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Abstract

This article reviews recent significant progress made in developing estima-
tion and inference methods for nonlinear models in the presence of mis-
measured data that may or may not conform to the classical assumption
of independent zero-mean errors. The aim is to cover a broad range of
methods having differing levels of complexity and strength of the required
assumptions. Simple approaches that form the elementary building blocks
of more advanced approaches are discussed first. Then, special attention
is devoted to methods that rely on readily available auxiliary variables (e.g.,
repeated measurements, indicators, or instrumental variables). Results relax-
ing most of the commonly invoked simplifying assumptions are presented
(linear measurement structure, independent errors, zero-mean errors, avail-
ability of auxiliary information). This article also provides an overview of
important connections with related fields, such as latent variable models,
nonlinear panel data, factor models, and set identification, and applications
of the methods to other fields traditionally unrelated to measurement error
models.
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1. INTRODUCTION

The statistical analysis of error-contaminated data has a long history, dating back at least to
the early days of econometrics (e.g., Frisch 1934). Perhaps surprisingly, however, this topic has
remained fairly active, with a recent surge in activity, as researchers seek to relax most of the
commonly held assumptions (e.g., linearity, independence). This article emphasizes the recent
econometric literature on the topic and mostly centers on the question of the identification and
estimation of general nonlinear models with measurement error without simply assuming that the
distribution of the measurement error is known or directly observable.

This article is organized as follows. First, the origins of measurement error bias are explained,
before describing simple approaches that rely on distributional knowledge regarding the measure-
ment error (e.g., deconvolution or validation data techniques). Methods are then described that
secure identification via more readily available auxiliary variables (e.g., repeated measurements,
multiple indicators, measurement systems with a factor model structure, instrumental variables,
and panel data). An overview of methods exploiting higher-order moments or bounding tech-
niques to avoid the need for auxiliary information is presented next. Special attention is devoted to
a recently introduced general method to handle a broad class of latent variable models, called en-
tropic latent variable integration via simulation (ELVIS). Finally, the complex but very active topic
of nonclassical measurement error is covered, and applications of measurement error techniques
to other fields are outlined.

1.1. Other Reviews

There are other available reviews on the topic of measurement error that deliver a somewhat
different focus. In the statistics literature, methods primarily aimed at linear models are discussed
by Fuller (1987) and Cheng & Ness (1999). The popular book by Carroll et al. (2006) covers non-
linear measurement error models, with a special focus on bias reduction (also called approximate
consistency). Reviews that center on the econometrics literature are also available. Wansbeek &
Meijer (2000) also focus primarily on linear models and make direct connections with latent vari-
ables and factor models. A broad review of nonlinear measurement error models with an emphasis
on the use of auxiliary samples containing error-free covariates is provided by Chen et al. (2011).
The present review updates the earlier review of Schennach (2013c), especially regarding latent
variables, factor models, and nonseparable error and providing more insight into the connection
among different approaches.

1.2. Models and Conventions

Let us first summarize the models and conventions used throughout the article. A lowercase letter
denotes a specific value of the random variable (or random vector) denoted by the corresponding
uppercase letter. Let fV (v) and FV (v) denote, respectively, the density1 and the distribution of
the random variable V and similarly for random vectors, whose dimension is denoted dV .

The unobserved but true values of the variable of interest X ∗ and its observed but mismeasured
counterpart X are related through

X = X ∗ + �X , (1)

1This article is mostly phrased in terms of densities (with respect to the Lebesgue measure for continuous variables or the
counting measure for discrete ones) for simplicity of exposition, but most identification results hold for general probability
measures, at the expense of notational complications.
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where �X denotes the measurement error. The variables of interest may also include another
vector of perfectly measured variables Y (or at least variables for which the measurement error
would not induce bias, such as the dependent variable in a standard regression). Very often,
identification of the model will rely on the availability of a vector of other observed variables (e.g.,
repeated measurements or instruments), denoted by Z. When the model includes disturbances in
the process generating Y or Z, these are denoted by �Y or �Z, respectively. Any of these variables
could be vectors.

For the most part, regularity conditions are omitted, and the focus is on the substantive assump-
tions needed for identification. On occasion, some models are a simplified version of the original
works to streamline the presentation. Most identification results reported here are expressed in
terms of the marginal distribution of one observation and should therefore be applicable to ei-
ther cross-sectional or time-series settings. The presentation of the estimation methods and their
associated asymptotic theory, however, focuses on independent and identically distributed data.

Historically, a large part of the nonlinear measurement error literature has considered the
so-called classical measurement error assumptions, which may have two alternative meanings,
depending on the context: (a) �X independent from X ∗ and E[�X ] = 0 (which could be called
strongly classical) or (b) E[�X |X ∗ = x∗] = 0 (which could be called weakly classical, as it allows
for heteroskedasticity in the measurement error).

Both conditions are natural generalizations of the standard uncorrelatedness between �X
and X ∗ that is typically assumed in linear measurement error models. Depending on the specific
model, these two assumptions may include independence from, or conditioning on, some of the
other variables of the model (Y, �Y, Z, �Z). Deviations from these assumptions would be labeled
nonclassical measurement error, which is currently the focus of intense and increasing attention, as
there is well-documented evidence of deviations from classical errors in empirical data (Bollinger
1998, Bound & Krueger 1991, Bound et al. 2001). Nonclassical errors occur, for instance, when
there are systematic biases in the errors �X , or when random noise does not affect the observed
outcome in an additive fashion [e.g., in a so-called nonseparable model (Matzkin 2003)], e.g.,

X = a(X ∗, �X ), (2)

where a(·, ·) is a general nonlinear function.
This review focuses on nonlinear or nonclassical models (as a linear model with classical mea-

surement errors can be straightforwardly handled via standard instrumental variable techniques).
Measurement error models can be classified in terms of the information they use or in terms of
the underlying type of model they seek to identify (i.e., the form of the model if the true values of
the variables were observed).

The information regarding X ∗ can take many forms. For example, validation data consist
of a separate sample of perfectly observed data that may or may not be matched to (a subset
of ) individuals in the main data set. Unfortunately, such data are expensive to gather, are often
unavailable, and result in estimators whose convergence rate is limited by the typically small size
of the validation sample.

Repeated measurements refer to multiple measurements of the same unobserved underly-
ing true unobserved variable X ∗, typically contaminated by classical errors. Measurements with
Berkson errors also obey a classical-like error structure, but with the role of the measurement and
the true value reversed: X ∗ = X + �X . Nonclassical measurements describe any measurements
that do not exhibit classical errors. One should, however, distinguish between nonclassical mea-
surements satisfying centering restrictions, which can be handled without validation data (see Hu
& Schennach 2008), and general systematic biases, which generally necessitate the use of validation
data.
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Indicators (or proxies) are related to the true value of the variable interest and may be expressed
in different units or may even be nonlinearly related to the true value. They are formally equivalent
to measurements with general nonclassical error, but do not necessarily arise from an attempt to
measure the true value. Indicators are often monotone in the unobserved variable they proxy
for. In a factor model, the indicators may proxy for multiple unobserved variables—i.e., one may
not know in advance which indicator provides information regarding which unobserved variable.
Instruments, widely used in economic applications, are special cases of indicators, often exhibiting
Berkson errors.

Time-series and panel data typically provide either repeated measurements (from future obser-
vations) or instruments (from past observations). Measurement error models can also be classified
based on the type of underlying model they seek to identify. Examples of underlying models
include nonlinear regression models of the form

Y = g (X ∗, θ ) + �Y , (3)

with E[�Y |X ∗ = x∗] = 0 and where g(X ∗, θ ) could be nonlinear in both X ∗ and θ , or could even
be a nonparametric function g(X ∗).

Another example is maximum likelihood models,

θ = arg max
θ

E
[
ln fY ,X∗|θ (Y, X ∗|θ )

]
, (4)

where the likelihood function fY ,X∗|θ (y, x∗|θ ) is specified via a parameter vector θ , whose dimension
could increase with sample size to allow for nonparametric or semiparametric sieve estimation (e.g.,
Gallant & Nychka 1987, Shen 1997, Chen 2007, Hu & Schennach 2008).

Generalized method of moments (GMM) models (Hansen 1982) identify a parameter vector
θ via a condition of the form

E [m (Y, X ∗, θ )] = 0, (5)

where the moment function m(y, x∗, θ ) is parametrically specified. Alternatively, there could
be a semiparametric model for the function m within a conditional expectation model
(E[m(Y, X ∗, θ )|Z] = 0) coupled with sieve estimation (Ai & Chen 2003).

Factor models (e.g., Anderson & Rubin 1956) relate high-dimensional observables Y to the
lower-dimensional unobservables X ∗ of interest and disturbances �Y :

Y = a (X ∗, �Y ) , (6)

in which the function a(·, ·) may be nonlinear and nonparametric or may be nonseparable in the
errors terms �Y.

More broadly, there is the problem of recovering the unobserved density fX∗ (x∗) or, more
generally, the unobserved joint density fY ,X∗ (y, x∗) of the observable (Y ) and unobservable (X ∗)
variables. From the latter, one can in principle identify any quantity of interest, including the
conditional expectation g(x∗) ≡ E[Y |X ∗ = x∗] and its derivatives. One can even use this approach
to combine measurement error problems with other model features, such as endogeneity, and
compute appropriately conditioned average effects.

2. THE EFFECT OF MEASUREMENT ERROR

It is well-known that, in a simple linear regression with one regressor, the presence of measure-
ment error causes the estimated slope coefficient to be biased toward zero. This result, known
as attenuation, regression to the mean, or the iron law of econometrics (depending on the field),
has led to the widespread folklore that the worst that can happen if one neglects the presence of
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measurement error is that the regression coefficients merely become less significantly different
from zero, so that the resulting statistical inference is conservative, but otherwise valid. However,
this optimistic result fails to hold in general for multivariate linear regressions and for nonlinear
specifications (Hausman et al. 1995, Hausman 2001). To make matters worse, the standard in-
strumental variable approach, which is entirely adequate to correct for the endogeneity caused by
measurement error in linear models, fails in nonlinear models (Amemiya 1985). These realizations
have motivated a large and growing literature that aims to correct for the presence of measurement
error in nonlinear models.

The fundamental origin of measurement error bias is that, even under the classical measurement
error assumptions, E[a(X ∗ + �X )] does not equal E[a(X ∗)] for a nonlinear function a(·) (e.g.,
which could be part of the model of interest or an estimator of that model). Chesher (1991)
provides a very concise and general way to describe the effect of measurement error in regression
models (where the object of interest is g(x∗) ≡ E[Y |X ∗ = x∗]) and in density estimation [where
the object of interest is fX∗ (x∗)]. In the limit of small measurement error variance σ 2, he shows that

E [Y |X = x] = g (x) + σ 2

2
(
g ′′ (x) + 2g ′ (x) (ln fX∗ (x))′

)+ o
(
σ 2) , (7)

fX (x) = fX∗ (x) + σ 2

2
f ′′

X∗ (x) + o
(
σ 2) , (8)

where primes denote derivatives. It is not fortuitous that these expressions are entirely analogous
to the bias of nonparametric kernel estimators with a second-order kernel (Härdle & Linton
1994): The effect of measurement error is to smooth all functions via a convolution with the
measurement error density, which plays the role of the kernel. Chesher (1991) also notes that one
can use the approximations g(x) ≈ E[Y |X = x] and fX∗ (x) ≈ fX (x) in Equations 7 and 8 without
affecting the order of the o (σ 2) remainders. This result is useful because it enables researcher to
easily get an idea of what would be the direction and approximate magnitude of bias introduced by
a measurement error of a given magnitude. It also gives an intuitive picture of the origin of mea-
surement error bias: Conditional expectations are affected by both the curvature in the regression
function [g ′′(x)] and nonuniformities in the density of the regressor [(ln fX∗ (x))′], whereas densities
are only affected by curvature [ f ′′

X∗ (x)]. Similar results are available for quantile regressions
(Chesher 2001), thus implying that the effect on the whole joint distribution of Y and X ∗ can be
assessed. These results have been applied to the estimation of treatment effects with mismeasured
covariates (Battistin & Chesher 2014). Extensions to higher-order corrections are not very fruitful
because the bias becomes dependent on the specific distribution of the measurement error.

3. METHODS BASED ON DISTRIBUTIONAL INFORMATION

A surprisingly large fraction of the literature on measurement error is devoted to the problem
of recovering true error-free quantities from error-contaminated data while assuming that the
distribution of the measurement error is known. Although this may not be a very realistic setting,
it is a useful setup to discuss some of the basic techniques and difficulties associated with correcting
for measurement error.

3.1. Deconvolution

This section begins by introducing the Fourier transform as a very convenient tool to handle
classical measurement error. The special case of the Fourier transform of a probability measure is
called a characteristic function (CF). The CF of a random vector X taking value in R

dX is defined
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as

φX (ξ ) ≡ E
[
e iξ ·X ] (9)

for all ξ ∈ R
dX (where i ≡ √−1) and has some remarkable properties (see Lukacs 1970; Loève

1977, sections 13 and 14). For example, there is a one-to-one relationship between φX (ξ ) and
the probability measure of X . Additionally, φX (ξ ) always exists, is continuous, and is bounded
(by 1) everywhere. Finally, if X = X ∗ + �X with X ∗ and �X independent from each other,
then one obtains φX (ξ ) = φX∗ (ξ )φ�X (ξ ). This last property, known as the convolution theorem,
is particularly useful for classical measurement error problems.

Independence is a sufficient but not necessary condition for the convolution theorem to hold.
The necessary and sufficient condition is known as subindependence (Hamedani & Volkmer 2009,
Ebrahimi et al. 2010, Schennach 2013a).

If the distribution of the measurement error is known, then φ�X (ξ ) is known, and one can
express the CF of the true unobserved variables in terms of known [φ�X (ξ )] or observed [φX (ξ )]
quantities,

φX∗ (ξ ) = φX (ξ )
φ�X (ξ )

, (10)

under the standard assumption that φ�X (ξ ) �= 0 [it is sufficient that this holds on a dense subset
of R because φX∗ (ξ ) is continuous]. One can then recover the density of X ∗ via an inverse Fourier
transform:2

fX∗ (x∗) = (2π)−dX

∫
φX∗ (ξ ) e−iξ ·x∗

dξ, (11)

where integrals without explicit bounds are taken to be over R
dX .

This identification result can be naturally turned into a convenient estimator by taking ad-
vantage of the fact that kernel smoothing is also a type of convolution. Specifically, the Fourier
transform of a kernel density estimator is given by

φ̂X (ξ ) = φ̇X (ξ ) φK (hξ ) , (12)

where

φ̇X (ξ ) = 1
n

n∑
j=1

e iξ ·X j (13)

is the empirical CF of the sample (X 1, . . . , X n), φK (ξ ) = ∫
K (x)e iξxdx is the Fourier transform of

the kernel K , and h is the bandwidth. The empirical CF is a common and convenient estimation
tool for Fourier-based estimators. It is pointwise root-n consistent, and under mild regularity
conditions, it is also uniformly convergent (over an expanding interval) at a slightly less than
root-n rate for a compactly supported distribution (Li & Vuong 1998, Hu & Ridder 2010)
and, more generally, for distributions satisfying moment existence conditions (Schennach 2004a,
Bonhomme & Robin 2010).

This connection with kernel smoothing and deconvolution leads to the kernel deconvolution
estimator

f̂X∗,h (x∗) ≡ (2π)−dX

∫
φ̇X (ξ )

φK (hξ )
φ�X (ξ )

e−iξ ·x∗
dξ, (14)

which is the focus of an extensive literature (e.g., Carroll & Hall 1988; Liu & Taylor 1989; Fan
1991a,b; McIntyre & Stefanski 2011).

2The result for densities is given for simplicity; a similar result holds for general probability measures (see Loève 1977,
section 14.3).
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To ensure that the integral in Equation 14 exists, one selects a kernel with compactly supported
Fourier transform φK (·) (i.e., an extremely smooth kernel in real space), so that the total amount of
noise [in φ̇X (ξ )] captured by the integral over the support of φK (hξ ) is finite for a given bandwidth
h. There is, of course, a variance versus bias trade-off, as can be seen by writing the deviation of
the integrand in Equation 14 from its true value φX∗ (ξ ) as

φ̇X (ξ )
φK (hξ )
φ�X (ξ )

− φX∗ (ξ ) = (
φ̇X (ξ ) − φX (ξ )

) φK (hξ )
φ�X (ξ )

+ φX∗ (ξ ) (φK (hξ ) − 1) . (15)

A small h leads to a small bias [in the second term, limh→0 φK (hξ ) = φK (0) = 1 because the kernel
K integrates to 1]. But it also leads to a larger support of φK (hξ ) and thus a larger variance (arising
from the first term). As sample size n increases, the noise in φ̇X (ξ ) decreases, and one can afford
to gradually decrease h in such a way that both the bias and variance go to zero in order to yield
a consistent estimator. This is similar to what happens in a conventional kernel estimator, except
that the division by φ�X (ξ ) in Equation 15 results in considerable noise magnification that leads
to a slower convergence rate.

More specifically, the rate of convergence of this estimator is governed by the rate of decay
of the various Fourier transforms involved as the frequency |ξ | → ∞, which in turn is related to
the smoothness of the corresponding original functions. Smoothness in fX∗ (x∗) is beneficial, as it
reduces the bias (as in a conventional kernel estimator), but smoothness in f�X (�x) is detrimental,
as it implies a more rapidly decaying φ�X (ξ ) in the denominator of Equation 15.

In the deconvolution literature, smoothness is traditionally characterized by bounds on the rate
of decay of the tail of a CF. There are two broad typical behaviors. First, there are densities that are
ordinarily smooth, whose Fourier transforms have a tail bounded above and below by a multiple
of |ξ |−α for some α > 0. These essentially correspond to densities admitting a finite number of
derivatives (see, e.g., Schennach 2004a, theorem 3, for an upper bound on the CF and Hu & Ridder
2010, theorem 1, for a lower bound).3 Second, there are densities that are supersmooth, whose
Fourier transforms have a tail bounded above and below by some multiple of |ξ |α exp(−|ξ |β/γ )
for some α, β, γ > 0. These essentially correspond to densities that are infinitely many times
differentiable (see Schennach 2007a, lemma S.2).

Fan (1991b) derives bounds on the convergence rates in density deconvolution problems,
revealing that, when the densities of both X ∗ and �X are ordinarily smooth, the best possible
(root mean square) convergence rate is of the form n−η for some η > 0. In the extreme nonsmooth
case in which �X contains a mixture with a single point mass, An & Hu (2012) observe that
very fast convergence rates (η = −2/5) can be obtained. This case has empirical relevance in
self-reported data when individuals may have a finite probability of reporting the truth exactly.

When the density of �X is supersmooth, although the density of X ∗ is still ordinarily smooth,
the optimal convergence rate becomes a mere (ln n)−η for some η > 0, which is very slow. However,
this result is somewhat artificially pessimistic because it makes asymmetric assumptions regarding
φX (ξ ) (which is at best assumed ordinarily smooth) and φ�X (ξ ) (which could be supersmooth).
If φX (ξ ) is also allowed to be supersmooth, then fast convergence rates are again possible even
for supersmooth errors (as shown in Schennach 2004c in a more general context). Moreover, fast
convergence rates are also possible in many semiparametric settings (see Taupin 2001, Schennach
2004a, Hu & Ridder 2010, Schennach et al. 2012), with either ordinary smooth or supersmooth
measurement error distributions.

3Hu & Ridder (2010) show that compact support implies ordinary smoothness under some asymmetry and nonsmoothness
conditions at the boundaries of the compact support.
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The idea of kernel deconvolution can be extended to cover nonparametric regression as well
(Fan & Truong 1993):

ĝh (x∗) =
∫ ∫

φ̇Y
X (ξ )

φ�X (ξ ) φK (hξ ) e−iξ ·x∗dξ∫
φ̇X (ξ )

φ�X (ξ ) φK (hξ ) e−iξ ·x∗ dξ
, (16)

where

φ̇Y
X (ξ ) ≡

n∑
j=1

Yj e iξ ·X j , (17)

which is a quantity related to the empirical CF and which can be viewed as an estimator of E[Yeiξ ·X ]
or, equivalently, of

∫
E[Y |X = x]e iξ ·xdF (x) or [∂φY X (ζ, ξ )/∂ζ ]ζ=0. It exhibits convergence prop-

erties similar to the empirical CF (Schennach 2004a, Bonhomme & Robin 2010).

3.2. Validation Data

For a main sample containing data on Y and X (where X is mismeasured), validation data (e.g.,
Sepanski & Carroll 1993) typically consist of an auxiliary sample containing data on both X and
X ∗ that can be used to straightforwardly recover the distribution of the measurement error or the
density fX∗|X (x∗|x). (More general forms of data combination between samples are discussed in
Ridder & Moffitt 2007.) Under the assumptions that E[Y |X = x, X ∗ = x∗] = E[Y |X ∗ = x∗]
and that fX∗|X (x∗|x) is transferable across the two samples, it is straightforward to correct for
measurement error in a parametric regression setting (Equation 3), via the equality

E [Y |X ] =
∫

E [Y |X = x, X ∗ = x∗] fX∗|X (x∗|x) dx∗ =
∫

E [Y |X ∗ = x∗] fX∗|X (x∗|x) dx∗.

(18)
Indeed, one merely needs to define a modified regression function in terms of the original speci-
fication g(x∗, θ ),

g̃ (x, θ ) ≡
∫

g (x∗, θ ) fX∗|X (x∗|x) dx∗, (19)

where fX∗|X (x∗|x) can be estimated from the validation sample. Then, a conventional least-square
projection of Y on X using the model

Y = g̃ (X , θ ) + �Y (20)

identifies θ and leads to a natural estimator (Sepanski & Carroll 1993). A similar reasoning can,
of course, be used to handle general GMM-based models (Chen et al. 2005).

The main advantage of validation data is that they offer a way to handle measurement when it
is not of a classical nature. Unfortunately, the availability of validation data is the exception rather
than the rule. In economics, Bound & Krueger (1991) provide one widely cited validation data
set, but it is difficult to find many other examples of true validation data. For this reason, methods
to handle nonclassical measurement error without relying on validation data are being developed
(see Section 6).

Hu & Ridder (2012) suggest an interesting setup in the context of classical measurement error,
in which the main sample contains Y and X , whereas the validation sample contains only X ∗

(instead of matched observations on X and X ∗). The two samples are assumed to be drawn from
the same population. Taking the regression case as an example, their idea can summarized as
follows: The measurement error distribution is obtained by deconvolving the distribution of X
from the main sample by the distribution of X ∗ from the validation sample. Then, identification
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of the regression function E[Y |X ∗ = x∗] follows from deconvolution arguments (in the spirit of
Equation 16).

4. METHODS BASED ON AUXILIARY VARIABLES

4.1. Repeated Measurements

Repeated measurements X and Z are related to the true underlying variable of interest X ∗ via

X = X ∗ + �X , (21)

Z = X ∗ + �Z, (22)

where the appropriate assumptions regarding the measurement errors �X and �Z are specified
below. Repeated measurements are commonly available in data sets when the same survey or
test is repeated over time or if the same question is asked to different people (e.g., spouses,
employer/employee).

Repeated measurements are useful because the distribution of the true unobserved variable X ∗

can be obtained via an old but very powerful result known as Kotlarski’s lemma (see Kotlarski
1967; Rao 1992, p. 21). This lemma (proven more generally below) states that if X and Z take
value in R and X ∗, with �X and �Z mutually independent with E[�X ] = 0, then (provided
E[e iζ Z] �= 0 for all real ζ ),

φX∗ (ξ ) = exp

(∫ ξ

0

E
[
iXeiζ Z]

E [e iζ Z]
dζ

)
. (23)

Kotlarski’s lemma has been modified and generalized in various ways since then, as outlined below.
In the very special case in which the distributions of �X and �Z are identical and symmetric

about zero, one can obtain the CF of X ∗ in a simpler way (see Horowitz & Markatou 1996, Li
& Vuong 1998, Delaigle et al. 2008) by noting that φZ−X (ξ ) = φ�Z−�X (ξ ) = φ�X (ξ )φ�X (−ξ ) =
|φ�X (ξ )|2 so that φX∗ (ξ ) = φX (ξ )/

√|φZ−X (ξ )| (selecting the positive root). An alternative expres-
sion (Delaigle et al. 2008) that does not require the distributions of �X and �Z to be identical is
φX∗ (ξ ) = φ(X +Z)/2(ξ )/φ(X −Z)/2(ξ ).

Li & Vuong (1998) prove the consistency of a nonparametric density estimator based on
Kotlarski’s lemma. This result is extended by Li (2002) to multivariate settings4 (assuming mutual
independence of the elements of both �X and �Z) and used to correct for measurement error
in a nonlinear regression model (Equation 3). The idea is to first use the following identity:

g̃ (x, θ ) ≡ E [Y |X = x] =
∫

g (x∗, θ ) fX∗|X (x∗|x) dx∗ =
∫

g (x∗, θ )
f�X (x − x∗) fX∗ (x∗)

fX (x)
dx∗,

(24)
where the densities f�X and fX∗ can be estimated nonparametrically consistently using repeated
measurements. This can be viewed as a semiparametric extension of the fully parametric treatment
of Hsiao (1989). The parameter θ can then be estimated by minimizing the sample analog of
E[(Y − g̃(X , θ ))2].

4Both Li & Vuong (1998) and Li (2002) require the observed variable Z to have a nonvanishing CF and a compactly supported
distribution. These requirements are not mutually exclusive: For instance, take a mixture of two centered symmetric triangular
distributions with widths w1 and w2 such that w1/w2 is irrational.
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Hausman et al. (1991, 1995) take a different approach to identification and estimation, by
focusing on moments of X ∗. Hausman et al. (1991) consider a polynomial model of the form

Y =
J∑

j=0

θ j (X ∗) j + �Y , (25)

where X ∗ and Y are scalars, and the disturbance satisfies weaker requirements than for Kotlarski’s
identity: E[�Y |X ∗, �Z] = 0, E[�X |X ∗,�Z] = 0, and �Z independent from X ∗. Then they
note that if X ∗ were observed, θ ≡ (θ0, . . . , θJ) would be identified from

θ = (
E
[
VV ′])−1 (E [VY ]) , V = (

1, X ∗, . . . , (X ∗)J)′
, (26)

where the elements of E[VV ′] have the general form ζm = E[(X ∗)m], m = 0, . . . , 2J, and elements
of E[VY ] have the general form ξl = E[Y (X ∗)l ], l = 0, . . . , J. Hence, one needs to identify ξl

and ζm from observed moments. By computing moments of the form E[XZ j ], E[Z j ], and E[YZ j ]
in terms of the unobservable moments ζ j , ξ j , and ν j = E[(�Z) j ], they arrive at the following
relationships:

ζ j = E[XZ j−1] −
j−2∑
l=0

(
j − 1

l

)
ζl+1v j−l−1, (27)

v j = E
[
Z j ]−

j∑
l=1

(
j
l

)
ζlv j−l , (28)

ξ j = E
[
YZ j ]−

j−1∑
l=0

(
j
l

)
ξlv j−l . (29)

Starting from v0 = 1 and ζ1 = E[X ], the relations in Equations 27 and 28 can be used
to recursively identify ν1, ζ2, ν2, ζ3, . . . , ν2J−1, and ζ2J. Then, ξ0, . . . , ξJ are obtained from
Equation 29.

Hausman et al. (1995) go a step further and observe that, because polynomials form a basis for
functions in L2 (using a suitable weighted L2 norm), the polynomial result can be used to identify
general nonlinear regression models via a two-step process:

1. Use the polynomial result with repeated measurement to obtain ĝ(x∗), a nonparametric
series estimate of E[Y |X ∗ = x∗].

2. Solve

θ̂ = arg min
θ

∫
(g (x∗, θ ) − ĝ (x∗))2

w (x∗) dx∗ (30)

for some given weighting function w(x∗).

In the case of general nonlinear regressions, both Li (2002) and Hausman et al. (1995) only
establish consistency (without a rate or limiting distribution) and do so under rather stringent
moment existence conditions (compact support in the case of Li 2002 and moment-generating
function existence in the case of Hausman et al. 1995).

Schennach (2004a) obtains an identity (which is recast here in a slightly different form and under
slightly different assumptions for expository purposes) that generalizes both Kotlarski’s result and
Hausman et al. (1991). Because a large class of models can be identified from the knowledge of a set
of moments, the result is phrased in a form that directly identifies moments involving (a possibly
multivariate) X ∗ (and perhaps other perfectly measured variables). This is true by construction
for GMM-type models, and also for likelihood models. As a special case, for nonlinear regression

350 Schennach



EC08CH13-Schennach ARI 29 September 2016 16:31

models (Equation 3), the moment vector needed is E[(Y − g(X ∗, θ ))∂g(X ∗, θ )/∂θ ] (through the
first-order conditions for least-square minimization).

Repeated measurements can be used to identify such moments (in which X ∗, X , Y , and
Z could be random vectors, with dX∗ = dX = dZ). To illustrate, if (a) E[�X |X ∗, �Z] = 0,
(b) E[Y |X ∗, �Z] = E[Y |X ∗],5 and (c) �Z is independent from X ∗, then, for any function u(x∗)
with Fourier transform μ(ξ ), one has

E [Yu (X ∗)] = (2π)−dX

∫
R

dX
μ (−ξ )

E
[
Yeiξ ·Z]

E [e iξ ·Z]
φX∗ (ξ ) dξ, (31)

where the integral is over the whole R
dX space, and the CF of X ∗ is given by

φX∗ (ξ ) = exp

(∫ ξ

0

E
[
iXeiζ ·Z]

E [e iζ ·Z]
· dζ

)
, (32)

where the integral is the path integral of a vector-valued field along a piecewise smooth path joining
the origin and the point ξ ∈ R

dX (provided all the requisite quantities exist and the denominators
are nonvanishing).

It is instructive to outline the proof of this result.6 The ratio in Equation 32 can be written as

E
[
iXeiζ ·Z]

E [e iζ ·Z]
=

E
[
iX ∗e iζ ·(X∗+�Z)

]+ E
[
i�Xeiζ ·(X∗+�Z)

]
E
[
e iζ ·(X∗+�Z)

]
= E

[
iX ∗e iζ ·(X∗+�Z)

]+ E
[
iE [�X |X ∗, �Z] e iζ ·(X∗+�Z)

]
E
[
e iζ ·(X∗+�Z)

]
= E

[
iX ∗e iζ ·X∗] E

[
e iζ ·�Z

]
E [e iζ ·X∗ ] [e iζ ·�Z]

= E
[
iX ∗e iζ ·X∗]

E [e iζ ·X∗ ]
= ∇ζ ln E

[
e iζ ·X∗]

, (33)

where the definition of the repeated measurements, iterated expectations, the conditional mean and
independence assumptions regarding the errors (�X and �Z, respectively), various cancelations,
and the chain rule have been used in turn. Next, Equation 32 can be shown by noting that the
path integral of a gradient yields the original function:

exp
(∫ ξ

0
∇ζ ln E

[
e iζ ·X∗] · dζ

)
= exp

(
ln E

[
e iξ ·X∗]− ln E

[
e i0·X∗]) = E

[
e iξ ·X∗] = φX∗ (ξ ) . (34)

The integrand in Equation 31 can then be written as

E
[
Yeiξ ·Z]

E [e iξ ·Z]
E
[
e iξ ·X∗] = E

[
E [Y |X ∗, �Z] e iξ ·(X∗+�Z)

]
E
[
e iξ ·(X∗+�Z)

] E
[
e iξ ·X∗]

= E
[
E [Y |X ∗] e iξ ·X∗] E

[
e iξ ·�Z

]
E [e iξ ·X∗ ] E [e iξ ·�Z]

E
[
e iξ ·X∗] = E

[
E [Y |X ∗] e iξ ·X∗]

=
∫

E [Y |X ∗ = x∗] fX∗ (x∗) e iξ ·x∗
dx∗ ≡ α (ξ ) , (35)

where iterated expectations, the conditional independence assumption regarding Y and �Z, and
various cancelations have been used in turn. Equation 31 is then obtained by using Parseval’s
identity (2π)−dX

∫
μ(−ξ )α(ξ )dξ = ∫

u(x∗)a(x∗)dx∗, where a(x∗) = E[Y |X ∗ = x∗] fX∗ (x∗) with
Fourier transform α(ξ ).

5In a regression setting, this is implied by E[�Y |X ∗, �Z] = 0.
6This is done without dwelling on technical issues such as the interchange of integrals, derivatives and expectations, etc.
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A few remarks are in order. Perfectly measured variables (or variables contaminated by an error
with zero mean conditional on X ∗, such as the dependent variable in a regression7) can be included
in Y if they enter the moments linearly. If Y is not needed, it can be simply set to Y = 1. If the
model is such that a zero-mean measurement error in the dependent variable could introduce bias
(e.g., if the dependent variable enters nonlinearly in the moment conditions of the GMM or in the
first-order conditions for maximum likelihood), then the dependent variable should be considered
as part of the X ∗ vector (rather than part of Y ) in the above formalism. Perfectly measured variables
that enter the moment nonlinearly can be included in X ∗: The corresponding elements of X and
Z can then just be set to be equal. Alternatively, perfectly measured variables can be handled
under weaker conditions by expanding the moment function into a hybrid basis (a Fourier basis
for the mismeasured variables and a general basis for the correctly measured variables), as shown
in Schennach (2004a).

The Fourier transform μ(ξ ) may be a generalized function (Lighthill 1962, Temple 1963,
Gel’fand & Shilov 1964, Schwartz 1966). For instance, if u(x∗) is a polynomial, the Fourier trans-
form μ(ξ ) consists of delta function derivatives of various orders that effectively extract various
derivatives of the quantity (E[Yeiξ ·Z]/E[e iξ ·Z])φX∗ (ξ ) in Equation 31. In this fashion, one can
recover the polynomial result of Hausman et al. (1991) under the same conditional mean and
independence assumptions.

Equations 31 and 32 also suggest a very natural estimator in which all quantities of the form
E[Veiζ ·Z] for V = 1, Y are replaced by sample averages n−1 ∑n

j=1 V j e iζ ·Zj . After a simple auto-
matic bounding device (ensuring, e.g., that an estimated CF obtained via Equation 32 is bounded),
Schennach (2004a) shows that this approach yields a root-n consistent and asymptotically nor-
mal estimator that does not require any user-specified bandwidth parameter, provided u(x∗) is
sufficiently smooth. This smoothness condition ensures that μ(ξ ) decays sufficiently rapidly as
|ξ | → ∞ to downweigh the noise in the tail in the estimated CF, yielding a finite overall noise
that decays to zero at the rate n−1/2 as n → ∞. Schennach et al. (2012) extend these results to
general semiparametric functionals of densities, conditional expectations, and derivatives thereof.

One can also recover Kotlarski’s identity from Equations 31 and 32 under fewer independence
assumptions by setting Y = 1 and μ(ξ ) = e iξ ·x∗

0 [which corresponds to setting u(x∗) to be a delta
function, or a point mass, at x∗

0 ]. In a similar vein, only setting μ(ξ ) = e iξ ·x∗
0 (but keeping Y ) yields

the identification of E[Y |X ∗ = x∗
0 ] fX∗ (x∗

0 ), which opens the way to nonparametric identification
of conditional expectations [after division by fX∗ (x∗

0 ), which is also identified].
In this nonparametric setting, an estimator cannot be obtained by merely replacing all expecta-

tions of the form E[Veiζ ·Z] by the corresponding sample average in Equations 31 and 32, because
this yields noise of infinite magnitude, as μ(ξ ) does not decay as |ξ | → ∞. As shown in Schennach
(2004c), this problem can be solved via smoothing by a symmetric kernel K (·) of width h, by setting
u(x∗) = h−1 K (h−1(x∗ − x∗

0 )). This corresponds to μ(ξ ) = φK (hξ )e iξ ·x∗
0 , where the dependence of

h is suppressed in the notation. In analogy with kernel deconvolution, the kernel is selected so
that its Fourier transform φK (ξ ) has compact support. This ensures that the integrated noise is
finite, so that a consistent estimator of g(x∗

0 ) ≡ E[Y |X ∗ = x∗
0 ], denoted ĝh(x∗

0 ), can be obtained
by replacing E[Veiξ ·Z] for V = 1, X, Y by n−1 ∑n

j=1 V j e iξ ·Zj in

∫
φK (hξ ) e−iξ ·x∗

0
E[Yeiξ ·Z]
E[e iξ ·Z] φX∗ (ξ ) dξ∫

φK (hξ ) e−iξ ·x∗
0 φX∗ (ξ ) dξ

, (36)

7This is not possible in the case of a dependent variable contaminated by nonclassical measurement error, a case considered
in Section 6.
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with φX∗ (ξ ) given by Equation 32, if one lets h → 0 at a suitable rate as n → ∞. Schennach (2004c)
derives the convergence rate of this estimator as a function of the smoothness of the densities and
conditional expectations involved (via the rate of decay of their Fourier transforms). An important
finding is that the convergence rates are often comparable to the case in which the distribution of
the measurement error is fully known. These results are generalized in Schennach et al. (2012) to
yield nonparametric estimates of densities and conditional expectations (and derivatives thereof )
that are uniformly consistent (in some cases over expanding intervals).

Kotlarski’s identity has been generalized in other ways. For instance, to relax some of the
nonvanishing CF assumptions, Evdokimov (2009) assumes mutual independence of �X , �Z, and
X ∗ and suggests using Z − X and Z as repeated measurements of �Z to identify its distribution,
from which one can recover the distribution of X ∗ via standard deconvolution of the distribution
of Z by the distribution of �Z. This only requires �Z to have a nonvanishing CF but not X ∗.
This can be even further relaxed by evaluating an appropriate limit, provided that higher-order
derivatives of the CF do not vanish where the CF itself does. This idea is exploited in Schennach
(2000) and Evdokimov & White (2012). Also, the structure of the second measurement can be
relaxed to Z = a + b X ∗+�Z with E[�Z] = 0 if another variable, Y, related to X ∗ but independent
from the errors, is available. Carroll et al. (2004) observe that the slope coefficient can be identified
from b = Cov(Y , Z)/Cov(Y, X ), whereas the intercept is given by a = E[Z] − b E[X ]. A more
general polynomial measurement structure is considered by Hu & Sasaki (2015), as discussed in
Section 6.2.

4.2. Factor Models

It is also possible to extend Equations 21 and 22 to a more general factor model structure between
the observed measurements X and the unobserved factors X ∗:

X = �X ∗ + �X , (37)

where � is a dX × dX∗ matrix of factor loadings (here dX �= dX∗ in general, so in this notation,
the repeated measurement Z is superfluous), where the errors �X are independent from X ∗

and the elements of the vector �X are typically assumed mutually independent (although these
restrictions can be relaxed).

The factor loadings can be identified, up to some normalizations, from the covariance matrix
of X (Anderson & Rubin 1956) if the matrix � is such that there remain two disjoint matri-
ces of rank dX∗ after any one row of � is removed. Normalizations are necessary because it is
possible to substitute � = �̃T −1 and X ∗ = TX̃

∗
into Equation 37, where T is any invertible

dX∗ × dX∗ matrix, without affecting the observable quantities, while obtaining different factors
X̃ ∗ and different factor loadings �̃. A popular normalization is to assume that the elements of
X ∗ are mutually independent with unit variance (and are ordered according to the fraction of the
variance of the observed quantities they explain). An alternative normalization is to require some
of the observed measurements to be dedicated to a given element of the unobservable X ∗, in which
case the elements of X ∗ can be generally correlated and some of the independence assumptions
regarding X ∗ and �X can be relaxed (Cunha et al. 2010). Heckman et al. (2010a) observe that,
when the latent factors X ∗ are used as control variables to match comparable individuals in the
analysis of treatment effects, the need for normalizations is entirely eliminated. While identifi-
cation of � from the covariances alone clearly requires dX ≥ 2dX∗ + 1 to satisfy the requisite
rank conditions, that number can be reduced using higher-order moments (Bonhomme & Robin
2009) or, equivalently, higher-order derivatives of the log CF (Ben-Moshe 2013), as discussed in
Section 5.1.
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Once the factor loading matrix � is known, one can construct two vectors of repeated measure-
ments suitable for use in Equations 31 and 32 to estimate the joint distribution of the factors X ∗

(Heckman et al. 2010b). Specifically, assume that one can decompose �′ as (�′
A,�′

B, �′
C ) where �A

and �B are dX∗ × dX∗ invertible submatrices and �C has any dimension (it even can be empty, as
it plays no role in the identification of the distribution of X ∗), and let X ′ = (X ′

A, X ′
B, X ′

C )
be the corresponding partitioning of X in Equation 37. Then, the repeated measurement
vectors X and Z in Equations 31 and 32 can be taken to be X ≡ �−1

A XA and Z ≡ �−1
B XB .

If the elements of the vector X ∗ are assumed mutually independent, Bonhomme & Robin (2010)
observe that it is possible to recover the distribution of X ∗ using fewer measurements. To ex-
ploit these additional independence assumptions, they employ a Kotlarski-type identity that relies
on second-order derivatives instead of the first-order derivatives corresponding to E[iXeiζ Z] in
Kotlarski’s identity (Equation 23). Ben-Moshe (2014) provides a range of identification theorems
allowing for various levels of dependence between the factors, from general dependence to mean
independence. His results, many of which are necessary and sufficient, are phrased in terms of
first or second derivatives of the CFs. Interestingly, some of the rank conditions are reminiscent
of the definition of the Kruskal (1977) rank, discussed in Section 6.1.

A generalization (under suitable normalizations) to fully nonlinear nonseparable factor models,
i.e.,

X = g (X ∗, �X ) ,

for some nonlinear function g(·, ·), is developed in Cunha et al. (2010), using and extending some
of the techniques found in Hu & Schennach (2008) (discussed in more detail in Section 6.2).

In summary, repeated measurements and their factor model extension provide a very powerful
and general approach to the identification and estimation of measurement error models that does
not require knowledge of the measurement error distribution. In fact, it has recently been suggested
that surveys should be designed to elicit multiple measurements that may be mismeasured rather
than attempting to gather exact data (Browning & Crossley 2009).

4.3. Instrumental Variables

Instrumental variables typically consist of a vector Z of random variables (a) that are related in
some way to the true unobserved variable X ∗, for instance, through some relationship of the form

X ∗ = h (Z) + �Z, (38)

where h(Z) is some linear or nonlinear function, and (b) that satisfy some exclusion restrictions,
such as E[�X |Z] = 0 or E[�Y |Z] = 0.

Instruments are more general than repeated measurements in the sense that they can be biased
indicators of the true unobserved X ∗. The precise relationship between X ∗ and Z and the specific
notion of exclusion may depend on the approach considered.

Hausman et al. (1991) consider a general polynomial model with scalar Y and X ∗ and with an
instrument equation of the form of Equation 38 where E[�Y |Z, �Z] = 0, E[�X |Z, �Z, �Y ] =
0, E[�Z] = 0, and �Z is independent from Z. The function h(·) in Equation 38 is identified from
E[X |Z] = E[X ∗|Z] = h(Z). In fact, for identification purposes, one can simply use h(Z) as
the instrument and hence relabel h(Z) as simply Z in the sequel. Under these assumptions, the
following observable conditional expectations can be shown to have a polynomial form:

E [Y |Z = z] =
J∑

j=0

γ j z j , (39)
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E [X Y |Z = z] =
J+1∑
j=0

β j z j . (40)

The identified coefficients can then be used in a recursive relation to identify θ . Start with v0 = 1,
v1 = 0, θJ = γJ, and θJ−1 = γJ−1. For k > 1, one then uses the fact that

v j =
((

J
J − j + 1

)
θJ

)−1
⎛
⎝βJ− j+1 − γJ− j −

J−1∑
l=J− j+1

(
l

J − j + 1

)
θlvl−J+ j

⎞
⎠, (41)

θJ− j = γJ− j −
J∑

l=J− j+1

(
l

J − j

)
θlvl−J+ j . (42)

These equations can be used to recursively find v2, θJ−2, v3, θJ−3, . . . , νJ, and θ0. Interestingly,
unlike the repeated measurement case, this solution does not directly generalize to arbitrary
nonlinear or nonparametric models because the recursive relationships would have to start the
recursion from moments of infinite order.

To avoid this problem, Newey (2001) extends the polynomial to general nonlinear parametric
models of the form

Y = g (X ∗, θ ) + �Y (43)

by starting from the following integral equations implied by the same assumptions as the polyno-
mial model above:

E [Y |Z = z] =
∫

g (z − u, θ ) dFU (u) , (44)

E [XY |Z = z] =
∫

(z − u) g (z − u, θ ) dFU (u) , (45)

where FU is the distribution of U ≡ −�Z. For estimation purposes, he uses a vector of uncon-
ditional moment conditions implied by these relationships in which dFU (u), the distribution of
U , is modeled via a nonparametric sieve. Although this work did not include a formal proof of
identification of the model from Equations 44 and 45, it did lay down the basic equations that
later led to a proof of identification.

In fact, proving identification is not a trivial task in this model: In particular, Schennach (2004b)
shows that a class of exponential specifications is in fact not identified from Equations 44 and 45
alone, thereby pointing out cases that a complete identification result must carefully exclude.
The proof is based on the fact that exponentials are shape invariant under a convolution, so that
the effect of measurement error cannot be distinguished from a change in the prefactor of the
exponential.

In a specification g(x∗, θ ) with a dX∗ -dimensional x∗, Wang & Hsiao (2011) use Equations 44
and 45 to show how to identify θ if it contains at most dX∗ + 1 elements (which is unfortunately
no more than the number of parameters a linear specification would have). Their identification
strategy rests on the strong assumption that

∫ |g(x∗, θ )|dx∗ < ∞, although they argue that a
combination of truncation and limiting arguments should imply that identification holds more
generally.

Schennach (2007a) provides a general proof of nonparametric identification based on the
Fourier transforms of Equations 44 and 45:

εY (ζ ) = γ (ζ ) φ (ζ ) , (46)

iεX Y (ζ ) = γ̇ (ζ ) φ (ζ ) , (47)
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where the overdot denotes derivatives and, with V = Y or V = X Y ,

εV (ζ ) =
∫

E [V |Z = z] e iζ zdz, (48)

γ (ζ ) =
∫

g (x∗) e iζ x∗
dx∗, (49)

φ (ζ ) = E
[
e iζU ] = E

[
e−iζ�Z] . (50)

These identities can then be manipulated to secure nonparametric identification of g(x∗), under
the following conditions: (a) E[|�Z|] < ∞, whereas |g(x∗)|, |E[Y |Z = z]|, and |E[X Y |Z =
z]| are bounded by polynomials, and (b) φ(ζ ) is nonvanishing and γo (ζ ) is nonvanishing almost
everywhere,8 where γo (ζ ) denotes the ordinary function component9 of γ (ζ ). This allows for
the fact that the Fourier transform of a function bounded by a polynomial, but not absolutely
integrable, such as most conditional expectations, may not be a function in the usual sense but
a tempered distribution, a class of well-behaved generalized functions (Lighthill 1962, Temple
1963, Gel’fand & Shilov 1964, Schwartz 1966). The regression function is then given by10

g (x∗) = (2π)−1
∫

εY (ζ )
φ (ζ )

e−iζ x∗
dζ, (51)

where

φ (ζ ) = exp
(∫ ζ

0

iε(Z−X )Y ,o (ξ )
εY ,o (ξ )

dξ

)
, (52)

and where, for V = Y or (Z − X )Y , εV ,o (ξ ) denotes the ordinary function component of εV (ξ ).
Schennach (2007a) also provides a root-n consistent estimator [when g(x∗)—but not the distri-
bution of �Z—is parametrically specified] based on moment conditions implied by Equations 46
and 47.

Although there is some similarity between Equation 52 and Kotlarski’s result (Equation 23),
there are important differences. First, Equation 52 involves the Fourier transforms of conditional
expectations rather than probability densities. Second, the relationships between all variables Y,
X , and Z play a role in Equation 52, whereas only X and Z enter Equation 23.

Nadai & Lewbel (2016) push this approach further by (a) adapting it to handle some forms
of correlations between the errors in the dependent variable Y and the regressor X , (b) allowing
for multiplicative errors, and (c) providing identification results for polynomial moments of Y.

8There is a misprint in Schennach (2007a), where it should be stated that γo (ζ ) �= 0 instead of γ (ζ ) �= 0. That paper relaxes
the almost everywhere nonvanishing γo (ζ ) assumption to γo (ζ ) �= 0 almost everywhere in [−ζ̄ , ζ̄ ] for some ζ̄ ∈ [0, ∞] and
γ (ζ ) = 0 for all |ζ | > ζ̄ .
9For instance, the Fourier transform of the cumulative distribution function of a standard normal is γ (ζ ) = πδ(ζ ) −
exp(−ζ 2/2)/(iζ ), whose ordinary component is γo (ζ ) = − exp(−ζ 2/2)/(iζ ), with δ(ζ ) denoting Dirac’s delta function. More
generally, the ordinary part can be defined by noting that any tempered distribution on R is the (generalized) derivative of
some finite order of a continuous function. Wherever this derivative takes on a numerical value, it defines the ordinary part of
the generalized function (as shown, e.g., in Laczkovich 1984, a numerical value for this derivative can be defined on a set that
is sufficiently large to enable the determination of the ordinary part of the generalized function almost everywhere, which is
sufficient for our purpose); elsewhere, the ordinary part can be conventionally set to zero. A few remarks may be of interest
to some. The ordinary part γo (ζ ) may not be a tempered distribution, but this does not invalidate the approach: γo (ζ ) is a
function in the usual sense, so standard operations on functions still hold. The singular part γs (ζ ) ≡ γ (ζ ) − γo (ζ ) may not, in
general, be a tempered distribution either, but is never used in isolation in the proof of identification.
10The multiplication of a generalized function, such as εY (ζ ), by an ordinary function, such as 1/φ(ζ ), can be defined as in,
e.g., Temple (1963, section 6). The assumption that both |E[Y |Z = z]| and |g(x∗)| are bounded by polynomials implies that
εY (ζ ) = γ (ζ )φ(ζ ) and γ (ζ ) = εY (ζ )/φ(ζ ) are each associated with a unique tempered distribution, whose inverse Fourier
transform always exists. It follows that the division by φ(ζ ) cannot cause εY (ζ )/φ(ζ ) to diverge in such a way that its inverse
Fourier transform would fail to exist.
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Schennach (2008) extends the instrumental variable approach to quantile regressions by working
with indicator functions 1(·), using E[1(Y ≤ y)|Z = z] and E[X 1(Y ≤ y)|Z = z] instead of
E [Y |Z = z] and E[X Y |Z = z] to construct analogs of Equations 44 and 45. This approach
offers considerable advantages. First, the identification result delivers the entire joint distribution
of Y and X ∗. Second, by exploiting the boundedness of indicator functions (in combination with
other techniques), the identification result can be phrased entirely in terms of regular (rather
than generalized) functions, so that the identification result can be directly used to deliver a
nonparametric estimator. This estimator is shown to be uniformly consistent.

4.4. Panel Data

Panel data offer unique opportunities for the identification of measurement error models because
past or future observations can play the role of instruments or repeated measurements, so that
no additional variable is needed to gain identification. This idea has been thoroughly explored in
linear models (Griliches & Hausman 1986), but relatively little in nonlinear models because the
problem is not as straightforward. Hausman et al. (1991) and Schennach (2004a) exploit the fact
that future values of a mismeasured regressor can play the role of a repeated measurement. To see
this, consider a simple panel model of the form

Y t = g
(
X ∗

t , θ
)+ �Y t, (53)

X t = X ∗
t + �X t, (54)

X ∗
t+1 = X ∗

t + U t+1, (55)

for t = 1, . . . , T , where X ∗
1, �X 1, . . . , �X T , U 1, . . . , U T , �Y 1, . . . , and �Y T are mutually

independent, E[�X t] = 0 and E[�Y t] = 0. It is clear that one can then use X t and X t+1 as
repeated measurements for X ∗

t :

X t = X ∗
t + �X t, (56)

X t+1 = X ∗
t+1 + �X t+1 = X ∗

t + (U t+1 + �X t+1) , (57)

where X ∗
t , �X t , and (U t+1 + �X t+1) are mutually independent, thus enabling the use

of any Kotlarksi-type identity. This can be extended by replacing Equation 55 by a more
general autoregressive process, e.g., X ∗

t+1 = ρX ∗
t + U t+1, and first identifying ρ from

Covar[X t+2, X t]/Covar[X t+1, X t] before using X t and X t+1/ρ as a repeated measurement for
X ∗

t . However, it appears difficult to generalize the generating process for X ∗
t much further without

affecting the linear measurement structure.
An instrumental variable counterpart of this result is also difficult because X ∗

t cannot be written
as the sum of future or past observations plus an independent error term. For instance, for X t+1

or X t−1, one has

X ∗
t = X t+1 − (U t+1 + �X t+1) , (58)

X ∗
t = X t−1 + (U t − �X t−1) , (59)

in which none of the error terms in parentheses are independent from X t+1 or X t−1. So the
instrumental variable structure used in Hausman et al. (1991, 1995), Newey (2001), Wang & Hsiao
(2011), and Schennach (2007a, 2008) is not applicable. However, the more general approach of
Hu & Schennach (2008), discussed in Section 6.2, is applicable (for general generating processes
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for X ∗
t ), as noted by Wilhelm (2010), because it does not rely on being able to write an instrument

equation (of the form of Equation 38) with an independent disturbance. Furthermore, in this
framework, individual-specific effects can be handled via first differences, considering g(X ∗

t , θ ) −
g(X ∗

t−1, θ ) as the regression function to identify with regressor vector (X ∗
t , X ∗

t−1).
Cunha et al. (2010) and Hu & Shiu (2013) identify a nonlinear dynamic panel data model (in

which the fixed effect does not enter additively) by recognizing a connection with nonclassical
error models to exploit the operator techniques from Hu & Schennach (2008). A rather different
approach is devised by Wilhelm (2010), who provides a nearly closed-form solution to the identi-
fication problem for general generating processes for X ∗

t by building on a clever combination of
operator inversion methods (Newey & Powell 2003, Hall & Horowitz 2005, Carrasco et al. 2007,
Darolles et al. 2011) with Fourier methods in quantile models (Schennach 2008).

5. METHODS WITHOUT AUXILIARY VARIABLES

In some applications, suitable auxiliary variables, such as repeated measurements or instruments,
are not available, and it is of interest to investigate what, if anything, can be learned solely from
the data on the mismeasured regressor X and the dependent variable Y in a regression setting.
Two possible approaches are surveyed here: one in which stronger independence assumptions are
made to secure identification and one in which weak assumptions are maintained at the expense
of possibly obtaining only bounds on the coefficients of interest instead of point estimates.

5.1. Higher-Order Information

If it is plausible to assume that X ∗, �X , and �Y are mutually independent, then it is well-known
that the standard regression model in Equation 3 with a linear specification is identified under
simple conditions. Mutual independence implies a number of moment conditions that provide a
large number of nonlinear equations that can be solved to secure identification. More generally,
the key idea is to use the full distribution of the variables, rather than only their means and
covariances, to gain identification. Since the seminal works of Geary (1942) and Reiersol (1950),
many authors have exploited this idea to identify and estimate a linear specification (e.g., Kendall
& Stuart 1979; Pal 1980; Kapteyn & Wansbeek 1983; Cragg 1997; Dagenais & Dagenais 1997;
Lewbel 1997; Erickson & Whited 2000, 2002; Bonhomme & Robin 2009; Lewbel 2012; and the
many references therein).

The basic idea is to consider higher-order moments of X and Y and note that independence
implies that these moments can be expressed in terms of products of moments of X ∗ and moments
of the errors �X and �Y. These expressions can be solved for the slope parameter θ in terms of
observable moments. One simple result of this kind is that if E[(X ∗ − E[X ∗])3] �= 0, then

θ = Covar[Z, Y ]
Covar[Z, X ]

, (60)

where Z = (X − E[X ])(Y − E[Y ]). This expression has a natural instrumental variable interpre-
tation, in which the instrument is constructed from the variables themselves and does not need to
be externally provided. It is possible to relax the assumption that E[(X ∗ − E[X ∗])3] �= 0 by using
fourth-order mixed moments, but then the restriction E[(X ∗ − E[X ∗])4] �= 3E[(X ∗ − E[X ∗])2] is
required. Going to even higher moments keeps slightly expanding the set of allowed distributions,
but some unidentified cases always remain, as formally shown by Reiersol (1950) using the CF.

When working with higher-order moments of sums of independent variables, it is considerably
more convenient to instead work with the related concept of cumulants (Geary 1942), defined as
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derivatives of the logarithm of the CF, as the cumulants of a sum of independent random variables
are simply the sum of their corresponding cumulants. Bonhomme & Robin (2009) considerably
generalize the treatment of Geary (1942) to multivariate factor models (introduced in Equation 37),
enabling identification of the factor loadings with fewer measurements than from covariance
information alone (Anderson & Rubin 1956), as discussed in Section 4.2.

Although linear specifications have historically received considerable attention, the question
of nonparametric identification of the regression model in Equation 3 has only recently been
answered (Schennach & Hu 2013). The answer turns out to be remarkably simple: Among all
(sufficiently regular) specifications, only a small parametric family is not identified. To state this
result, let us assume that (a) the marginal CFs of �X , �Y, X ∗, and g(X ∗) do not vanish anywhere,
(b) fX∗ (x∗) exists, (c) g(x∗) is continuously differentiable, and (d ) g ′(x∗) vanishes (at most) at a finite
number of points, and when that happens fX∗ (x∗) is continuous and nonvanishing. There are four
mutually exclusive cases:

1. If g(x∗) is not of the form

g (x∗) = a + b ln
(
e c x∗ + d

)
(61)

for some constants a, b, c , d ∈ R, then the model is identified.
2. If g(x∗) is of the form of Equation 61 with d > 0, then the model is not identified if and

only if X ∗ has a density of the form

fX∗ (x∗) = Aexp
(−BeCx∗ + C Dx∗) (eCx∗ + E

)−F
(62)

with C ∈ R, A, B, D, E, F ∈ [0, ∞), and �Y has a type I extreme value factor11 [i.e., a
density of the general form f (u) = K1 exp (K2 exp (K3u) + K4u)].

3. If g(x∗) is of the form of Equation 61 with d < 0, then case 2 above applies, after permuting
the roles of X and Y.

4. If g(x∗) is linear (i.e., of the form of Equation 61 with d = 0), then the model is not identified
if and only if X ∗ is normally distributed and either �X or �Y has a normal factor (this is
the case covered in Reiersol 1950).

What is remarkable is that, among all possible (sufficiently regular) specifications, the noniden-
tified family is parametric with only four parameters (a , b , c , and d in Equation 61). Within that
family, whenever d �= 0, the model is actually locally identified (there are only two observationally
equivalent models in this case: one with d > 0 and one with d < 0). Additionally, the notoriously
difficult case of normal errors is in fact identified for virtually all specifications, with the linear
case (d = 0) being the only exception.

The idea of using the full distribution of the variables to gain point identification without
relying on auxiliary variables has also been used in regression models with discrete mismeasured
regressors (Chen et al. 2009). In that case, thanks to the discrete nature of the problem, the
identification can be reduced to a finite, albeit complex, system of equations.

5.2. Bounding

What if auxiliary variables are not available and independence cannot plausibly be assumed? Then,
unfortunately, one may have to be willing to abandon the hopes of identifying a single value of
the parameter and instead settle for a set of possible values. The concept of set identification

11A random variable is said to have a distribution F as a factor if it can be written as the sum of two independent random
variables (which may be degenerate), one of which has distribution F.
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has some of its roots in the early literature on measurement error (Frisch 1934), and recently,
set identification has gathered considerable attention in econometrics (e.g., Manski 1990, 2003;
Manski & Tamer 2002; Chernozhukov et al. 2007a).

The bounds on the slope coefficient θ obtained by Frisch (1934) for the linear regression model
are based on the idea that the variance of a variable must be nonnegative. Under the assumption
of mutual uncorrelatedness of X ∗, �X , and �Y, the full covariance structure of X and Y can be
expressed in terms of the variances of the unobservable variables σ 2

X∗ , σ 2
�X , and σ 2

�Y :

Var [Y ] = θ2σ 2
X∗ + σ 2

�Y , (63)

Var [X ] = σ 2
X∗ + σ 2

�X , (64)

Covar [X, Y ] = θσ 2
X∗ . (65)

Combining Equations 64 and 65 and using the constraint σ 2
�X ≥ 0 yield (if θ ≥ 0)

θ ≥ Covar [X, Y ]
Var [X]

, (66)

whereas combining Equations 63 and 65 and using the constraint σ 2
�Y ≥ 0 yield (if θ ≥ 0)

θ ≤ Var [Y ]
Covar [X, Y ]

. (67)

The directions on the inequalities in Equations 66 and 67 are reversed if θ < 0. These bounds
have the straightforward interpretation as the slope coefficient of the forward regression of Y on
X (Equation 66) and of the reciprocal of the slope coefficient of the reverse regression of X on
Y (Equation 67). These bounds are sharp under the uncorrelatedness of X ∗, �X , and �Y.

This result has been elegantly generalized by Klepper & Leamer (1984) to multivariate linear
regression in which all regressors (X ∗

1, . . . , X ∗
dX

) are measured with error. It suffices to sequentially
use each of the dX∗+1 observed variables (Y, X 1, . . . , X dX) as the dependent variable and remaining
variables as regressors. After rearrangement, each regression line k = 1, . . . , dX∗ can be cast in
the form Y ∗ = ∑dX∗

j=1 θ
(k)
j X ∗

j (where Y ∗ ≡ Y − �Y ), so that the regression coefficient vectors
θ (k) all have the same units. Then, the set obtained by taking the convex hull of θ (1), . . . , θ (dX∗ )

is a consistent estimator of the identified set, the true set of possible values of the regression
coefficients, provided the θ (k) all lie in the same orthant.12 Otherwise, the set is unbounded along
some direction(s). The issue of potentially unbounded identified sets can be mitigated by a priori
plausible restrictions on the variance and the correlation structure of the measurement error
(Klepper & Leamer 1984, Erickson 1993).

Unfortunately, the derivation of sharp bounds in the general nonlinear measurement error
problem is usually analytically intractable due to potentially nonmonotone relationships between
the observed and unobserved variables. For this reason, it is more useful to use general simulation-
based methods to derive the bounds numerically. Schennach (2014) proposes such a method for
a general class of latent variable models that nests measurement error problems as a special case.
Other recent methods aimed at handling related latent variable models include Galichon & Henry
(2013), Ekeland et al. (2010), and Beresteanu et al. (2011).

Schennach (2014) seeks to find the value(s) of a parameter vector θ that satisfies a set of moment
conditions that are known to hold in the population:

E [m (U , Z, θ )] = 0, (68)

12An orthant is a set of vectors whose elements share the same pattern of signs (it is the multivariate generalization of a
quadrant).
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where m is a dm-dimensional vector of nonlinear measurable functions depending on the parameter
vector θ , on an unobserved random vector U , and on an observed random vector Z. Naturally, it
is the unobservable U that enables the treatment of measurement error models (typically, one can
then set U = X ∗ and express the errors �X , etc., as a function of X ∗ and the observable variables).
The method is called entropic latent variance integration via simulation (ELVIS) and avoids any
parametric assumptions (beyond the given functional form of m), without introducing any infinite-
dimensional nuisance parameters, through the use of a low-dimensional representation of the
identification problem.

To describe this method, let π denote the distribution of the observables Z and μ denote a
conditional distribution of the unobservables U given Z = z, whereas their joint distribution is
denoted by μ×π . Let U denote the support of U conditional on Z = z [where it may be assumed
without loss of generality that U does not depend on z, as this dependence could be incorporated
into m(u, z, θ )]. Expectations are calculated under the distribution specified as a subscript. The
key identity is as follows: For any θ and any distribution π ,

inf
μ

∥∥Eμ×π [m (U, Z, θ )]
∥∥ = 0 (69)

if and only if

inf
γ∈Rdm

‖Eπ [m̃ (Z, θ, γ )]‖ = 0, (70)

where

m̃ (z, θ, γ ) ≡
∫

m (u, z, θ ) exp (γ ′m (u, z, θ )) dρ (u|z)∫
exp (γ ′m (u, z, θ )) dρ (u|z)

, (71)

with ρ a user-specified conditional distribution such that (a) ρ(·|z) is supported on U at each z
and (b) Eπ [ln Eρ [exp(γ ′m(U, Z, θ ))|Z]] exists and is twice differentiable in γ for all γ ∈ R

dm and
all θ . Measures ρ(u|z) satisfying the above restrictions are easy to construct. For instance, if U is
compact and sufficiently regular, ρ(u|z) can simply be set to the Lebesgue measure on U . More
generally, ρ merely needs to have the right support and sufficiently thin tails. A general recipe for
constructing a suitable ρ is given in Schennach (2014, proposition 1).

This identity is useful because the original problem of interest (Equation 69), which in-
volves optimization over an infinite-dimensional quantity μ, has been replaced by a finite-
dimensional optimization (Equation 70). This simplification is made possible by the fact that
the so-called parametric least-favorable entropy-maximizing family of distributions [proportional
to exp(γ ′m(u, z, θ ))dρ(u|z)] used to compute the expectation over U in Equation 71 is such that
it spans exactly the same range of values of moments (as γ varies) as the original, fully nonpara-
metric, problem (as the distribution of U varies). This is true for any distribution π (even for
the empirical distribution of the sample) and for any choice of ρ (provided it satisfies the stated
conditions). Consequently, the choice of ρ has no effect on the properties of any estimator based
on the moment conditions E[m̃(z, θ, γ )] = 0, even in finite samples (as the optimization over γ

would yield the same profiled objective function in terms of θ ).
The intuition behind this result is that Equation 69 has potentially an infinite number of

solutions. However, because one only needs to find one, one can rank distributions according
to some criterion (here, their entropy) and convert an existence problem into an optimization
problem under the constraint in Equation 68. This constrained entropy maximization problem
has a unique solution, which turns out to have the convenient form of Equation 71.

The simplest way to evaluate the integral in Equation 71 defining the moment function is to
draw random vectors u j , j = 1, . . . , R, from a density proportional to exp(γ ′m(u, z, θ ))dρ(u|z)
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using, e.g., the Metropolis algorithm and calculate the average

1
R

R∑
j=1

m
(
u j , z, θ

)
(72)

for a sufficiently large R. A nice feature of the Metropolis algorithm is that it automatically takes
care of the normalization integral in the denominator of Equation 71. This simulation-based
approach essentially amounts to plugging in a parametric least-favorable entropy-maximizing
family of distributions into the method of simulated moments (MSM) (McFadden 1989, Pakes &
Pollard 1989), so ELVIS can be seen as a semiparametric generalization of the MSM.

Averaging over the unobservables then provides a conventional vector of moment conditions
E[m̃(Z, θ, γ )] = 0 involving only observable variables that is equivalent to the original moment
condition in Equation 68. As a result, solving for the parameter θ of interest and for the nuisance
parameter γ can be accomplished through a variety of standard techniques: conventional GMM
(Hansen 1982) or any of its one-step alternatives, such as empirical likelihood (Owen 1988), gen-
eralized empirical likelihood (e.g., Owen 1990, Qin & Lawless 1994, Kitamura & Stutzer 1997,
Imbens et al. 1998, Newey & Smith 2004), or exponentially tilted empirical likelihood (Schennach
2007b). Existing generic inference techniques for set-identified models (e.g., Chernozhukov et al.
2007a) can then be used. The ELVIS objective function bypasses the complex task of establishing
point or set identification of the model by providing a vector of moment conditions that are, by con-
struction, satisfied (asymptotically) over the identified set, whether it is a single point or a larger set.

The ELVIS method can be used in a measurement error context (see Schennach 2014,
figure 6) to estimate the identified set in general nonlinear regression models, while assuming only
very weak uncorrelatedness assumptions regarding the errors and without using any instruments
or repeated measurements. Furthermore, ELVIS automatically adapts when a model transitions
from being point identified to set identified, as the data-generating process changes. For instance,
in a linear regression with measurement error estimated using higher-order moments, Schennach
(2014, figure 5) shows that the objective function flattens over an interval (which is indicative of set
identification13) when the distribution of the true regressor becomes normal, whereas it is strongly
curved for the point-identified nonnormal case. ELVIS thus nests both the higher-order moment
treatment and the bounding treatment of the standard linear errors-in-variables model. ELVIS is
also a natural approach to handle a combination of measurement error with other latent variable
problems (e.g., censoring, truncation, interval-valued data, limited dependent variables, panel data
with nonseparable correlated individual-specific heterogeneity, and various game-theoretic mod-
els). Schennach (2014) also provides extensions to conditional mean and independence restrictions.

6. NONCLASSICAL MEASUREMENT ERROR

The classical measurement error assumptions have come under growing scrutiny in recent years
(Bound et al. 2001, Bollinger 1998, Hyslop & Imbens 2001). While it is easy to point out the
weaknesses of the classical assumptions, it is much more difficult to find solutions. As discussed
in Section 3.2, validation data are, in principle, a general answer, but, in practice, rarely available.
There is therefore considerable interest in developing practical methods to handle fairly gen-
eral types of nonclassical measurement errors using, instead, more commonly available auxiliary
information familiar to economists, such as instrumental variables or repeated measurements. A

13It is possible for a set-identified model to be associated with an objective function that is not perfectly flat over a set in finite
samples—this happens when the so-called degeneracy property does not hold (Chernozhukov et al. 2007a).
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special feature of nonclassical errors is that, unlike classical errors, they induce bias in a standard
regression even when only the dependent variable is mismeasured. Hence, the methods described
below are either applicable to both mismeasured regressors and mismeasured dependent variables
or specifically target dependent variable measurement error.

6.1. Misclassification

When a discrete variable X ∗ is measured with error (and its measurement X is also discrete) this
variable is said to be misclassified. Misclassification is considered nonclassical because, when the
number of possible values X can take is finite, extreme values of X ∗ can only be mismeasured in
one direction, so a zero-mean error (conditional on the true value X ∗) is impossible.

Mahajan (2006) shows that a binary instruments can be used to identify and estimate an index
model with a misclassified binary regressor and other perfectly measured regressors (which may
be continuously distributed), whereas Lewbel (2007) considers treatment effect models when the
treatment (a binary variable) is misclassified and an instrument is available. Hu (2008) goes beyond
the binary case and solves the identification problem for general misclassified discrete regressors
by exploiting an analogy between the identification problem and matrix diagonalization (this
interesting approach is not described here, as it can be seen as a finite-dimensional version of the
approach described in Section 6.2). A very similar technique is used by Bonhomme et al. (2016)
to show identification of some mixture models.

In parametric discrete response models with misclassification in the response variable, Cameron
et al. (2004), Hausman et al. (1998), and Li et al. (2003) observe that identification without
additional information is made possible by the following fact: The errors in the response produce
distortions in the observable distribution of the mismeasured response that are distinct from the
distributions that could be generated from the underlying parametric model of the true unobserved
response. This can be exploited within a maximum likelihood procedure with flexible functional
forms while employing simulations when integration cannot be performed analytically (Li et al.
2003, Cameron et al. 2004). Hausman et al. (1998) focus on the binary response case and consider
a semiparametric treatment (thus avoiding a parametric specification of the measurement error
distribution) using a combination of a maximum rank correlation estimator and isotonic regression
techniques.

The problem of identifying the distribution of an unobserved discrete variable from misclas-
sified repeated measurements has received considerable attention in the statistics literature (see,
e.g., Kruskal 1989 and Kolda & Bader 2009 for reviews). One of the most significant result is
Kruskal’s (1977) tensor array decomposition, which is described here. Assume that one has access
to three potentially misclassified measurements (X , Y, and Z) of X ∗ satisfying a conditional in-
dependence assumption: Conditional on X ∗ taking a specific value, the variables X , Y, and Z are
independent. Expressed in terms of probability mass functions (denoted by f with appropriate
subscripts), this condition reads fX ,Y ,Z|X∗ (x, y, z|x∗) = fX |X∗ (x|x∗) fY |X∗ (y |x∗) fZ|X∗ (z|x∗), which
enables us to easily express the observable quantity fX ,Y ,Z(x, y, z) in terms of the unobservable
quantities of interest, fX |X∗ (x|x∗), fY |X∗ (y |x∗), fZ|X∗ (z|x∗), and fX∗ (x∗). In the case of discrete
variables, one has

fX ,Y ,Z (x, y, z) =
∑
x∗∈X

fX |X∗ (x|x∗) fY |X∗ (y |x∗) fZ|X∗ (z|x∗) fX∗ (x∗) , (73)

whereX denotes the discrete support of the distribution of X ∗. One can associate each quantity on
the right-hand side with (possibly rectangular) matrices, Air ≡ fX |X∗ (i |r), Bjr ≡ fY |X∗ ( j |r), and
Ckr ≡ fZ|X∗ (k|r) fX∗ (r) = fZ,X∗ (k, r), and relabel the support points of each variables as consecutive

www.annualreviews.org • Measurement Error 363



EC08CH13-Schennach ARI 29 September 2016 16:31

integral numbers, without loss of generality. Similarly the left-hand side can be associated with a
three-way array Ti jk ≡ fX ,Y,Z(i, j, k).

The following definition is useful: The Kruskal rank of a matrix M, denoted KM, is the largest k
such that any k columns of M are not colinear. Note how this definition differs from the usual rank,
which is the largest k such that there merely exists one choice of k columns that are noncolinear.

Kruskal’s result can now be stated: If a three-way array T admits the decomposition

Ti jk =
R∑

r=1

Air B jrCkr (74)

with

K A + KB + KC ≥ 2R + 2, (75)

then any other triple of matrices (Ã, B̃, C̃) such that

Ti jk =
R∑

r=1

Ãir B̃ jr C̃kr (76)

will satisfy Ã = ADAP , B̃ = B DB P , and C̃ = C DC P , where DA, DB , and DC are diagonal matrices
satisfying DADB DC = I , and P is a permutation matrix. When the matrices A, B, and C represent
probabilities, one can use the fact that

∑
i Air = ∑

x fX |X∗ (x|x∗) = 1 to uniquely determine
DA. Similarly,

∑
j B jr = 1 uniquely determines DB . Next, DC is recovered from DC = D−1

A D−1
B

(because
∑

k Ckr �= 1 in general, as Ckr represents a joint rather than a marginal distribution).
The result effectively states that, under the rank condition given in Equation 75, the observable

fX ,Y ,Z(x, y, z) can be uniquely associated with one tuple of unobserved probability mass functions
fX |X∗ (x|x∗), fY |X∗ (y |x∗), and fZ,X∗ (z, x∗), apart from a trivial reordering of the unobservable
x∗ (via the permutation matrix P ). This result is particularly adapted to factor models because
all variables of the model are treated in a symmetric fashion. The Kruskal-based approach to the
identification of discrete models is receiving increasing attention in the statistics and econometrics
literature (e.g., Allman et al. 2009, Bonhomme et al. 2016). Note that Kruskal’s condition is not
necessary—slightly weaker conditions have been obtained (Stegeman 2009) at the expense of
losing a symmetric treatment of the three matrices A, B, and C .

Identification results for discrete variables do not imply identification of the corresponding
model with continuous variables via a simple limiting argument. To illustrate this, let Id(M) denote
a function equal to 1 if model M is identified and zero otherwise. This function is necessarily a
discontinuous function of M because its range is discrete. Consequently, for a sequence of models
M n, one does not have limn→∞Id(M n) = Id(limn→∞ M n) in general. Therefore, when constructing
a sequence of identified discrete models converging to a continuous model, one cannot conclude
that the limiting continuous model is identified. A proper way to approach the continuous case
would be to instead derive an identified set for the discrete case and show that this set converges
to a point (e.g., in the Hausdorff metric) as the discretization becomes finer.

6.2. Continuously Distributed Variables

Hu & Schennach (2008) establish that general nonlinear models with continuous variables contam-
inated by nonclassical measurement errors can be identified via an auxiliary variable Z satisfying
assumptions sufficiently general to cover both repeated measurements and instruments. (Addi-
tional, perfectly measured regressors can easily be included in this framework by conditioning
on them.) They show that, under suitable conditions outlined below, for a given true observed
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density fY X |Z, the equation

fYX |Z (y, x|z) =
∫

fY |X∗ (y |x∗) fX |X∗ (x|x∗) fX∗|Z (x∗|z) dx∗ (77)

admits a unique solution ( fY |X∗ , fX |X∗ , fX∗|Z). A similar result holds for

fYXZ (y, x, z) =
∫

fX |X∗ (x|x∗) fY |X∗ (y |x∗) fZ|X∗ (z|x∗) fX∗ (x∗) dx∗. (78)

This general phrasing of the identification result implies that any model that would be identified
from fY |X∗ (y |x∗) or fY X∗ (y, x∗) (if X ∗ were observed) is identified from the knowledge of the
observed densities fY X |Z(y, x|z) or fY X Z(y, x, z). To fix the ideas, one can think of Y as the
dependent variable and X ∗ as the regressor, but this assignment is not the only possible choice.
For instance, all variables (X, Y, Z) can also be considered on a more symmetric footing to form
a general nonlinear (dynamic) factor model: Cunha et al. (2010) explain how the distribution of
X ∗ and the general nonlinear and nonseparable relationships between the factor vector X ∗ and
(X , Y , Z) can be recovered from the identified densities fY |X∗ (y |x∗), fX |X∗ (x|x∗), fZ|X∗ (z|x∗), and
fX∗ (x∗), using widely used normalizations borrowed from the literature on nonseparable models
(e.g., Matzkin 2003), which is discussed further in the next section.

Handling nonclassical errors in continuous variables requires a considerably more advanced
technical apparatus than in the discrete case because the unknowns are infinite dimensional (they
are whole functions, not just vectors). One important notion is the concept of a linear operator
(see, e.g., Carrasco et al. 2007), which can be seen as the generalization of a matrix to infinite
dimensions. To outline the identification result, let us first define, for any conditional density
fV |U (v|u), an operator LV |U mapping a (sufficiently regular) arbitrary function q to the function:

[
LV |U q

]
(v) ≡

∫
fV |U (v|u) q (u) du. (79)

The conditions needed for identification are that (a) the random vectors X , Y, and Z are
mutually independent conditional on X ∗, (b) the operators LX |X∗ and LZ|X∗ are injective,14

(c) the distributions of Y given X ∗ = x∗
1 and of Y given X ∗ = x∗

2 differ whenever x∗
1 �= x∗

2 ,
and (d ) there exists a known functional M such that M [ fX |X∗ (·|x∗)] = x∗. Assumption (a) is a
fairly natural exclusion restriction. Assumption (b) is a generalization of familiar rank conditions
for matrices to operators. It is similar to assumptions commonly made (sometimes under the name
of completeness or nonsingularity) in the literature on nonparametric instrumental variable meth-
ods (Newey & Powell 2003, Chernozhukov & Hansen 2005, Hall & Horowitz 2005, Carrasco
et al. 2007, Darolles et al. 2011). In the special case of convolution operators, simple sufficient
conditions for injectivity have been obtained (Mattner 1993, Hu & Ridder 2010, d’Haultfoeuille
2011), and progress is being made for more general operators (e.g., Andrews 2011, Hu et al. 2015).
Whereas the injectivity assumption (b) requires that the dimensions of X ∗, X , and Z be the same,
assumption (c) is weaker than injectivity and can be satisfied even if Y is scalar.

Remarkably, assumptions (b) and (c) jointly demand that dX +dY +dZ ≥ 2dX∗ +1, which is the
same dimensionality constraint as in a linear factor model (Anderson & Rubin 1956). Assumption
(d ) generalizes classical measurement error (corresponding to M being the mean) to other types
of centering restrictions (e.g., the mode, median, or any other quantile). As discussed by Hu
& Schennach (2008), median and mode restrictions are well supported by existing validation
data evidence (Bound & Krueger 1991). In addition, such assumptions are robust to other data

14Or, equivalently, LX |X∗ and LZ|X are injective.
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problems: For instance, under weak conditions, the mode is unaffected by truncation, whereas the
median is unaffected by censoring.

The proof of identification in Hu & Schennach (2008) can be outlined as follows. Assumption
(a) directly implies the integral Equation 77. This equation can be cast as an operator equivalence
relationship:

Ly ;X |Z = LX |X∗ Dy ;X∗ LX∗|Z, (80)

where Ly ;X |Z is defined analogously to LX |Z, with fX |Z replaced by fY ,X |Z(y, ·|·) for a given y ,
and Dy ;X∗ is the diagonal operator mapping a function q (x∗) to the function fY |X∗ (y |x∗)q (x∗),
for a given y . Next, note that the equivalence LX |Z = LX |X∗ LX∗|Z also holds [as fX |Z(x|z) =∫

fX |X∗ (x|x∗) fX∗|Z(x∗|z)dx∗, again by conditional independence]. Isolating LX∗|Z to yield

LX∗|Z = L−1
X |X∗ LX |Z, (81)

substituting it into Equation 80, and rearranging, one obtains

Ly ;X |Z L−1
X |Z = LX |X∗ Dy ;X∗ L−1

X |X∗ , (82)

where all inverses can be shown to exist over suitable domains15 under the injectivity assumptions
made.

Equation 82 states that the operator LY ;X |Z L−1
X |Z admits a spectral decomposition (eigenvalue-

eigenfunction decomposition). The operator to be diagonalized is defined in terms of observable
densities, whereas the resulting eigenvalues fY |X∗ (y |x∗) and eigenfunctions fX |X∗ (·|x∗) (both in-
dexed by x∗) provide the unobserved densities of interest. To ensure uniqueness of this decom-
position, Hu & Schennach (2008) employ four techniques. First, a powerful result from spectral
analysis (Dunford & Schwartz 1971, theorem XV 4.5) ensures uniqueness up to some normaliza-
tions. Second, the a priori arbitrary scale of the eigenfunctions is fixed by the requirement that
densities must integrate to one. Third, to avoid any ambiguity in the definition of the eigenfunc-
tions when degenerate eigenvalues are present, one can use assumption (c) and the fact that the
eigenfunctions [which do not depend on y , unlike the eigenvalues fY |X∗ (y |x∗)] must be consistent
across different values of the dependent variable y . Finally, to uniquely determine the ordering and
indexing of the eigenvalues and eigenfunctions, one can invoke assumption (d ): Consider another
variable x̃∗ related to x∗ through x∗ = R(x̃∗), and note that

M
[

fX |X̃ ∗ (·|x̃∗)
] = M

[
fX |X∗ (·|R (x̃∗))

] = R (x̃∗) , (83)

which is only equal to x̃∗ if R is the identity function. Observe that in discrete models, the
centering restrictions can be considerably weakened to M [ fX |X∗ (·|x∗)] strictly increasing in x∗

because, in finite dimension, ordering the eigenvectors is sufficient, whereas in infinite dimensions,
it is possible to reparameterize the eigenfunctions without changing their order [e.g., x∗ = (x̃∗)3].

The four above steps ensure that the diagonalization operation uniquely specifies the unob-
served densities fY |X∗ (y |x∗) and fX |X∗ (x|x∗) of interest. Next, Equation 81 implies that fX∗|Z(x∗|z)
is also identified. Because the identities in Equations 82 and 81 use and provide the same infor-
mation as Equation 77, this establishes uniqueness of the solution to Equation 77. Equation 78
follows by similar manipulations. Hu & Schennach (2008) also suggest an estimator based on
Equation 77 or 78 obtained by substituting series approximations for the unknown densities.

Interestingly, this identification result reaches a continuous analog of Kruskal’s rank bounds
for discrete variables. To see this, first rewrite Kruskal’s bound (Equation 75) as

KB ≥ (R − K A) + (R − KC ) + 2. (84)

15The injectivity of LZ|X is related to the existence of L−1
X |Z (Hu & Schennach 2008, lemma 1).

366 Schennach



EC08CH13-Schennach ARI 29 September 2016 16:31

In Hu & Schennach (2008), the operators associated with two of the conditional densities ( fX |X∗

and fZ|X∗ ) are injective, so one could consider them to have full rank. In Kruskal’s inequality
(Equation 75), one thus (informally) has R − K A = 0 and R − KC = 0. For the third variable
Y, one only needs any two columns fY |X∗ (·|x∗

1 ) and fY |X∗ (·|x∗
2 ) to be different, which secures

a Kruskal rank of two (as any two distinct columns are necessarily linearly independent), and
hence KB = 2. One then has 2 ≥ 0 + 0 + 2, thus reaching Kruskal’s bound. Of course, the
above argument is heuristic as the subtraction of infinities is not handled very formally (e.g.,
R − K A = 0). Nevertheless, this observation suggests that the conditions in Hu & Schennach
(2008) cannot be made significantly weaker. However, their result does not possess the symmetry
in the indicator variables (X , Y, Z) that Kruskal’s result has. The difficulty lies in even defining the
Kruskal rank when the number of dimensions is infinite in the general case where the operator is
neither injective nor has a Kruskal rank of two.

Operator diagonalization techniques generalize Fourier transforms, which only diagonalize
convolution operators (whose eigenfunctions are always known as they are just complex expo-
nentials). Thanks to this extra generality, operator diagonalization techniques are now being used
to solve an increasing number of identification problems with nonclassical disturbances, such as
dynamic models (Hu & Shum 2012, 2013), dynamic factor models (Cunha et al. 2010), two-
sample combination methods (Carroll et al. 2010), and nonlinear panel data models via quantile
restrictions (Arellano & Bonhomme 2015), with heterogeneity and selection (Sasaki 2015) and
with interactive fixed effects (Freyberger 2012), as well as Berkson-type errors (Schennach 2013b),
discussed further below.

Operator diagonalization is not the only approach, however. Hu & Sasaki (2015) adapt
Kotlarski’s approach (discussed in Section 4.1) to obtain a closed-form solution to a measure-
ment system of the form

Y = g (X ∗) + �Y , (85)

X = X ∗ + �X , (86)

Z =
P∑

p=0

γp (X ∗)p + �Z, (87)

where g(·) is a generic unknown nonlinear function, γp are unknown polynomial coefficients,
E[�X ] = 0, E[�Z] = 0, E[�Y |X ∗,�X , �Z] = 0, and X ∗, �X , and �Z are mutually indepen-
dent. Despite the independence assumptions, two of the measurements (Y and Z) are nonclassical
in that they are nonlinearly related to X ∗. Their approach proceeds in four steps. First, expecta-
tions of products of Y, X , and Zq are used to identify the γp and moments of �X . Next, the
latter are used to recover E[(X ∗)q exp(iζ Z∗)] [with Z∗ ≡ ∑P

p=0 γp (X ∗)p ] from the observed
E[(X )q exp(iζ Z)]. Then, one forms the linear combination

∑P
p=0 γp E[(X ∗)q exp(iζ Z∗)] to ob-

tain E[Z∗ exp(iζ Z∗)], which allows the use of Kotlarski-type techniques. Finally, the distribution
of X ∗ is inferred from the one of Z∗, exploiting a monotonicity assumption and the knowledge of
the (now identified) γp .

6.3. Nonseparable Error Models

The idea that disturbances need not enter economic models in an additive fashion has gained
considerable acceptance over the past decade. Nonseparability has close ties to the concepts of
average effects, treatment effects, and quantiles (see, e.g., Chesher 2003; Matzkin 2003, 2008;
Heckman & Vytlacil 2005; Chernozhukov et al. 2007b).
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The basic setup is a model of the form

Y = g (X , �Y ) , (88)

where X and Y are observed. The fundamental issue is that, of course, changes in the distribution
F�Y of the unobservable �Y can be offset by corresponding changes in the general nonlinear
function g(·, ·). To see this, consider a one-dimensional �Y and a strictly monotone function t.
Then, the model

Y = g̃
(
X , �Ỹ

)
, (89)

where g̃(x, u) = g(x, t(u)) and �Ỹ = t−1(�Y ), is observationally equivalent to Equation 88
because Y = g̃(X , �Ỹ ) = g(X , t(t−1(�Y ))) = g(X , �Y ). The two common solutions to this
problems are (a) the focus on average effects that are independent of the particular parameterization
of the model (e.g., Chesher 2003) or (b) the use of normalizations [of either g(·, ·) or F�Y ] (e.g.,
Matzkin 2003). Handling nonseparable disturbances acquires an even more challenging nature
when the disturbance �Y is endogenous and an instrument must be used to secure identification.
There is strong interest in developing methods to handle such models (e.g., Abadie et al. 2002;
Chesher 2003; Matzkin 2003, 2008; Chernozhukov & Hansen 2005; Heckman & Vytlacil 2005;
Chernozhukov et al. 2007b; Hoderlein & Mammen 2007).

These efforts, however, assume that all variables (except the disturbance) are observed. Exten-
sions to unobserved variables can be accomplished in two steps. First, the joint distribution of all
observable variables (typically repeated measurements or indicators within a factor model) is used
to determine the distribution of the unobservables with suitable measurement error techniques.
Second, nonseparable error techniques can be employed to determine the nonseparable relation-
ships existing between these unobserved variables by using the (now identified) distribution of the
unobservables as an input, as if it were observed. In an example of this approach, Cunha et al.
(2010) use the identification result of Hu & Schennach (2008) (which allows for nonclassical and
therefore nonseparable disturbances) to uncover the distribution of the unobservables and use the
nonseparable techniques of Matzkin (2003) to identify the functions that relate these variables to
each other.

Other approaches combine these two conceptual steps in different ways. Matzkin (2003) consid-
ers the identification of a wide range of nonseparable models of survey response errors, exploiting
either validation data or repeated measurements. The identification and estimation of various
nonseparable models and associated average effects from repeated measurements have been in-
vestigated by Schennach et al. (2012) and Song et al. (2015).

6.4. Berkson Measurement Error

Berkson (1950) introduces a type of measurement error that is complementary to the usual classical
assumptions, where the relationship between the correctly measured unobserved variable X ∗ and
the mismeasured observed variable X is a reversed version of the classical errors:

X ∗ = X + �X ∗, (90)

where �X ∗ is independent of X . This setup has a long history in statistics and is highly plausible
in a number of settings. One may attempt to impose a certain value of the control variable (e.g.,
medication dosage or oven temperature), but the actual value of that variable may deviate randomly
from this value. In economics, it is being increasingly recognized that Berkson-type errors may
occur, for instance, when the agents reporting the data attempt to form the best possible predictor
given their available information (Hyslop & Imbens 2001, Hoderlein & Winter 2010). Another
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plausible occurrence is when, for example, only a regional average is observed for one of the
regressors, although the researcher is interested in a model at the individual level (Schennach
2013b). It has also been suggested that some measurement errors in the regressors can consist of
a combination of a classical and a Berkson error (see, e.g., Hyslop & Imbens 2001).

For reference, a small-variance approximation similar to Chesher (1991), adapted to the
Berkson case, is provided here:

E [Y |X = x] = g (x) − σ 2

2
g ′′ (x) + o

(
σ 2) , (91)

fX (x) = fX∗ (x) − σ 2

2
f ′′

X∗ (x) + o
(
σ 2) . (92)

The bias contains terms similar to Equations 7 and 8, with the expected opposite sign. But
perhaps more surprisingly, Equation 91 is free of terms that involve first derivatives, which re-
flects the known fact that a conventional least-squares regression of Y on a Berkson-type error–
contaminated regressor X is only consistent for linear or quadratic specifications, with a biased
intercept coefficient in the quadratic case.

A popular approach to identification and estimation is to impose parametric restrictions on the
distributions of the variables and solve for the parameter values that reproduce various conditional
moments of the observed variables. This approach has been used, in particular, for polynomial
specifications (Huwang & Huang 2000) and more recently for a very wide range of parametric
models (Wang 2004, 2007). Nonparametric estimation, but under the assumption that the distri-
bution of the Berkson error �X ∗ is fully known, has also been demonstrated (Delaigle et al. 2006,
Carroll et al. 2007).

Schennach (2013b) addresses the question of identification and estimation of a fully nonpara-
metric regression with Berkson measurement error in the regressors of an unknown distribution
using an instrument Z related to the true regressor X ∗ via

Z = h (X ∗) + �Z, (93)

where the function h(·) is also unknown. The following assumptions are made: (a) X , �X ∗,
�Y, and �Z are mutually independent (this can be relaxed, as explained in Schennach 2013b),
(b) �X ∗, �Y, and �Z are centered (i.e., have zero mean, mode, median, etc.), (c) the marginal CFs
of �X ∗ and �Z are nonvanishing, (d ) the functions g(x∗) and h(x∗) are one-to-one, and (e) h and
its inverse are differentiable. Identification can then be stated as follows: Given the true observed
conditional density fY ,Z|X, the functional equation

fY ,Z|X (y, z|x) =
∫

f�Z (z − h (x∗)) f�Y (y − g (x∗)) f�X∗ (x∗ − x) dx∗ (94)

admits a unique solution (g, h, f�Z, f�Y , f�X∗ ).
This result is proven using operator techniques analogous to those of Hu & Schennach (2008),

but with some crucial differences. First, following steps similar to those in Section 6.2, Equation 94
implies the operator equivalence

Ly ;Z|X L−1
Z|X = LZ|X∗ Dy ;X∗ L−1

Z|X∗ . (95)

However, one cannot proceed in the same way to ensure that this decomposition is unique because
it does not make sense to assume that the distribution of Z given X ∗ is centered in any way, as
Z and X ∗ do not even have the same units. Instead, the proof proceeds by showing that a given
operator LZ|X corresponds to a unique operator LX∗|X , via

LX∗|X = L−1
Z|X∗ LZ|X , (96)
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and the conditional density fX∗|X (associated with LX∗|X ) can plausibly be assumed to be centered
at X ∗ = x, given X = x.

Data subject to rounding errors also follow the structure of Equation 90, although the error
�X ∗ is generally not independent from X in that case. Rounding with a systematic rule is best
handled with the bounding techniques discussed in the next section. However, the rounding
problem acquires a complex nature if rounding is performed by the reporting agent as a reflection
of his or her level of confidence in the accuracy of his or her report. In this case, more observations
tend to bunch at coarse fractions (such as multiples of 0.5) than at finer ones (such as multiples of
0.1). Methods to handle this require a suitable behavioral model of the respondents (Hoderlein
et al. 2015).

6.5. Bounding

If the conditions needed for point identification are too stringent, another way to approach non-
classical measurement error is, not surprisingly, to derive bounds on the parameters of interest
under weaker conditions, in the spirit of the literature on set identification (e.g., Manski 1990,
2003; Imbens & Manski 2004; Chernozhukov et al. 2007a). For instance, respondents in a survey
may report ranges instead of specific values (i.e., interval-valued data or rounding errors), or some
data could be missing or erroneous with some probability (i.e., contaminated or corrupted data).

Examples of this line of work include Manski & Tamer (2002), who derive bounds on the
regression coefficients when both the regressors and dependent variable could be interval valued.
Additionally, Horowitz & Manski (1995) consider the problem of bounding the true distribution
of a variable with a known support, based on contaminated data. Molinari (2008) tackles the gen-
eral misclassification problem without any auxiliary variables by using a bounding approach and
characterizes the identified set under a wide range of plausible assumptions regarding the mea-
surement error (e.g., bounds on the misclassification probabilities, symmetry, and monotonicity
constraints).

The ELVIS method (Schennach 2014), introduced in Section 5.2, offers a general and auto-
matic way to handle these general nonclassical data problems, with the additional benefit that it
considerably facilitates the inclusion of additional plausible constraints that may help narrow down
the identified set, without having to revisit the entire analysis of identification. Schennach (2014,
figures 2 and 3) illustrates this idea for interval-valued data and censored regressions, showing
that higher-order moment constraints (which impose plausible constraints on the form of het-
eroskedasticity) help reduce the range of possible parameter values. These higher-order moment
constraints involve nonmonotone functions, so an analytic derivation of the bounds would have
been daunting. ELVIS is not limited to higher-order moments—it can just as easily handle the
median restrictions on the measurement error suggested by Hu & Schennach (2008), for instance,
or make use of instruments and repeated measurements, which could also be interval valued or
mismeasured, etc.

7. APPLICATIONS TO OTHER FIELDS

Techniques developed for measurement error problems have already found application in various
fields. In the identification of auction models, for instance, there is a natural analogy between
the measurement error structure and the decomposition of the value of an auctioned item into
a sum of a common and private component (Li et al. 2000; Athey & Haile 2002, 2007; An et al.
2010; Krasnokutskaya 2011; Hu et al. 2013). In panel data models with fixed effects, Evdokimov
(2009) shows that, upon suitable conditioning, observations in two time periods are analogous to
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repeated measurements that can disentangle the distribution of the fixed effect from those of the
transitory errors. In random-coefficients panel data models, generalizations of Kotlarski’s lemma
lead to identification of the distribution of the random coefficients and time-varying error distri-
butions (Arellano & Bonhomme 2011). Treatment effect models in which the control variables
only enable imperfect matching can also benefit from measurement error techniques (Heckman
et al. 2010a). Measurement error and latent variables techniques have also found applications
in game-theoretic settings when a player’s actions depend on unobserved variables (Ciliberto &
Tamer 2009; Beresteanu et al. 2011; Hu & Shum 2013). Hu (2015) surveys applications of mea-
surement error models in industrial organization and labor economics. General methods that can
be used for bounding or point identification in nonlinear measurement error models also have
clear applications in general latent variable models (Schennach 2014), such as interval-valued data,
limited dependent variables, panel data, and some game-theoretic models.

8. CONCLUSION

This article provides an overview of the field of measurement error in nonlinear models, from
simple methods that assume distributional knowledge regarding the measurement error to ad-
vanced methods that eliminate measurement error biases via readily available information, even
in nonclassical settings.

Where does the future of the field of measurement error modeling lie? Certainly, the field of
nonclassical measurement error is still rapidly growing. More closed-form identification results
enabling natural plug-in estimators that avoid the need for high-dimensional nonparametric series
or sieve estimators would be welcome. Handling the combination of measurement error with
other data problems via generic latent variables techniques (e.g., Schennach 2014) in point- or
set-identified settings is also a promising area. Finally, existing techniques that properly account
for the presence of measurement error should be more broadly used in applications, as rich
data sets (potentially with repeated measurements or instruments) are becoming more common.
This transition would be facilitated by the creation of easy-to-use, widely available, and robust
estimation routines. Ultimately, it would be fruitful if some of the identification results were
used as guidance to design collection methods that move away from the elusive goal of capturing
exact data and instead focus on the feasible task of obtaining mismeasured data with properties
compatible with the most powerful identification results.
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