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Abstract

When instruments are weakly correlated with endogenous regressors, con-
ventional methods for instrumental variables (IV) estimation and inference
become unreliable. A large literature in econometrics has developed pro-
cedures for detecting weak instruments and constructing robust confidence
sets, but many of the results in this literature are limited to settings with
independent and homoskedastic data, while data encountered in practice
frequently violate these assumptions. We review the literature on weak in-
struments in linear IV regression with an emphasis on results for nonho-
moskedastic (heteroskedastic, serially correlated, or clustered) data.To assess
the practical importance of weak instruments, we also report tabulations and
simulations based on a survey of papers published in the American Economic
Review from 2014 to 2018 that use IV. These results suggest that weak in-
struments remain an important issue for empirical practice, and that there
are simple steps that researchers can take to better handle weak instruments
in applications.
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1. INTRODUCTION

In instrumental variables (IV) regression, the instruments are called weak if their correlation with
the endogenous regressors, conditional on any controls, is close to zero. When this correlation
is sufficiently small, conventional approximations to the distribution of two-stage least squares
and other IV estimators are generally unreliable. In particular, IV estimators can be badly biased,
while t-tests may fail to control size, and conventional IV confidence intervals may cover the true
parameter value far less often than intended.

Recognition of this problem has led to a great deal of work on econometric methods applicable
to models with weak instruments. Much of this work, especially early in the literature, focused on
the case where the data are independent, and the errors in the reduced-form and first-stage regres-
sions are homoskedastic. Homoskedasticity implies that the variance matrix for the reduced-form
and first-stage regression estimates can be written as a Kronecker product, which substantially
simplifies the analysis of many procedures. As a result, there are now extensive theoretical results
on detection of weak instruments and construction of identification-robust confidence sets in the
homoskedastic case.

More recently,much of the theoretical literature on weak instruments has considered the more
difficult case where the data may be dependent and/or the errors heteroskedastic. In this setting,
which we refer to as the nonhomoskedastic case, the variance of the reduced-form and first-stage
estimates no longer has Kronecker product structure in general, rendering results based on such
structure inapplicable. Because homoskedasticity is rarely a plausible assumption in practice, pro-
cedures applicable to the nonhomoskedastic case have substantial practical value.

This review focuses on the effects of weak instruments in the nonhomoskedastic case.We con-
centrate on detection of weak instruments and weak-instrument-robust inference. The problem
of detection is relevant because weak-instrument-robust methods can be more complicated to use
than standard two-stage least squares, so if instruments are plausibly strong, then it is convenient
to report two-stage least squares estimates and standard errors. If instruments are weak, however,
then practitioners are advised to use weak-instrument-robust methods for inference, the second
topic of this review. We do not survey estimation, an area in which less theoretical progress has
been made.1

In addition to surveying the theoretical econometrics literature, we examine the role of weak
instruments in empirical practice using a sample of 230 specifications gathered from 17 papers
published in the American Economic Review (AER) from 2014 to 2018 that use the word “instru-
ment” in their abstract. These papers use a wide variety of instruments to study a broad range of
questions. For example, Hornung (2014) studies the long-term effects of skilled migration using
the settlement patterns of FrenchHuguenots in Prussia, instrumenting with population losses due
to plagues during the Thirty Years’War.Young (2014) studies the effect of sectoral growth on total
factor productivity, instrumenting with defense expenditures. Favara & Imbs (2015) study the ef-
fect of bank credit on housing prices, instrumenting with US bank branching deregulations. A full
list of the papers that we consider, as well as additional details, are contained in the Supplemental
Appendix.

We use this sample for two purposes.The first is to learn what empirical researchers are actually
doing when it comes to detecting and handling weak instruments. The second is to develop a

1Two notable exceptions are the work of Hirano & Porter (2015) and Andrews & Armstrong (2017).
Hirano & Porter’s (2015) contribution is a negative result: They prove that, if one includes the possibility
that instruments can be arbitrarily weak, then no unbiased estimator of the coefficient of interest exists with-
out further restrictions. Andrews & Armstrong (2017) show, however, that if one imposes correctly the sign
of the first-stage regression coefficient, then asymptotically unbiased estimation is possible, and they derive
unbiased estimators.
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Figure 1

Distribution of reported first-stage F-statistics (and their nonhomoskedastic generalizations) in 72
specifications with a single endogenous regressor and first-stage F smaller than 50. The total number of
single endogenous regressor specifications reporting F-statistics is 108.

collection of specifications that we use to assess the importance of weak instrument issues and the
performance of weak instrument methods in data-generating processes reflective of real-world
settings.

Figure 1 displays a histogram of first-stage F-statistics reported in specifications in our
AER sample with a single endogenous regressor, truncated at 50 for visibility. The first-stage
F-statistic for testing the hypothesis that the instruments are unrelated to the endogenous regres-
sor is a standard measure of the strength of the instrument. Many of the first-stage F-statistics in
our AER sample are in a range that, based on simulations and theoretical results, raises concerns
about weak instruments, including many values less than 10. This suggests that weak instruments
are frequently encountered in practice.

Another noteworthy feature of the data underlying Figure 1 is that 13 of the 16 papers in our
sample with a single endogenous regressor reported at least one first-stage F-statistic. Evidently,
and reassuringly, there is widespread recognition by researchers that one needs to be attentive to
the potential problems caused by weak instruments. This said, our review of these papers leads us
to conclude that there is room for improving current empirical practice.

Specifically, in the leading case with a single endogenous regressor, we recommend that re-
searchers judge instrument strength based on the effective F-statistic of Montiel Olea & Pflueger
(2013). If there is only a single instrument, then we recommend reporting identification-robust
Anderson-Rubin (AR) confidence intervals. These are efficient regardless of the strength of the
instruments, and so should be reported regardless of the value of the first-stage F. Finally, the lit-
erature has not yet converged on a single procedure for dealing with multiple instruments (i.e.,
in the overidentified case) but we recommend choosing from among the several available robust
procedures that are efficient when the instruments are strong.

The review is organized as follows. Section 2 lays out the IV model and notation. Section 3 de-
scribes the weak instruments problem. Section 4 reviews methods for detecting weak instruments,
Section 5 reviews weak-instrument-robust inference, and Section 6 concludes with a discussion of
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open questions in the literature on weak instruments. In the Supplemental Appendix, we discuss
our AER sample, the details of our simulation designs, and available Stata implementations of the
procedures that we discuss in the main text.

2. THE INSTRUMENTAL VARIABLES MODEL

We study the linear IV model with a scalar outcome Yi, a p× 1 vector of potentially endogenous
regressors Xi, a k× 1 vector of instrumental variables Zi, and an r × 1 vector of controlsWi. This
yields the linear constant effects IV model

Yi = X ′
i β +W ′

i κ + εi, 1.

X ′
i = Z′

iπ +W ′
i γ +V ′

i , 2.

where Equation 1 is the structural equation, while Equation 2 is a linear projection commonly
called the first stage. We are interested in β, but Xi is potentially endogenous, so regression of
Yi on Xi andWi may yield a biased estimate of β. We assume that Zi is a valid instrument after
controlling forWi, and in particular, that for Z⊥

i , the residual from projecting Zi onWi,E[Z⊥
i εi] =

0. Furthermore, we have E[ZiV ′
i ] = 0 and E[WiV ′

i ] = 0 by the definition of linear projection.
We allow the possibility that the errors (εi,Vi ) are conditionally heteroskedastic given the ex-

ogenous variables (Zi,Wi ), so E[(εi,V ′
i )

′(εi,V ′
i )|Zi,Wi] may depend on (Zi,Wi ). We further allow

the possibility that (Yi,Xi,Zi,Wi ) are dependent across i, for example, due to clustering or time-
series correlation. Finally, the results that we discuss generalize to the case where the data are
nonidentically distributed across i, although for simplicity, we do not pursue this extension.

Substituting for Xi in Equation 1, we obtain the equation

Yi = Z′
iδ +W ′

i τ +Ui 3.

with δ = πβ. In a common abuse of terminology, we refer to Equation 1 as the structural form,
Equation 2 as the first stage, and Equation 3 as the reduced form (for the older meaning of these
terms, see, e.g., Hausman 1983).We can equivalently express the model as Equations 1 and 2 or as
Equations 2 and 3, since each set of equations is an invertible linear transformation of the other.
Likewise, the errors (Ui,Vi ) = (εi + β ′Vi,Vi ) are an invertible linear transformation of (εi,Vi ).

For ease of exposition, we focus primarily on the case with a scalar endogenous regressor Xi,
and so assume p = 1 unless noted otherwise. In our AER sample, 211 of the 230 specifications have
p = 1, so this appears to be the leading case in practice. Furthermore, unless noted otherwise, we
assume that the instruments Zi are orthogonal to the control variablesWi, and so drop the controls
from our notation. We discuss how to handle nonorthogonal control variables at the end of this
section.

In this review, we focus on estimators and tests that are functions of the reduced-form least
squares coefficient δ̂, the first-stage least squares coefficient π̂ , and matrices that can be consis-
tently estimated from the first stage and reduced form (e.g., variance and weighting matrices). Es-
timators in this class include two-stage least squares, which for Q̂ZZ = 1

n

∑
ZiZ′

i can be written as

β̂2SLS =
(
π̂ ′Q̂ZZπ̂

)−1
π̂ ′Q̂ZZ δ̂, 4.

as well as efficient-two-step generalized method of moments (GMM) β̂2SGMM =
[π̂ ′	̂(β̂1)−1π̂ ]−1π̂ ′	̂(β̂1)−1δ̂, with 	̂(β ) as an estimator for the variance of δ̂ − π̂β and β̂1 as
a first-step estimator. Limited information maximum likelihood and continuously updated GMM
likewise fall into this class.
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Undermild regularity conditions (and, in the time-series case, stationarity), (δ̂, π̂ ) are consistent
and asymptotically normal in the sense that

√
n

(
δ̂ − δ

π̂ − π

)
→d N (0,
∗ ) 5.

for


∗ =
(


∗
δδ 
∗

δπ


∗
πδ 
∗

ππ

)
=
(
Q−1
ZZ 0
0 Q−1

ZZ

)
�∗
(
Q−1
ZZ 0
0 Q−1

ZZ

)
,

where QZZ = E[ZiZ′
i] and

�∗ = lim
n→∞

Var

[(
1√
n

∑
i

UiZ′
i ,

1√
n

∑
i

ViZ′
i

)′]
.

Thus, the asymptotic variance of
√
n(δ̂ − δ, π̂ − π ) has the usual sandwich form. Under stan-

dard assumptions, the sample-analog estimator Q̂ZZ will be consistent for QZZ , and we can con-
struct consistent estimators �̂∗ for �∗. These results imply the usual asymptotic properties for
IV estimators. For example, assuming that the constant-effect IV model is correctly specified
(so δ = πβ), and that π is fixed and nonzero, the delta method, together with Equation 5, im-
plies that

√
n(β̂2SLS − β ) →d N (0,
∗

β,2SLS) for 
∗
β,2SLS consistently estimable.We can likewise use

Equation 5 to derive the asymptotic distribution for other IV estimators, such as limited informa-
tion maximum likelihood or two-step and continuously updated GMM.

2.1. Homoskedastic and Nonhomoskedastic Cases

A central distinction in the literature on weak instruments, and in the historical literature on
IV more broadly, is between what we term the homoskedastic and nonhomoskedastic cases. In
the homoskedastic case, we assume that the data (Yi,Xi,Zi,Wi ) are independent and identically
distributed (IID) across i, and the errors (Ui,Vi ) are homoskedastic, so E[(Ui,Vi )′(Ui,Vi )|Zi,Wi]
does not depend on (Zi,Wi ). Whenever these conditions fail, whether due to heteroskedasticity
or dependence (e.g., clustering or time-series dependence),we say we are in the nonhomoskedastic
case.

Two-stage least squares is efficient in the homoskedastic case but not, in general, in the nonho-
moskedastic case. Whether homoskedasticity holds also determines the structure of �∗. Specifi-
cally, in the homoskedastic case, we can write

�∗ = E

[(
U 2
i UiVi

UiVi V 2
i

)
⊗ (

ZiZ′
i

)] = E

[(
U 2
i UiVi

UiVi V 2
i

)]
⊗QZZ ,

where the first equality follows from the assumption of IID data, while the second follows from
homoskedasticity. Thus, in homoskedastic settings, the variance matrix �∗ can be written as the
Kronecker product of a 2 × 2 matrix that depends on the errors with a k× k matrix that depends
on the instruments. The matrix 
∗ inherits the same structure, which, as we note below, simpli-
fies several calculations. By contrast, in the nonhomoskedastic case, 
∗ does not in general have
Kronecker product structure, rendering these simplifications inapplicable.
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2.2. Dealing with Control Variables

If the controlsWi are not orthogonal to the instrumentsZi, thenwe need to take them into account.
In this more general case, let us define (δ̂, π̂ ) as the coefficients on Zi from the reduced-form and
first-stage regressions of Yi and Xi, respectively, on (Zi,Wi ). By the Frisch-Waugh theorem, these
are the same as the coefficients from regressingYi and Xi on Z⊥

i (again the part of Zi orthogonal to
Wi). One can likewise derive estimators for the asymptotic variance matrix 
∗ in terms of Z⊥

i and
suitably defined regression residuals. Such estimators, however, necessarily depend on the assump-
tions imposed on the data-generating process (for example, whether we allow heteroskedasticity,
clustering, or time-series dependence).

A simple way to estimate 
∗ in practice when there are control variables is to jointly estimate
(δ̂, π̂ ) in a seemingly unrelated regression with whatever specification one would otherwise use
(including fixed effects and clustering or serial-correlation robust standard errors). Appropriate
estimates of 
∗ are then generated automatically by standard statistical software.

3. THE WEAK INSTRUMENTS PROBLEM

Motivated by the asymptotic approximation in Equation 5, let us consider the case where the
reduced-form and first-stage regression coefficients are jointly normal,(

δ̂

π̂

)
∼ N

((
δ

π

)
,


)
, 6.

with 
 = 1
n


∗ known (and, for ease of exposition, full rank). Effectively, Equation 6 discards the
approximation error in Equation 5, as well as the estimation error in 
̂∗, to obtain a finite-sample
normal model with known variance. This suppresses any complications arising from nonnormal-
ity of the ordinary least squares (OLS) estimates or difficulties with estimating 
 and focuses
attention solely on the weak instruments problem. Correspondingly, results derived in the model
in Equation 6 will provide a good approximation to behavior in applications where the normal
approximation to the distribution of (δ̂, π̂ ) is accurate and 
 is well-estimated. By contrast, in set-
tings where the normal approximation is problematic or 
̂ is a poor estimate of 
, results derived
based on Equation 6 will be less reliable (see Section 6; see also Young 2018).

Since the IVmodel implies that δ = πβ, the IV coefficient is simply the constant of proportion-
ality between the reduced-form coefficient δ and the first-stage parameter π. In the just-identified
setting, matters simplify further, with the IV coefficient becoming β = δ/π and the usual IV esti-
mators, including two-stage least squares and GMM, simplifying to β̂ = δ̂/π̂. Just-identified spec-
ifications with a single endogenous variable constitute a substantial fraction of the specifications
in our AER sample (101 out of 230), highlighting the importance of this case in practice.

It has long been understood (see, e.g., Fieller 1954) that ratio estimators like β̂ can behave
badly when the denominator is close to zero. The weak instruments problem is simply the gener-
alization of this issue to potentially multidimensional settings. In particular, when the first-stage
coefficient π is close to zero relative to the sampling variability of π̂, the normal approximations
to the distribution of IV estimates discussed in Section 2 may be quite poor. Nelson & Startz
(1990a,b) provided early simulation demonstrations of this issue, while Bound et al. (1995) found
similar issues in simulations based on the work of Angrist & Krueger (1991).

The usual normal approximation to the distribution of β̂ can be derived using the delta method,
which linearizes β̂ in (δ̂, π̂). Under this linear approximation, normality of (δ̂, π̂) implies approxi-
mate normality of β̂. This normal approximation fails in settings with weak instruments because
β̂ is highly nonlinear in π̂ when the latter is close to zero. As a result, normality of (δ̂, π̂) does not
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imply approximate normality of β̂. Specifically, the IV coefficient β̂ = δ̂/π̂ is distributed as the
ratio of potentially correlated normals, and so is nonnormal. If π is large relative to the standard
error of π̂ , however, then π̂ falls close to zero with only very low probability, and the nonlinearity
of β̂ in (δ̂, π̂) ceases to matter. Thus, we see that nonnormality of the IV estimator arises when
the first-stage parameter π is small relative to its sampling variability. The same issue arises in the
overidentified case with p = 1 < k, where the weak instruments problem arises when the k× 1
vector π of first-stage coefficients is close to zero relative to the variance of π̂ . Likewise, in the
general 1 ≤ p ≤ k case, the weak instruments problem arises when the k× pmatrix π of first-stage
coefficients is close to having reduced rank relative to the sampling variability of π̂ .

3.1. Failure of the Bootstrap

A natural suggestion for settings where conventional asymptotic approximations fail is the boot-
strap.Unfortunately, the bootstrap (and its generalizations, including subsampling and them-out-
of-n bootstrap) does not in general resolve weak instruments issues (see Andrews&Guggenberger
2009). For intuition, note that we can view the bootstrap as simulating data based on estimates
of the data-generating process. In the model in Equation 6, the worst case for identification is
π = 0, since in this case, β is totally unidentified. We never estimate π perfectly, however, and in
particular, we estimate π̂ = 0 with probability zero. Thus, the bootstrap incorrectly thinks that
β is identified with probability one. More broadly, the bootstrap can make systematic errors in
estimating the strength of the instruments, which suggests the reason why it can yield unreliable
results. None of the IV specifications in our AER sample used the bootstrap.

3.2. Motivation of the Normal Model

The normalmodel in Equation 6 hasmultiple antecedents. Several papers in the early econometric
literature on simultaneous equations assumed fixed instruments and exogenous variables along
with normal errors, which leads to the homoskedastic version of Equation 6, sometimes with 


unknown (Anderson & Rubin 1949, Mariano & Sawa 1972, Sawa 1969).
More recently, several papers in the literature on weak instruments, including those of

Kleibergen (2002), Moreira (2003), Andrews et al. (2006), and Moreira & Moreira (2015), de-
rive results in the normal model in Equation 6, sometimes with the additional assumption that the
underlying data are normal.While in this case we have motivated the normal model in Equation 6
heuristically based on the asymptotic normality (Equation 5) of the reduced-form and first-stage
estimates, this connection is made precise elsewhere in the literature. Staiger & Stock (1997) show
that the normal model in Equation 6 arises as an approximation to the distribution of the scaled
reduced-form and first-stage regression coefficients under weak-instrument asymptotics, where
the first-stage shrinks at a

√
n rate. As discussed by Staiger & Stock (1997), these asymptotics

are intended to capture situations in which the true value of the first stage is on the same order
as sampling uncertainty in π̂, so issues associated with small π cannot be ignored. Finite sample
results for the model in Equation 6 then translate to weak-instrument asymptotic results via the
continuous mapping theorem. Many other authors, including Kleibergen (2005), Andrews et al.
(2006), Andrews (2016), and Andrews & Armstrong (2017), have built on these results to prove
validity for particular procedures under weak-instrument asymptotics.

More recently, Andrews & Guggenberger (2015, 2017), Andrews & Mikusheva (2016),
Andrews (2017), and Andrews et al. (2018) have considered asymptotic validity uniformly over
values of the first-stage parameter π and distributions for (Ui,Vi,Wi,Zi ). These authors show that
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some, although not all, procedures derived in the normal model in Equation 6 are also uniformly
asymptotically valid in the sense that, e.g., the probability of incorrectly rejecting true null hy-
potheses converges to the nominal size uniformly over a large class of data-generating processes
as the sample size increases. Andrews et al. (2018) discuss general techniques to establish uniform
asymptotic validity, but the argument for a given procedure is case specific.Thus, in this review,we
focus on the normal model in Equation 6, which unites much of the weak-instruments literature,
and refer readers interested in questions of uniformity to the papers cited above.

3.3. Simulated Distribution of t-Statistics

While we know from theory that weak instruments can invalidate conventional inference proce-
dures, whether weak instruments are a problem in a given application is necessarily case specific.
To examine the practical importance of weak instruments in recent applications of IV methods,
we report simulation results calibrated to our AER sample.

Specifically, we calibrate the normal model in Equation 6 to the 124 specifications in our AER
sample for which we estimate a positive-definite variance matrix 
 of the reduced-form and first-
stage estimates based either on results reported in the paper or on replication files. This excludes
specifications without replication data where we cannot estimate 
 from results reported in the
text, as well as four specifications where our estimate of 
 is not positive definite.2 It happens
to be the case that all remaining specifications have only a single endogenous regressor (p = 1).
Thus, our simulation results only address this case. In each specification, we set the first-stage
parameter π to the estimate π̂ in the data and set δ to π̂ β̂2SLS, the product of the first stage with
the two-stage least squares estimates. We set 
 equal to the estimated variance matrix for (δ̂, π̂),
maintaining whatever assumptions were used by the original authors (including the same controls
and clustering at the same level).

In each specification, we repeatedly draw first-stage and reduced-form parameter estimates
(δ̂∗, π̂∗ ) and, for each draw, calculate the two-stage least squares estimate, along with the t-statistic
for testing the true value of β (that is, the value used to simulate the data). In Figures 2a and
3a, we plot the median t-statistic and the frequency with which nominal 5% two-sided t-tests
reject on the vertical axis, and the average of the effective F-statistic of Montiel Olea & Pflueger
(2013), which we introduce in the next section, on the horizontal axis.This statistic is equivalent to
the conventional first-stage F-statistic for testing π = 0 in models with homoskedastic errors but
adds a multiplicative correction in models with nonhomoskedastic errors. For visibility, we limit
attention to the 106 out of 124 specifications where the average first-stage F-statistic is smaller
than 50 (the remaining specifications exhibit behavior very close to those with F-statistics between
40 and 50).

Several points emerge clearly from these results. First, there is a nontrivial number of speci-
fications with small first-stage F-statistics [e.g., below 10, the rule-of-thumb cutoff for weak in-
struments proposed by Staiger & Stock (1997)] in the AER data. Second, even for specifications
with essentially the same first-stage F-statistic, the median t-statistic and the size of nominal 5%
t-tests can vary substantially due to other features (for example, the true value β and the matrix

). Third, we see that, among specifications with a small average F-statistic, behavior can deviate
substantially from what we would predict under conventional (strong-instrument) asymptotic ap-
proximations. Specifically, conventional approximations imply that the median t-statistic is zero,
and 5% t-tests should reject 5% of the time. In our simulations, by contrast, we see that themedian

2Three appear due to rounding error in cases where we calculate 
 based on reported estimates and standard
errors, while the last arises from a case with a large number of fixed effects and a small number of clusters.
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Figure 2

Median of t-statistic for testing true value of β plotted against the average effective F-statistic of Montiel Olea & Pflueger (2013) in
calibrations to American Economic Review (AER) data, limited to the 106 out of 124 specifications with average F smaller than 50.
Just-identified specifications are plotted as solid black, while overidentified specifications are plotted as blue outlines. (a) Median at
parameter values estimated from AER data. (b) 5th and (c) 95th percentiles of the median t-statistic under the Bayesian exercise
described in the text. The vertical red line in each panel corresponds to a first-stage F of 10.

t-statistic sometimes has absolute value larger than one, while the size of 5% t-tests can exceed
30%. These issues largely disappear among specifications where the average F-statistic exceeds
10, and in these cases, conventional approximations appear to be fairly accurate.

These results suggest that weak-instrument issues are relevant for modern applications of
IV methods. It is worth emphasizing that these simulations are based on the normal model in
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Figure 3

Rejection probability for nominal 5% two-sided t-tests plotted against the average effective F-statistic of Montiel Olea & Pflueger
(2013) in calibrations to American Economic Review (AER) data, limited to the 106 out of 124 specifications with average F smaller than
50. Just-identified specifications are plotted as solid black, while overidentified specifications are plotted as blue outlines. (a) Size at
parameter values estimated from AER data. (b) 5th and (c) 95th percentiles of size under the Bayesian exercise described in the text. The
vertical red line in each panel corresponds to a first-stage F of 10.
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Equation 6 with known variance 
, so these results arise from the weak instruments problem
alone and not from, e.g., nonnormality of (δ̂, π̂) or difficulties estimating the variance matrix 
.

These results are sensitive to the parameter values considered (indeed, this is the reason that
the bootstrap fails). Since we estimate (β,π) with error, it is useful to quantify the uncertainty
around our estimates for the median t-statistic and the size of t-tests.To do so,we adopt a Bayesian
approach consistent with the normal model in Equation 6 and simulate a posterior distribution for
the median t-statistic and the size of 5% t-tests. Specifically, we calculate the posterior distribution
on (δ,π) after observing (δ̂, π̂) using the normal likelihood from Equation 6 and a flat prior. We
draw values (

δ̃

π̃

)
∼ N

((
δ̂

π̂

)
,


)

for the reduced-form and first-stage parameters from this posterior, calculate the implied two-
stage least squares coefficient β̃, and repeat our simulations taking (β̃, π̃ ) to be the true parameter
values (setting the reduced-form coefficient to π̃ β̃).Figures 2b and 3b report the 5th percentiles of
the median t-statistic and size, respectively, across draws (β̃, π̃ ), while Figures 2c and 3c report the
95th percentiles. As these results suggest, there is considerable uncertainty about the distribution
of t-statistics in these applications. As in our baseline simulations, however, poor performance for
conventional approximations is largely, although not exclusively, limited to specifications where
the average effective F-statistic is smaller than 10.

Finally, it is interesting to consider behavior when we limit attention to the subset of specifi-
cations that are just identified (i.e., that have k = 1), which are plotted as solid black in Figures 2
and 3. Interestingly, when we simulate behavior at parameter estimates from the AER data in
these cases, we find that the largest absolute median t-statistic is 0.06, while the maximal size for
a 5% t-test is just 7.1%. If, however, we consider the bounds from our Bayesian approach, the
worst-case absolute median t-statistic is 0.9, while the worst-case size for the t-test is over 40%.
Thus, t-statistics appear to behave much better in just-identified specifications when we consider
simulations based on the estimated parameters, but this is no longer the case once we incorporate
uncertainty about the parameter values.

4. DETECTING WEAK INSTRUMENTS

The simulation results in Section 3 suggest that weak instruments may render conventional
estimates and tests unreliable in a nontrivial fraction of published specifications. This raises the
question of how to detect weak instruments in applications. A natural initial suggestion is to test
the hypothesis that the first stage is equal to zero, π = 0. As noted by Stock & Yogo (2005), how-
ever, conventional methods for inference on β are unreliable not only for π = 0, but also for π

in a neighborhood of zero. Thus, we may reject that π = 0 even when conventional inference
procedures are unreliable. To overcome this issue, we need formal procedures for detecting weak
instruments, rather than tests for total nonidentification.

4.1. Tests for Weak Instruments with Homoskedastic Errors

Stock & Yogo (2005) consider the problem of testing for weak instruments in cases with ho-
moskedastic errors. They begin by formally defining the set of values π that they call weak. They
consider two different definitions, the first based on the bias of IV estimates relative to OLS and
the second based on the size ofWald- or t-tests. In each case, they include a value of π in the weak
instrument set if the worst-case bias or size over all possible values of β exceeds a threshold (they
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phrase this result in terms of the correlation between the errors ε andV in Equations 1 and 2, but
for 
 known, this is equivalent). They then develop formal tests for the null hypothesis that the
instruments are weak (that is, that π lies in the weak instrument set), where rejection allows one
to conclude that the instruments are strong.

In settings with a single endogenous regressor, Stock & Yogo’s (2005) tests are based on the
first-stage F-statistic. Their critical values for this statistic depend on the number of instruments,
and tables are available in the work of Stock & Yogo (2005). If we define the instruments as weak
when the worst-case bias of two-stage least squares exceeds 10% of the worst-case bias of OLS,
then the results of Stock & Yogo show that, for between 3 and 30 instruments, the appropriate
critical value for a 5% test of the null of weak instruments ranges from 9 to 11.52 and so is always
close to the Staiger & Stock (1997) rule-of-thumb cutoff of 10. By contrast, if we define the instru-
ments as weak when the worst-case size of a nominal 5% t-test based on two-stage least squares
exceeds 15%, then the critical value depends strongly on the number of instruments and is equal
to 8.96 in cases with a single instrument but rises to 44.78 in cases with 30 instruments.

Stock & Yogo (2005) also consider settings with multiple endogenous variables. For such
cases, they develop critical values for use with the Cragg & Donald (1993) statistic for testing the
hypothesis that π has reduced rank. Building on these results, Sanderson & Windmeijer (2016)
consider tests for whether the instruments are weak for the purposes of estimation and inference
on one of multiple endogenous variables.

4.2. Tests for Weak Instruments with Nonhomoskedastic Errors

The results of Stock & Yogo (2005) rely heavily on the assumption of homoskedasticity. As dis-
cussed above, in homoskedastic settings, the variance matrix 
 for (δ̂, π̂) can be written as the
Kronecker product of a 2 × 2 matrix with a k× k matrix, which Stock & Yogo (2005) use to ob-
tain their results. As noted in Section 2, by contrast,
 does not in general have Kronecker product
structure in nonhomoskedastic settings, and the tests of Stock & Yogo (2005) do not apply. Specif-
ically, in the nonhomoskedastic case, the homoskedastic first-stage F-statistic is inapplicable and
should not be compared to the Stock & Yogo (2005) critical values (Montiel Olea & Pflueger
2013).

Despite the inapplicability of Stock & Yogo’s (2005) results, F-statistics are frequently re-
ported in nonhomoskedastic settings withmultiple instruments. In such cases, some authors report
nonhomoskedasticity-robust F-statistics

FR = 1
k
π̂ ′
̂−1

ππ π̂ , 7.

for 
̂ππ an estimator for the variance of π̂ , while others report traditional, nonrobust F-statistics

FN = 1
k
π̂ ′
̂−1

ππ ,N π̂ = n
kσ̂ 2

V
π̂ ′Q̂ZZπ̂ 8.

for 
̂ππ ,N = σ̂ 2
V
n Q̂

−1
ZZ and σ̂ 2

V an estimator for E[V 2
i ]. In our AER data, for instance, none of the

52 specifications that both have multiple instruments and report first-stage F-statistics assume
homoskedasticity to calculate standard errors for β̂, but at least six report F-statistics that do
assume homoskedasticity (we are unable to determine the exact count because most authors do
not explicitly describe how they calculate F-statistics, and not all papers provide replication data).
To illustrate,Figure 4a plots the distribution of F-statistics reported in papers in our AER sample,
broken down by the method (robust or nonrobust) used, when we can determine this. Given the
mix of methods, we use F-statistic as a generic term to refer both to formal first-stage F-statistics
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Figure 4

Distribution of reported first-stage F-statistics (and their nonhomoskedastic generalizations) in 72 specifications with a single
endogenous regressor and first-stage F smaller than 50. Thirty-six other specifications (not shown) have a single endogenous regressor
but first-stage F-statistic larger than 50. (a) Decomposition by statistic computed (either nonrobust F-statistic FN, robust F-statistic FR,
or unknown). Note that, in settings with a single endogenous regressor, the Kleibergen-Paap F-statistic reduces to the robust
F-statistic, so we categorize papers reporting this statistic accordingly. (b) Decomposition by label used by authors in text (either
Kleibergen-Paap or not explicitly discussed).

FN (which assume homoskedasticity and single endogenous regressor) and to generalizations
of F-statistics to nonhomoskedastic settings, cases with multiple endogenous regressors, and
so on.

Use of F-statistics in nonhomoskedastic settings is built into common statistical software.
When runwithout assuming homoskedastic errors, the popular ivreg2 command in Stata automat-
ically reports theKleibergen&Paap (2007)Wald statistic for testing that π has reduced rank along
with critical values based on Stock & Yogo (2005) (Baum et al. 2007), although the output warns
users about Stock & Yogo’s (2005) homoskedasticity assumption. In settings with a single endoge-
nous variable, the Kleibergen&Paap (2007)Wald statistic is equivalent to a nonhomoskedasticity-
robust F-statistic FR for testing π = 0, while in settings with multiple endogenous regressors, it
is a robust analog of the Cragg & Donald (1993) statistic. Interestingly, despite the equivalence
of Kleibergen-Paap statistics and robust F-statistics in settings with a single endogenous variable,
the distribution of published F-statistics appears to differ depending on what label the authors use.
In particular, as shown in Figure 4b, published F-statistics labeled by authors as Kleibergen-Paap
statistics tend to be smaller.

We are unaware of theoretical justification for the use of either FN or FR to gauge instrument
strength in nonhomoskedastic settings. As an alternative,Montiel Olea & Pflueger (2013) propose
a test for weak instruments based on the effective first-stage F-statistic

FEff = π̂ ′Q̂ZZπ̂

tr(
̂ππ Q̂ZZ )
= kσ̂ 2

V /n

tr(
̂ππ Q̂ZZ )
FN = tr(
̂ππ ,NQ̂ZZ )

tr(
̂ππ Q̂ZZ )
FN. 9.

In cases with homoskedastic errors,FEff reduces to FN,while in cases with nonhomoskedastic errors
it incorporates a multiplicative correction that depends on the robust variance estimate. Likewise,
in the just-identified case, FEff reduces the FR [and so also coincides with the Kleibergen & Paap
(2007) Wald statistic], while in the nonhomoskedastic case, it weights π̂ by Q̂ZZ rather than 
̂−1

ππ .
The expressions for the two-stage least squares estimator in Equation 4, FR in Equation 7, FN

in Equation 8, and FEff in Equation 9 provide some intuition for why FEff is an appropriate statistic
for testing instrument strength when using two-stage least squares in the nonhomoskedastic case,
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while FR and FN are not. Two-stage least squares behaves badly when its denominator, π̂ ′Q̂ZZπ̂ , is
close to zero. The statistic FN measures this same object, but, because it is nonrobust, it gets the
standard error wrong and so does not have a noncentral χ2 distribution, as in the work of Stock &
Yogo (2005). Indeed, in the nonhomoskedastic case,FN can be extremely large with high probabil-
ity even when π ′QZZπ is small. By contrast, the statistic FR measures the wrong population object,
π ′
−1

πππ rather than π ′QZZπ , so while it has a noncentral χ2 distribution, its noncentrality param-
eter does not correspond to the distribution of β̂2SLS.3 Finally, FEff measures the right object and
gets the standard errors right on average.More precisely,FEff is distributed as a weighted average of

noncentral χ2 variables where the weights, given by the eigenvalues of 
̂
1
2
ππ Q̂ZZ
̂

1
2
ππ/tr(
̂ππ Q̂ZZ ),

are positive and sum to one. Montiel Olea & Pflueger (2013) show that the distribution of FEff
can be approximated by a noncentral χ2 distribution and formulate tests for weak instruments as
defined based on the Nagar (1959) approximation to the bias of two-stage least squares and lim-
ited information maximum likelihood. Their test rejects when the effective F-statistic exceeds a
critical value. Note, however, that their argument is specific to two-stage least squares and limited
information maximum likelihood, so if one were to use a different estimator, a different test would
be needed.

For k = 1, 
ππ, 
ππ ,N , and QZZ are all scalar, and FR = FEff. Both statistics have a noncentral
χ2 distribution with the same noncentrality parameter that governs the distribution of the IV
estimator.Thus, in settings with k = 1,FR = FEff can be used with the Stock & Yogo (2005) critical
values based on t-test size (the mean of the IV estimate does not exist when k = 1).

For k > 1, as noted above, the theoretical results of Montiel Olea & Pflueger (2013) formally
concern only the Nagar (1959) approximation to the bias. Our simulations based on the AER data
reported in Section 3 suggest, however, that effective F-statistics may convey useful information
about instrument strength more broadly, since we see that conventional asymptotic approxima-
tions appear reasonable in specifications where the average effective F-statistic exceeds 10. This is
solely an empirical observation about a particular data set, but why this is the case in these data and
whether this finding generalizes to a broader range of empirically relevant settings are interesting
questions for future research.

The main conclusion from this section is that FEff, not FR or FN, is the preferred statistic for
detecting weak instruments in overidentified, nonhomoskedastic settings with one endogenous
variable where one uses two-stage least squares or limited information maximum likelihood.4 FEff
can be compared to Stock & Yogo (2005) critical values for k = 1 and to Montiel Olea & Pflueger
(2013) critical values for k > 1, or to the rule-of-thumb value of 10. It appears that none of the
papers in our AER sample computed FEff (except for the k = 1 case where it equals FR), but we
hope to see wider use of this statistic in the future.

3The inapplicability of FR and FN in the nonhomoskedastic case is illustrated by the following example, which

builds on an example of Montiel Olea & Pflueger (2013). Let k = 2,QZZ = I2, and 
ππ = E
[( U 2

i UiVi
UiVi V 2

i

)]
⊗(

ω2 0
0 ω−2

)
. Under weak-instrument asymptotics with π = C/

√
n for C fixed with both elements nonzero, as

ω2 → ∞, one can show that the distribution of the two-stage least squares estimate is centered around the
probability limit of OLS, which is what we expect in the fully unidentified case. Thus, from the perspective
of two-stage least squares, the instruments are irrelevant asymptotically. At the same time, both FN and FR
diverge to infinity and so will indicate that the instruments are strong with probability one. By contrast, FEff
converges to a χ2

1 and so correctly reflects that the instruments are weak for the purposes of two-stage least
squares estimation.
4Unfortunately, we are unaware of an analog of the Montiel Olea & Pflueger (2013) approach for settings
with multiple endogenous variables.
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4.3. Screening on the First-Stage F-Statistic

Given a method for detecting weak instruments, there is a question of what to do if we decide
that the instruments are weak. Anecdotal evidence and our AER data suggest that, in some in-
stances, researchers or journals may decide that specifications with small first-stage F-statistics
should not be published. Specifically, Figure 1 shows many specifications just above the Staiger
& Stock (1997) rule-of-thumb cutoff of 10, consistent with selection favoring F-statistics above
this threshold.

It is important to note thatFigure 1 limits attention to specifications where the original authors
report first-stage F-statistics and uses the F-statistics as reported by the authors. By contrast, in
our simulation results, we calculate effective F-statistics for all specifications in our simulation
sample (i.e., where we can obtain a positive definite estimate of the variance matrix 
), including
in specifications where the authors do not report F-statistics, and match the assumptions used to
calculate F-statistics to those used to calculate standard errors on β̂. So, for example, in a paper that
assumed homoskedastic errors to calculate F-statistics, but nonhomoskedastic errors to calculate
standard errors on β̂, we use a nonhomoskedasticity-robust estimator 
̂ππ to compute the effective
F-statistic in our simulations but report the homoskedastic F-statistic FN in Figure 1. We do this
because the F-statistic reported by the original authors seems to be the relevant one when thinking
about selection on F-statistics.

While selection on first-stage F-statistics is intuitively reasonable, it can unfortunately result
in bias in published estimates and size distortions in published tests. This point was made early
in the weak instruments literature by Zivot et al. (1998) and relates to issues of pretesting and
publication bias more generally. To illustrate the impact of these issues, we consider simulations
calibrated to our AER data in which we drop all simulation draws where the effective F-statistic
is smaller than 10. Figure 5 plots the size of nominal 5% t-tests in this setting against the average
effective F-statistic (where the average effective F-statistic is calculated over all simulation draws,
not just those with FEff > 10).
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Figure 5

Rejection probability for nominal 5% two-sided t-tests after screening on FEff > 10, plotted against the average effective F-statistic in
calibrations to American Economic Review (AER) data, limited to the 106 out of 124 specifications with average effective F smaller than
50. Just-identified specifications are plotted as solid black, while overidentified specifications are plotted as blue outlines. (a) Size at
parameter values estimated from AER data. (b) 5th and (c) 95th percentiles of size under the Bayesian exercise described in Section 3.
The vertical red line in each panel corresponds to a first-stage F of 10.
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The results in Figure 5 highlight that screening on the F-statistics can dramatically increase
size distortions. This is apparent even in simulations based on reported parameter estimates
(shown in Figure 5a), where the maximal size exceeds 70%, as compared to a maximal size of
less than 35% for t-tests without screening on the F-statistic. Matters look still worse when con-
sidering the upper bound for size (shown in Figure 5c), where many specifications have size close
to one. Thus, screening on the first-stage F-statistic appears to compound, rather than reduce,
inferential problems arising from weak instruments. This problem is not specific to the effective
F-statistic FEff and also appears if we screen on FN or FR. Likewise, if we move the threshold from
10 to some other value, then we continue to see size distortions in a neighborhood of the new
threshold.

If we are confident that our instruments are valid but are concerned they may be weak, then
screening on F-statistics is unappealing for another reason: It unnecessarily eliminates specifica-
tions of potential economic interest. In particular, as we discuss in the next section, a variety of
procedures for identification-robust inference on β have been developed in the literature. By us-
ing these procedures, we may gain insight from the data even in settings where the instruments
are weak. Thus, weak instruments alone are not a reason to discard applications.

5. INFERENCE WITH WEAK INSTRUMENTS

The literature on weak instruments has developed a variety of tests and confidence sets that remain
valid whether or not the instruments are weak, in the sense that their probability of incorrectly
rejecting the null hypothesis and covering the true parameter value remains well-controlled. Since
IV estimates are nonnormally distributed when the instruments are weak, these procedures do not
rely on point estimates and standard errors but instead use test inversion.

The idea of test inversion is that, if we are able to construct a size-α test of the hypothesis
H0 : β = β0 for any value β0, then we can construct a level 1 − α confidence set for β by collecting
the set of nonrejected values. Formally, let us represent a generic test of H0 : β = β0 by φ(β0),
where we write φ(β0) = 1 if the test rejects and φ(β0) = 0 otherwise.We say that φ(β0) is a size-α
test of H0 : β = β0 in the normal model in Equation 6 if

sup
π

Eβ0,π [φ(β0)] ≤ α,

so the maximal probability of rejecting the null hypothesis, assuming that the null is true, is
bounded above by α no matter the value of π. If φ(β0) is a size-α test of H0 : β = β0 for all values
β0, then CS = {β : φ(β ) = 0}, the set of values not rejected by φ, is a level 1 − α confidence set

inf
β,π

Prβ,π {β ∈ CS} ≥ 1 − α. 10.

In practice, we can implement test inversion by taking a grid of potential values β, evaluating the
test φ at all values in the grid, and approximating our confidence set by the set of nonrejected
values.

When the instruments can be arbitrarily weak, correct coverage in Equation 10 turns out to be
a demanding requirement. Specifically, the results of Gleser & Hwang (1987) and Dufour (1997)
imply that in the normal model in Equation 6 without restrictions on (β,π ), any level 1 − α con-
fidence set for β must have infinite length with positive probability. For intuition, consider the
case in which π = 0, so β is unidentified. In this case, the data are entirely uninformative about β,
and to ensure coverage 1 − α, a confidence set CS must cover each point in the parameter space
with at least this probability, which is impossible ifCS is always bounded. That the confidence set

www.annualreviews.org • Weak Instruments 741



EC11CH27_Stock ARjats.cls July 18, 2019 11:31

must be infinite with positive probability for all (β,π ) then follows from the fact that the normal
distribution has full support. Thus, if the event {CS infinite length} has positive probability under
π = 0, then the same is true under all (β,π ). This immediately confirms that we cannot obtain
correct coverage under weak instruments by adjusting our (finite) standard errors, and so points
to the need for a different approach such as test inversion.

To fix ideas, we first discuss test inversion based on the AR statistic, which turns out be effi-
cient in just-identified models with a single instrument. We then turn to alternative procedures
developed for overidentified models and inference on subsets of parameters. Finally, we discuss
the effect of choosing between robust and nonrobust procedures based on a pretest for instru-
ment strength. Since we base our discussion on the OLS estimates (δ̂, π̂ ), the procedures that we
discuss can be viewed as minimum-distance identification-robust procedures, as in the work of
Magnusson (2010).

5.1. Inference for Just-Identified Models: The Anderson-Rubin Test

Test inversion offers a route forward in models with weak instruments because the IV model with
parameter β implies restrictions on the distribution of the data regardless of the strength of the
instruments. Specifically, the IV model implies that δ = πβ. Thus, under a given null hypothesis
H0 : β = β0, we know that δ − πβ0 = 0 and thus that

g(β0) = δ̂ − π̂β0 ∼ N (0,	(β0)) for 	(β0) = 
δδ − β (
δπ + 
πδ ) + β2
ππ,

where 
δδ , 
ππ , and 
δπ denote the variance of δ̂, the variance of π̂ , and their covariance, re-
spectively. Thus, the AR statistic (Anderson & Rubin 1949), defined as AR(β ) = g(β )′	(β )−1g(β ),
follows a χ2

k distribution underH0 : β = β0 no matter the value of π.Note that Anderson &Rubin
(1949) considered the case with homoskedastic normal errors, so the AR statistic as we define it in
this review is formally a generalization of their statistic that allows for nonhomoskedastic errors.

Using the AR statistic, we can form an AR test ofH0 : β = β0 as φAR(β0) = 1{AR(β0) > χ2
k,1−α}

for χ2
k,1−α , the 1 − α quantile of a χ2

k distribution. As noted by Staiger & Stock (1997), this yields
a size-α test that is robust to weak instruments. Thus, if we were to recompute Figure 3 for the
AR test, then the size would be flat at 5% for all specifications. We can thus form a level 1 − α

weak-instrument-robust confidence setCSAR by collecting the nonrejected values. In the case with
homoskedastic errors (or with nonhomoskedastic errors but a single instrument), as noted by, e.g.,
Mikusheva (2010), one can derive the bounds ofCSAR analytically, avoiding the need for numerical
test inversion.

Since AR confidence sets have correct coverage regardless of the strength of the instruments,
we know from Gleser & Hwang (1987) and Dufour (1997) that they have infinite length with
positive probability. Specifically, as discussed byDufour&Taamouti (2005) andMikusheva (2010),
CSAR can take one of three forms in settings with a single instrument: (a) a bounded interval [a, b],
(b) the real line (−∞,∞), or (c) the real line excluding an interval (−∞, a] ∪ [b,∞). In settings with
more than one instrument but homoskedastic errors, the AR confidence set can take the same three
forms or may be empty. These behaviors are counterintuitive but have simple explanations.

First, as noted by Kleibergen (2007), as |β| → ∞, AR(β ) converges to the Wald statistic for
testing that π = 0 (equal to k times the robust first-stage F-statistic). Thus, the level-α AR confi-
dence set has infinite length if and only if a robust F-test cannot reject that π = 0, and thus that β

is totally unidentified. Thus, infinite-length confidence sets arise exactly in those cases where the
data do not allow us to conclude that β is identified at all.

Second, CSAR may be empty only in the overidentified setting. In this case, the AR approach
tests that δ = πβ0, which could fail either because δ = πβ for β �= β0 or because there exists no
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value β such that δ = πβ. In the latter case, the overidentifying restrictions of the IV model fail.
Thus, the AR test has power against both violations of our parametric hypothesis of interest and
violations of the IV model’s overidentifying restrictions, and an empty AR confidence set can be
interpreted as a rejection of the overidentifying restrictions.The overidentifying restrictions could
fail due either to invalidity of the instruments or to treatment effect heterogeneity, as in the work
of Imbens & Angrist (1994), but in either scenario, the constant-effect IV model is misspecified.

The power of AR tests against violations of the IV model’s overidentifying restrictions means
that, if we care only about power for testing the parametric restriction H0 : β = β0, then AR tests
and confidence sets can be inefficient. In particular, in the strongly identified case with ‖π‖ large,
one can show that the usualWald statistic (β̂ − β0)2/σ̂ 2

β̂
is approximately noncentral-χ2

1 distributed
with the same noncentrality as AR(β0), so tests based on the Wald statistic (or, equivalently, two-
sided t-tests) have higher power than tests based on AR. Strong identification is important for this
result. Chernozhukov et al. (2009) show that the AR test is admissible (i.e., not dominated by any
other test) in settings with homoskedastic errors and weak instruments.

5.1.1. Efficiency of Anderson-Rubin in just-identified models. In just-identified models,
there are no overidentifying restrictions, and the AR test has power only against violations of the
parametric hypothesis. In this setting, Moreira (2009) shows that the AR test is uniformly most
powerful unbiased. We say that a size-α test φ is unbiased if Eβ,π [φ(β0)] ≥ α for all β �= β0 and
all π , so that the rejection probability when the null hypothesis is violated is at least as high as
the rejection probability when the null is correct. The AR test is unbiased, and Moreira (2009)
shows that, for any other size-α unbiased test φ, Eβ,π [φAR(β0) − φ(β0)] ≥ 0 for all β �= β0 and all
π. Thus, the AR test has (weakly) higher power than any other size-α unbiased test no matter the
true value of the parameters. In the strongly identified case, the AR test is asymptotically efficient
in the usual sense and so does not sacrifice power relative to the conventional t-test.

5.1.2. Practical performance of Anderson-Rubin confidence sets. Since AR confidence sets
are robust to weak identification and are efficient in the just-identified case, there is a strong case
for using these procedures in just-identified settings. To examine the practical impact of using AR
confidence sets, we return to our AER data set, limiting attention to just-identified specifications
with a single endogenous variable where we can estimate the joint variance–covariance matrix of
(π̂ , δ̂). In the sample of 34 specifications meeting these requirements, we find that AR confidence
sets are quite similar to t-statistic confidence sets in some cases but are longer in others. Specif-
ically, in two specifications, the first stage is not distinguishable from zero at the 5% level, so
AR confidence sets are infinite. In the remaining 32 specifications, AR confidence sets are 56.5%
longer than t-statistic confidence sets on average, although this difference drops to 20.3% if we
limit attention to specifications that report a first-stage F-statistic larger than 10 and to 0.04% if
we limit attention to specifications that report a first-stage F-statistic larger than 50. Complete
results are reported in the Supplemental Appendix, Section D.

5.2. Tests for Overidentified Models

In contrast to the just-identified case, in overidentified settings, the AR test is robust but inefficient
under strong identification. This has led to a large literature seeking procedures that perform
better in overidentified models.

Toward this end, note that, in the normal model in Equation 6, the AR statistic for testingH0 :
β = β0 depends on the data only through g(β0) = δ̂ − π̂β0. To construct procedures that perform
as well as the t-test in the strongly identified case, it is valuable to incorporate information from
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π̂ , which is informative about which deviations of δ − πβ0 from zero correspond to violations of
the parametric restrictions of the model, rather than the overidentifying restrictions. Specifically,
under alternative parameter value β, we have δ̂ − π̂β0 ∼ N (π (β − β0),	(β0)) (for discussion, see
Andrews 2016). Thus, to construct procedures that perform as well as the t-test in well-identified,
overidentified cases, several authors have considered test statistics that depend on (δ̂, π̂ ) through
more than δ̂ − π̂β0.

Once we seek to construct weak-instrument-robust tests that depend on the data throughmore
than g(β0), however, we encounter an immediate problem: Even under the null H0 : β = β0, the
distribution of (δ̂, π̂ ) depends on the (unknown) first-stage parameter π . Thus, for a generic test
statistic s(β0) that depends on (δ̂, π̂ ), the distribution of s(β0) under the null will typically depend
on π . For example, if we take s(β0) to be the absolute t-statistic |β̂ − β0|/σ̂β̂ , then we know that the
distribution of t-statistics under the null depends on the strength of the instruments. One could
in principle find the largest possible 1 − α quantile for s(β0) over the null consistent with some
set of values for π , for example, an initial confidence set, as in the Bonferroni approach of Staiger
& Stock (1997). For many statistics s(β0), however, this requires extensive simulation and will be
computationally intractable; moreover, it typically entails a loss of power.

An alternative approach eliminates dependence on π through conditioning. Specifically, under
H0 : β = β0, we have(

g(β0)
π̂

)
∼ N

((
0
π

)
,

(
	 (β0) 
δπ − 
ππβ0


πδ − 
ππβ0 
ππ

))
.

Thus, if we define

D(β ) = π̂ − (
πδ − 
ππβ )	(β )−1g(β ),

then we see that (g(β ),D(β )) is a one-to-one transformation of (δ̂, π̂ ), and under H0 : β = β0,(
g(β0)
D(β0)

)
∼ N

((
0
π

)
,

(
	 (β0) 0

0 �(β0)

))

for�(β0) = 
ππ − (
πδ − 
ππβ0)	 (β0)−1 (
δπ − 
ππβ0).Thus, under the null, the nuisance pa-
rameter π enters the distribution of the data only through the statistic D(β0), while g(β0) is inde-
pendent of D(β0) and has a known distribution. Thus, the conditional distribution of g(β0) [and
thus of (δ̂, π̂ )] given D(β0) does not depend on π . This conditioning approach was initially intro-
duced to the weak instruments literature by Moreira (2003), who studied the homoskedastic case.
In settings with homoskedastic errors, g(β0) and D(β0) are transformations of the statistics S and
T introduced by Moreira (2003) (see Andrews & Mikusheva 2016).

We can simulate the conditional distribution of any statistic s(β0) given D(β0) under the null
by drawing g(β0)∗ ∼ N (0,	(β0)), constructing (δ̂∗, π̂∗ ) as(

δ̂∗

π̂∗

)
=
(
I + β0 (
πδ − 
ππβ0)	 (β0)−1

β0I
(
πδ − 
ππβ0)	 (β0)−1 I

)(
g (β0)∗

D (β0)

)

for given D (β0), and tabulating the resulting distribution of s∗(β0) calculated based on (δ̂∗, π̂∗ ). If
we denote the conditional 1 − α quantile as cα (D(β0)), we can then construct a conditional test
based on s as φs = 1{s(β0) > cα (D(β0))}, and provided that s(β0) is continuously distributed condi-
tional onD(β0), this test has rejection probability exactly α under the null,Eβ0,π [φs(β0)] = α for all
π ; if the conditional distribution of s(β0) has point masses, then the test has size less than or equal
to α. As noted by Moreira (2003) for the homoskedastic case, this allows us to construct a size-α
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test based on any test statistic s. For further discussion of the simulation approach described above
and a formal size control result applicable to the nonhomoskedastic case, the reader is referred to
Andrews & Mikusheva (2016).

Tests that have rejection probability exactly α for all parameter values consistent with the null
are said to be similar. Lehmann & Romano (2005, theorem 4.3) imply that, if the set of values
of π is unrestricted, then all similar size-α tests of H0 : β = β0 are conditional tests in the sense
that their conditional rejection probability given D(β0) under the null is equal to α. Moreover, in
the present setting, the power functions for all tests are continuous, so if the set of values (β,π ) is
unrestricted, then all unbiased tests are necessarily similar.Thus, the class of conditional tests nests
the class of unbiased tests. Together, these results show that, in cases where (β,π ) is unrestricted,
the class of conditional tests has attractive properties. Within this class, however, there remains a
question of what test statistics s(β0) to use. In the homoskedastic case, we recommend using the
likelihood ratio statistic proposed by Moreira (2003). In the nonhomoskedastic case, however, the
literature has not yet converged on a recommendation other than to use one of several procedures
that are efficient under strong instruments.

5.2.1. Tests for the homoskedastic case. A wide variety of test statistics have been proposed
in the literature. Kleibergen (2002) proves that a particular score statistic (Breusch & Pagan 1980)
has correct size in the model with homoskedastic errors, while in the same model, Moreira (2003)
proposes the general conditioning approach for homoskedastic models and notes that both the AR
test and Kleibergen’s (2002) score test are conditional tests [trivially, since their conditional critical
values do not depend onD(β0)].Moreira (2003) further proposes conditionalWald and likelihood
ratio tests based on comparing the Wald and likelihood ratio statistics to a conditional critical
value. Unlike AR, the score and likelihood ratio statistics depend on both (δ̂, π̂ ), and conditional
tests based on these statistics are efficient in the well-identified case.

Andrews et al. (2006) find that the conditional likelihood ratio (CLR) test of Moreira (2003)
has very good power properties in the homoskedastic case with a single endogenous variable. The
Kronecker product structure of the variance matrix 
 in this setting means that the problem is
unchanged by linear transformations of the instruments. It is therefore natural to limit attention to
tests that are likewise invariant, in the sense that their value is unchanged by linear transformations
of the instruments. Andrews et al. (2006) show, however, that the power of such invariant tests
depends only on the correlation between the errors (U ,V ), the (variance-normalized) length of
the first-stage π , and the true parameter value β. Imposing an additional form of invariance to limit
attention to two-sided tests, Andrews et al. (2006) show numerically that the CLR test has power
close to the upper bound for the power of any invariant similar test over a wide range of parameter
values, where the calculation is made feasible by the low dimension of the invariant parameter
space. Andrews et al. (2008) extend this result by showing that the power envelope for invariant
nonsimilar tests is close to that for invariant similar tests, and thus that (a) there is not a substantial
power cost to imposing similarity in the homoskedastic setting if one limits attention to invariant
tests, and (b) that the CLR test performs well even in comparison to nonsimilar tests. Building
on these results, Mikusheva (2010) proves a near-optimality property for CLR confidence sets.
Andrews et al. (2019) add a note of caution, showing that there exist parameter values not explored
by Andrews et al. (2006) where the power of the CLR test is further from the power envelope but
still recommend the CLR test for the homoskedastic, single endogenous regressor setting.

5.2.2. Tests for the nonhomoskedastic case. The simplifications obtained using Kronecker
structure of 
 are no longer available in the nonhomoskedastic case, introducing substantial
complications.
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Motivated by the positive results for the CLR test, several authors have explored analogs and
generalizations of the CLR test for nonhomoskedastic settings. In a working paper, Andrews et al.
(2004) (for the published version of this paper, see Andrews et al. 2006), introduce a version of
the CLR test applicable to the nonhomoskedastic case, while Kleibergen (2005) introduces the
conditioning statistic D(β0) for the nonhomoskedastic case and develops score and quasi-CLR
statistics applicable in this setting. Andrews & Guggenberger (2015) introduce two alternative
quasi-CLR tests for nonhomoskedastic settings that allow a singular covariancematrix
. Andrews
(2016) studies tests based on linear combinations of AR and score statistics, noting that the CLR
test can be expressed in this way. Finally, Moreira & Moreira (2015) and Andrews & Mikusheva
(2016) introduce a direct generalization of the CLR test to settings with nonhomoskedastic errors,
which again compares the likelihood ratio statistic to a conditional critical value.

All of these extensions of the CLR test are efficient under strong identification, and all but
the proposal of Andrews (2016) reduce to the CLR test of Moreira (2003) in the homoskedastic,
single endogenous variable setting where the results of Andrews et al. (2006) apply. At the same
time, however, while these generalizations are intended for the nonhomoskedastic case, evidence
on their performance in the weakly identified case has largely been limited to simulation results.

To derive tests with provable optimality properties in the weakly identified nonhomoskedastic
case, a recent literature has focused on optimizing weighted average power, meaning power inte-
grated with respect to weights on (β,π ). Specifically the similar test maximizing weighted average
power with respect to the weights ν,

∫
Eβ,π [φ]dν(β,π ), rejects when

s(β0) =
∫

f (δ̂, π̂; β,π )dν(β,π )/ f (δ̂, π̂ |D(β0);β0)

exceeds its conditional critical value. Intuitively, this weighted average power optimal test rejects
when the observed data are sufficiently more likely to have arisen under the weighted alternative
H1 : β �= β0, weighted by ν, than under the null H0 : β = β0. As this description suggests, the
choice of the weight ν plays an important role in determining the power and other properties of
the resulting test, although the use of conditional critical values ensures size control for all choices
of ν.

Moreira&Moreira (2013) andMontielOlea (2018) show that weighted average power optimal
similar tests can attain essentially any admissible power function through an appropriate choice of
weights. Montiel Olea (2018) further proposes a particular weight ν for the homoskedastic case,
while Moreira & Moreira (2015) show that, unless the weights are chosen carefully, weighted
average power optimal similar tests may have poor power even in the homoskedastic case, and
that the problem can be still worse in the nonhomoskedastic case. To remedy this, they modify
the construction of weighted average power optimal tests to enforce a sufficient condition for local
unbiasedness and show that these tests perform well in simulation and are asymptotically efficient
in the case with strong instruments. Finally,Moreira&Ridder (2017) propose weights ν motivated
by invariance considerations. They further show that there exist parameter configurations in the
nonhomoskedastic case where tests that depend only on the AR and score statistics, like those of
Kleibergen (2005) and Andrews (2016), have poor power.

To summarize, in settings with a single endogenous regressor and homoskedastic errors,
the literature to date establishes good properties for the CLR test of Moreira (2003). In set-
tings with nonhomoskedastic errors, by contrast, a large number of procedures have been pro-
posed, but a consensus has not been reached on what procedures to use in practice, beyond the
recommendation that researchers use procedures that are efficient when the instruments are
strong. Consequently, it is not yet clear what procedure(s) to recommend in this case.
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5.3. Inference with Multiple Endogenous Regressors

The tests that we discuss above for models with a single endogenous regressor can all be general-
ized to tests of hypotheses on the p× 1 vector β in settings with multiple endogenous variables (as
in 19 of the 230 specifications in our AER sample). By inverting such tests, we can form simulta-
neous confidence sets for β.Test inversion withmultiple endogenous variables becomes practically
difficult for moderate- or high-dimensional β, since the number of grid points at which we need to
evaluate our test grows exponentially in the dimension (for a discussion of this issue, see Andrews
2016, supplemental materials). In contrast, high-dimensional settings do not appear common
in practice, and no specification in our AER data has more than four endogenous regressors. It is
in any event rare to report confidence sets for the full vector β in multidimensional settings with
strong instruments. Instead, it is far more common to report standard errors or confidence sets
for one element of β at a time.

Formally, suppose that we decompose β = (β1,β2) and are interested in tests or confidence sets
for the subvector β1 alone. This is known as the subvector inference problem. One possibility for
subvector inference is the projection method. In the projection method, we begin with a confi-
dence set CSβ for the full parameter vector β and then form a confidence set for β1 by collecting
the implied set of values

CSβ1 = {
β1 : there exists β2 such that (β1,β2) ∈ CSβ

}
.

This is called the projection method because we can interpretCSβ1 as the projection of CSβ onto
the linear subspace corresponding to β1. The projection method was advocated for the weak in-
struments problem by Dufour (1997), Dufour & Jasiak (2001), and Dufour & Taamouti (2005).
Dufour & Taamouti (2005) derive analytic expressions for projection-based confidence sets using
the AR statistic in the homoskedastic case.

Unfortunately, the projection method frequently suffers from poor power.When used with the
AR statistic, for example, we can interpret the projection method as minimizing AR(β1,β2) with
respect to the nuisance parameter β2 and then comparing minβ2 AR(β1,β2) to the same χ2

k critical
value that we would have used without minimization. As a result, projection-method confidence
sets often cover the true parameter value with probability strictly higher than the nominal level
and are thus conservative.

If the instruments are strong for the purposes of estimating β2 (so that, if β1 were known,
estimation of β2 would be standard), then these problems have a simple solution: We can reduce
our degrees of freedom to account for minimization over the nuisance parameter. Results along
these lines for different tests are discussed by Stock & Wright (2000), Kleibergen (2005), and
Andrews & Mikusheva (2016).

If we cannot assume that β2 is strongly identified, then matters are unfortunately more com-
plicated. Guggenberger et al. (2012) show that, in the setting with homoskedastic errors, one can
reduce the degrees of freedom for the AR statistic to mitigate projection conservativeness (using
a χ2

k−p2 critical value for p2 the dimension of β2), and Guggenberger et al. (2019) propose a fur-
ther modification to improve power. However, Guggenberger et al. (2012) show that the analog
of their result fails for the score statistic of Kleibergen (2002). Moreover, Lee (2015) shows that
even the results of Guggenberger et al. (2012) for the AR statistic do not extend to the general
nonhomoskedastic case.

To improve the power of the projection method without assuming that the nuisance parameter
β2 is strongly identified, Chaudhuri & Zivot (2011) propose a modified projection approach that
chooses the initial confidence set CSβ to ensure improved performance for CSβ1 in the case with
strong instruments. In particular, Chaudhuri & Zivot (2011) base CSβ on the combination of a

www.annualreviews.org • Weak Instruments 747



EC11CH27_Stock ARjats.cls July 18, 2019 11:31

modified score statistic with an AR statistic and show that the resulting CSβ1 comes arbitrarily
close to efficiency in the case with strong instruments. Andrews (2018) proposes a variant of this
approach for constructing confidence sets for functions f (β ) of the parameter vector other than
subvectors, while Andrews (2017) generalizes the work of Chaudhuri & Zivot (2011) in several di-
rections, introducing a variety of test statistics and deriving confidence sets that are asymptotically
efficient in the strongly identified case. Finally, Zhu (2015) introduces a Bonferroni approach for
subvector inference that provides an alternative to projection.

5.4. Two-Step Confidence Sets

Weak-instrument-robust confidence sets are not widely reported in practice. For instance, only
two papers in our AER sample reported robust confidence sets. When such confidence sets are
reported, it often appears to be because the authors have uncovered evidence that their instruments
are weak. For example, in a survey of 35 empirical papers that reported confidence sets based on
Moreira (2003), Andrews (2018) finds that 29 had at least one specification reporting a first-stage
F-statistic smaller than 10.

Used in this way, robust confidence sets may act as an alternative to dropping specifications
altogether, which, as discussed in Section 4.3, can result in large size distortions. In particular, one
can consider constructing a two-step confidence set, where one first assesses instrument strength
and then reports conventional confidence sets if the instruments appear strong and a robust confi-
dence set if they appear weak. As discussed by Andrews (2018), the results of Stock & Yogo (2005)
imply bounds on the size of two-step confidence sets based on the first-stage F-statistic in ho-
moskedastic or just-identified settings. In overidentified nonhomoskedastic settings, by contrast,
Andrews (2018) shows that two-step confidence sets based on the robust first-stage F-statistic FR
and conventional cutoffs can have large size distortions. To address this, Andrews (2018) proposes
an approach to detecting weak instruments by comparing robust and nonrobust confidence sets.
This approach controls coverage distortions for two-step confidence sets in both homoskedastic
and nonhomoskedastic settings, including in cases with multiple endogenous variables.

The implications of the negative results of Andrews (2018) for two-step confidence sets based
on FR in empirically relevant settings, or for two-step confidence sets based on FEff, are not clear.
To examine this issue, Figure 6 plots the size of two-step tests based on the effective F-statistic
(which use a t-test if FEff > 10 and an AR test if FEff ≤ 10) against the average effective F-statistic
in simulations based on our AER data.

The results of Figure 6 show that two-step confidence sets based on the effective F-statistic
have at most mild size distortions in simulations calibrated to our AER data. Specifically, no spec-
ification yields size exceeding 10%, and even when we consider upper bounds, no specification
yields size exceeding 11.5%.

6. OPEN QUESTIONS

While considerable progress has been made in both detecting weak instruments and developing
identification-robust confidence sets, several important open questions remain. As suggested in
Section 5, no consensus has been reached on what inference procedures to use in overidentified
models with nonhomoskedastic errors. Likewise, existing optimality results for weak-instrument-
robust inference on subsets of parameters only address behavior in the strongly identified case.

Simulation results calibrated to our AER sample raise additional questions. First, we found that
conventional t-tests appear to perform reasonably well in specifications where the average effective
F-statistic is larger than 10, even in overidentified, nonhomoskedastic cases. Likewise, we found
that two-step confidence sets based on the effective F-statistic appear to have well-controlled
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Figure 6

Rejection probability for a nominal 5% two-step test that uses 5% t-test and 5% Anderson-Rubin test when the effective F-statistic is
larger than and smaller than 10, respectively, limited to the 106 out of 124 specifications with average effective F smaller than 50.
Just-identified specifications are plotted as solid black, while overidentified specifications are plotted as blue outlines. (a) Size at
parameter values estimated from American Economic Review data. (b) 5th and (c) 95th percentiles of size under the Bayesian exercise
described in Section 3. The vertical red line in each panel corresponds to a first-stage F of 10.

size distortions. These results suggest that the effective F-statistic might provide a useful gauge
of identification strength in a wider range of cases than is suggested by the current theoretical
literature, but a more extensive and formal exploration of whether this is in fact the case, and if so,
why, is needed.

Another set of open questions concerns model misspecification. Existing weak-instrument-
robust procedures assume that the constant-effect linear IV model holds. If the model is instead
misspecified, for example, because the instruments are invalid, then, as noted by Guggenberger
(2012), existing weak-instrument-robust confidence sets do not have correct coverage for the true
parameter value. Of course, the same is also true for conventional confidence sets with strong
but invalid instruments, so this issue is not unique to weak-instrument-robust confidence sets. In
overidentified settings with weak instruments, however, the arguments for size control of existing
procedures break down even if one considers inference on pseudotrue parameter values (e.g., the
population analog of the two-stage least squares or GMM coefficient). This issue is noted and
corrected for two-stage least squares estimates in strong-instrument settings with heterogeneous
treatment effects by Imbens & Angrist (1994, appendix) and more recently by Lee (2018). To the
best of our knowledge, however, analogous results have not been developed for settings with weak
instruments.

Concern about model misspecification could also interact with the practice of screening on in-
strument strength: If one thinks that many instruments used in practice are slightly invalid [in the
spirit of, e.g., Conley et al. (2012)], then, while this will result in size distortions, it typically will
not qualitatively change results when the instruments are strong. However, when the instruments
are weak, even a small degree of instrument invalidity could account for most of the relationship
between Z and Y and so lead to qualitatively quite different conclusions. To address this, re-
searchers may wish to limit attention to settings where the instruments are sufficiently strong for
them to be confident that results will be qualitatively robust to low levels of instrument invalidity.
How to make this argument precise and conduct inference, however, we leave to future work.
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Another important open question concerns the validity of the normal approximation to the
distribution of the reduced-form and first-stage coefficients. In this review, including in our simu-
lations, we use the model in Equation 6, which takes the reduced-form and first-stage coefficients
(δ̂, π̂ ) to be normally distributed with known variance. While this approximation can be justified
with asymptotic arguments, whether it is reasonable in a given application is necessarily case spe-
cific. Important recent work by Young (2018) casts serious doubt on the quality of this normal
approximation in many applications.

Using a sample of studies published in the journals of the American Economic Association
that overlaps with but is substantially larger than our AER sample, Young (2018) finds that many
reported results are heavily influenced by a small number of observations or clusters. Since the cen-
tral limit theorem used to derive the limiting normal distribution in Equation 5 for the reduced-
form and first-stage coefficients assumes that the influence of each observation is small, this sug-
gests that the normal approximation may be unreasonable. Moreover, Young (2018) notes that
variance estimates 
̂ for settings with nonhomoskedastic data (which Young calls the non-IID
case) can be extremely noisy in finite samples. In simulations that account for these factors, Young
finds large size distortions for both conventional and AR tests, with particularly severe distortions
for AR tests in overidentified settings. Young (2018) further finds that first-stage F-statistics do
not appear to provide a reliable guide to the performance of conventional inference procedures,
and that we may spuriously observe large first-stage F-statistics even when the instruments are
irrelevant, although he finds somewhat better behavior for the tests of Montiel Olea & Pflueger
(2013). To address these issues, Young (2018) suggests using the bootstrap for inference.

We know that bootstrap procedures based on IV estimates or t-statistics are generally invalid
when the instruments are weak, and so are not a satisfactory solution in settings with weak instru-
ments. However, appropriately constructed bootstrap procedures based on identification-robust
statistics may remain valid. For example,Moreira et al. (2009) show validity of bootstrapped score
and AR tests under weak instruments in the homoskedastic case, where it is important for their
results that the bootstrap be recentered to ensure that δ̂ − π̂β has mean zero under the bootstrap
distribution. Davidson &MacKinnon (2014) propose additional bootstrap procedures but do not
establish their validity when the instruments are weak.We expect that it should be possible to ex-
tend the results of Moreira et al. (2009) showing validity of bootstrap-based identification-robust
tests to the nonhomoskedastic case and to other identification-robust procedures. At the same
time, even when used with identification-robust test statistics, the bootstrap is not a panacea, and
Wang & Tchatoka (2018) show that the bootstrap does not ensure size control for subvector in-
ference based on the AR statistic. Given the concerns raised by Young (2018) and the practical
importance of the nonhomoskedastic case, such an extension seems like an important topic for
future work.
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