects Y only through W and because there are no common causes of Z and Y. Chalak
& White (2011) provide a detailed account of identification procedures via IV.

6.2. Local Average Treatment Effects

Employing a potential outcomes framework, Imbens & Angrist (1994) and Angrist et al. (1996)
provide a formal setting to study identification and estimation of treatment effects under imperfect
compliance. The observed treatment status is

W = ZW1 + (1− Z)W0,

where W1 and W0 denote the potential treatment status under treatment and control assign-
ment, respectively. Perfect compliance corresponds to Pr(W1 = 1) = Pr(W0 = 0) = 1, so
Pr(W = Z) = 1. One-sided noncompliance corresponds to the case when Pr(W0 = 0) = 1 but
Pr(W1 = 1) < 1. In this case, units assigned to the control group never take the treatment, while
units assigned to the treatment group may fail to take the treatment.

More generally, in the absence of perfect or one-sided compliance, the population can be
partitioned into four groups defined in terms of the values of W1 and W0. Angrist et al. (1996) define
these groups as compliers (W1 > W0 or W0 = 0 and W1 = 1), always-takers (W1 = W0 = 1),
never-takers (W1 = W0 = 0), and defiers [W1 < W0 (W0 = 1 and W1 = 0)]. Experimental units
that comply with treatment assignment in both treatment arms are called compliers. Always-takers
and never-takers are not affected by assignment. Defiers are affected by assignment in the opposite
direction as expected: They take the treatment when they are assigned to the control group but
refuse to take it when they are assigned to the treatment group.

We assume that treatment assignment is not trivial (in the sense that assignment is not always
to the treatment group or always to the control group). In addition, we assume that the assignment
has an effect on treatment intake:

0 < Pr(Z = 1) < 1 and Pr(W1 = 1) �= Pr(W0 = 1). 21.

A key assumption in the IV setting is that potential outcomes, Y1 and Y0, do not depend on the value
of the instrument. This is called the exclusion restriction. In Figure 6, the exclusion restriction
is manifested in that the effect of Z on Y is completely mediated by W. The combination of
the exclusion restriction with the assumption that the instrument is randomized (or as good as
randomized) implies

(Y1, Y0, W1, W0) ⊥⊥ Z. 22.

In the language of IV estimation of linear regression models with constant coefficients, Equa-
tions 21 and 22 amount to the assumptions of instrument relevance and instrument exogeneity,
respectively (see, e.g., Stock & Watson 2003).

Consider the IV parameter

τIV = cov(Y, Z)
cov(D, Z)

= E[Y |Z = 1]− E[Y |Z = 0]
E[W |Z = 1]− E[W |Z = 0]

. 23.

Under the assumptions in Equations 21 and 22, it can be shown that

τIV = E[(Y1 − Y0)(W1 −W0)]
E[W1 −W0]

. 24.
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It follows that, if the treatment does not vary across units, that is, if Y1−Y0 is constant, τIV is equal
to the constant treatment effect.10 The sample analog of τIV,

τ̂IV =

(
n∑

i=1

Zi Yi

/ n∑
i=1

Zi

)
−
[

n∑
i=1

(1− Zi )Yi

/ n∑
i=1

(1− Zi )

]
(

n∑
i=1

Zi Wi

/ n∑
i=1

Zi

)
−
[

n∑
i=1

(1− Zi )Wi

/ n∑
i=1

(1− Zi )

] ,

provides an estimator of the constant treatment effect. This is often called the Wald estimator.
In the presence of treatment effect heterogeneity, however, it can be easily shown that τIV may

fail to identify an average treatment effect for a well-defined population. In particular, it is easy
to construct examples where Y1 − Y0 > 0 with probability one but τIV = 0. The reason is that
positive values of (Y1 − Y0)(W1 −W0) given by positive values of W1 −W0 may cancel out with
negative values in the expectation in the numerator of the expression for τIV in Equation 24.

Imbens & Angrist (1994) define the local average treatment effect (LATE) as

τLATE = E[Y1 − Y0|W1 > W0].

That is, in the terminology of Angrist et al. (1996), LATE is the average effect of the treatment for
compliers, or the average effect of the treatment for those units that would always be in compliance
with the assignment no matter whether they are assigned to the treatment or to the control group.

Suppose that the assumptions in Equations 21 and 22 hold. Suppose also that

Pr(W1 ≥W0) = 1. 25.

The assumption in Equation 25 is often referred to as monotonicity, and it rules out the existence
of defiers. Then, we have

τIV = τLATE. 26.

Monotonicity implies that W1 −W0 is binary, so the result in Equation 26 follows easily from
Equation 24.

LATE represents average treatment effect for the units that change their treatment status
according to the their treatment assignment. Notice that, in the absence of additional restrictions,
compliers are not individually identified because only W1 or W0, but not both, are observed in
practice. However, the result in Equation 26 implies that average treatment effects are identified
for compliers.

A key identifying assumption for LATE is the monotonicity condition (Equation 25), which
rules out defiers. Balke & Pearl (1997), Imbens & Rubin (1997), Heckman & Vytlacil (2005), and
Kitagawa (2015) discuss testable implications of this assumption.

One-sided noncompliance, Pr(W0 = 1) = 0, is fairly common in settings where the experi-
menter is the only potential provider of the treatment. It has important practical implications. In
particular, one-sided noncompliance implies monotonicity. It also implies that LATE is equal to
ATET. That is, under one-sided noncompliance, we obtain

τLATE = τATET.

More generally, however, LATE is not the same as ATE or ATET, and the interest in and
interpretation of the LATE parameter has to be judged depending on the application at hand.

10More generally, if Y1 − Y0 is mean independent of W1 −W0, then τIV is equal to ATE.
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Suppose, for example, that granting access to treatment represents a policy option of interest.
Then, in a randomized experiment with imperfect compliance (and if monotonicity holds), the
LATE parameter recovers the effect of the treatment for those units affected by being granted
access to treatment, which is the policy decision under consideration (for further discussion, see,
e.g., Imbens 2010).

Angrist et al. (2000) extend the methods described in this section to estimation in simulta-
neous equation models. This work connects with the marginal treatment effect (MTE) estimators
discussed in Section 6.4. The local nature of LATE—that is, the fact that it applies only to
compliers—raises the issue of under what conditions LATE estimates can be generalized to larger
or different populations (for a discussion of extrapolation of LATE estimates and related problems,
see Angrist & Fernandez-Val 2013).

6.3. General Identification and Estimation Results for Compliers (Kappa)

Abadie (2003) proposes a general class of estimators of LATE-type parameters (that is, parame-
ters defined for the population of compliers). Like in the work of Imbens & Angrist (1994) and
Angrist et al. (1996), Abadie (2003) adopts a context akin to a randomized experiment with imper-
fect compliance, where the instrument and treatment are binary, extending it to the case where
conditioning on covariates may be needed for instrument validity. In particular, in the absence of
unconditional randomization of the treatment, there may be common causes, X, that affect the
instrument and the outcome. In this case, the instrument will not be valid unless validity is assessed
after conditioning on X.

Consider versions of Equations 21, 22, and 25, where the same assumptions hold after condi-
tioning on X. Define

κ0 = (1−W )
(1− Z)− Pr(Z = 0|X )

Pr(Z = 0|X ) Pr(Z = 1|X )
,

κ1 = W
Z − Pr(Z = 1|X )

Pr(Z = 0|X ) Pr(Z = 1|X )
,

κ = 1− W (1− Z)
Pr(Z = 0|X )

− (1−W )Z
Pr(Z = 1|X )

.

Abadie (2003) shows that

E[h(Y0, X )|W1 > W0] = 1
Pr(W1 > W0)

E[κ0 h(Y , X )], 27.

E[h(Y1, X )|W1 > W0] = 1
Pr(W1 > W0)

E[κ1 h(Y , X )], 28.

and
E[g(Y , W , X )|W1 > W0] = 1

Pr(W1 > W0)
E[κ g(Y , W , X )], 29.

where h and g are arbitrary functions (provided that the expectations exist), and

Pr(W1 > W0) = E[κ0] = E[κ1] = E[κ].

Equations 27–29 provide a general identification result for compliers. In particular, Equations 27–
29 identify the distribution of attributes, X, for compliers, e.g.,

E[X |W1 > W0] = E[κ X ]/E[κ].
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This result allows a more detailed interpretation of the LATE parameter of Imbens & Angrist
(1994) and Angrist et al. (1996). Although, as indicated above, compliers are not identified
individually, the distribution of any observed characteristic can be described for the population of
compliers. More generally, Equations 27–29 allow identification of regression models for com-
pliers. Such models can be used to describe how the average effect of the treatment for compliers
changes with X (for details, see Abadie 2003). Equations 27 and 28 can be applied to the identifi-
cation of average complier responses to treatment or no treatment, as well as identification of the
ATE for compliers. In particular, making h(Y, X ) = Y, we obtain

E[Y1|W1 > W0] = E[κ1 Y ]
E[κ1]

,

E[Y0|W1 > W0] = E[κ0 Y ]
E[κ0]

.

Therefore, we have

τLATE = E[κ1Y ]
E[κ1]

− E[κ0Y ]
E[κ0]

=
E
[

Y
Z− Pr(Z = 1|X )

Pr(Z = 0|X ) Pr(Z = 1|X )

]
E
[

W
Z − Pr(Z = 1|X )

Pr(Z = 0|X ) Pr(Z = 1|X )

] .

Kappa-based estimators are sample analogs of the identification results in this section. They
require first-step estimation of Pr(Z = 1|X ). For the same setting, Frölich (2007) derives an
alternative estimator of τLATE based on the sample analog of the identification result

τLATE = E [E[Y |X , Z = 1]− E[Y |X , Z = 0]]
E [Pr(W = 1|X , Z = 1)− Pr(W = 1|X , Z = 0)]

.

An estimator of τLATE based on this result requires first-step estimation of E[Y |X , Z = 1],
E[Y |X , Z = 0], Pr(W = 1|X , Z = 1), and Pr(W = 1|X , Z = 0).

Hong & Nekipelov (2010) derive efficient instruments for kappa-based estimators. Ogburn
et al. (2015) propose doubly robust estimators of LATE-like parameters. Abadie (2002), Abadie
et al. (2002), and Frölich & Melly (2013) propose estimators of distributional effects for compliers.
Chernozhukov & Hansen (2005, 2013) propose a rank similarity condition under which they
derive an estimator of quantile treatment effects for the entire population (rather than for
compliers alone).

6.4. Marginal Treatment Effects

A closely related causal framework for understanding IV (and other program evaluation) settings
was introduced by Björklund & Moffitt (1987); later developed and popularized by Heckman &
Vytlacil (1999, 2005) and Heckman et al. (2006); and more recently studied by Kline & Walters
(2016) and Brinch et al. (2017), among others. In this approach, the main parameters of interest
are the MTEs and certain functionals thereof.

To describe the model and MTE estimand, we continue to employ potential outcomes but
specialize the notation. In this setting, the instrument, Z, may be a vector of discrete or continuous
random variables, and the observed data are assumed to be generated according to the following
model. Let X be a vector of covariates. Conditional on X = x, we have

W = 1(p(Z) ≥ V ), V |Z ∼ Uniform[0, 1], 30.
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Y1 = μ1(x)+U1, Y0 = μ0(x)+U0, 31.

where μ1() and μ0() are unknown functions, 1(A) is the indicator function that takes value one
if A occurs and value zero otherwise, and (U1, U0, V ) have mean zero and are independent of Z
(given X = x). The condition V |Z ∼ Uniform[0, 1] can be obtained as a normalization provided
that V has an absolutely continuous distribution. Equation 30 implies p(Z) = Pr(W = 1|Z), the
propensity score, which is, in this setting, a function of Z. For expositional simplicity, we assume
that Z includes all elements of X.

Conditional on X = x, the MTE at level v is defined as

τMTE(v|x) = E[Y1 − Y0|X = x, V = v].

The parameter τMTE(v|x) is understood as the treatment effect for an individual who is at the margin
of being treated when p(Z) = v and X = x. From a conceptual perspective, the MTE is useful
because other treatment and policy effects can be recovered as weighted integrals of the MTE,
where the weighting scheme depends on the parameter of interest (e.g., τATE, τATET, or τLATE). From
a practical perspective, the MTE can be used to conduct certain counterfactual policy evaluations,
sometimes going beyond what can be learned from the more standard treatment effect parameters
in the IV literature, provided additional assumptions hold (for more details and discussion, see
Heckman & Vytlacil 1999, 2005).

The key identifying assumptions for the MTE and related parameters are that, conditional on
X = x, Z is nondegenerate and (U1, U0, V ) ⊥⊥ Z, together with the common support condition
0 < p(Z) < 1. Define the local IV (LIV) parameter as

τLIV(p |x) = ∂

∂p
E[Y |X = x, p(Z) = p].

The parameter τLIV can be seen as a limiting version of LATE. For a continuous p(Z), let


(p , h, x) = E[Y |X = x, p(Z) = p + h]− E[Y |X = x, p(Z) = p − h]
E[W |X = x, p(Z) = p + h]− E[W |X = x, p(Z) = p − h]

, 32.

where E[W |X = x, p(Z) = p + h] − E[W |X = x, p(Z) = p − h] = 2h. By the LATE result, it
follows that


(p , h, x) = E[Y1 − Y0|X = x, p − h < V ≤ p + h]. 33.

Consider any x in the support of X and any limit point p of the support of p(Z)|X = x. Taking
limits as h→ 0, on the right-hand sides of Equations 32 and 33, we have

τMTE(p |x) = τLIV(p |x).

As a result, the MTE is nonparametrically identified by the LIV parameter.
In practice, because of the difficulties associated with nonparametric estimations of functions,

researchers often employ parametric forms E[Y |X = x, p(Z) = p] = m(x, p , θ ) for the estimation
of the MTE and functionals thereof. Then, the MTE is estimated as τ̂MTE(p |x) = ∂m(x, p , θ̂ )/∂p ,
where θ̂ is an estimator of θ , and p(Z) is estimated in a first step.

An alternative approach to LIV estimation of the MTE is given by a control function rep-
resentation of the estimand (for a review of control function methods in econometrics, see
Wooldridge 2015). This produces a two-step estimator of the MTE but with two regression
functions, E[Y |X = x, p(Z) = p , W = 1] and E[Y |X = x, p(Z) = p , W = 0], estimated
separately [both depending on the first-step estimate of p(Z)]. For recent examples and further
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developments, including the study of cases with discrete instruments, the reader is referred to
Kline & Walters (2016) and Brinch et al. (2017).

7. THE REGRESSION DISCONTINUITY DESIGN

The regression discontinuity (RD) design allows researchers to learn about causal effects in settings
where the treatment is not explicitly randomized and unobservables cannot be ruled out. In its most
basic form, this design is applicable when each unit receives a score, also called a running variable
or index, and only units whose scores are above a known cutoff point are assigned to treatment
status, while the rest are assigned to control status. Examples include antipoverty social programs
assigned on a need basis after ranking units based on a poverty index and educational programs
assigned on a performance basis after ranking units based on a test score (for early reviews, see
Imbens & Lemieux 2008, Lee & Lemieux 2010; for an edited volume with a recent overview, see
Cattaneo & Escanciano 2017; for a practical introduction, see Cattaneo et al. 2018a,b).

The RD treatment assignment mechanism is W = 1(X ≥ c), where X denotes the score, and
c denotes the cutoff point. The key idea underlying any RD design is that units near the cutoff
are comparable. At the core of the design is the assumption that units are not able to precisely
manipulate their score to systematically place themselves above or below the cutoff. The absence
of such endogenous sorting into treatment and control status is a crucial identifying assumption
in the RD framework.

There is a wide variety of RD designs and closely related frameworks. Sharp RD designs are
settings where treatment assignment, as determined by the value of the running variable relative to
the cutoff, and actual treatment status coincide. This is akin to perfect compliance in randomized
experiments. Fuzzy RD designs are settings where compliance with treatment assignment, as
determined by the value of the running variable, is imperfect. This is analogous to the IV setting
but for units with values of the running variable close to the cutoff. Kink RD designs are sharp
or fuzzy settings where the object of interest is the derivative, rather than the level of the average
outcome near or at the cutoff (see Card et al. 2015). Multicutoff RD designs are settings where
the treatment assignment rule depends on more than one cutoff point (see Cattaneo et al. 2016).
Multiscore and geographic RD designs are settings where the treatment assignment rule depends
on more than one score variable (see Keele & Titiunik 2015, Papay et al. 2011).

In the canonical sharp RD design with a continuously distributed score, the most common
parameter of interest is

τSRD = E[Y1 − Y0|X = c] = lim
x↓c

E[Y |X = x]− lim
x↑c

E[Y |X = x], 34.

which corresponds to the average causal treatment effect at the score level X = c. Figure 7 provides
a graphical representation of the RD design. If the score variable satisfies X < c, then units are
assigned to the control group (W = 0) and E[Y0|X = x] is observed, while if X ≥ c, then units are
assigned to the treatment group (W = 1) and E[Y1|X = x] is observed. The parameter of interest
is the jump at the point X = c, where treatment assignment changes discontinuously.

Underlying the second equality in Equation 34 is the key notion of comparability between units
with very similar values of the score but on opposite sides of the cutoff. This idea dates back to the
original landmark contribution of Thistlethwaite & Campbell (1960) but was formalized more
recently from a continuity-at-the-cutoff perspective by Hahn et al. (2001). To be specific, under
regularity conditions, if the regression functions E[Y1|X = x] and E[Y0|X = x] are continuous at
x = c, then τSRD is nonparametrically identified. The continuity conditions imply that the average
response of units just below the cutoff provides a close approximation to the average response that
would have been observed for units just above the cutoff had they not been assigned to treatment.
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c X

Y

W = 1W = 0

E[Y0|X]

E[Y |X ]

E[Y1|X] τSRD = E[Y1 − Y0|X = c]

Figure 7
Regression discontinuity design. The outcome of interest is Y ; the score is X, and the cutoff point is c.
Treatment assignment and status is W = 1(X ≥ c). The graph includes the estimable regression functions
(solid lines) and their corresponding unobservable portions (dotted lines).

7.1. Falsification and Validation

An important feature of all RD designs is that their key identifying assumption can be supported
by a variety of empirical tests, which enhances the plausibility of the design in applications. The
most popular approaches for validating RD designs in practice include (a) testing for balance on
preintervention covariates among units near the cutoff (Lee 2008), (b) testing for continuity of the
score’s density function near the cutoff (Cattaneo et al. 2017a, McCrary 2008), and (c) graphing
an estimate of E[Y |X = x] at the cutoff and away from the cutoff (Calonico et al. 2015). Other
falsification and validation methods are also used in practice, although these are usually tailored
to special cases (for a practical introduction to these methods, see Cattaneo et al. 2018a).

7.2. Estimation and Inference

The continuity assumptions on conditional expectations at the cutoff, which necessarily rely on
the score variable being continuously distributed near the cutoff, imply that extrapolation is un-
avoidable in canonical RD designs. Observations near the cutoff are used to learn about the
fundamentally unobserved features of the conditional expectations E[Y1|X = c] and E[Y0|X = c]
at the cutoff. Local polynomial regression methods are the most common estimation approaches
in this context, as they provide a good compromise between flexibility and practicality.

The core idea underlying local polynomial estimation and inference involves three simple steps:
(a) Localize the sample near the cutoff by discarding observations with scores far from the cutoff,
(b) employ weighted least-squares to approximate the regression functions on either side of the
cutoff separately, and (c) predict and extrapolate the value of the regression functions at the cutoff.
More formally, assuming a random sample of size n, the standard local-linear RD estimator τ̂SRD

is obtained by the local (to the cutoff c) weighted linear least squares regression⎡⎢⎣ β̂0

τ̂SRD

β̂

⎤⎥⎦ = arg min
β0,τ ,β1,β2

n∑
i=1

[
Yi − β0 −Wiτ − (Xi − c)β1 − (Xi − c)Wiβ2

]2
K
(

X i − x̄
h

)
,
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where β̂ = (β̂1, β̂2)′, K (·) denotes a compact-supported (kernel) weighting function, and h denotes
the bandwidth around the cutoff c. Thus, this is a local regression that employs only observa-
tions Xi ∈ [c − h, c + h] with weights according to the kernel function; the two more common
weighting schemes are equal weights (uniform kernel) and linear decreasing weights (triangular
kernel). The coefficient β̂0 is an estimator of E[Y0|X = c] and can be used to assess the economic
significance of the RD treatment effect estimate τ̂SRD. The coefficients β̂ capture the nonconstant,
linear relationship between the outcome and score variables on either side of the cutoff.

Localization near the cutoff via the choice of bandwidth h is crucial and should be implemented
in a systematic and objective way; ad hoc bandwidth selection methods can hamper empirical work
using RD designs. Principled methods for bandwidth selection have been recently developed (for
an overview, see Cattaneo & Vazquez-Bare 2016). Imbens & Kalyanaraman (2012) develop mean-
squared-error (MSE) optimal bandwidth selection and RD point estimation, while Calonico et al.
(2014) propose a robust bias-correction approach leading to valid inference methods based on the
MSE-optimal bandwidth and RD point estimator. Using higher-order distributional approxima-
tions, Calonico et al. (2018a,b) show that robust bias-corrected inference is demonstrably better
than other alternatives and optimal in some cases. They also develop coverage optimal band-
width selection methods to improve RD inference in applications. Calonico et al. (2018c) study
inclusion of preintervention covariates using local polynomial methods in RD designs. A practical
introduction to these methods is given by Cattaneo et al. (2018a,b), who also provide additional
references.

While the continuity-based approach to RD designs is the most popular in practice, researchers
often explicitly or implicitly rely on a local randomization interpretation of RD designs when it
comes to the heuristic conceptualization of RD empirical methods and results (see, e.g., Lee
2008, Lee & Lemieux 2010). The two methodological frameworks are, however, substantively
distinct because they generally require different assumptions (Sekhon & Titiunik 2016, 2017). At
an intuitive level, the local randomization RD approach states that, for units with scores sufficiently
close to the cutoff, the assignment mechanism resembles that in a randomized controlled trial.
However, because the RD treatment assignment rule W = 1(X ≥ c) implies a fundamental lack
of common support among control and treatment units, the local randomization RD framework
requires additional assumptions for identification, estimation, inference, and falsification.

Cattaneo et al. (2015) introduce a Fisherian model for inference in RD designs using a local
randomization assumption. The key assumption in this model is the existence of a neighborhood
around the cutoff where two conditions hold: (a) The treatment assignment mechanism is known
(e.g., complete randomization), and (b) the nonrandom potential outcomes are a function of the
score only through treatment status (i.e., an exclusion restriction). Under these assumptions, they
develop finite-sample exact randomization inference methods for the sharp null hypothesis of no
treatment effect, construct confidence intervals under a given treatment effect model, and discuss
several falsification methods. They also propose data-driven methods for neighborhood selection,
based on the local randomization assumptions.

Cattaneo et al. (2017c) extend the basic Fisherian RD randomization inference framework, al-
lowing for parametric adjustments of potential outcomes as functions of the score. This approach
resembles the continuity-based approach and basic parametric regression adjustment methods.
Cattaneo et al. (2017c) also discuss other approaches for RD analysis based on the analysis of
experiments under a local randomization assumption and compare these methods to the
continuity-based approach with local polynomial fitting. Relevant to the comparison between RD
approaches is that the parameter of interest differs depending on the approach. In the continuity-
based approach, τSRD is the only nonparametrically identified estimand. In the local randomization
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approach, other parameters are identifiable and may be of equal or greater interest. In particular,
a parameter of interest in some settings is

τLR(h) = E[Y1 − Y0|c − h ≤ X ≤ c + h].

τLR is the average treatment effect for units with scores falling within the local randomization
window [c − h, c + h] for some choice of window length 2h > 0.

7.3. Extensions, Modifications, and Recent Topics

Another situation in which the distinction between parameters and methodological approaches
is important is when the score variable is discrete. In this case, τSRD is not identified nonparamet-
rically, which renders the basic continuity-based approach for identification inapplicable. Local
polynomial fits can still be used if the score variable takes on many discrete values because this
estimation method takes the number of mass points as the effective sample size. The discrete
nature of the score, however, changes the interpretation of the canonical RD parameter, τSRD. In
this setting, estimation and inference employs a fixed region or bandwidth around the cutoff, so
identification relies on a local parametric extrapolation (see Lee & Card 2008).

Alternatively, when the score variable X is discrete (and more so when it has only a few mass
points), it may be more natural to consider an alternative RD parameter:

τDS = E[Y1|X = x+]− E[Y0|X = x−],

where x+ and x− denote the closest mass points above and below the cutoff c, respectively (with
either x+ = c or x− = c). Under a local randomization assumption, τDS is nonparametrically
identified, and estimation and inference can be conducted using any of the methods discussed
above. Whether τDS is of interest will necessarily depend on each specific application, but one
advantage of focusing on this parameter is that no parametric extrapolation is needed because
the object of interest is no longer the fundamentally (nonparametrically) unidentified parameter
τSRD = E[Y1|X = c] − E[Y0|X = c] (for further discussion, illustrations, and references, see
Cattaneo et al. 2018b).

While the RD design has recently become one of the leading program evaluation methods,
there are still several important methodological challenges when it comes to its implementation
and interpretation. To close this section, we briefly mention two of these outstanding research
avenues. First, a crucial open question concerns the extrapolation of RD treatment effects. The
RD design often offers very credible and robust results for the local subpopulation of units whose
scores are near or at the cutoff but is not necessarily informative about the effects at score values far
from the cutoff. In other words, while RD treatment effects are regarded as having high internal
validity, their external validity is usually suspect. The lack of external validity is, of course, a major
cause of concern from a program evaluation and policy prescription perspective. While there is
some very recent work that addresses the issue of extrapolation of RD treatment effects (e.g.,
Angrist & Rokkanen 2015, Bertanha & Imbens 2017, Cattaneo et al. 2017b, Dong & Lewbel
2015), more work is certainly needed, covering both methodological and empirical issues.

A second important open area of research concerns the formalization and methodological
analysis of recently developed RD-like research designs. One prominent example is the recent
literature on bunching and density discontinuities ( Jales & Yu 2017, Kleven 2016), where the
objects of interest are related to discontinuities and other sharp changes in a probability density
function. Another example is the dynamic RD design (e.g., Cellini et al. 2010), where different
units cross the cutoff point at different times, and therefore, other parameters of interest, as
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well as identifying assumptions, are considered. These and other RD-like designs have several
common features and can be analyzed by employing ideas and tools from the classical RD literature.
So far, most of the work in this area has been primarily empirical, but it contains interesting
methodological ideas that should now be formalized and analyzed in a principled way. Important
issues remain unresolved, ranging from core identification questions to case-specific empirical
implementation methods.

8. THE ROAD AHEAD

In this review, we provide an overview of some of the most common econometric methods for
program evaluation, covering ideas and tools related to randomized experiments, selection on
observables, difference in differences and synthetic controls, IV, and RD designs. We also discuss
ongoing developments, as well as some open questions and specific problems, related to these
policy evaluation methods.

Our review is, of course, far from exhaustive in terms of both depth within the topics covered
and scope for program evaluation methodology. This large literature continues to evolve and adapt
to new empirical challenges, and thus, much more methodological work is needed to address the
wide range of old and new open problems. We finish by offering a succinct account of some of
these problems.

An important recent development that has had a profound impact on the program evaluation
literature is the arrival of new data environments (Mullainathan & Spiess 2017). The availability
of big data has generated a need for methods able to cope with data sets that are either too large or
too complex to be analyzed using standard econometric methods. Of particular importance is the
role of administrative records and of large data sets collected by automated systems. These are, in
some cases, relatively new sources of information and pose challenges in terms of identification,
estimation, and inference. Model selection, shrinkage, and empirical Bayes approaches are partic-
ularly useful in this context (e.g., Abadie & Kasy 2017, Efron 2012), although these methods have
not yet been fully incorporated into the program evaluation toolkit. Much of the current research
in this area develops machine learning methods to estimate heterogeneous treatment effects in
contexts with many covariates (see, e.g., Athey & Imbens 2016, Taddy et al. 2016, Wager & Athey
2018).

Also potentiated by the rise of new, big, complex data is the very recent work on networks,
spillovers, social interactions, and interference (Graham 2015, Graham & de Paula 2018). While
certainly of great importance for policy, these research areas are still evolving and not yet fully
incorporated into the program evaluation literature. Bringing developments in these relatively new
areas to the analysis and interpretation of policy and treatment effects is important to improve
policy prescriptions.

Finally, because of space limitations, some important topics are covered in this review. Among
them are mediation analysis (Lok 2016, VanderWeele 2015), dynamic treatment effects and du-
ration models (Abbring & Heckman 2007, Abbring & Van den Berg 2003), bounds and partial
identification methods (Manski 2008, Tamer 2010), and optimal design of policies (Hirano &
Porter 2009, Kitagawa & Tetenov 2018). These are also important areas of active research in the
econometrics of program evaluation.
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Frölich M, Melly B. 2013. Unconditional quantile treatment effects under endogeneity. J. Bus. Econ. Stat.

31(3):346–57

500 Abadie · Cattaneo



EC10CH18_Abadie ARI 28 June 2018 11:30

Graham BS. 2015. Methods of identification in social networks. Annu. Rev. Econ. 7:465–85
Graham BS, de Paula A. 2018. The Econometrics of Social and Economic Networks. Amsterdam: Elsevier
Gruber J. 1994. The incidence of mandated maternity benefits. Am. Econ. Rev. 84(3):622–41
Hahn J, Shi R. 2017. Synthetic control and inference. Work. Pap., Univ. Calif., Los Angeles
Hahn J, Todd P, van der Klaauw W. 2001. Identification and estimation of treatment effects with a regression-

discontinuity design. Econometrica 69(1):201–9
Heckman J. 1990. Varieties of selection bias. Am. Econ. Rev. 80(2):313–18
Heckman JJ, Ichimura H, Todd P. 1998. Matching as an econometric evaluation estimator. Rev. Econ. Stud.

65(2):261–94
Heckman JJ, Robb R. 1985. Alternative methods for evaluating the impact of interventions. In Longitudinal

Analysis of Labor Market Data, ed. JJ Heckman, BS Singer, pp. 156–246. Cambridge, UK: Cambridge
Univ. Press

Heckman JJ, Urzua S, Vytlacil EJ. 2006. Understanding instrumental variables in models with essential het-
erogeneity. Rev. Econ. Stat. 88(3):389–432

Heckman JJ, Vytlacil EJ. 1999. Local instrumental variables and latent variable models for identifying and
bounding treatment effects. PNAS 96(8):4730–34

Heckman JJ, Vytlacil EJ. 2005. Structural equations, treatment effects and econometric policy evaluation.
Econometrica 73(3):669–738

Heckman JJ, Vytlacil EJ. 2007. Econometric evaluation of social programs, part I: causal models, structural
models and econometric policy evaluation. In Handbook of Econometrics, Vol. VI, ed. J Heckman, E Leamer,
pp. 4780–874. Amsterdam: Elsevier

Hernán MA, Robins JM. 2018. Causal Inference. Boca Raton, FL: CRC
Hirano K, Imbens GW. 2004. The propensity score with continuous treatments. In Applied Bayesian Modeling

and Causal Inference from Incomplete-Data Perspectives, ed. A Gelman, X-L Meng, pp. 73–84. New York:
Wiley

Hirano K, Imbens GW, Ridder G. 2003. Efficient estimation of average treatment effects using the estimated
propensity score. Econometrica 71(4):1161–89

Hirano K, Porter JR. 2009. Asymptotics for statistical treatment rules. Econometrica 77(5):1683–701
Holland PW. 1986. Statistics and causal inference. J. Am. Stat. Assoc. 81(396):945–60
Hong H, Nekipelov D. 2010. Semiparametric efficiency in nonlinear LATE models. Quant. Econ. 1(2):279–304
Hsiao C, Ching HS, Wan SK. 2012. A panel data approach for program evaluation: measuring the benefits of

political and economic integration of Hong Kong with mainland China. J. Appl. Econom. 27(5):705–40
Imai K, van Dyk DA. 2004. Causal inference with general treatment regimes: generalizing the propensity

score. J. Am. Stat. Assoc. 99(467):854–66
Imbens GW. 2000. The role of the propensity score in estimating dose-response functions. Biometrika

87(3):706–10
Imbens GW. 2003. Sensitivity to exogeneity assumptions in program evaluation. Am. Econ. Rev. 93(2):126–32
Imbens GW. 2004. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev.

Econ. Stat. 86(1):4–29
Imbens GW. 2010. Better LATE than nothing: some comments on Deaton (2009) and Heckman and Urzua

(2009). J. Econ. Lit. 48:399–423
Imbens GW. 2014. Instrumental variables: an econometrician’s perspective. Stat. Sci. 29(3):323–58
Imbens GW, Angrist JD. 1994. Identification and estimation of local average treatment effects. Econometrica

62(2):467–75
Imbens GW, Kalyanaraman K. 2012. Optimal bandwidth choice for the regression discontinuity estimator.

Rev. Econ. Stud. 79(3):933–59
Imbens GW, Kolesár M. 2016. Robust standard errors in small samples: some practical advice. Rev. Econ. Stat.

98(4):701–12
Imbens GW, Lemieux T. 2008. Regression discontinuity designs: a guide to practice. J. Econom. 142(2):615–35
Imbens GW, Newey WK, Ridder G. 2006. Mean-squared-error calculations for average treatment effects. Work.

Pap. 954748, Soc. Sci. Res. Netw., New York
Imbens GW, Rubin DB. 1997. Estimating outcome distributions for compliers in instrumental variables

models. Rev. Econ. Stud. 64(4):555–74

www.annualreviews.org • Econometric Methods for Program Evaluation 501



EC10CH18_Abadie ARI 28 June 2018 11:30

Imbens GW, Rubin DB. 2015. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge, UK:
Cambridge Univ. Press

Imbens GW, Wooldridge JM. 2009. Recent developments in the econometrics of program evaluation. J. Econ.
Lit. 47(1):5–86

Jales H, Yu Z. 2017. Identification and estimation using a density discontinuity approach. In Regression Dis-
continuity Designs: Theory and Applications, ed. MD Cattaneo, JC Escanciano, pp. 29–72. Bingley, UK:
Emerald Group

Kang JD, Schafer JL. 2007. Demystifying double robustness: a comparison of alternative strategies for esti-
mating a population mean from incomplete data. Stat. Sci. 22:523–39

Keele LJ, Titiunik R. 2015. Geographic boundaries as regression discontinuities. Political Anal. 23(1):127–55
Kitagawa T. 2015. A test for instrument validity. Econometrica 83(5):2043–63
Kitagawa T, Tetenov A. 2018. Who should be treated? Empirical welfare maximization methods for treatment

choice. Econometrica 86(2):591–616
Kleven HJ. 2016. Bunching. Annu. Rev. Econ. 8:435–64
Kline P, Walters C. 2016. Evaluating public programs with close substitutes: the case of Head Start. Q. J.

Econ. 131(4):1795–848
Koenker RW, Bassett G. 1978. Regression quantiles. Econometrica 46(1):33–50
Lechner M. 2001. Identification and estimation of causal effects of multiple treatments under the conditional

independence assumption. In Econometric Evaluation of Labour Market Policies, ed. M Lechner, F Pfeiffer,
pp. 43–58. Berlin: Springer

Lee DS. 2008. Randomized experiments from non-random selection in U.S. House elections. J. Econom.
142(2):675–97

Lee DS, Card D. 2008. Regression discontinuity inference with specification error. J. Econom. 142(2):655–74
Lee DS, Lemieux T. 2010. Regression discontinuity designs in economics. J. Econ. Lit. 48(2):281–355
Lee M-J. 2016. Matching, Regression Discontinuity, Difference in Differences, and Beyond. Oxford, UK: Oxford

Univ. Press
Little RJA, Rubin DB. 2002. Statistical Analysis with Missing Data. New York: Wiley
Lok JJ. 2016. Defining and estimating causal direct and indirect effects when setting the mediator to specific

values is not feasible. Stat. Med. 35(22):4008–20
Lok JJ, Gill R, Van Der Vaart A, Robins J. 2004. Estimating the causal effect of a time-varying treatment on

time-to-event using structural nested failure time models. Stat. Neerl. 58(3):271–95
Manski CF. 1988. Analog Estimation Methods in Econometrics. New York: Chapman & Hall
Manski CF. 1990. Nonparametric bounds on treatment effects. Am. Econ. Rev. 80(2):319–23
Manski CF. 2008. Identification for Prediction and Decision. Cambridge, MA: Harvard Univ. Press
McCrary J. 2008. Manipulation of the running variable in the regression discontinuity design: a density test.

J. Econom. 142(2):698–714
Morgan SL, Winship C. 2015. Counterfactuals and Causal Inference: Methods and Principles for Social Research.

Cambridge, UK: Cambridge Univ. Press. 2nd ed.
Mullainathan S, Spiess J. 2017. Machine learning: an applied econometric approach. J. Econ. Perspect. 31(2):87–

106
Murphy SA. 2003. Optimal dynamic treatment regimes. J. R. Stat. Soc. Ser. B 65(2):331–66
Newhouse JP. 1996. Free for All? Lessons from the RAND Health Insurance Experiment. Cambridge, MA: Harvard

Univ. Press
Neyman J. 1923. On the application of probability theory to agricultural experiments. Essay on principles.

Section 9. Stat. Sci. 5:465–80
Ogburn EL, Rotnitzky A, Robins JM. 2015. Doubly robust estimation of the local average treatment effect

curve. J. R. Stat. Soc. Ser. B 77(2):373–96
Papay JP, Willett JB, Murnane RJ. 2011. Extending the regression-discontinuity approach to multiple assign-

ment variables. J. Econom. 161(2):203–7
Pearl J. 1993. Comment: graphical models, causality and intervention. Stat. Sci. 8(3):266–69
Pearl J. 2009. Causality: Models, Reasoning and Inference. Cambridge, UK: Cambridge Univ. Press
Richardson TS, Robins JM. 2013. Single world intervention graphs: a primer. Work. Pap., Univ. Wash., Seattle

502 Abadie · Cattaneo



EC10CH18_Abadie ARI 28 June 2018 11:30

Robins JM. 2000. Marginal Structural Models Versus Structural Nested Models as Tools for Causal Inference. Berlin:
Springer

Robins JM, Rotnitzky A, Zhao LP. 1994. Estimation of regression coefficients when some regressors are not
always observed. J. Am. Stat. Assoc. 89(427):846–66

Rosenbaum PR. 2002. Observational Studies. Berlin: Springer
Rosenbaum PR. 2010. Design of Observational Studies. Berlin: Springer
Rosenbaum PR, Rubin DB. 1983. The central role of the propensity score in observational studies for causal

effects. Biometrika 70(1):41–55
Rubin DB. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ.

Psychol. 66(5):688–701
Rubin DB. 1977. Assignment to treatment group on the basis of a covariate. J. Educ. Stat. 2(1):1–26
Rubin DB. 1978. Bayesian inference for causal effects: the role of randomization. Ann. Stat. 6(1):34–58
Rubin DB. 1980. Discussion of “Randomization analysis of experimental data in the Fisher randomization

test” by Basu. J. Am. Stat. Assoc. 75(371):591–93
Rubin DB. 1990. Formal modes of statistical inference for causal effects. J. Stat. Plan. Inference 25:279–92
Rubin DB. 2005. Causal inference using potential outcomes. J. Am. Stat. Assoc. 100(469):322–31
Rubin DB. 2007. The design versus the analysis of observational studies for causal effects: parallels with the

design of randomized trials. Stat. Med. 26:20–36
Sekhon JS, Titiunik R. 2016. Understanding regression discontinuity designs as observational studies. Obs.

Stud. 2:174–82
Sekhon JS, Titiunik R. 2017. On interpreting the regression discontinuity design as a local experiment. In

Regression Discontinuity Designs: Theory and Applications, ed. MD Cattaneo, JC Escanciano, pp. 1–28.
Bingley, UK: Emerald Group

Sloczynski T, Wooldridge JM. 2017. A general double robustness result for estimating average treatment
effects. Econom. Theory 34:112–33

Smith JA, Todd PE. 2005. Does matching overcome LaLonde’s critique of nonexperimental estimators?
J. Econom. 125(1):305–53

Spence M. 1973. Job market signaling. Q. J. Econ. 87(3):355–74
Stock J, Watson MW. 2003. Introduction to Econometrics. New York: Prentice Hall
Taddy M, Gardner M, Chen L, Draper D. 2016. A nonparametric Bayesian analysis of heterogenous treatment

effects in digital experimentation. J. Bus. Econ. Stat. 34(4):661–72
Tamer E. 2010. Partial identification in econometrics. Annu. Rev. Econ. 2:167–95
Thistlethwaite DL, Campbell DT. 1960. Regression-discontinuity analysis: an alternative to the ex-post facto

experiment. J. Educ. Psychol. 51(6):309–17
Todd PE, Wolpin KI. 2010. Ex ante evaluations of social programs. Ann. Écon. Stat. 91:259–86
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