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Abstract

Market design applies economic principles to the often messy problems of
real-world exchange in which goods may not be homogeneous, the identi-
ties of trading partners may matter, contracts may not be executed, and even
the formulation of trade as balancing supply and demand may be unhelpful.
This article recounts the mostly academic research advancing the analysis
and design of such markets. Among the highlighted applications are ones
involving financial markets, Internet advertising, electricity auctions, spec-
trum auctions, cryptocurrencies, and combinatorial procurements.
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INTRODUCTION

Introductory economics courses begin to teach about markets by focusing on trades of a single
homogeneous good with the following three characteristics: The identities of the buyer and seller
do not matter, prices equilibrate supply and demand, and a law of one price applies. Real markets
are rarely so simple and may be designed to deal with the ways that these characteristics may fail:
The identities of trading partners matter, prices play little or no role in market clearing, or prices
vary greatly among similar transactions.

In the marriage market, for example, men and women care deeply about the identities of their
partners, even when there are no dowries or bride-prices involved (Roth 2016). Prices play little
role in limiting the demand for colleges or in guiding the matching of children to schools or
kidney donors to kidney patients. There is no single price for Internet advertising. In markets for
advertising on Internet search pages, auctions determine a separate price for each ad impression.

The law of one price is tricky to interpret in markets that feature fine distinctions among
similar-seeming goods. In electrical power markets, energy is distinguished by the time and loca-
tion at which it is to be made available: Power in Boston cannot serve customers in Los Angeles,
and power at midnight cannot run air conditioning units on a hot midafternoon. In these markets,
shorter time intervals and smaller geographic areas have become increasingly common. On the
Internet, the most relevant ad to show to a user varies not only across users but also over time
for a single user. It can vary depending, for example, on whether the user is shopping to replace a
broken kitchen appliance, refinance a mortgage, or plan a vacation.

Another way that the law of one price can fail is that the prices for individual goods may depend
on what else the buyer purchases. A consumer who buys a new mobile phone may be offered a
discounted price for accessories such as headphones or wireless chargers, so that the discounted
price is really for the package of goods. In electricity auctions, a bidder that has fired up its plant
to produce some amount of energy may offer additional units of energy at a lower price.

In textbook treatments of market clearing, products are homogeneous, and the only important
constraint to be satisfied is to set the quantity supplied equal to the quantity demanded, but those
treatments ignore the challenges resulting from heterogeneity among products. Some challenges
arise even for a seemingly homogeneous commodity like coffee beans, because grading standards
must be set to define product categories. Even within a single grade, not everyone agrees that
Kenyan and Rwandan coffee beans are exactly the same. Sometimes, heterogeneity is so important
that the standard formulation of the problem in terms of resource constraints and prices obfuscates
the deeper economic issues. For example, consider the challenge of assigning television stations
to broadcast channels to be used for over-the-air broadcasting. A common way to represent the
constraints on this assignment is not as limits on a set of resources to which prices can be assigned
but as a graph in which each TV station is a node and two stations are connected by an arc if they
cannot be assigned to the same channel without creating interference (Milgrom 2017). A feasible
allocation assigns channels to stations so that no two stations that are connected in the graph
get the same channel. If we substitute the word color for channel, this is a classic graph-coloring
problem: Find a way to color the nodes of a graph so that no two connected nodes are the same
color. Graph coloring problems are computationally challenging and cannot be efficiently solved
by finding prices to assign to each of the many constraints. Organizing a market to rely on prices
to guide these transactions is unlikely to generate desirable outcomes.

After treatingmarkets for a single homogeneous good, textbooks often turn to study substitutes
and complements. When goods are substitutes, it has long been known (Arrow et al. 1959) that
prices that are adjusted separately in eachmarket can promote simultaneous clearing in all markets,
but complementary goods lead to much more complex challenges, particularly if the goods are
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tightly connected. For example, a property developer who buys land from small landholders for a
new shopping center may find that each plot is muchmore valuable if the adjacent plots can also be
acquired, so it may notmake sense to approach each transaction separately.McAdams (2018) offers
the interesting example in the case of water markets. A certain farm that is using water to irrigate
its fields is situated upstream of a nesting habitat for an endangered bird species, which is valued
by an environmental group. A downstream farm probably has lower value for water rights, but its
use of water preserves the nesting habitat. In this example, if water use and water flow are both
marketed products, then the upstream farmer should sell their rights only if the sum of the water-
use value to the downstream farmer plus the water-flow value to the environmental group is high.

Most textbook studies of markets focus on resource allocation, with prices playing a support-
ing role. In financial markets, however, the emphasis shifts from resource allocation to the prices
themselves.Traders in these markets seek to anticipate and take advantage of others’ trading activ-
ity or to defend themselves against such behavior from other traders. Successful trading platforms
need to be designed to meet the needs of market participants.

As these examples suggest, the field of market design poses a rich set of problems. Market
operators need to structure their trading platforms so that participants can be matched with
the right partners, trust and quality can be assured, payments can be facilitated, and prices can
be protected against manipulators, and they need to find ways to charge for their services that the
matching partners cannot avoid once introductions have beenmade. As more transactions become
automated and move to the Internet, the rules governing transactions have become more explicit,
making them easier for academics to study and for bad actors to exploit. Given its practical im-
portance, market design has attracted increasing attention not just in academic journals but also
in industry journals, and not just from economists but also from operations researchers, industry
professionals, and regulators. Given the recency of the developments, understanding is evolving
rapidly, and many research agendas are still underway.

This review seeks to highlight some of the questions and challenges found in the literature
about modern marketplaces and is organized around some of the important applications of mar-
ket design. The following sections study Internet advertising, radio spectrum auctions, electricity
auctions, financial markets and electronic trading, cryptocurrencies, procurement auctions, and
combinatorial auctions.

INTERNET ADVERTISING

Before 2000, the Internet was mostly regarded as just another advertisingmedium, similar to print,
radio, or television: Internet publishers sold to advertisers under contracts, with prices largely
dependent on the number of impressions the site could deliver to a particular category of users.
By 2017, the volume of advertising on the Internet had grown to about $88 billion,with sponsored-
search and display ads each accounting for about 45% (PricewaterhouseCoopers 2018).

The first big changes to distinguish advertising on the Internet came with sponsored search,
according to which an advertiser paid to have its ads appear alongside organic search results when
a user searched for particular keywords. For example, an auto insurance companymight select “in-
surance” as one of its keywords, triggering its ad whenever a user searched using that term.Unlike
traditional print and broadcast advertising, for which ads might be shown to mostly uninterested
users, search ads would more often be shown to users who were interested in the advertiser’s prod-
uct or service. Google and other search engines soon introduced auction systems that, each time a
user searched, would determine which ad to show and what price the advertiser would pay. With
billions of searches being run every day, each taking just a few milliseconds to complete, Google
was soon running far more auctions than any other company (Evans 2009).
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Sponsored searches quickly began to generate huge revenues for Google, and that inspired
other Internet publishers to investigate ways to target users on their websites as well. With no
search terms to rely upon, they began to gather as much other information about each user as
they could and used it to target advertisements. A user who had bought a flight from Chicago to
New York City or read articles about new plays on Broadway might soon after be shown ads for
Manhattan hotels, restaurants, and attractions. Publishers and others developed systematic ways
to report and share information so a user who bought a ticket on an airline’s website could see a
travel-related ad on a completely unrelated website. Initially, advertisers and publishers depended
on traditional advertising contracts to govern their relationships, but as economic exchange tech-
nologies improved, ad exchanges began to run auctions both to select which ad to post for each
opportunity and to set a separate price for each.

In order to expand their businesses, there were two large and novel trust challenges that the
new Internet-based ad markets needed to address. In the past, ads on a television show or in
a newspaper were priced in proportion to the number of ad impressions, called per-impression
prices, so an advertiser might pay $15 per thousand impressions in certain media. To check that
the ads were actually shown, it was easy to turn on the TV or buy a newspaper, and independent
sources could verify claims about circulation or viewership numbers. On the Internet, however,
with individually targeted ads, how could an advertiser verify, say, Yahoo’s claim that it had shown
1.3 million ads to various individuals on a diverse set of its web pages? Furthermore, when an
ad for soccer balls appears in Sports Illustrated magazine, the advertiser can be pretty confident
about the demographics of its audience and can estimate the ad value from that. But, how can the
advertiser trust that its Internet ads were shown to users who might be interested in its product
or service?

Search engines tackled these novel challenges by charging advertisers not for the impressions
they bought but for the clicks on their ads (Lahaie et al. 2007). An advertiser still cannot monitor
where or how often its ads are shown, but it can count the visits to its website originating from any
source and can avoid paying to show ads to users who are too disinterested to click on the ad. This
pricing solution was a practical economic innovation to mitigate the trust problem. The solution
is not a perfect one: Some clicks may be fraudulent ones by dishonest publishers or the bots of
a firm that wishes to increase a competitor’s costs. Nevertheless, click-based pricing was widely
adopted as an improvement, and it inspired other changes in the market as well. Search engines
like Google, which were paid for clicks on the ads they showed, invested in research predicting
the click rates of different ads.

Another innovation that search engines developed was broad match, which improves match-
ing between advertisers and impressions by making it easier and less costly to participate in the
relevant auctions (Amaldoss et al. 2016; see also Dhangwatnotai 2011). To illustrate broad match,
suppose that a company specifies property insurance as a keyword and that the user searches for
something else, such as fire insurance or insurance protection against property damage. Although
neither of these searches includes the exact phrase property insurance, the insurer might still want
to show its ad to these users. Broad match allows the search company’s algorithms to judge which
of these phrases should trigger the ad, potentially allowing more effective ad campaigns. More-
over, the search engine has an incentive to predict the click rate of these broad matches accurately
because improving the match between ads and opportunities leads to higher ad revenue.

Eliaz & Spiegler (2016) further develop these ideas, showing that a properly designed broad
match algorithm improves consumer search and increases competition among advertisers and can
improve competition among publishers as well. Broad match was the first of several technolo-
gies that simplify bidding, allowing advertisers to express values simply for one narrow set of
outcomes, while relying on search providers’ algorithms to infer values for other outcomes and
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promote those. The market design literature has paid only limited attention to simplification, al-
though Levin &Milgrom (2010) provide an exception, studying how conflation—the suppressing
of distinctions—can sometimes simplify and lubricate the operation of markets.

When several advertisers compete to show their sponsored ads alongside the natural search
results, the search provider conducts an auction to decide which ad to show. In the early history
of these auctions, winners paid the prices that they had bid. Two factors combined to make that
system problematic. First, there were multiple ad spots on each search page. Second, bidding was
often controlled by automated bots, which could observe the bids from previous auctions for the
same keyword. The bots were often programmed to predict that the same bids would be repeated
and would optimize their own bids accordingly. The economic effect of the bots operating in such
an environment generates a characteristic dynamic pattern of bids and prices. To illustrate this
pattern most simply, let us suppose that the number of bidders is two, the number of slots is two,
and there is a low reserve price for each slot. In a sequence of auctions, the losing bidder is inclined
to increase its bid by just enough to win the first position. Prices climb, one penny at a time, until
one bidder concludes it would do better to reduce its bid to win the second position at a low price,
rather than to increase its bid to win the first position at a high price. Once the low bidder does
that, however, the high bidder finds that it can still win first position with a much lower bid. It
reduces its bid to be just enough to win and the whole cycle starts again. These cycles, known to
economists as Edgeworth cycles, are described and graphed by Edelman & Ostrovsky (2007).

This instability of prices and winners can be a problem for many reasons, not least being that
the resulting allocations are inefficient because the highest-value bidder wins only about half the
time.Google responded by changing its auction rules. Instead of paying the amount of its winning
bid, a winner would pay only the minimum price it would have needed to bid to win its position.
So, if one bidder bids $2 and another bids $1, the $2 bidder would still win the top position but
pay a price of just $1.01 because that is the lowest price that would win the first position. This
auction format is nowwidely known as the generalized second-price auction. Adopting this format
eliminated bidders’ incentives to make frequent bid adjustments and stabilized both the price and
the winner in these auctions.

The theory of the generalized second-price auction is studied by Edelman et al. (2007) and
Varian (2007) using noncooperative game theoretic models. Among the full-information Nash
equilibria of this game is one in undominated strategies at which the prices are competitive equi-
librium prices. This was called the locally envy-free equilibrium and the symmetric equilibrium
in the two papers, respectively. In this Nash equilibrium, the auction outcome is efficient, and the
prices coincide with those of the dominant strategy solution of a Vickrey auction. However, these
analyses fail to apply general game theoretic reasoning to select an equilibrium. These same con-
clusions about prices and efficiency of the pure-strategy equilibrium were later confirmed to hold
for two general game theoretic refinements: test-set equilibrium (Milgrom & Mollner 2018a) or
extended proper equilibrium (Milgrom & Mollner 2018b).

Athey & Ellison (2011) emphasize that, besides the advertiser and the publisher, there is an-
other important party in an ad auction: the consumer. Relevant ads improve consumer experience,
helping them to find the sellers from whom they prefer to buy. Improving consumer experience
not only benefits consumers directly but also increases their reliance on search ads and with it the
sales and revenues for advertisers and publishers, too.

Sponsored-search advertising, which now accounts for about 45% of all Internet advertising
revenue, achieved its remarkable success by targeting ads to the specific and current desires of
consumers, as indicated by the search terms they typed. This inspired imitators hoping to target
ads on other websites as well, using whatever information they could about a consumer and their
current interests. Initially, this so-called display advertising was handicapped as many advertisers,
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worried about the lack of good information to guide their ad placements, participated in auctions
only for sponsored-search advertising or for search plus display ads on a few carefully selected
websites. With so many opportunities to advertise on the web and such limited participation by
advertisers, the early display advertising markets were thin and included many low-value matches.
Limited information was harming this market.

There have been several attempts to solve this information problem. Hu et al. (2015) describe
the use of pay-for-performance advertising in which advertisers pay not for clicks but for some
measure of user behavior after the user has clicked on an ad.An early version of this idea introduced
by Google in 2004 was its Smart Pricing program,which was designed to allowGoogle to use bids
for sponsored-search advertising for ads shown on other websites. A participating advertiser in this
program specifies what it means by the performance of a user’s click. For one advertiser, it might
mean that the click resulted in a sale; for another, it might mean the user completed a form or
visited a second page on the advertiser’s website. Under the Smart Pricing contract, the advertiser
allows Google to monitor the performance of clicks on its ads on the advertiser’s website. Smart
Pricing then adjusts an advertiser’s sponsored-search bid per click on each different website based
on the predicted relative performance of clicks from that site. This makes it cheaper and easier
for a sponsored-search advertiser to expand its advertising program onto the wider Internet.

Smart Pricing is a response to a traditional challenge for markets: the problem of adverse selec-
tion. Ad opportunities are very heterogeneous, with some impressions presenting a much greater
likelihood of a large and profitable sale. For example, a click on an ad for mortgage financing is
much more likely to be shown to a serious potential borrower if the ad is on a financial website
compared to a sporting goods website.Advertisers who are less sophisticated than others in picking
among impressions are likely to get an unfavorable or adverse selection of impressions and suffer
a lower yield on their advertising budgets. Smart Pricing is one way to mitigate that by allowing
the search company to adjust the bid for each ad impression based on a statistical assessment of
the likelihood that an ad will result in a good outcome.

Another attempt to deal with a part of the adverse selection problem adjusts the auction rule
that might be used by a large publisher that shows ads under contract with its regular contract
advertisers as well as to others. An example of a contract advertiser might be a shopping mall that
is advertising its new weekend hours both online and in a newspaper. Its ads are shown to large
numbers of people in its geographic area, intending to create awareness among them without
inspiring any user to click on an ad. Even if the mall’s promotions are successful in attracting cus-
tomers, it will find it difficult to distinguish which ads or promotion efforts are most responsible
for its success. The publisher’s other advertisers might be sellers more narrowly targeting cus-
tomers who are thought to be particularly good sales prospects, for example, because they shop
frequently in the online stores, have shown interest online in their products, have high incomes, or
have responded well to past online advertising. Advertisers in this second category are sometimes
called performance advertisers because they typically seek some specific online performance from
the consumer such as buying a product, viewing a video, or visiting an online store. These per-
formance advertisers seek out better information about the individual online consumers, which
creates a potential for adverse selection. To the extent that the targeted consumers are people
with higher incomes or who are more likely to respond to online advertising, their selection by
performance advertisers detracts from the audience left for the contract advertisers.

Arnosti et al. (2016) investigate an auction design that aims to mitigate the adverse selec-
tion against contract advertisers suffering an information disadvantage compared to performance
advertisers. In their theoretical model, a publisher has committed to sell some fixed number
(or fraction) of its relevant impressions to some contract advertiser that can anticipate the av-
erage value of a random impression in that set but cannot observe its profits from individual
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impressions. The model also has two or more performance advertisers, each of which knows its
own value for any individual impression. In the second-price auction traditionally used for allo-
cating Internet display ad impressions, there is good matching for performance advertisers but
adverse selection against the contract advertiser. The paper studies whether there is an alternative
auction design that might have better properties. It formulates the problem by assuming that each
individual advertiser’s value is the product of an idiosyncratic match value and a common value
that depends on the user.

The paper deviates from the usual mechanism design approach that is more common in the
auctions literature. Instead of solving a maximization, it approaches the problem axiomatically,
seeking to devise an auction design with five good properties: The auction should be (a) strategy-
proof (so bidding truthfully is a dominant strategy), (b) efficient in its assignments among per-
formance advertisers, (c) anonymous (symmetric among performance advertisers), (d) false-name
proof (no bidder can reduce its price by submitting an extra bid, and the seller cannot raise its price
by submitting a high shill bid), and (e) adverse-selection free (the contract advertiser’s distribution
of match values must match those of the total population). Setting aside the second property, none
of the other properties are implied by efficiency, and none of the five are implied by revenue max-
imization, so there is no guarantee that such an auction, even if it exists, would always perform
well. The paper shows that there is a unique family of modified second-bid auctions that has the
five properties. The family is parameterized by a single parameter α ≥ 1. In these auctions, the
highest bidder wins if the ratio of its bid to the second highest bid strictly exceeds α, and in that
case the impression is awarded to the highest bidder at a price equal to α times the second highest
bid. Otherwise, the impression is awarded to the contract bidder.

To assess the performance of this novel design, the paper includes a numerical analysis of its
performance assuming that the match values are drawn independently from a power law distribu-
tion. The power law describes a special environment in which most of the expected value of good
matching comes from very good matches. Assuming that there is a contract that specifies the frac-
tion of impressions that must be assigned to the contract advertiser, they find that the worst-case
ratio of the value achieved by themechanism to the value of the full-information optimal matching
is nearly 95%.

The previous analysis takes the set of contract ads as fixed. How should a publisher decide the
allocation between contract ads and performance ads? Sayedi (2018) studies that question, taking
the perspective that contract ads can set a reserve price in an ad auction. According to classical
auction theory, reserves are most valuable when the number of likely bidders is small. Setting the
right fraction of contract ads allows the seller to ensure that carefully targeted advertising, which
delivers high value to performance ad buyers, can also maximize revenues for the seller.

The Internet advertising market is huge and quite dynamic, as new targeting methods, new
ways to include online advertising in larger ad campaigns, and new options for how even simple
search ads are shown continue to be developed.

One recent development in sponsored-search advertising is variable-size ads. In the first decade
of sponsored-search advertising, all ads were restricted to be the same size, consisting of a few lines
of carefully chosen prose and a link to some website. Today, sponsored-search ads can vary in size,
from perhaps 3 to 18 lines.When all ads were the same size, one could conceptualize the problem
as which ads to show from the limited number that fit on a page and which ad to show in first
position, second position, and so on. With variable-size ads, the number that can fit on a page
is not fixed, the position number does not fully determine the location of the ad on the search
page, and the size of an advertiser’s ad may depend on the other winning bids. This created new
challenges in determining which ads to show and how much to charge and in deciding how bids
should be structured.
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Some initial attempts to deal with this had bidders offer different prices for ads of different
sizes. Even so, fitting ads onto a page to maximize total value is what operations researchers call
the knapsack problem, which is a computationally difficult problem (i.e., it is NP-hard). Pricing
for such problems is correspondingly hard. If the number of available lines is small, this might
conceivably be solvable by using a Vickrey auction, but such auctions can sometimes lead to very
low prices, even in highly competitive situations (Ausubel & Milgrom 2006). No consensus has
yet emerged about the best way to solve this problem.

The market for Internet display advertising received another shock in 2016 with the advent
of header bidding (Wang 2018). Prior to that time, a publisher who had space to sell on its page
would send its opportunity to an ad exchange, where qualified advertisers would bid on impres-
sions. If the publisher got back an acceptable price, it would show the impression; otherwise, it
might pass the impression along to another exchange or show its own house ad. Now, however,
many publishers are soliciting and comparing bids from various ad exchanges. This is a deeply
problematic market organization. For example, suppose that the bids in the first exchange are $5
and $3, while those in the second exchange are $10 and $2. Using a second-price auction, the
price in the first exchange is $3 while that in the second exchange is $2, so the bidder who bid
$5 wins over the bidder who bid $10. This organization creates a huge inefficiency, and there are
other problems, too. The bidders who bid $5 in one exchange and $10 in the other could be the
same bidder, running two different kinds of ad campaigns and unaware that it is bidding against
itself. This pattern is most unlikely to persist. It could lead advertisers to prefer exchanges that use
first-price auctions and, depending on what other services the exchanges offer, it could then lead
to further consolidation in the industry as each bidder seeks to use just one exchange for all its ad
campaigns.

RADIO SPECTRUM AUCTIONS

Until the 1990s, radio spectrum licenses were nearly always allocated based on administrative
procedures to determine the public interest, colloquially known as beauty contests. Building on
work by law student Leo Herzel (1951), Ronald Coase (1959) became the most famous early
advocate of using auctions instead, but his recommendations long fell on deaf ears. Critics mocked
the idea, saying that the chances of using auctions to allocate radio spectrum licenses in the United
States were about the same as those of the Easter bunny winning the Preakness. But in 1994,
Coase’s fantasy became a reality, and one that was soon widely copied around the world.

Why did it take so long? Coase’s early analysis was rooted in the traditional textbook theory of
markets, which had been applied successfully for Treasury securities but not much else. Because
Coase’s analysis gave no consideration to the many complexities cited in the introduction to this
paper, it was ill-suited to guide the creation of the auctions for multiple, heterogeneous licenses
that were needed in the United States. Before 1994, failure to account for those complexities had
resulted in a series of failed auctions in other countries, as described by McMillan (1994).

In 1993, when Congress first authorized the use of auctions for radio spectrum in the United
States, the Federal Communications Commission (FCC), having no previous experience with auc-
tions, put its economists in charge. The first big auction would entail selling more than a thousand
different radio spectrum licenses, all for use in mobile phones, but distinguished by the geographic
areas they covered and the frequencies to be used. FCC economist Evan Kwerel led this celebrated
effort and issued a proposal that extensively referenced academic work on auction theory. After
a months-long process of hearings and debate, the FCC adopted what was called the simulta-
neous multiple round auction (SMRA). Eventually, that new auction design was used for more
than $100 billion of radio spectrum sales around the world (Milgrom 2004).
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The SMRA proceeds in a series of rounds, with bidders free to place bids on many licenses,
provided that they exceed the previous highest bid by some minimum amount. The design also
included the Milgrom-Wilson activity rule, which specified roughly that no bidder could increase
its activity from round to round, which meant that it could not bid on a larger volume of licenses
than in the previous round. Adapting the logic of Kelso & Crawford (1982) to this application,
Milgrom (2000) shows that if licenses are substitutes for each bidder and bidders bid for the most
profitable package at the lowest possible price in each round, then the eventual allocation would
be nearly efficient (to within a price increment), and the final prices would be approximately com-
petitive, market-clearing prices. The activity rule, which ensures that the auction proceeds to its
logical conclusion at a reasonable pace, does not alter that theoretical conclusion.

Much was learned from the early uses of the SMRA design. One problem of the design is that
it is slow and can take many rounds.When the auction involves the sale of multiple units of several
kinds of products, essentially the same process can be accelerated by having the auctioneer, rather
than the bidders, name prices and set a single price for each type of good, with the price being
increased in each round for any category in which demand exceeds supply. This can substantially
speed up the auction process (Milgrom et al. 2012).

Another problem is that bidders may try to collude or divide markets. For example, in the
auction for third-generation mobile licenses in Germany in 1999, Mannesmann and T-Mobile
each managed to win an equal number of licenses without competing against one another. Cit-
ing that case and others, Klemperer (2002, p. 170) argues that “what really matters in auction
design” is traditional industrial policy to prevent “collusive, entry-deterring and predatory behav-
ior.” The importance of these elements is also endorsed by other analysts. Cramton & Schwartz
(2002) find that bidders sometimes collude by using bids to signal, that is, to make threats
and promises and to offer deals. Ausubel et al. (2014) find that bidders in an SMRA will often
find it profitable to exercise market power by reducing demand to reduce the prices that they
pay.

These problems are similar to ones found in other concentrated markets, and the impact on
prices and efficiency can be very large. For example, suppose there are two items for sale and two
bidders who have values of $5 and $3 per item. The efficient outcome would assign both items to
the first bidder for a total value of $10. Suppose both bidders submit bids in the form of demand
functions, that is, maximum prices for one item or two and that the price is set as the lowest
market-clearing price. There is a perfect equilibrium of this game in which each bidder bids its
full value but for only one item, each wins one item, and the market-clearing price is zero. If the
prices are determined dynamically with the bidders taking turns responding to prices announced
by the auctioneer, who starts at zero and raises the price by one if there is excess demand, then this
outcome is the unique subgame perfect equilibrium. SMRA designs are vulnerable to the usual
problems of collusion in uniform price auctions.

Yet another early concern expressed about the SMRA was that it could not deal effectively
with the reality that licenses covering different regions in the United States are complements, not
substitutes (Charles River Associates & Market Design, Inc. 1997). Mobile service companies in
the United States have often competed for customers by claiming to have the best nationwide
coverage, perhaps claiming that a customer from Boston who drives west to San Francisco will
find that her phone works everywhere along the way. For such a company, acquiring licenses of
some kind in Boston is not so valuable unless it also acquires similar licenses in Chicago and San
Francisco. When the value of a collection is more than the sum of the individual values, that is
a sufficient condition for the licenses to be complements. A bidder in an SMRA is exposed to
the risk that it might win some of the licenses it seeks only to find that the prices are too high
for the remaining licenses needed to sustain a viable mobile network. That is a bidder’s exposure
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problem, and laboratory experiments (Ledyard et al. 1994) began to suggest that auction designs
that avoided that problem might result in higher efficiency outcomes than the SMRA.

Auctions in which bids applied not just to individual items but to complete packages or com-
binations of items are called package auctions or combinatorial auctions. In the example above, a
package auctionmight allow a bidder to bid for licenses covering certain frequencies nationwide or
in all the major cities. The FCC’s interest in package auction research led to a book entitled Com-
binatorial Auctions, edited by Cramton et al. (2006). An article in that book by Ausubel et al. (2006)
introduced a new auction format, now known as the combinatorial clock auction (CCA), which
withmodifications has become one of themost common auction formats used for selling spectrum
worldwide. It was designed to eliminate both the collusion problem and the exposure problem.

The CCA is a particular package auction that works in two main stages. In its clock stage, it
functions much like the clock auction above, in which prices are increased for categories of items
for which demand exceeds supply.However, the bids made in this clock stage are package bids; that
is, a bidder is offering only to buy the whole package at the specified price. When the clock stage
of the CCA is over, there is a supplementary stage in which bidders can make additional package
bids. Each bidder’s bids in the supplementary stage need to be consistent with the bids made in the
clock stage, but the precise consistency requirement has varied from auction to auction.When all
the bids are finalized, the winning bid is the set of bids that maximizes the total bid price, subject
to the constraint that the item assignment is feasible. In the CCA, the prices that winning bidders
pay are not equal to the bids but are instead determined by a core-selecting pricing formula,
according to the principle suggested by Day & Raghavan (2007), Day & Milgrom (2008), and
Day & Cramton (2012). The resulting prices are typically close or identical to Vickrey prices. In
particular, each bidder’s bids have little or no impact on the prices it pays for what it wins. To the
extent that this impact is approximately zero, there is nearly zero incentive for individual demand
reductions to reduce prices, making it much harder for bidders to divide markets in the auction
alone.However, the Vickrey auction does open the possibility of joint deviations that are profitable
for all participants. These might be supported by other interactions among the bidders. Indeed,
to the extent that the auction is part of a larger set of interactions among the bidders in which the
bidders can compensate or punish one another for bad behavior in the auction, any analysis that
focuses on the auction in isolation might fail to characterize the most likely bidder behavior.

A recent book entitled Handbook of Spectrum Auction Design (Bichler & Goeree 2017) reprints
many of the articles on this topic, including sections on the SMRA, the CCA, alternative auction
designs, and secondary markets.

The Incentive Auction

As wireless broadband services have grown in importance, all the available frequencies in the
usual mid- and low-frequency ranges have been assigned for some use. To facilitate the continued
growth of wireless broadband, some method was required to reallocate frequencies, and in the
United States, that is easier to do when there is a plan to compensate those who will lose access to
the spectrum. In 2012, the US Congress changed the law to permit the FCC to conduct a broad-
cast incentive auction (or just incentive auction) to buy certain TV broadcast rights from station
owners, move other broadcasters to new channels while compensating their retuning costs, and
sell licenses to use the cleared frequencies for other uses.

What made this transaction especially difficult is that what station owners would sell (TV
broadcast licenses) was not in any simple, proportional correspondence with what broadband
service companies would buy. Even checking whether there is a feasible way to assign channels
to stations without creating interference is mostly representable as a graph-coloring problem,
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as described in the introduction. NP-complete problems at this scale are large enough that
no known algorithm can solve all such problems in reasonable time, despite the enormous
advances in modern computers, algorithms, and software. In practice, optimization among such
assignments is even harder. This computational challenge implies that Vickrey prices cannot be
reliably computed, since the Vickrey price of any TV station is the difference between the optimal
value of the assignment with the TV station on or off the air. Even approximate optimizations
that achieve 99% of the optimum are not sufficient for practical Vickrey pricing in a setting with
more than 2,000 stations. Since 1% of 2,000 is 20, an error of that size in one computation error
with perfect computation in the other would lead to an estimated Vickrey price for a station that
misses the correct value by an amount equal to the value of 20 average stations. Errors smaller
than that could not be guaranteed in these computations, and pricing errors of 20 times the value
are as unacceptable to the bidders as they are to the auctioneer.

The Vickrey auction has other serious defects for this application. An important one is that
every bidder in a Vickrey auction would be asked to report the value of its station and trust the
auctioneer to keep the report secret and compute the winners and prices correctly according to
the rules. Even if the computations could be performed perfectly accurately, many bidders in the
auction would likely be unconvinced that the government could be trusted to do all that. Distrust
could undermine a bidder’s incentive to bid truthfully or possibly even to participate. The actual
auction design was obviously strategy proof in the sense of Li (2017). According to that concept,
even if the bidder does not believe that the computations are done accurately or honestly, it can
still do no better than to bid straightforwardly according to its station value.

Another big problem of the Vickrey auction is that it could be very expensive. Simulations
showed that a simple Vickrey auction, even if feasible, might have paid prices to low-powered
stations serving few customers that were as high as those paid to high-powered stations in nearby
geographic areas. It is as if the money were a bribe paid to a station to prevent interference, rather
than compensation for its loss in going off the air.

An additional problemwith the Vickrey auction is that it does not respect the budget constraint
that the total price paid to the sellers cannot exceed the revenue from selling the resulting licenses.
Yet another is that it does not preserve winner privacy, meaning that others would be able to learn
something about what the winners have earned. Finally, the Vickrey auction is not group strategy–
proof, meaning that there can be ways for bidders to deviate jointly to increase the profits of all
bidders in the set.

None of these defects are shared by the actual auction design adopted by the FCC (Milgrom
& Segal 2018), which is a new kind of descending clock auction that offers each station a different
price depending on its own characteristics. Still, the Vickrey auction is the unique strategy-proof
auction that guarantees efficient outcomes, so a fair comparison requires estimating the loss of
efficiency from the descending clock design. Using estimated station values and simulating the
auction results using stations in the region around New York City, Leyton-Brown et al. (2017)
compare the results of the FCC’s descending clock auction to those of the Vickrey auction. In those
simulations, the descending clock auction, on average, adds about 5% to the minimum value of
stations removed from the air (a direct efficiency loss); it also reduces the cost of the procurement
by about 24%. Thus, giving up exact optimization led to considerable cost savings.

ELECTRICITY AUCTIONS

Electricity markets have posed a series of specialized and unique challenges for regulators over
the years. Some of these challenges are related to variations in supply and the characteristic
supply functions for plants, which include substantial and widely varying fixed and marginal
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costs for different power generation technologies. As a matter of efficiency, the plants with the
highest marginal cost are effectively standby capacity; that is, they are only used in periods of
unusually high demand. The interconnectedness of the electricity system, however, implies that
a failure due to inadequate capacity is suffered by all generators and customers. System reliability
is therefore a public goods problem, making it unclear whether anyone would voluntarily hold
standby capacity and how such capacity should be compensated. Another more commonplace
issue in these markets is market concentration, which is particularly salient in periods of peak
demand. Capacity is a special problem for electrical power markets because, historically, demand
has been very inelastic, so even tiny shortages can lead to huge price fluctuations to bring supply
and demand into balance. Technical issues, such as the surprising implications of Kirchoff’s laws
governing electricity flows, loom large in some analyses, particularly ones that call for changes in
or upgrades to power transmission networks.

Even setting aside all the characteristics that make electricity markets special, which can and do
fill their own journals (a leading one being The Electricity Journal), these markets also emphasize
some of the specific themes highlighted in the introduction. On a hot summer afternoon when air
conditioners are running, home demand for electricity may be many times higher than on a cool
night when consumers are sleeping, and the marginal cost of electricity can vary dramatically with
usage. Although consumers have traditionally measured electricity use as an aggregate quantity
of kilowatt hours over a long period such as a month, economists cannot treat power as a single
commodity with a single price. One of the main challenges for power markets is to balance supply
and demand in the system hour by hour and even minute by minute over the course of each day.
Joskow&Wolfram (2012) emphasize that the lack of real-timemetering in the past has meant that
consumer prices cannot reflect the huge variations in marginal costs during the day, but they also
highlight how this is on the verge of changing.Advances in real-timemetering can enable dynamic
pricing and lead to important improvements in system operations, if only consumers can be given
appliances that allow them to shift demand to low-price times of day. A second challenge for these
systems is to provide adequate long-run supply, known as capacity, to these systems. Power storage
may be another part of the answer. Attempts to produce efficient batteries to smooth the variation
in supply from natural sources like sun or wind may make it possible to use stored energy from
low-cost sources during periods of high demand.

Many papers on electricity auctions treat the problem of designing an auction market to
promote efficient supply and competitive pricing as theoretically similar to designing an auc-
tion for Treasury bills or other securities. Focusing on short time periods, Fabra et al. (2006)
study the performance of different auction rules for energy markets in the presence of market
power. The paper assumes that short-run demand is unresponsive to prices, so the quantity of
energy to be purchased is exogenous. It contrasts uniform price auctions, in which all suppliers
receive the same price for energy, with discriminatory auctions, in which the winner’s energy
price is determined by its bid. Studying an undominated Nash equilibrium in a full information
duopoly model, the paper finds that the discriminatory auction format leads to lower costs but
that the efficiency comparison is ambiguous.

However, energy auctions are trickier than financial auctions because nonconvexities in power
generation are important. There can be large fixed costs in turning on and ramping up a genera-
tor to supply power in the mid-afternoon and ramping it down when service is no longer needed
(Wilson 2002). Standard price theory analyses do not dig deeply into these sorts of details, and auc-
tions that are designed to operate independently in setting separate prices for different products
may fail to coordinate producer activities well.

Cramton (2013) dives deeply into the critical and difficult relation between spot energy mar-
kets and available capacity. Until there is widespread real-time metering with supporting home
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appliances to allow demand shifting over time, demand will remain inelastic, so efficient energy
use throughout the day cannot be guided by a system of energy prices alone. On a hot day, energy
overuse can lead to brownouts and blackouts, which can cause huge losses of human welfare in
terms of health, comfort, and production.With such unresponsive demand, an efficient supply sys-
tem requires tremendous standby generation capacity in which some generators are used during
just the highest 1% of demand hours and are inactive the rest of the time. Such generators have
sometimes been compensated for by having enormous spikes in energy rates during the highest
demand hours, but such a system has multiple disadvantages.One is that it encourages market ma-
nipulations by suppliers who might forecast critical times to schedule plant maintenance, creating
shortages to drive up prices. Another is that critical periods must actually occur periodically at the
right rate to finance capacity additions. Since it is difficult to forecast rare events based on history,
it is unlikely that anyone could regulate a system successfully in that way. Cramton suggests that
one solution may be to devise a system that pays separately for capacity. Another is for the regu-
lator to buy options contracts to purchase energy from suppliers at a given strike price, using the
market’s forecast to replace the regulator’s forecast. This proposal would reduce the revenue and
cost fluctuations for both producers and any public energy purchaser and limit suppliers’ abilities
to benefit from critical energy shortages.

Maurer & Barroso (2011) are notable for providing a comprehensive list of case studies of
capacity auctions and energy auctions. These highlight the variety of solutions that regulators
have tried to address the capacity problem.

Cramton (2017) highlights the structural changes in modern power markets. Regulators have
been trying to encourage the use of renewable energy, better battery storage technologies, and
smart home technologies, including both time-of-day metering and devices that can respond to
and schedule activities according to those prices. Renewable energy is often favored for its envi-
ronmental benefits quite separately from its impact on the energy markets, but by adding capacity
to markets with fixed demand, new renewable sources can significantly depress prices paid to sup-
pliers. Both battery storage technologies that allow power produced at one time to be supplied at
another and smart home devices that allow demand to respond to prices can enhance efficiency and
improve system reliability. As for almost every application of market design principles, designers
of electricity markets need detailed knowledge of the setting and the relevant technologies if they
are to design markets that stimulate reliable electricity supply, adequate investment in capacity,
reduced emissions, and low costs.

FINANCIAL MARKETS AND ELECTRONIC TRADING

The emergence of automated, electronic trading has led to important changes in the operation
of financial markets. Bids and offers are now collected in an electronic order book—an organiza-
tion known as a continuous double auction, which is similar to mechanisms that traditionally led
to efficient outcomes in many experimental economics laboratories (beginning with Smith 1962,
1965). This market organization, with its very low costs and automated trading, has enabled a new
class of high-frequency trading strategies, which aims to take advantage of small, short-lived ar-
bitrage opportunities. These strategies entered the public imagination when they were unmasked
in the popular book Flash Boys: A Wall Street Revolt (Lewis 2014).

Budish et al. (2015) kicked off the recent research into high-frequency trading. They docu-
ment a fact that, in retrospect, is entirely unsurprising: It takes time for trading on one exchange
to affect related prices on another exchange, and that offers a brief window of opportunity for the
arbitrageur who moves fastest to earn a profit. Although this model incorporates no actual asym-
metric information, the arbitrage imposes losses on those who post prices just as if the market
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maker suffered from adverse selection, leading to a spread between the bid and ask price, as ob-
served by Glosten & Milgrom (1985), upon whose model their own is built. The biggest welfare
losses in this model emerge as professional traders race to be a few microseconds faster than their
competitors to be the first in line when an arbitrage opportunity emerges. The large, rent-seeking
investments they make in high-speed communications and processing technologies add no value
to the economy.

As a solution, the paper suggests replacing the continuous time order book with what it calls
periodic batch double auctions. In this system, the market operator would collect orders as they
arrive and periodically (for example, every second) construct demand and supply curves from the
orders to determine the clearing price and allocation. When speed races are not going on, this
system would in practice nearly replicate the current one.However, it would operate differently in
situations where milliseconds matter. Orders occurring within milliseconds of each other would
nearly always be cleared in the same auction, eliminating most of the advantage of acting very
quickly on public information. In that way, the proposed reorganization would reduce incentives
for wasteful investments in speed and make participation safer for the slower traders.

Budish et al. (2018) study the incentive of exchanges to develop rules and the technology to
run such batch auctions. In an analysis that is reminiscent of arguments for government-sponsored
research, they find that any innovators who incur the costs of developing such a system and over-
coming its regulatory hurdles would not be likely to capture much benefit, because the system
could not be patented and would be too easy to mimic. Consequently, they argue, the regulators
themselves need to take the initiative to make it easy to implement such a system.

In a related development, Biais et al. (2015) study the equilibrium level of investment in fast
trading technologies in a rational expectations model and determine that social welfare could
be improved by restricting this investment. They argue in favor of the use of Pigovian taxes on
investment in the fast trading technology.

Another set of papers studies how to match trades among buyers and sellers over time. Brusco
& Jackson (1999) study a setting in which there is a fixed cost incurred to trade across periods.The
optimal market design reduces those costs by identifying a single party to serve as market maker,
acting as a buyer or seller of last resort to smooth trading over time. Vayanos (1999) studies a
multiperiod double auction model in which public information arrives over time and investors
have exogenous reasons to adjust their holdings. In this model, it is risky for investors to hold too
much or too little of a single security. When a large investor needs to adjust its holdings, it can
reduce the adverse price impact by spreading out its trading over time, and at least some such
spreading is always optimal. In equilibrium, however, this behavior is self-defeating. By spreading
out their trades, investors reduce the short-run liquidity of the market, causing even the small
trades of other investors to have price impacts. The opportunity to trade frequently and spread
out large trades reduces investor welfare. In the limit, allowing trades to be spread over many
trading periods results in a welfare loss of order 1/N, where N is the number of traders.

Rostek & Weretka (2015) refine the analysis of Vayanos (1999), in which information arrives
in the form of publicly observed dividend payments but assets can be traded in multiple periods
between those payments, decoupling the arrival of news from the frequency of trade. The paper
finds that this decoupling reverses the previous result: Increasing the frequency of trade while
holding the frequency of news arrival fixed increases investor welfare. Intuitively, the key difference
in suchmodels is that the cost of gradual portfolio adjustment is diminished because the risk of new
informationmoving prices in the interim is diminished. In equilibrium, increasing trade frequency
is welfare improving.

Du&Zhu (2017) study amodel very similar to that of Rostek&Weretka (2015),which assumes
that the frequency of trade does not affect the exogenous public information about the risky asset
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being traded. In contrast to the two previous models, however, traders’ values are assumed to be
interdependent, so trading exposes investors to adverse selection. In this context, frequent trading
involves a trade-off. High-frequency trading allows investors to react quickly to new information
and realize the gains from trade associated with the reallocation of assets. However, increasing
opportunities for trade also encourage traders to avoid the cost of their price impact by submitting
less aggressive demand schedules, which tend to reduce the beneficial reallocation of assets—an
effect that is exacerbated by adverse selection.

In these three papers, large traders break up their orders to reduce their adverse price impact.
This tendency would not be changed by the use of batch auctions as proposed by Budish et al.
(2015), so there would still be significant scope for sniping in which arbitrage-seeking traders
anticipate an investor’s future trades and try to trade ahead of it in anticipation that market prices
will move.Kyle&Lee (2017) argue that a true continuous time exchangewould avoid forcing large
traders to break up their orders, investing time and resources executing the associated optimal
trading strategy. Instead, that function should be automatic: Trades should be spread continuously
at a rate specified by the trader, and trading should be continuous in price, quantity, and time.Kyle
& Lee call such a mechanism continuous scaled limit orders. In such a mechanism, messages sent
by a trader to the exchange would specify a quantity of the asset to be purchased or sold at prices
in the interval [pL, pH] at a maximum rate ofUmax. At each instant in time, the exchange computes
the flow demand and supply and determines the market-clearing price. Orders can be removed
from the exchange at any time, leaving the trader with the stock position that has accumulated up
to that point in time. Under such a mechanism, faster traders do have an advantage in the sense
that they can react faster to changes in fundamentals and respond by updating their orders more
quickly. However, this advantage is limited by the ability of a slower trader to protect itself by
limiting its flow rate of trade, which limits the damage it incurs before it can update its order. This
system obviates the need for a trader to expend time and energy determining how to optimally
break up its trades (this is done for traders by the exchange itself ).

An important advantage of this continuous scaled limit orders design is that it easily accom-
modates the possibility that a single asset may be traded on multiple exchanges simultaneously
and that multiple assets might be traded simultaneously, which in other systems could raise se-
rious issues regarding how market clearing should be synchronized across assets and exchanges.
However, this market design solution differs radically from the market-clearing mechanisms used
in real-world financial marketplaces, which would make it challenging to implement in practice.

Harris (2013) suggests an alternative market design solution to address problems related to
high-frequency trading. Rather than running frequent batch auctions, this paper proposes adding
a random delay of 0–10 ms to orders submitted to an exchange. Clearly, such a design will partially
mitigate the speed advantage of high-frequency traders, but it might fail if high-frequency traders
could simply send multiple messages to the exchange.

Melton (2017) describes the ideal latency floor mechanism, introduced by the major electronic
trading venue Thomson Reuters Matching, as a means of addressing concerns regarding high-
frequency trading. That mechanism intercepts messages to the limit order book and randomly
buffers them, so that when the messages are released from the buffer they generally reach the
limit order book in a different temporal order.While this is conceptually quite similar to the sug-
gestion of Harris (2013), it eliminates participants’ incentives to send multiple messages because
it allocates resources on a per-participant basis rather than a per-order basis. Thomson Reuters
Matching chose this design rather than batch auctions so as tominimize the impact on participants
whose existing trading strategies do not rely on speed.

Several of the formal models, including that of Du & Zhu (2017), build on a formulation intro-
duced by Vives (2011) and Rostek & Weretka (2012) in which investors enjoy quasilinear utility
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and their payoff is equal to their investment return minus a holding cost that is a quadratic func-
tion of their portfolio holdings. The comparative statics of the earlier papers guide those of the
later ones.

The modern market microstructure literature traces its roots to Kyle (1989) and Glosten &
Milgrom (1985), whose papers can be read as responses to a famous puzzle about how traders’ pri-
vate information comes to be reflected in prices when traders are price takers.FollowingGrossman
& Stiglitz (1980), suppose that traders spend resources to gather private information to earn trad-
ing profits. When traders are so informed, the equilibrium prices that clear the market depend
on what the traders have learned, but that creates a tension with the assumption of price-taking
behavior. In the extreme case where prices fully reflect all private information, no trader can earn
any return on its investment in information, so any equilibrium must involve no such investment
and prices that are unresponsive to information. However, that gives each trader an incentive to
invest in information.The conclusion is that no equilibrium can exist with market clearing and en-
dogenous information gathering in that extreme case. Grossman & Stiglitz resolve this puzzle by
changing the economic environment: They add noise traders whose random behavior allows in-
formed traders to earn trading profits. The market microstructure literature offers a different res-
olution. In the Glosten-Milgrommodel (Glosten&Milgrom 1985), for example, although traders
are price takers in the sense that they take the bid and ask prices as given, the prices at which they
trade depend on whether they buy or sell and hence depend on the traders’ private information.

CRYPTOCURRENCIES

Recent years have seen a huge upsurge of academic interest in and public awareness of cryptocur-
rencies. In the press, many have hailed cryptocurrencies and their associated public blockchain
technology as innovations with the potential to change the nature of financial institutions. Among
the recent applications being explored or developed are blockchain-based stock exchanges; fast,
low-cost international bank transfers; smart contracts that can automatically execute contingent
transactions; improved online identity management and security; and internal accounting within
large companies. In each of these examples, advocates have argued that blockchain technology
has the potential to improve speed and transparency and decrease costs by reducing the need for
intermediaries, which could be especially beneficial to consumers in countries with underdevel-
oped financial systems. The advantages claimed for blockchain-based markets—increased speed,
greater privacy, and lower transaction costs—are ones that expand markets but not ones that go
far outside the bounds of traditional economic theorizing.

The first cryptocurrency, Bitcoin, and its associated blockchain technology were introduced by
Satoshi Nakamoto (2008) and have attracted both imitators and increased academic interest over
the past five years. Böhme et al. (2015) discusses Bitcoin’s institutional details, its uses (including
illegal activities), and the risks associated with using Bitcoin as a currency. Yermack (2015) sum-
marizes the history of Bitcoin and argues that Bitcoin behaves less like a currency and more like
a speculative investment. To resolve the mystery of what determines the price of Bitcoins, Athey
et al. (2016) develop a theoretical model of cryptocurrency adoption for when users face exchange
rate uncertainty. That model links Bitcoin exchange rates to market fundamentals, but the paper’s
empirical analysis yields mixed results and suggests, contrary to the theory, that the majority of
Bitcoins are held by investors and infrequent users. Babaioff et al. (2016) analyzes the incentives
for Bitcoin nodes to propagate information regarding transactions to neighboring nodes in the
Bitcoin network.While such information propagation is critical for network function, the current
protocol does not appropriately incentivize nodes. The authors propose an augmented protocol,
which would better reward information propagation. Chiu & Koeppl (2017) treat Bitcoin mining

398 Milgrom



EC11CH15_Milgrom ARjats.cls July 15, 2019 11:24

as a rent-seeking contest in a monetary system model. Calibrating the model using Bitcoin data,
the key finding is that the deadweight loss from rent seeking depends on how transaction fees are
set under the Bitcoin protocol. They suggest that the loss could be reduced by using monetary
growth to fund the system’s infrastructure. Ciaian et al. (2016) study how the price of Bitcoin is
determined by studying the empirical determinants of supply and demand. Gandal & Halaburda
(2016) offer an empirical analysis of competition between cryptocurrencies using price data. They
find that, after an introductory period has passed, the data are consistent with the use of cryp-
tocurrencies as financial assets. Gans &Halaburda (2015) analyze private digital currencies issued
by platforms such as Facebook, Microsoft, and Amazon to increase user activity as a means to
increase advertising revenue.

Huberman et al. (2017) analyze Bitcoin as a payment system supported by a ledger maintained
by a group of independent, profit-maximizing miners. Operating without the benefit of a trusted
central coordinating authority, the integrity of the system is maintained by a combination of cryp-
tography and suitable incentives. There are lags in the execution of user orders, and users bid for
priority to get fast execution. Congestion is necessary to generate positive revenues.

Because the Bitcoin system is decentralized and does not rely on any trusted central authority,
any disagreements about transactions must be resolved by a voting mechanism. Budish (2018)
analyzes the security of the Bitcoin system from a so-called majority attack. The gain from such
an attack grows with the size of the system, so to deter an attack, the cost of acquiring a majority
share by deploying many miners must grow proportionately. It follows that the system cannot
enjoy large-scale economies, which limits the potential of Bitcoin.

PROCUREMENT AUCTIONS

In most auction theory presented by economists, the analysis is focused on prices alone rather
than on details of delivery or performance of the good or service. In those models, there is no
significant difference between the auctions conducted by buyers and sellers. When a bidder with
value v for an item bids and wins at price b, its payoff is v − b. When a bidder with cost c bids and
wins a supply contract at price p, its payoff is p− c. With a simple sign change (Milgrom 2004),
setting c = −v and p = −b, the payoff formulas become identical and the auctioneer’s payoff is
similarly described by a simple sign change.

Issues of performance and default can arise whether the auctioneer is a buyer or a seller. Some
examples of very large defaults by buyers include the Nextwave bankruptcy and default in the
United States in 1996 on roughly $10 billion of spectrum licenses won at auction; the $19 billion
auction sale of Telebras in 1998, for which the price was later renegotiated by the winning bidders;
and the ITV Digital bankruptcy in 2002, after it had bid £178 million at auction to acquire soccer
broadcast rights in the United Kingdom. Given the possibility of default, even an auctioneer who
is a seller may wish to select a winning bidder by considering a score that depends both on the
winning bid and on the bidder’s identity or characteristics. There can be additional reasons to do
that when the auctioneer is a buyer, since the quality and dependability of the good or service it
acquires may depend on the bidder.

The analysis of scoring in procurements received its first serious attention from Che (1993),
who studied a model in which a bid consisted of a price and a product (a point in characteristic
space). The paper finds that, if the auctioneer fails to make the scoring of characteristics clear
before the auction, bidders will be incentivized to differentiate their offerings excessively and raise
their prices, hoping that they can win with a high price because the auctioneer happens to favor
their design. The auctioneer does best when it can dash those hopes of a high profit by making
clear how it will score the product characteristics of any seller’s bid.
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Bajari et al. (2008) study a buyer’s choice between negotiating the purchase of a customized
good or service versus specifying a standard good or service and using competitive bidding to find
the lowest price.Theoretically, negotiations aremost favored relative to auctions when projects are
complex, which promotes highly incomplete contracts, or when the number of potential bidders is
small. The paper tests these conclusions using a comprehensive data set of private sector building
contracts awarded in Northern California during the years 1995–2000.The empirical findings are
generally consistent with the theoretical account.

Arozamena & Cantillon (2004) investigate how firms’ incentives to invest in observable cost
reduction vary with the auction rule. In a second-price auction, a firm’s investment does not affect
the competitor’s bid, so the competitor’s response does not affect investment incentives. However,
in a first-price auction, an investment that reduces a firm’s costs may tend to make its competitor
reduce its bid. In the comparison, investment incentives are weaker in the first-price auction than
in the second-price auction.

Burguet et al. (2012) emphasize the importance of bankruptcy in procurement auctions. In
the United States during 1990–1997, more than 80,000 contractors filed for bankruptcy, leaving
unfinished construction projects. More than 60% of failure-to-complete construction projects
resulted from such failures.

The paper presents a theory of procurement auctions when firms have limited liability and
uncertain costs of performing the project. The main intuition is best illustrated by an extreme
case in which firms have identical costs but differ in their financing. The best-financed firms lose
more when they suffer an adverse cost shock, so they bid most cautiously, and the winning bidder
is the firm with the poorest financial capacity. In this setting, selecting the lowest bidder leads to
selecting the firm that is most likely to default. The same effect is still at work even if it may be
muted by variations in the expected cost of performance. It is still not possible, using an auction,
to select the firm with the lowest cost as the winner.

Board (2007) investigates the interaction between the auction rules (first-price or second-price)
and limited liability. This paper finds that a second-price auction induces higher prices, higher
bankruptcy rates, and lower bidder utility than a first-price auction. The paper also shows that the
handling of bankruptcy critically affects the analysis. It considers cases in which bankruptcy can
lead to large or small recovery or resale, in which the assets of the contracting firm remain intact
and can be sold to losers of the original auction. If bankruptcy is sufficiently costly, the auctioneer
prefers a first-price, while if bankrupt firms remain intact, that preference is reversed.

Some government procurements suggest the possibility that auction design decisions have been
captured by the regulated bidders.Cramton et al. (2015) study the design of the auction commonly
used in the United States for Medicare durable medical equipment. Two unusual features of these
auctions are that (a) winners are paid the median winning bid and (b) bids are nonbinding. The
authors show that this auction leads to inefficiencies in two ways. First, in equilibrium, some firms
may refuse to supply, as the price is set below their cost. Second, some high-cost firms potentially
displace low-cost firms as winners.

COMBINATORIAL AUCTIONS

Whether the auctioneer is a buyer or seller, one very common issue is that the sale may involve
many complementary purchases or sales, often arising from fixed costs or other scale economies.
For example, a supplier shipping products to a location may enjoy economies of scale by shipping
in a container-load and may offer a discount to a customer who buys a full container of items.
Economies of scale are also relevant factors in many of the markets discussed earlier in this review.
For example, in electricitymarkets, the cost of power from a generation facility involves fixed costs,
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so the operator is willing to supply at a lower price if more power is being purchased. Similarly,
a mobile phone operator that is purchasing radio spectrum rights might find it more valuable to
acquire rights in the same frequency band in every area that it serves because of scale economies
that can be achieved in developing and setting up its complete network to use that frequency band.

With nonconvexities and scale economies, it comes as little surprise that market-clearing prices
may fail to exist. That means that there may be no set of prices for individual items that clear
a particular market, but there may still be pricing based on combinations of items that could
work. As discussed earlier, many recent procurement auctions and radio spectrum auctions are
combinatorial auctions.

One combinatorial auction design that is often used as a reference point is the Vickrey auction.
It has the property that so long as bidders (a) care only about what they acquire, (b) know their
own values for packages of items, (c) have quasilinear payoffs, and (d) are not effectively budget-
constrained, they have no incentive tomisrepresent their values to the auctioneer.Moreover,when
they report truthfully, the auction selects the efficient outcome. If the auction entails no payments
to losers, then the theorems of Green & Laffont (1977) and Holmstrom (1979) establish that,
even on limited (but connected) preference domains, the Vickrey auction is the only mechanism
with these properties. These properties often make the Vickrey design the standard against which
other designs are tested.

Still, the Vickrey design has important drawbacks. One is that the Vickrey allocation and pric-
ing may result in payoffs that are not in the core of the game involving the bidders and the seller.
The reason is, roughly, that Vickrey prices can be uncompetitively low.Milgrom (2007) illustrates
this with a simple and extreme example: Suppose that a seller has two units for sale. There are
two bidders who are each willing to pay 1 for either one or two units of the good and a third
bidder who will pay nothing for a single unit but is willing to pay 1 for the two units together. In
this example, even though there are three bidders, each of whom would be willing to pay 1 for
the two units, the Vickrey prices are zero! Ausubel & Milgrom (2006) elaborate on this further,
showing that the arithmetic of Vickrey pricing makes the auction unusually vulnerable to collu-
sion, shill bidding, and other ills. Repeating a result from their previous work (Ausubel &Milgrom
2002), they also show that if the goods are substitutes for all the bidders, then the Vickrey outcome
is in the core; that is, Vickrey prices are competitive. Another important problem for a Vickrey
auction for N distinct items is the challenge it poses to bidders who must determine and commu-
nicate values for all 2N − 1 combinations of items, especially when N ≥ 10, and the complexity
of the computation of Vickrey prices increases substantially when the number of items is much
larger.

The book Combinatorial Auctions, edited by Cramton et al. (2006), includes the Ausubel &
Milgrom paper and others.While research in combinatorial auctions has continued among com-
puter scientists concerned about the complexity of the computations and communications re-
quired by the Vickrey auction, many of the main economic papers were published before 2006.
The package assignment model of Bikhchandani &Ostroy (2002) formulates the general problem
and characterizes what kinds of linear or nonlinear prices may be needed to support the efficient
solution. Sometimes even nonlinear prices for packages of goods cannot do the job unless different
individuals face different prices, suggesting that efficient allocations cannot be decentralized.

DeVries&Vohra (2003) provide a survey of combinatorial auctions emphasizingmathematical
and algorithmic issues. They highlight three such issues: (a) the problem of finding a bidding
language that is suitable for taming the potentially extreme complexity of combinatorial bidding;
(b) the winner determination problem, which can be a large-scale integer programming problem
that is hard to solve; and (c) the pricing problem, that is, assigning values to individual items when
no prices exist to support the optimal allocation.

www.annualreviews.org • Auction Market Design: Recent Innovations 401



EC11CH15_Milgrom ARjats.cls July 15, 2019 11:24

Several papers treat applications of combinatorial auctions in a variety of settings. Caplice
& Sheffi (2006) study the application of sealed-bid package auctions to allocate bus routes in
London, England. Epstein et al. (2002) study the use of package bidding to acquire milk sup-
plies for schools in Chile, including schools in remote areas. Bichler et al. (2006) study the use of
combinatorial auctions for industrial procurement, including packaging, chemicals, and road con-
struction and repair. They report that the important issues in industrial combinatorial auctions
are related to representative bidding language, winner determination, and side constraints on the
allocation. Hohner et al. (2003) introduce a bidding website for combinatorial package auctions
in procurement applications designed by Mars-IBM. The auction website allows for a variety of
bid structures, including bundled all-or-nothing bids and quantity-discounted bids. Users of this
website can also submit multiattribute bids.

CONCLUSION

As a human activity, market design is an old topic. Even ancient societies had to agree on the
days and places for markets so that people knew where and when to show up, and they needed
to set some rules to govern trade. As interregional trade grew in Europe, the Champagne fairs
developed commercial laws, traditions, and means to enforce contracts and to meet and identify
reliable trading partners. In the modern era, with electronic, online trading, an early task was to
update these historical activities. Today’s meeting places are online exchanges, including financial
exchanges,matching apps for workers, ride-sharing, dating, andmore. As fast, low-cost trading be-
came possible, adaptations became necessary, such as rules to combat the evils of high-frequency
trading. New kinds of exchanges and markets to support them also emerged. Combinatorial auc-
tions have become routine for procurement, electricity, radio spectrum, etc., and along with these,
new auction rules have evolved for setting package prices. Rules have evolved to make it easier for
nonhuman agents to bid effectively in auctions, as needed for Internet advertising.

Recent years have witnessed many changes taking advantage of new technologies to expand the
role of markets.New theories have begun to emerge,which do not conform to the old assumptions
of neoclassical economics, to understand the challenges facing these markets. Not every good in
a category is identical, and part of the progress of market design has been splitting categories to
allow much finer matching of items to buyers (as in Internet advertising) and much more accurate
pricing (e.g., electricity according to the time of day). New theories explain how package pricing
can be used to support more efficient resource allocation when goods are complements or scale
economies are present; how cryptocurrencies survive or fail; how low-cost, high-speed trading
disrupts traditional markets; and more. With these new theories comes understanding that may
help us to design more effective markets and avoid or regulate the problems that arise. All in all,
it is an exciting time for market design.
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