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Abstract

This article reviews the econometrics of static games, with a focus on
discrete-choice cases. These models have been used to study a rich vari-
ety of empirical problems, ranging from labor force participation to entry
decisions. We outline the components of a general game and describe the
problem of doing robust inference in the presence of multiple solutions,
as well as the different econometric approaches that have been applied to
tackle this problem. We then describe the specific challenges that arise in
different variations of these models depending on whether players are as-
sumed to have complete or incomplete information, as well as whether or
not nonequilibrium play is allowed. We describe the results in 2 × 2 games
(the most widely studied games in econometrics), and we present extensions
and recent results in games with richer action spaces. Areas for future re-
search are also discussed.
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1. INTRODUCTION

This article provides an overview of the general problem and the state of the literature on econo-
metric inference in static games, with an emphasis on discrete-choice games. These models have
been applied to study problems including labor force participation, entry, technology adoption,
product differentiation, advertising, and analyst stock recommendations, among others. In these
models, a data set with a sample of outcomes (i.e., choices made by economic agents) and observ-
able covariates relevant to the environment is observed and mapped back to an underlying model
of strategic interaction (a game) through behavioral assumptions. Typically, in the econometric
analysis of static games, each observation in the sample is considered an independent and identi-
cally distributed (i.i.d.) realization from the same underlying game, summarized in a normal-form
representation. A characterization of the normal form requires a description of the collection of
players, their action space, and their payoff functions. These are the primary components of the
model. Here, the researcher must determine, for example, whether the model is a binary-choice
game and whether payoff functions will be parametrically or nonparametrically specified. Once
the normal form is specified, the researcher must make assumptions regarding the information
possessed by the players, the solution concept used, and, if multiple solutions exist, the type of as-
sumptions made about the underlying selection mechanism.While existing studies differ in terms
of these assumptions, the ultimate goal in all cases is to conduct inference on features of the under-
lying game, and particularly on the nature of the strategic interaction effects. Depending on the
extent to which the underlying game has been specified, inference can also lead to counterfactual
analysis, or it can enable the researcher to test whether the data observed are consistent with a
specific behavioral model such as Nash equilibrium.

Aside from being valuable tools that can enable researchers to estimate strategic interaction
effects, test and compare alternative behavioral models, and perform policy counterfactuals, these
models pose very particular econometric challenges that we aim at describing here, along with the
solutions that have been proposed to tackle them. In particular, we compare and contrast existing
econometric methods that have been developed to deal with the following issues:

� Nash equilibrium versus weaker solution concepts;
� the presence of multiple solutions;
� complete- versus incomplete-information games;
� correct versus incorrect beliefs; and
� parametric versus nonparametric models.

The article proceeds as follows. We begin in Section 2 by describing the generic econometric
problem of doing inference in a static, normal-form game. We enumerate the structural and be-
havioral elements of the model and discuss how existing papers have differed in their assumptions.
From here, Section 3 describes identification and the general inferential problem in these models,
along with the challenges faced by the econometrician—in particular, the issue of robust inference
when the game has multiple solutions. We also compare the particular challenges of complete-
information and incomplete-information games, as well as equilibrium and nonequilibrium mod-
els. Section 4 then illustrates inference in all these cases in a 2 × 2 game, the canonical application
in econometric models of games. We then proceed in Section 5 to describe recent advances in
discrete games with richer action spaces. Overall, the results we overview throughout the arti-
cle include parametric and nonparametric models, complete- and incomplete-information games,
and equilibrium and nonequilibrium behavior. Following our review and analysis, we conclude in
Section 6 by suggesting areas for future research.
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2. A GENERAL NORMAL-FORM GAME

This article focuses on econometric inference of a normal-form (or strategic-form) static game
where players move simultaneously (i.e., before observing the realized choices of others). The
generic game consists of the following components.

Definition 1 (players and actions). The game consists of a set of {1, 2, . . . , P} players.
Each player p has to select an action Yp from within an action space Sp. The subscript −p
will denote p’s opponents. We denote a generic action for p as yp ∈ Sp, and y−p ≡ (yq )q �=p ∈
S−p denotes a generic action profile for p’s opponents. Yp will denote the actual action (the
choice) made by p and Y−p � (yq )q �=p will denote the choice profile of p’s opponents.We refer
to Y ≡ (Yp)Pp=1 as the outcome of the game.

Definition 2 (payoff functions). The von Neumann−Morgenstern payoff function of
player p is denoted as

up(Yp,Y−p). 1.

Payoffs are treated as random functions, with up ∈ Up (a space of functions). We assume
that player p observes the realization of their payoff function up prior to the game being
played. Let U denote the joint space of payoff functions for all the players in the game.

We consider static games where players choose their strategies simultaneously, and we focus
on cases where actions are scalar and the action space is discrete. The game has the following
additional components.

Definition 3 (beliefs). Players are expected-payoff maximizers. They construct their ex-
pected payoffs by forming beliefs about the distribution of actions chosen by their oppo-
nents. Beliefs for player p are denoted as π−p, a distribution function over S−p. For a given
set of beliefs π−p, the expected payoff function for p is given by

up(Yp,π−p) =
∫
y−p∈S−p

up(Yp, y−p)dπ−p(y−p). 2.

We denote the space of possible beliefs for player p as B−p, with B denoting the combined
space of beliefs for all players in the game.Degenerate beliefs that assign probability mass 1
to a particular action profile are always allowed.

Definition 4 (strategies). A strategy σ p for player p is a distribution over Sp. Let�p denote
the strategy space for player p, and let � denote the combined strategy space for all players
in the game. For a given set of beliefs π−p, the expected payoff for p from playing strategy
σ p is

up(σp,π−p) =
∫
yp∈Sp

up(yp,π−p)dσp(yp). 3.

Pure strategies assign probability mass 1 to a particular action. We refer to all others as
mixed strategies.

Definition 5 (best responses). The strategy σ p is a best response for a particular set of
beliefs π−p if up(σp,π−p) ≥ up(σ ′

p,π−p) for all σ ′
p ∈ Sp. Given a payoff function up, we denote

this as σ p = BRp(π−p|up).
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Definition 6 (solution). Let �p denote the joint space of beliefs and strategies (π−p, σ p)
for player p. Given a payoff function up, we obtain

�∗
p(up) = {(π−p, σp) ∈ �p: σp = BRp(π−p|up)

}
.

Given {up}Pp=1, a solution to the game is a collection of beliefs and strategies {(π−p, σp)}Pp=1
such that (π−p, σp) ∈ �∗

p(up) for each p. Denote u ≡ {up}Pp=1 and let �∗(u) be the set of all
solutions to the game given u.

For a given strategy profile y = (yp)Pp=1, we have

�∗(y|u) =
{
{(π−p, σp)}Pp=1 ∈ �∗(u) : σp(yp) > 0 ∀ p

}
. 4.

�∗(y|u) is the set of all existing solutions where y can be chosen with nonzero probability. Given
u, we have Y = y only if �∗(y|u) �= ∅. If the game has multiple existing solutions, the model can be
completed by adding a solution selection mechanism.

Definition 7 (solution selection). Given u, there exists a mechanism M that selects a
solution from within �∗(u). The solution selected by M is defined as

{(π∗
−p(·|u), σ ∗

p (·|u))}Pp=1.

Then, we obtain

Pr(Yp ∈ A|u) =
∫
yp∈A

dσ ∗
p (yp|u) ∀ A ⊆ Sp. 5.

All the models we review here can be expressed as variations of the general normal-form game
described above, with the following different assumptions.

Assumption 1 (solution concept). The majority of econometric studies assume equilib-
rium behavior, which presupposes correct beliefs, and the most widely assumed equilib-
rium concept is Nash equilibrium (NE). Nonequilibrium solution concepts have also been
considered. For example, motivated by empirical evidence of deviations from equilibrium
behavior (see, e.g., Stahl & Wilson 1994), experimental economists have used models of
cognitive hierarchy (among others) to model behavior. These models are characterized by
very precise assumptions about how exactly agents deviate from equilibrium. Examples in-
clude work by Costa-Gomes & Crawford (2001), Camerer (2004), and Costa-Gomes &
Crawford (2006).

Econometric methods that do not impose equilibrium behavior include those devel-
oped by Aradillas-López & Tamer (2008), Kline & Tamer (2012), Kline (2015, 2018), and
Aradillas-López (2019). Unlike the experimental methods, which assume a precise form in
which players deviate from equilibrium, these papers rely on general restrictions on behav-
ior and beliefs that include NE as a special case and, in some instances (e.g., Aradillas-López
& Tamer 2008 and Kline 2015), also nest experimental models such as cognitive hierarchy.

Assumption 2 (information). Complete-information models assume that the realization
of payoff functions {up} is common knowledge, while incomplete-information settings as-
sume that the exact realization of payoff functions is only privately observed by each
player. Some examples of complete-information games include work by Bjorn & Vuong
(1984), Bresnahan & Reiss (1990; 1991a,b), Berry (1992), Tamer (2003), Ciliberto & Tamer
(2009), Bajari et al. (2010b), Aradillas-López (2011, 2019),Kline (2015, 2016), and Aradillas-
López & Rosen (2019). Incomplete-information games have been studied, for example, by
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Aradillas-López (2010, 2012), Bajari et al. (2010a), de Paula & Tang (2012), Xu (2014), Xu
&Wan (2014), Lewbel & Tang (2015), Aradillas-López & Gandhi (2016), Liu et al. (2017),
and Xiao (2018). The presence of multiple equilibria tends to be more pervasive in games
with complete information (see Morris & Shin 2003). Incomplete-information games re-
quire assumptions about the information possessed by players to construct their beliefs.1

Assumption 3 (beliefs). Equilibrium models presuppose correct beliefs. In equilibrium
games of complete information, beliefs are completely characterized by the realization of
payoff functions. Incomplete-information games require specific assumptions about the in-
formation observed by players. A crucial assumption is whether players’ private information
is assumed to be independent across players, conditional on observables to the econometri-
cian. Examples that assume conditional independence include work by Bajari et al. (2010a),
Aradillas-López (2012), de Paula &Tang (2012), Lewbel &Tang (2015), Aradillas-López &
Gandhi (2016), and Xiao (2018). Papers that allow correlation in players’ private informa-
tion under additional restrictions include those by Aradillas-López (2012), Grieco (2014),
Xu (2014), Xu & Wan (2014), and Liu et al. (2017). Methods that allow for incorrect be-
liefs typically restrict the space of beliefs according to weaker restrictions, such as iterated
dominance or rationalizability.

Assumption 4 (action spaces). We focus mainly on discrete action spaces. Within these
models, binary-choice games have received the majority of attention (see, e.g., Berry &
Tamer 2007 and the literature cited therein). Discrete games with a richer-than-binary ac-
tion space typically have a more complicated set of solutions and therefore are more chal-
lenging to analyze. Complete-information games with more than two actions have been
analyzed by Davis (2006) and Bajari et al. (2010b) (multinomial games), and by Aradillas-
López (2011) and Aradillas-López & Rosen (2019) (ordinal games). Nonparametric results
in ordinal incomplete-information games have been obtained by Aradillas-López&Gandhi
(2016).

Assumption 5 (strategy spaces). Here, the main distinction is whether mixed strategies
are allowed or attention is restricted to pure strategies. Identification results in binary-
choice games with complete information have been obtained by ruling out mixed strategies.
Under symmetry conditions, this leads to a unique prediction for

∑P
p=1Yp in all coexisting

equilibria.2 This result has been exploited by Bresnahan & Reiss (1990; 1991a,b), Berry
(1992), and Tamer (2003), and it is discussed in detail by Berry & Tamer (2007, section 2.4).
Incomplete-information econometric methods typically assume beliefs that produce a
unique optimal action with probability 1 (w.p.1) and therefore lead to pure strategies.

Assumption 6 (multiple solutions and selection mechanism). Multiple equilibria are
more prevalent in complete-information games (seeMorris & Shin 2003).As a result, an im-
portant body of work has been devoted to doing robust inference in complete-information
games without any explicit assumptions about the underlying equilibrium selection mech-
anisms. The list of such studies is extensive, but most are purely econometric papers that
include a game as an example. Perhaps the most significant effort to date explicitly devoted
to a nontrivial game is by Ciliberto & Tamer (2009). On the other extreme we have papers

1Grieco (2014) analyzes a parametric game where unobservables have a particular structure that can com-
bine (i.e., nest) the complete- and incomplete-information frameworks depending on the value of a subset of
parameters.
2Ciliberto & Tamer (2009) allow for asymmetries, and ruling out mixed strategies does not lead to a unique
prediction for

∑P
p=1Yp in all coexisting equilibria.
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with an explicit model of equilibrium selection, and one of the most notable complete-
information examples is provided by Bajari et al. (2010b).

In econometric studies of incomplete-information games with equilibrium behavior, a
commonly made assumption is that the underlying selection mechanism is degenerate, so
that it chooses a unique equilibrium w.p.1, or, in other words, the data come from a single
equilibrium.This assumption can often help identify the remaining parameters of themodel
(a result that does not hold in complete-information games). This type of assumption has
led to identification results, for example, by Seim (2006), Pesendorfer & Schmidt-Dengler
(2008), Bajari et al. (2010a), and Aradillas-López (2012). Studies that do not assume a de-
generate selection mechanism include those by de Paula & Tang (2012), Aradillas-López &
Gandhi (2016), and Xiao (2018). Examples that include an explicit model of equilibrium se-
lection include work by Ackerberg & Gowrisankaran (2006) and Sweeting (2009). In many
instances, the presence of multiple equilibria has identification power, for example, to infer
the direction of strategic interaction (de Paula & Tang 2012, Aradillas-López & Gandhi
2016) or the parameters of the model (Ackerberg & Gowrisankaran 2006, Sweeting 2009).
Testing for the presence of multiple equilibria has been studied, for example, by Otsu et al.
(2016), Hahn et al. (2017), and Marcoux (2018). A survey of econometric methods with
multiple equilibria in games is provided by de Paula (2013). Nonequilibrium inference typ-
ically makes no assumptions about the selection mechanism but focuses on doing robust
inference involving the rest of the parameters (payoffs, beliefs).

Assumption 7 (payoff functions). Methods can be classified according to the parametric
assumptions made about payoff functions.The list of studies that parametrize payoffs is vast
and includes the majority of existing work. Nonparametric payoff functions are considered,
for example, by Aradillas-López (2011, 2019), de Paula & Tang (2012), Kline & Tamer
(2012), Lewbel & Tang (2015), Aradillas-López & Gandhi (2016), and Liu et al. (2017),
among others. In many nonparametric studies, the goal is to test or infer qualitative features
of the game, such as the sign of strategic interaction, the information possessed by players,
or the presence of multiple equilibria.

3. IDENTIFICATION AND THE INFERENTIAL PROBLEM

The econometric goal is to perform inference on features of the structure of the game, which
include payoffs, strategies, and beliefs. Inference here can be understood as the statistical problem
of estimating a set of structures that is consistent with the underlying model, given the data ob-
served. In the frequentist approaches reviewed here, the inferential goal is for the estimated set of
structures to have the usual desirable asymptotic properties, such as including the true structure
with a prespecified probability as the sample size grows.

Inference is dictated by the observable implications of the model and the resulting identifi-
cation properties of the underlying structure. Thus, identification and inference are inextricably
linked. In econometric terms, if the model is such that there is a unique structure consistent with
the data, the model is called point identified. Otherwise, if there are multiple such structures, the
model is said to be partially identified. Of particular interest in the literature is the ability to per-
form inference that is robust to the presence of multiple solutions. This refers to inference that
relies only on observable implications of the model that are valid regardless of the presence of
multiple solutions and regardless of the features of the underlying selection mechanism.

For brevity, in this section we focus on describing observable implications and constructive
identification results under different assumptions, while pointing out how they would be used
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for statistical inference (for example, using moment inequalities). Some econometric details about
inferential methods are described in the following sections (e.g., Section 5.1.2).

3.1. Data Observed

The setting we consider is one in which the econometrician observes i = 1, . . . , n realizations of
the game described above. The researcher observes Yi = (Yp,i )ni=1 and Xi, where Xi is a collection
of covariates that contain information for (up,i,π−p,i, σp,i )Pp=1. The models we review assume that
(Yi,Xi )ni=1 is a random sample, with (Y, X) ∼ PX, Y and PX, Y nonparametrically identified.

3.2. Identification and Inference with a Unique Solution
or an Explicit Selection Mechanism

If the game has a unique solution almost surely, then the selection mechanism becomes redundant
and the observable implications of the model are given by Equation 5 with a trivial selection
mechanism that chooses the only existing solution. From here, inference can proceed as with any
microeconometricmodel, depending on the specific assumptionsmade about the joint distribution
of observable and unobservable payoff components, and on the parametric assumptions imposed
on the remaining components of the model, such as payoff functions.

Alternatively, the game can have multiple solutions but there may exist an aggregate func-
tion T(Y ) with the property that all coexisting solutions yield a unique prediction for T(Y ). For
example, under some symmetry conditions this happens in binary-choice games of complete in-
formation and NE behavior for T (Y ) =∑P

p=1Yp if mixed strategies are ruled out (see Berry &
Tamer 2007, section 2.4). In these cases, inference can proceed by applying Equation 5 to T(Y ),
and the specific selection mechanism becomes irrelevant.

If multiple solutions can exist but the model is “completed” with an explicit selection mecha-
nism, identification and inference once again would be based on Equation 5 and on the assump-
tions made about the joint distribution of observable and unobservable payoff components, as well
as on the parametric assumptions imposed on the remaining components of the model, such as
payoff functions and the selection mechanism.

3.3. Identification and Inference Without a Selection Mechanism

Let �p � (up, π−p, σ p) and � = {�p}Pp=1 ∈ ϒ . Without an explicit model for the selection mech-
anism, the goal is to do robust inference on � based solely on the implications of the solution
concept employed.3 Take any collection of action profiles A ⊆ S and let

R(A) = {�: �∗(y|u) �= ∅ for some y ∈ A
}
, 6.

where �∗(y|u) is as defined in Equation 4. Note that Y � A only if � ∈ R(A).

3.3.1. A notational convention. For a random variable ξ we use the statements “a.e. ξ”, “a.s. in
ξ” or “w.p.1. in ξ” interchangeably to refer to an event that is satisfied “for almost every realization
of ξ ,” “almost surely in ξ ,” or “with probability 1 in ξ .”

3.3.2. Parameters and the identified set. The identified set is the collection of all � � ϒ

that could have generated the data observed for some selection mechanism. Suppose (Y ,�)|X ∼
PX ∈ P (a space of distributions). Any particular PX reflects implicit properties about the

3One of the first papers to formalize this notion in equilibrium models was by Jovanovic (1989).
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underlying selection mechanism, but the latter is not explicitly modeled. The space P implicitly
restricts the class of selection mechanisms allowed. Since PY, X is nonparametrically identified, the
joint distribution of (Y, X, �) is completed by PX , and we can describe the unknown parameters
of the model as (�,PX ) ∈ 	, where 	 = {(�,PX ): � ∈ ϒ , PX ∈ P} denotes the parameter
space. Using the above definition for R, we obtain

Pr(Y ∈ A|X ) ≤ PX (� ∈ R(A)|X ) ∀A ⊆ S, a.e. X . 7.

The identified set of parameters can be defined from the above condition. However, it can be
characterized in an alternative way. Note that for any set, C ⊆ ϒ ,R(Y ) ⊆ C implies � ∈ C [since
� ∈ R(Y ) a.s.]. The identified set can be defined as

	I = {(�,PX ) ∈ 	: PX (R(Y ) ⊆ C|X ) ≤ PX (� ∈ C|X ) ∀ C ⊆ ϒ , a.e. X
}
. 8.

This definition is sharp, meaning that a parameter is in 	I if and only if there exists an underlying
selection mechanism (not necessarily unique) that makes it consistent with the data observed.
The characterization in Equation 8 may be infeasible in practice because it involves all possible
subsets in ϒ. Let us prespecify a class of subsets C ⊂ 	 and define

	C
I = {(�,PX ) ∈ 	:PX (R(Y ) ⊆ C|X ) ≤ PX (� ∈ C|X ) ∀ C ⊆ C, a.e. X }.

Note that 	I ⊆ 	C
I . A definition such as 	C

I can therefore be conservative but computationally
feasible to implement. An important body of econometric work has been devoted to the issue of
feasible sharp inference, aimed at characterizing the smallest class of sets C such that 	I = 	C

I .
Such a class is often referred to as the class of core-determining sets (Galichon & Henry 2011).
Sharp inference methods have used results from random set theory (Beresteanu &Molinari 2008,
Beresteanu et al. 2011, Chesher & Rosen 2017) and optimal transportation theory (Galichon &
Henry 2011).

3.3.3. Moment inequality characterizations of the identified set. Inference can be per-
formed bypassing entirely the selection mechanism. Instead of PX (the joint distribution of
(Y, �)|X), we can focus merely on QX , the distribution of �|X, and define 	̃I as

	̃I = {(�,QX ) ∈ 	: Pr(Y ∈ A|X ) ≤ QX (� ∈ R(A)|X ) ∀ A ∈ S, a.e. X }.
Clearly, 	I ⊆ 	̃I , but 	̃I may include �’s that are excluded from 	I. Inferential methods based
on moment inequalities can focus only on a class of subsets in S. For example, in discrete games,
we could focus only on the class of singletons in S described by

	̃S
I = {(�,QX ) ∈ 	: Pr(Y = y|X ) ≤ QX (� ∈ R(y)|X ) ∀ y ∈ S, a.e. X }.

Econometric inference with moment inequalities has been an area of active research, and game-
theoretic models have been among the most important applications. Examples include work by
Chernozhukov et al. (2007, 2013),Andrews& Jia-Barwick (2010),Andrews&Soares (2010),Bugni
(2010), Romano & Shaikh (2010), Chetverikov (2012), Andrews & Shi (2013), Armstrong (2014,
2015), Romano et al. (2014), and Pakes et al. (2015).

3.3.4. Using a superset for the set of solutions R. In some cases, a full characterization of
the setR (defined in Equation 6) may require finding all existing solutions to the game, or it may
necessitate stronger assumptions about payoff functions (e.g., parametrization) than the researcher
is willing to make. In such instances, it may be possible to characterize a supersetR that is feasible
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Table 1 Matrix form game

Y2 = 1 Y2 = 0
Y1 = 1 X ′

1β1 + �1 − ε1, X ′
2β2 + �2 − ε2 X ′

1β1 − ε1, 0
Y1 = 0 0, X ′

2β2 − ε2 0, 0

to compute under the specific assumptions of the model, with the property thatR(A) ⊆ R(A) for
all A. From here, any of the previous characterizations of the identified set can be constructed
replacing R with R. This approach is taken, for example, by Aradillas-López (2011), de Paula &
Tang (2012), Kline & Tamer (2012), and Aradillas-López & Gandhi (2016).

4. 2 × 2 GAMES

Binary choice games with Yp � {0, 1} have been studied extensively, particularly to model simul-
taneous participation or entry decisions. Some examples include work by Bjorn & Vuong (1984),
Bresnahan & Reiss (1990), Berry (1992), Tamer (2003), Ciliberto & Tamer (2009), Sweeting
(2009), Aradillas-López (2010), de Paula & Tang (2012), and Kline & Tamer (2012). Berry &
Reiss (2007) and Berry & Tamer (2007) provide surveys of entry games.

The canonical example of binary-choice games in econometrics is the 2 × 2 case. This was the
focus of the paper by Bjorn & Vuong (1984) that pioneered the econometric analysis of games
and was a contribution well ahead of its time. Consider the matrix form game in Table 1. γ �

(β1, β2, �1, �2) are unknown parameters. X � (X1, X2) and ε � (ε1, ε2) are nonstrategic payoff
shifters. X is observed by the econometrician, but ε is not. The space of payoff functions in this
parametric model is indexed by γ � � (the parameter space).

Assume for simplicity that �p ≤ 0, corresponding to strategic substitutes. We also maintain
that ε|X is jointly continuously distributed with unbounded support R2. We describe inference
of this game under the cases of complete and incomplete information, and in each instance we
consider two alternative solution concepts: NE and iterated dominance.

4.1. Inference in the Complete-Information Case

Suppose the true value of γ and the realizations of X and ε are observed by both players.

4.1.1. Nash equilibrium behavior. A strategy profile (σ 1, σ 2) is an NE in this game if
up(σ p, σ−p) ≥ up(yp, σ−p) for yp � {0, 1}.

4.1.1.1. Pure-strategy Nash equilibrium. For a given (X, γ ) and any profile y = (y1, y2), let
RPSNE(y|X , γ ) denote the region of values of (ε1, ε2) such that y is a pure-strategy NE (PSNE).
The regions are as follows:

RPSNE(1, 1|X , γ )= {(ε1, ε2): X ′
1β1 + �1 − ε1 ≥ 0, X ′

2β2 + �2 − ε2 ≥ 0
}
,

RPSNE(1, 0|X , γ )= {(ε1, ε2): X ′
1β1 − ε1 ≥ 0, X ′

2β2 + �2 − ε2 ≤ 0
}
,

RPSNE(0, 1|X , γ )= {(ε1, ε2): X ′
1β1 + �1 − ε1 ≤ 0, X ′

2β2 − ε2 ≥ 0
}
, and

RPSNE(0, 0|X , γ )= {(ε1, ε2): X ′
1β1 − ε1 ≤ 0, X ′

2β2 − ε2 ≤ 0
}
.

4.1.1.2. Mixed-strategy Nash equilibrium. A strategy profile (σ 1, σ 2) is a mixed-strategy NE
if and only if u1(1, σ 2) = u1(0, σ 2) and u2(1, σ 1) = u2(0, σ 1). In this case, we obtain

X ′
1β1 − ε1 + σ2 · �1 = 0 and X ′

2β2 − ε2 + σ1 · �2 = 0.
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ε2

ε1

X'2β2

X'2β2 + Δ2

X'1β1 + Δ1 X'1β1

{(1,0)} {(1,0)} {(1,0)}

{(0,1)}

{(0,1)}{(0,1)}

{(0,1)}{(0,1)}

{(1,0), (0,1), (σM
1 , σM

2 )}

{(0,0)}

{(1,0)}

{(1,1)}

{(1,0)}

{(1,1)}

{(1,1)} {(1,1)}

Figure 1

Nash equilibrium regions for the complete-information game.

This yields

σM
1 (1) = X ′

2β2 − ε2

−�2
and σM

2 (1) = X ′
1β1 − ε1

−�1
. 9.

We have 0 < σ 1(1) < 1 and 0 < σ 2(1) < 1 if and only if X ′
1β1 + �1 < ε1 < X ′

1β1 and X ′
2β2 + �2 <

ε2 < X ′
2β2. Thus, we find that

RMSNE(σM
1 , σM

2 |X , γ ) = {(ε1, ε2): X ′
1β1 + �1 < ε1 < X ′

1β1, X ′
2β2 + �2 < ε2 < X ′

2β2
}

is the region of mixed-strategy NE. Figure 1 shows the NE regions.
DefineRNE(y|X , γ ) as the region of values of (ε1, ε2) such that there exists an NE where y can

be chosen with nonzero probability. We have

RNE(y|X , γ ) = RPSNE(y|X , γ ) ∪ RMSNE(σM
1 , σM

2 |X , γ ).

Therefore, we find that

Pr(Y = y|X ) ≤ Pr(ε ∈ RNE(y|X , γ )|X ) ∀y, a.e. X .

If we assume ε|X ∼ G(·|X, ρ) (a parametric family of distributions) and we let θ � (γ , ρ) � 	,
with ∫

ε∈RNE (y|X ,γ )
dG(ε|X , ρ ) ≡ HNE(y|X , θ ),

we can perform inference on θ based on the moment inequalities implied by the model. Define
	I as

	I = {θ ∈ 	: Pr(Y = y|X ) ≤ HNE(y|X , θ ) ∀ y, a.e. X }.
A sharp characterization of the identified set can proceed in the manner described in Section
3.3.2. Suppose (Y , ε)|X ∼ PX ∈ P (a class of distributions). The parameters of the game are
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(γ ,PX ) ∈ 	, and the identified set can be described as

	I = {(γ ,PX ) ∈ 	: PX (RNE(Y |X , γ ) ⊆ C|X ) ≤ PX (ε ∈ C|X ) ∀ C ⊂ R2, a.e. X
}
.

4.1.1.3. Ruling out mixed strategies. As Figure 1 shows, if we rule out mixed strategies, every
coexisting NE predicts the same value for Y1 + Y2. We have

Pr(Y1 +Y2 = 0|X )=Pr (ε ∈ RPSNE((0, 0)|X , γ )|X ),

Pr(Y1 +Y2 = 1|X )=Pr (ε ∈ RPSNE((1, 0)|X , γ ) ∪ RPSNE((0, 1)|X , γ )|X ) , and

Pr(Y1 +Y2 = 2|X )=Pr (ε ∈ RPSNE((1, 1)|X , γ )|X ).

Inference for the parameters of themodel can be performed from here.This result extends beyond
two players under some symmetry conditions of strategic effects and has been widely used for
identification purposes (see Berry & Tamer 2007, section 2.4).

4.1.2. Iterated dominance behavior. NEbehavior presupposes that players’ beliefs are correct.
A weaker requirement that is still consistent with rationality and expected-payoff maximization
is to allow players to have incorrect beliefs but assume that these beliefs assign zero probability
to dominated strategies. Iteratively removing dominated strategies in this fashion leads to the
solution concept of iterated dominance. The following analysis was proposed by Aradillas-López
& Tamer (2008). The steps of iterated dominance are described below.

Step 1: Eliminate all dominated strategies in S. Define S1 to be the strategy profiles that
remain.

Step 2: Eliminate all strategies that are not best responses to beliefs concentrated on S1. De-
fine S2 to be the strategy profiles that remain.

�

Step k: Eliminate all strategies that are not best responses to beliefs concentrated on Sk−1.
Define Sk to be the strategy profiles that remain.

�

This process stops when there are no more strategies left to eliminate. The set of strategies S∗

that survive represents the rationalizable strategies.4 By construction, all NE strategies must be
rationalizable and, therefore, contained in Sk for any k. In the 2 × 2 game convergence is achieved
after at most two steps.

Step 1: Dominated strategies are described as follows:

Yp = 1 is dominated if and only if X ′
pβp − εp < 0 (i.e., εp > X ′

pβp).

Yp = 0 is dominated if and only if X ′
pβp + �p − εp > 0 (i.e., εp < X ′

pβp + �p).

Step 2: If there are no dominated strategies, the process ends in Step 1. Otherwise,

If Yp = 0 is dominated:

Y−p = 1 is dominated if and only if X ′
−pβ−p + �p − ε−p < 0 (i.e., ε−p > X ′

−pβ−p + �p).

Y−p = 0 is dominated if and only if X ′
−pβ−p + �p − ε−p > 0 (i.e., ε−p < X ′

−pβ−p + �p).

4The concept of rationalizability and its relationship with iterated dominance were developed and analyzed
by Bernheim (1984) and Pearce (1984).
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k = 1: 

k = 2 (rationalizable actions): 

ε2

ε1

X'2β2

X'2β2 + Δ2

X'1β1 + Δ1 X'1β1

{(1,0)} {(1,0)} {(0,0), (1,0)}

{(0,0), (0,1)}

{(0,1)}{(0,1), (1,1)}
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{(0,0)}

{(1,0), (1,1)}
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{(1,0), (1,1)}

{(1,1)}

{(1,1)} {(1,1)}

ε2

ε1

X'2β2

X'2β2 + Δ2

X'1β1 + Δ1 X'1β1

{(1,0)} {(1,0)} {(1,0)}

{(0,1)}

{(0,1)}{(0,1)}

{(0,1)}{(0,1)}

{(0,0), (0,1), (1,0), (1,1)}

{(0,0)}

{(1,0)}

{(1,1)}

{(1,0)}

{(1,1)}

{(1,1)} {(1,1)}

Figure 2

Action profiles that survive k rounds of iterated dominance.

If Yp = 1 is dominated:

Y−p = 1 is dominated if and only if X ′
−pβ−p − ε−p < 0 (i.e., ε−p > X ′

−pβ−p).

Y−p = 0 is dominated if and only if X ′
−pβ−p − ε−p > 0 (i.e., ε−p < X ′

−pβ−p).

Figure 2 shows the action profiles that survive k rounds of iterated dominance, with k = 1, 2. Let
Sk(X , ε, γ ) denote the set of strategies that survive k iterated dominance steps and define

Rk
ID(y|X , γ ) = {(ε1, ε2): y ∈ Sk(X , ε, γ )

}
.

Then, under the assumption that strategies survive k steps of iterated dominance, we obtain

Pr(Y = y|X ) ≤ Pr(ε ∈ Rk
ID(y|X , γ )|X ) ∀y, a.e. X .
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Assuming iterated dominance instead of NE behavior, the sets 	I and 	I described in the NE
case would be redefined by replacing RNE with Rk

ID.

4.2. Inference in the Incomplete-Information Case

Suppose now that the realization of a subset of payoff shifters is only private information. For
simplicity, suppose X � (X1, X2) is observed by both players, but εp is only privately observed
by player p. Econometric analysis of incomplete-information games typically starts by assum-
ing that beliefs are conditioned on a certain information observed by players. Let Wp denote
the information used by player p to condition their beliefs. Assume throughout that X � Wp

(since both players observe X ). Let π−p(Wp) denote p’s subjective beliefs for the probability that
Y−p = 1. Player p’s expected payoff of choosing Yp = 1 is given by

up(1,π−p,Xp, εp) = X ′
pβp + �p · π−p(Wp) − εp, 10.

and up(0,π−p,Xp, εp) = 0.We assume that players follow a threshold-crossing decision rule:5

Yp = 1{X ′
pβp + �p · π−p(Wp) − εp ≥ 0}.

Econometric inference in incomplete-information games typically proceeds by making more pre-
cise assumptions aboutWp.Given thatX is observed by both players, the prototypical econometric
study would rely on the following two assumptions in this case:

Assumption 8 (conditional independence of players’ private information). Condi-
tional on X, we have ε1�ε2.

Assumption 9 (information used by players). Wp = X for both p = 1, 2.

Thus, expected payoffs in Equation 10 are of the form

up(1,π−p,Xp, εp) = X ′
pβp + �p · π−p(X ) − εp. 11.

Conditional independence of private information is a common assumption in the econometric
analysis of incomplete-information games, but recent efforts have been made to relax this restric-
tion (see the papers cited in Section 2). Most existing methods can be extended to cases where
Wp = (X, ξ p) (where ξ p is informative for ε−p) as long as ξ p is observable to the econometrician.
For simplicity we consider the caseWp = X.

4.2.1. Bayesian Nash equilibrium behavior. Suppose ε|X∼GX and εp|X∼Gp, X(·). For a given
π � (π1, π2) � [0, 1]2, let

�(π |X , γ ,GX ) =
(

π1

π2

)
−
(
G1,X (X ′

1β1 + �1 · π2)
G2,X (X ′

2β2 + �2 · π1)

)
. 12.

Given (X, γ , GX), a Bayesian Nash equilibrium (BNE) is a pair of beliefs π∗ for players 1 and 2
that solves the fixed point condition

�(π |X , γ ,GX ) = 0. 13.

5This can be done without loss of generality under the assumption that εp|Xp,Wp is continuously distributed
with unbounded support, so that Pr(X ′

pβp + �p · π−p(Wp) − εp = 0) = 0.
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1
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Figure 3

An illustration of Bayesian Nash equilibria (BNE).

Let gp, X denote the density function corresponding to the distribution Gp, X, and let

∇π�(π |X , γ ,GX ) =
(

1 −�1 · g1,X (X ′
1β1 + �1 · π2)

−�2 · g2,X (X ′
2β2 + �2 · π1) 1

)

denote the Jacobian of the BNE system with respect to π . A solution π∗ to the BNE system is
regular if det(�π�(π∗|X, γ ,GX)) �= 0. That is, we find that

1 − �1 · �2 · g1,X (X ′
1β1 + �1 · π2) · g2,X (X ′

2β2 + �2 · π1) �= 0. 14.

By the implicit function theorem, regular BNE are locally unique, well-defined functionals of
(X, γ ,GX).

4.2.1.1. Existence and multiplicity of Bayesian Nash equilibria. Existence of a solution to
Equation 13 follows from Brouwer’s fixed point theorem. Sufficient conditions for uniqueness of
a solution can be obtained by verifying the Gale-Nikaido conditions (Gale &Nikaido 1965). If all
the principal minors of �π�(π |X, γ ,GX) are positive, then the BNE solution to Equation 13 will
be unique. This will be satisfied if

1 − �1 · �2 · g1,X (X ′
1β1 + �1 · π2) · g2,X (X ′

2β2 + �2 · π1) > 0. 15.

While Equation 14 ensures local uniqueness, Equation 15 ensures global uniqueness.6 Note that
Equation 15 is immediately satisfied if�1 · �2 ≤ 0, but it may not hold if�1 · �2 > 0.Also note that
if X1 or X2 contains an element with rich-enough support, then by restricting attention to regions
where such a covariate is sufficiently negative or sufficiently positive, we can make g1,X (X ′

1β1 +
�1 · π2) · g2,X (X ′

2β2 + �2 · π1) sufficiently small that Equation 15 is satisfied and uniqueness is
achieved.This idea was explored by Aradillas-López (2010).Figure 3 illustrates cases with unique
BNE and multiple BNE.

6Equation 15 is a sufficient but not necessary condition for uniqueness.
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4.2.1.2. Identified set. For a given (X, γ ,GX), let �BNE(X, γ ,GX) denote the set of all solutions
to the BNE system in Equation 13. Let

RBNE,p(1|X , γ ,GX ) = {εp: X ′
−Pβp + �pπ

∗
−p − εp ≥ 0 for some π∗ ∈ �BNE(X , γ ,GX )};

RBNE,p(0|X , γ ,GX ) = {εp: X ′
−Pβp + �pπ

∗
−p − εp < 0 for some π∗ ∈ �BNE(X , γ ,GX )}; and

RBNE((y1, y2)|X , γ ,GX ) = RBNE,1(y1|X , γ ,GX ) × RBNE,2(y2|X , γ ,GX ).

Note that

Pr(Y = y|X ) ≤ Pr(ε ∈ RBNE(y|X , γ ,GX )) ∀y, a.e. X .

The identified set can be characterized from here in the manner described previously. Moment
inequalities can be obtained as follows. For a given (X, γ ,GX), let

π∗
p(X , γ ,GX ) = min{π∗

p ∈ �BNE(X , γ ,GX )}, π∗
p(X , γ ,GX ) = max{π∗

p ∈ �BNE(X , γ ,GX )}.
Note that

1{X ′
pβp + �p · π∗

−p(X , γ ,GX ) − εp ≥ 0} ≤ Yp ≤ 1{X ′
pβp + �p · π∗

−p(X , γ ,GX ) − εp ≥ 0} a.e. X .

Moment inequalities can be obtained from here:

E[Yp|X ]≤GX (X ′
pβp + �p · π∗

−p(X , γ ,GX )) a.e. X ;

E[Yp|X ]≥GX (X ′
pβp + �p · π∗

−p(X , γ ,GX )) a.e. X .

Inference can proceed from here in the ways described previously.

4.2.1.3. Inference assuming a degenerate equilibrium selection mechanism. In incomplete-
information games, point identification can be obtained by assuming that the underlying equi-
librium selection mechanism M is degenerate (i.e., it does not randomize across existing BNE),
without having to assume which equilibrium is chosen. This is an important distinction with
complete-information games, where simply assuming a degenerate selection mechanism is
not enough: One would need to assume which equilibrium is chosen. To illustrate, suppose
�BNE(X, γ , GX) is a finite set (e.g., suppose the regularity condition in Equation 14 is satisfied).
Then, we obtain

E[Yp|X ]=EX

⎡⎣ ∑
π j∈�BNE(X ,γ ,GX )

1{X ′
pβp + �pπ−p, j (X , γ ,GX ) − εp ≥ 0}

·Pr (M selects π j|X , εp
) ∣∣∣∣∣∣X
⎤⎦. 16.

Suppose M selects one BNE w.p.1. We say in this case that the data is generated from a single
equilibrium. Let π∗ denote this BNE. The previous equation becomes

E[Yp|X ]=E
[

1{X ′
pβp + �pπ

∗
−p(X , γ ,GX ) − εp ≥ 0}

∣∣∣∣X]
=GX (X ′

pβp + �pπ
∗
−p(X , γ ,GX )) for p = 1, 2.
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But since π∗ is a BNE solution, it follows that

E[Yp|X ] = GX

(
X ′
pβp + �pE[Y−p|X ]

)
for p = 1, 2. 17.

Since E[Yp|X] is nonparametrically identified, inference for the payoff parameters γ can proceed
from here using a two-step procedure. In the first step we nonparametrically estimate E[Yp|X],
and in the second step we plug them into the above equation to estimate the parameters of the
model.7 A variety of econometric methods can be applied, including those that allow for a non-
parametrically specified GX (see, for example, Powell et al. 1989, Ahn & Manski 1993, Ichimura
1993, Klein & Spady 1993, Ahn 1995). Examples of econometric studies that assume a degenerate
equilibrium selection mechanism include work by Seim (2006), Pesendorfer & Schmidt-Dengler
(2008), Bajari et al. (2010a), and Aradillas-López (2012).8 Note that counterfactual analysis would
still require assumptions about which equilibrium is selected.

4.2.1.4. Dropping the conditional independence assumption. Assuming independence across
players’ private information is a strong limitation shared by most papers in this literature.
In general, this assumption has been dropped by either (a) assuming a fully parametric joint
distribution for privately observed shocks (e.g., Xu 2014) or (b) assuming that the source of cor-
relation is a shock with just a finite number of support points (e.g, Marcoux 2018). A completely
different approach was proposed by Aradillas-López (2010), who assumed beliefs to be of the
type E[Y−p|X, Yp] instead of E[Y−p|X, εp]. This allows, for example, to treat the joint distribution
of (ε1, ε2) nonparametrically without restricting their joint support. Whether beliefs are of the
form E[Y−p|X, Yp] or E[Y−p|X, εp] is testable. More work should be devoted to testing conditional
independence of private information.

4.2.2. Iterated dominance behavior. Once again, we can replace BNE with the weaker re-
quirement of iterated dominance, as done by Aradillas-López & Tamer (2008). We maintain that
players follow threshold-crossing decision rules

Yp = 1{X ′
pβp + �p · π−p(X ) − εp ≥ 0},

but we no longer impose the requirement that beliefs solve the BNE conditions. Iterated dom-
inance can restrict the range of possible beliefs. This can be done naturally because beliefs are
bounded in the [0, 1] interval.9 In what follows, let Gp(· |X) denote the distribution of εp|X.

Step 1: Since π−p(X) � [0, 1] and actions are strategic substitutes, we find that

1{Xpβp + �p − εp > 0} ≤ Yp ≤ 1{Xpβp − εp ≥ 0}.

Therefore, we obtain

Gp(Xpβp + �p|X )︸ ︷︷ ︸
π1
p (X )

≤ Pr(Yp = 1|X ) ≤ Gp(Xpβp|X )︸ ︷︷ ︸
π1
p (X )

.

7Assuming that the underlying selection mechanism is degenerate and all the data come from the same
equilibrium is an almost universal assumption in econometric models of dynamic games (see, for example,
Aguirregabiria & Mira 2007, Pakes et al. 2007, Pesendorfer & Schmidt-Dengler 2008).
8The approach proposed by Aradillas-López (2010) relies on using, as an inferential range, a subset of values
of X where a Gale-Nikaido condition of the type given in Equation 15 is satisfied and therefore the BNE is
unique.
9The approach we describe here can be generally applied to any game where actions have bounded support.
The binary-choice game is the simplest such case, since Yp{0, 1}.
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Step 2: Eliminate all strategies that are not best responses to beliefs that survive Step 1. It
follows that

1{Xpβp + �p · π1
−p(X ) − εp > 0} ≤ Yp ≤ 1{Xpβp + �p · π1

−p(X ) − εp ≥ 0}.

Therefore,

Gp(Xpβp + �p · π1
−p(X )|X )︸ ︷︷ ︸

π2
p (X )

≤ Pr(Yp = 1|X ) ≤ Gp(Xpβp + �p · π1
−p(X )|X )︸ ︷︷ ︸

π2
p (X )

.

�

Step k: Eliminate all strategies that are not best responses to beliefs that survive Step k − 1. It
follows that

1{Xpβp + �p · π k−1
−p (X ) − εp > 0} ≤ Yp ≤ 1{Xpβp + �p · π k−1

−p (X ) − εp ≥ 0}.

Therefore,

Gp(Xpβp + �p · π k−1
−p (X )|X )︸ ︷︷ ︸

πkp(X )

≤ Pr(Yp = 1|X ) ≤ Gp(Xpβp + �p · π k−1
−p (X )|X )︸ ︷︷ ︸

πkp(X )

.

�

Unlike the complete-information case, this process can continue indefinitely. Rationalizable
choice probabilities (and therefore BNE choice probabilities) are always included in the
interval [

π k
−p(X ), π k

−p(X )
]

for any k. Fromhere, a characterization of the identified set under k steps of iterated dominance can
proceed analogously to the cases previously discussed. Figure 4 illustrates the iterative procedure
for k = 1, 2, 3.

5. DISCRETE GAMES WITH RICHER ACTION SPACES:
RECENT RESULTS

Many real-world applications cannot be handled by a binary-choice game. Recently, identification
and inference results have been obtained in discrete games where the action space is rich but has
an ordinal property. Suppose players’ actions are real-valued and the action spaces in our normal-
form game in Equation 1 are discrete and ordinal, that is,

Sp =
{
s1p, s

2
p, . . . , s

Mp
p

}
, 18.

with s jp < s j+1
p for all j. None of the results we discuss below presupposes precise knowledge of the

elements in Sp, relying only on the ordinal nature and the assumption that either (a) the upper
and lower bounds of Sp are known (or can be estimated) or (b) inference is focused on the interior
of Sp. Binary-choice games are always included as a special case of every model we discuss next.

5.1. Inference in Games with Complete Information

We begin by discussing results for complete-information games.
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Figure 4

Illustration of iterated dominance in the incomplete-information game.

5.1.1. Nonparametric results. Aradillas-López (2011) derives testable implications for Nash
equilibrium outcomes in ordered discrete games with action spaces such as those in Equation 18.
The results obtained do not parametrize payoff functions but rely instead only on shape restric-
tions. The following properties are assumed to hold w.p.1.

Condition 1 (concavity of payoffs). For any y−p ∈ S−p, we have

up(s
j
p, y−p) − up(s

j−1
p , y−p) > up(s

j+1
p , y−p) − up(s

j
p, y−p) ∀s jp ∈ Sp.

Condition 2 (nonincreasing differences). For any s jp ∈ Sp and y−p, y′−p ∈ S−p, if
up(s

j
p, y−p) ≥ up(s

j
p, y′−p), then we have

up(s
j+1
p , y−p) − up(s

j
p, y−p) ≥ up(s

j+1
p , y′−p) − up(s

j
p, y′−p).

Figure 5 illustrates the nonincreasing differences condition. It is reminiscent of properties in
supermodular games, and it results in a no-crossing property for payoff functions.

Aradillas-López (2011) assumes complete-information NE behavior without ruling out mixed
strategies. Concavity of payoffs and the independent-mixing nature of NE imply that, in any NE,
players can randomize across at most two possible actions, and these actions must be adjacent. Fix
an action profile y ≡ (yp)Pp=1, where yp = s jp ∈ Sp for each p (we write j instead of jp for notational
simplicity). Let

S(y) =
{
(ap)Pp=1: ap ∈ {s j−1

p , s jp, s
j+1
p

}
. 19.

The support of any NE where y is played with positive probability must be a subset of S(y). Next,
for each p let10

up(·,S(y)) = max
y−p∈S(y)

up(·, y−p), and up(·,S(y)) = min
y−p∈S(y)

up(·, y−p).

10Concavity and nonincreasing differences imply that payoff functions do not cross (see Figure 5).
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Nonincreasing differences

up

yp

Violation of nonincreasing differences

up

up ( ·  , y–p)

up ( · , y'–p)

yp

Figure 5

Nonincreasing differences. The red circle illustrates a violation of nonincreasing differences.

By concavity and nonincreasing differences, the action profile y can be played with positive prob-
ability in an NE only if

up(s
j−1
p ,S(y)) < up(s

j
p,S(y)) and up(s

j
p,S(y)) > up(s

j+1
p ,S(y)) ∀p.

Our shape conditions restrict which NE can coexist. Suppose there exists an NEwhere y = (yp)Pp=1
is played with positive probability. Now, take another action profile y′ = (y′p)

P
p=1. Then, there co-

exists an NE where y′ is played with positive probability only if, for each p, one of the following
holds:

1. up(·,S(y′ )) > up(·,S(y)) and up(·,S(y′ )) < up(·,S(y));
2. up(·,S(y′ )) ≤ up(·,S(y)) and y′p ≤ yp; or 20.

3. up(·,S(y′ )) ≥ up(·,S(y)) and y′p ≥ yp.

Let

Iap(y, y
′ )= 1 − 1{up(·,S(y′ )) ≤ up(·,S(y)) and y′p > yp};

Ibp(y, y
′ )= 1 − 1{up(·,S(y′ )) ≥ up(·,S(y)) and y′p < yp};

I∗
p(y, y

′ )=min{Ip(y, y′ ), Ibp(y, y
′ )}; and

I∗(y, y′ )=
P∏
p=1

I∗
p(y, y

′ ).

Note that I∗(y, y′ ) is the indicator for the event that at least one of the conditions in Equation 20
is satisfied for each p.
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Definition 8 (Nash Equilibrium outcome). We say that y ≡ (yp)Pp=1 is an NE outcome if
there exists an NE where y is played with positive probability. Let E denote the collection
of all NE outcomes in the game.

Pick any action profile y = (yp)Pp=1. If we maintain that Y ≡ (Yp)Pp=1 ∈ E , then

1{Y = y} ≤ 1{y ∈ E} ≤ I∗(Y , y) w.p.1. 21.

If payoffs are completely unrestricted beyond the shape restrictions, I∗ is unobserved and
Equation 21 cannot be used directly. Aradillas-López (2011) proposes a way to exploit Equation 21
by assuming the existence of a strategic interaction index, a known function fp (possibly multi-
valued) that captures the direction of strategic interaction.

Definition 9 (existence of a strategic interaction index). For each p there exists a func-
tion fp : S−p → Rdp (dp ≥ 1) known to the researcher such that, for any y−p, y′−p ∈ S−p, the
following apply:

1. If fp(y′−p) = fp(y−p), then up(·, y−p) = up(·, y′−p);
2. If fp(y′−p) ≥ fp(y−p) (element-wise), then up(·, y−p) ≤ up(·, y′−p); and
3. If fp(y′−p) � fp(y−p) and fp(y−p) � fp(y′−p), nothing is implied about the ordinal rela-

tionship between up(·, y−p) and up(·, y′−p).
Thus, ranking the strategic index fp enables us to rank payoff functions. Let

Hp(y, y′ ) = 1
{
fp(u−p) ≥ fp(v−p) ∀ u−p ∈ S(y), v−p ∈ S(y′ )

}
.

Hp(y, y′ ) = 1 implies up(·, u−p) ≤ up(·, v−p) �u−p � S(y),v−p � S(y′). Therefore, we have

Hp(y, y′ ) ≤ 1{up(·,S(y)) ≤ up(·,S(y′ )) },

and

Iap(y, y
′ )≤ 1 − Hp(y′, y) · 1{y′p > yp} ≡ I

a
p(y, y

′ ),

Ibp(y, y
′ )≤ 1 − Hp(y, y′ ) · 1{y′p < yp} ≡ I

b
p(y, y

′ ),

�⇒ I∗
p(y, y

′ )≤min
{

I
a
p(y, y

′ ), I
b
p(y, y

′ )
}

≡ I
∗
p(y, y

′ ),

�⇒ I∗(y, y′ )≤
P∏
p=1

I
∗
p(y, y

′ ) ≡ I
∗
(y, y′ ).

From Equation 21 we obtain

1
{
Y = y

} ≤ 1
{
y ∈ E} ≤ I

∗
(Y , y) ∀ y, w.p.1.

Let C denote a collection of outcomes. Then, we obtain

1{Y ∈ C} ≤ 1{C ∩ E �= ∅} ≤max
y∈C

{I∗
(Y , y)},

1{C ⊆ E}≤min
y∈C

{I∗
(Y , y)}.
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The first and the second line relate to the event that some C contains an NE outcome and that
every outcome in C is an NE outcome, respectively. Let X denote the set of observable covariates
by the econometrician. Bounds for the probability of equilibrium outcomes are obtained from the
previous inequalities,

Pr(Y = y|x) ≤ Pr(y ∈ E |X )≤E
[
I∗(Y , y)|X ] ,

Pr(Y ∈ C|X ) ≤ Pr(C ∩ E �= ∅|X )≤E
[
max
y∈C

{I∗
(Y , y)}

∣∣∣∣X], and 22.

Pr(C ⊆ E |X )≤E
[
min
y∈C

{I∗
(Y , y)}y∈C

∣∣∣∣X].
Since the bounds in Equation 22 are nonparametrically identified, confidence intervals for
Pr(y ∈ E |X ),Pr(C ∩ E �= ∅|X ), and Pr(C ⊆ E |X ) can be constructed using, for example, the meth-
ods described by Imbens &Manski (2004) and Stoye (2009). Aradillas-López (2011) also describes
bounds for other probabilities of interest, such as the propensity to select a particular y conditional
on being an NE profile.

5.1.2. Parametric results. A parametric ordered-response game of complete information was
first analyzed by Davis (2006) under parametrization restrictions that yield a unique PSNE. A
much more general model is studied by Aradillas-López & Rosen (2019). Action spaces are as
described in Equation 18.Aradillas-López&Rosen (2019) impose restrictions on payoff functions
that effectively turn the game into a simultaneous ordered-response model. First, they assume that
we can express payoffs as

up(yp, y−p,Xp, εp),

where Xp is observed by the econometrician while εp is an unobserved scalar. Let X ≡ (Xp)Pp=1
and ε ≡ (εp)Pp=1. Strict concavity of up with respect to yp is maintained. Aradillas-López & Rosen
(2019) then impose an assumption about how payoff functions shift with εp.

Assumption 10 (increasing differences in (yp, εp)). For any y−p ∈ S−p and a.e. Xp, the
following holds: If ε′

p > εp and y′p > yp, then

up(y′p, y−p,Xp, εp) − up(yp, y−p,Xp, εp) < up(y′p, y−p,Xp, ε′
p) − up(yp, y−p,Xp, ε′

p).

Figure 6 illustrates the increasing differences property.
Fix Xp, εp and take any y−p. Let y∗p(y−p,Xp, εp) denote p’s best response. The key implication of

the increasing-differences shape restriction is the following: There exists a sequence of nonover-
lapping thresholds

ε∗
p

(
s1p, y−p,Xp

)
< ε∗

p

(
s2p, y−p,Xp

)
< · · · < ε∗

p (s
Mp
p , y−p,Xp) 23.

such that

y∗
p

(
y−p,Xp, εp

) = s jp ⇐⇒ ε∗
p

(
s jp, y−p,Xp

)
< εp ≤ ε∗

p

(
s j+1
p , y−p,Xp

)
. 24.

Fix an action profile y ≡ (yp)Pp=1, where yp = s jp ∈ Sp for each p (again, we write j instead of jp for
notational simplicity). Let S(y) be as described in Equation 19. Strict concavity and independent
mixing imply that if y is played with positive probability in anNE, then the support of thisNEmust
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up

up ( · , y–p, Xp, εp)

up ( · , y–p, Xp, ε'p)

ε'p > εp

yp

Increasing differences in (yp, εp) 

Figure 6

Increasing differences in (yp, εp).

be a subset of S(y). By definition, the profile y can be played in an NE only if s jp = y∗p(a−p,Xp, εp)
for some a−p � S(y) and this is true for all p. Let X ≡ (Xp)Pp=1 and ε = (ε1, . . . , εP)′. We obtain

Rp(y,Xp) = ⋃
a−p∈S(y)

[
ε∗
p

(
s jp, a−p,Xp

)
, ε∗

p

(
s j+1
p , a−p,Xp

)]
,

R(y,X ) = R1(y,X1) × · · · × RP (y,XP ).
25.

Let the NE outcomes E be as described in Definition 8. Pick any action profile y. If we maintain
the assumption that the observed choice profile Y is an NE outcome, then

1
{
Y = y

} ≤ 1
{
y ∈ E} ≤ 1

{
ε ∈ R(y,X )

}
.

In particular, we obtain

1
{R(Y ,X ) ∈ C} ≤ 1{ε ∈ C} ∀ C ⊂ RP.

And since X is observable to the econometrician, inference can ultimately be based on

Pr (R(Y ,X ) ⊆ C|X ) ≤ Pr (ε ∈ C|X ) ∀ C ⊂ RP, a.e. X . 26.

If we limit attention to PSNE and assume that Y is always the realization of a PSNE, the sets in
Equation 25 would simply become

Rp(y,Xp) =
[
ε∗
p

(
s jp, y−p,Xp

)
, ε∗

p

(
s j+1
p , y−p,Xp

)]
.

5.1.2.1. A parametric model. Suppose we parametrize payoff functions as up(yp, y−p,Xp, εp|γ p).
Denote γ ≡ (γp)Pp=1. We now have parametric expressions for the thresholds described in
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Equation 23. Denote them by ε∗
p (s

j
p, y−p,Xp|γp) and let

Rp(y,Xp|γp)=
⋃

a−p∈S(y)

[
ε∗
p

(
s jp, a−p,Xp|γp

)
, ε∗

p

(
s j+1
p , a−p,Xp|γp

)]
,

R(y,X |γ )=R1(y,X1|γ1) × . . . × RP (y,XP|γP ).

Next, suppose the joint distribution of ε|X is also parametrized. For simplicity, suppose this
parametrization assumed ε�X and ε ∼ G(·|ρ). The parameters of the model are θ ≡ (γ , ρ ) ∈ 	

(	 is the parameter space). For a given set C, let

H (C,X , θ ) = Pr (R(Y ,X |γ ) ⊆ C|X ) − Pr(ε ∈ C|ρ ).

Let C denote a prespecified class of sets in RP . Based on Equation 26, the identified set for θ can
be described as

	I = {θ ∈ 	: H (C|X , θ ) ≤ 0 a.e X , ∀ C ∈ C } . 27.

5.1.2.2. Example: a two-player game. As an illustration, Aradillas-López &Rosen (2019) focus
on a two-player game where payoff functions are modeled as

up(yp, y−p,Xp, εp|γp) = yp ×
(
δ + X ′

pβ − �p · y−p − η · yp + εp

)
,

with γ p � (δ, β ′, �p, η)′. Concavity will be satisfied by specifying η > 0 in the parameter space.
The increasing-differences property is satisfied by this parametrization for any γ p. Aradillas-
López & Rosen (2019) focus, for illustration purposes, on a strategic-substitutes case. Therefore,
�p ≥ 0 in the parameter space for p = 1, 2. The action space in this example is assumed to be
Sp = {0, 1, 2, . . .}.Given this specification, the thresholds in Equation 23 have the functional form

ε∗
p (yp, y−p,Xp|γp) =

{
−∞ if yp = 0,
η · (2yp − 1) + �py−p − δ − X ′

pβ if yp ≥ 1.

The joint distribution of ε = (ε1, ε2)′ is parameterized as a Farlie-Gumbel-Morgenstern (FGM)
copula G(ε|ρ) with logistic marginal distributions.

5.1.2.3. Identification results assuming pure-strategy Nash equilibrium. Aradillas-López &
Rosen (2019) assume that players always choose a PSNE.11 As discussed above, this simplifies the
set R(y|X , γ ) to

R(y|X , γ ) = 2×
p=1

[
ε∗
p (yp, y−p,Xp|γp), ε∗

p (yp + 1, y−p,Xp|γp)
]
.

Ruling out mixed strategies in the binary-choice version of this game produces a unique prediction
for Y1 + Y2 for all coexisting equilibria [see Section 4.1.1.3 and Berry&Tamer (2007, section 2.4)],
and all payoff parameters can be identified from there. However, this is no longer the case as soon
as we introduce more than two possible actions. With our shape restrictions, ruling out mixed

11Existence of a PSNE w.p.1 in this case follows from Tarski’s fixed point theorem [see, e.g., Topkis (1998,
section 2.5) and Vives (1999, theorem 2.2)].
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strategies only pins down a parametric expression for Pr(Y= (0, 0)|X), because, if (0, 0) is a PSNE,
it is the only PSNE. Let λ � η − δ. Then, we find that

Pr(Y = (0, 0)|X ) = G (λ − X ′
1β, λ − X ′

2β| ρ ).

Let θ ≡ (λ,β ′, ρ )′. Then, θ can be point-identified and estimated using, for example, maximum
likelihood estimation (MLE).

5.1.2.4. Inference. Let θ∗ � (η, �1, �2), and note that θ = (θ , θ∗ ). Aradillas-López & Rosen
(2019) propose an inferential procedure where θ is first estimated using MLE and then inference
for the remaining subset of parameters θ∗ is conducted using the information from the conditional
moment inequalities described in Equation 27 for a prespecified class12 of sets C. An outline of
their procedure is as follows. Let fx denote the density of X. For a given X and θ , let

T (C,X , θ )= (Pr(R(Y ,X )|γ ) ⊆ C|X ) − Pr(ε ∈ C|ρ )) · fx(X ),

m(C, θ )=EX [max{T (C,X , θ ), 0}], and
m(θ )=

∑
C∈C

m(C, θ ).

Note thatm(θ ) ≥ 0 for all θ andm(θ ) = 0 if and only ifT (C,X , θ ) ≤ 0 a.e.X, for all C ∈ C.Density
weighting has computational and theoretical advantages. The identified set in Equation 27 can be
rewritten as

	I = {θ ∈ 	: m(θ ) = 0
}
.

Suppose for illustration purposes that all the elements in X ∈ Rd are continuously distributed.
Aradillas-López & Rosen (2019) propose an estimator for m(θ ) of the following form:13

T̂ (C, x, θ )= 1
n · hdn

n∑
i=1

(1{R(Yi, x)|γ ) ⊆ C} − Pr(ε ∈ C|θ ))K
(
Xi − x
hn

)
,

m̂(C, θ )= 1
n

n∑
i=1

Ĥ (C|Xi, θ ) · 1{Ĥ (C|Xi, θ ) ≥ −bn}, and

m̂(θ )=
∑
C∈C

m̂(C, θ ),

where bn → 0 is a nonnegative sequence converging to zero at an appropriate rate. Let

	∗
I = {θ ∈ 	I : H (C|X , θ ) < 0 a.e. X , ∀ C ∈ C }.

This is the set of all parameter values that satisfy Equation 27 as strict inequalities almost surely.
Aradillas-López & Rosen (2019) describe conditions (smoothness and regularity conditions of
conditional moments, manageability and empirical-process conditions for the functional forms

12Using the results obtained by Chesher & Rosen (2017), Aradillas-López & Rosen (2019) characterize the
class of core-determining sets C∗ that leads to a sharp characterization of the identified set in Equation 27. In
their empirical application, for computational simplicity they use a subset of this class.
13Notice that density weighting in the definition of T (C,X , θ ) helps produce a simple estimator.
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assumed for payoffs and for the parametric distribution of ε, as well as kernel conditions and
bandwidth convergence restrictions) such that

√
n · m̂(θ ) :

⎧⎪⎪⎨⎪⎪⎩
p−→ 0 ∀ θ ∈ 	∗

I ,
d−→ N (0,E [ϕn(Yi,Xi, θ )2

]) ∀ θ ∈ 	I \ 	∗
I ,

p−→ +∞ ∀ θ /∈ 	I .

Let θ̂MLE be the MLE estimator of θ , and, for a given θ = (θ , θ∗ ), let

V̂ (θ ) = √
n ·
(

θ̂MLE − θ

m̂(θ ).

)
.

The proposal advanced by Aradillas-López & Rosen (2019) is to construct a Wald-type statis-
tic based on V̂ (θ ). However, this will require some form of regularization since the asymptotic
variance of

√
n · m̂(θ ) will be zero if θ ∈ 	∗

I . Let

t̂ (θ ) = V̂ (θ )′�̂ (̂θMLE, θ∗ )−1V̂ (θ ),

where �̂ (̂θMLE , θ∗ ) is a regularized estimator of the asymptotic variance of V̂ (θ ). Let r ≡ dim(θ ).
Aradillas-López & Rosen (2019) show that

t̂ (θ ):

⎧⎪⎪⎨⎪⎪⎩
d−→ χ2

r if θ ∈ 	∗
I ,

d−→ χ2
r+1 if θ ∈ 	I \ 	∗

I ,
p−→ +∞ if θ /∈ 	I .

These asymptotic properties immediately suggest how to construct a confidence set (CS) for θ .
For a prespecified target coverage probability 1− α, let c(χ2

d , 1 − α) denote the (1− α)-th quantile
of the χ2

d distribution. By the properties of the chi-squared distribution, we have c(χ2
r+1, 1 − α) >

c(χ2
r , 1 − α). Let

ĈS
θ

1−α = {θ ∈ 	: t̂ (θ ) ≤ c(χ2
r+1, 1 − α)

}
. 28.

Aradillas-López & Rosen (2019) show that ĈS
θ

1−α satisfies limn→ inf θ∈	I Pr(θ ∈ ĈS
θ

1−α ) ≥ 1 − α.
This inferential approach has the computational advantage that critical values do not have to be
obtained by resampling methods due to the asymptotically pivotal properties of the statistic used
in its construction.

5.2. Inference in Games with Incomplete Information

Aradillas-López & Gandhi (2016) study ordered discrete games with incomplete information un-
der the assumption of BNE behavior. Their first assumption is that payoff functions can be ex-
pressed as up(yp, y−p, Zp) with Zp = (X, εp), where εp is privately observed by player p and X is
publicly observed by all players as well as the econometrician (εp is not restricted to be a scalar).
Their next assumption is that payoffs can be expressed as

up(Yp,Y−p,Zp) = uap(yp,Zp) − ubp(yp,Zp) · ηp(y−p,X ), 29.

where uap, u
b
p, and ηp are scalar functions. The key feature of Equation 29 is that ηp depends on Zp

solely through X. The inferential object of interest for Aradillas-López & Gandhi (2016) is the
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strategic index ηp. Players’ private information is assumed to be mutually independent conditional
on X, and beliefs are assumed to be conditioned on X. For any set of beliefs π−p : S−p → [0, 1],
the expected utility of player p of choosing Yp = yp is given by14

up(yp,π−p,Zp)=
∑

y−p∈S−p

π−p(y−p|X ) · up(yp, y−p,Zp)

= uap(yp,Zp) − ubp(yp,Zp) · ηp(π−p,X )

where ηp(π−p,X ) =∑y−p∈S−p π−p(y−p|X ) · ηp(y−p,X ). The following shape restriction normalizes
the strategic meaning of the index ηp.

Condition 3 (marginal benefit of Yp is nonincreasing in ηp). For a.e. Zp and any
y, y′ ∈ Sp, we find that

y > y′ �⇒ ubp(y,Zp) ≥ ubp(y
′,Zp).

This implies that the index ηp and player p’s optimal strategy are strategic substitutes, but it does
not presuppose that the game itself is of strategic substitutes, since the index ηp can shift in many
possible ways with opponents’ actions. The constructive implication of the previous assumption
is as follows. Take any pair of beliefs π−p and π ′

−p. Then, we obtain

[
up(y,π−p,Zp) − up(y′,π−p,Zp)

]− [up(y,π ′
−p,Zp) − up(y′,π ′

−p,Zp)
]

=
[
ηp(π

′
−p,X ) − ηp(π−p,X )

]
·
[
ubp(y,Zp) − ubp(y

′,Zp)
]
.

It follows that, if ηp(π ′
−p,X ) ≥ ηp(π−p,X ), then we have

up(y,π ′
−p,Zp) − up(y′,π ′

−p,Zp) ≤ up(y,π−p,Zp) − up(y′,π−p,Zp) ∀ y > y′.

Now, consider two sets of beliefs, π−p and π ′
−p, each having a unique optimal choice for the cor-

responding expected-utility functions. Denote them as y∗p(π−p,Zp) and y∗p(π
′
−p,Zp), respectively.

From our previous assumption, for a.e. Zp, we obtain

ηp(π
′
−p,X ) > ηp(π−p,X ) �⇒ 1{y∗p(π−p,Zp) ≤ yp} ≤ 1{y∗p(π ′

−p,Zp) ≤ yp} ∀ yp ∈ Sp. 30.

To see why, note first that, by definition, up(y,π−p,Zp) − up(y∗p(π−p,Zp),π−p,Zp) < 0 for all y >

y∗p(π−p,Zp). But from our assumptions above, ηp(π ′
−p,X ) > ηp(π−p,X ) implies

up(y,π ′
−p,Zp) − up(y∗p(π−p,Zp),π ′

−p,Zp) ≤ up(y,π−p,Zp) − up(y∗p(π−p,Zp),π−p,Zp) < 0

for all y > y∗p(π−p,Zp). Thus, we must have y∗p(π
′
−p,Zp) ≤ y∗p(π−p,Zp), and the inequality in

Equation 30 follows. The inequality in Equation 30 produces a testable implication for the model
if we assume that players’ beliefs are such that they always produce a unique optimal choice.
Aradillas-López & Gandhi (2016) show that under these assumptions,

Cov(1{Yp ≤ yp}, ηp(Y−p,X )|X ) ≥ 0 ∀ yp ∈ Sp, a.e. X . 31.

14The independent-mixing nature of Nash equilibrium is once again key here. Without this property, beliefs
could be conditioned on the potential choice yp, and expected payoffs would not have the structure exploited
to obtain the results that follow.
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The binary-choice version of this result was obtained by de Paula & Tang (2012) under assump-
tions of symmetry (a condition not required in Aradillas-López & Gandhi 2016). Note that if
the selection mechanism M is degenerate w.p.1 (e.g., if there is always a unique BNE), then
Cov(1{Yp ≤ yp}, ηp(Y−p,X )|X ) = 0 w.p.1. Aradillas-López & Gandhi (2016) detail inferential and
testing procedures based on Equation 31 and test statistics of the type used by Aradillas-López
& Rosen (2019) and described previously. They show how to test a particular functional form for
the index ηp or parametrize it and construct a CS for the parameters.

6. CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE
RESEARCH

Recent advancements in the econometrics of partially identified models have made it possible to
do robust inference in static games with multiple solutions.However,more work needs to be done
to make these models a better approximation to real-world problems. Some lines of research that
need to be explored further include the following.

1. Nonequilibrium models: The assumption that economic agents have correct beliefs and
perfect models about others is an elegant theoretical framework, but perhaps not a realis-
tic approximation to real-world behavior in many instances. More work needs to be done
to develop econometric models that allow for incorrect beliefs and, importantly, methods
that can explore more precisely how agents choose from within a space of allowable (e.g.,
rationalizable) beliefs. Characterizing testable implications15 (preferably nonparametric) of
different solution concepts to help researchers discriminate among competing behavioral
models can produce valuable contributions to the literature.

2. Allowing a more flexible information structure in incomplete-information games: More
work needs to be done to relax the assumption of conditional independence of private in-
formation. The current state of the art either assumes that the source of correlation is very
simple (e.g., a commonly observed shockwith finite support) or imposes a fully parametrized
model. Endogeneity (i.e., correlation between observed and unobserved payoff shifters)
must be allowed if these models are to be of any practical use. As in the previous point,
developing nonparametric specification tests to help choose among different information
structures remains an important topic.

3. Exploring richer action spaces: As we illustrated in this review, recent advances have been
made to extend binary-choice games intomodels with richer strategy spaces.However,more
work needs to be done to bring these methods closer to real-world problems—for example,
by introducing multi-valued actions [e.g., adding an element of strategic interaction to the
single-agent models studied by Heckman (1978)] or action spaces with unobserved, random
censoring (e.g., capacity constraints).

4. Counterfactual analysis: As we discussed, many of these models are only partially iden-
tified. This can discourage practitioners from using robust inferential methods that only
produce set predictions. The question then is how to achieve a balance between robustness
and predictions from counterfactual analysis. One way is to develop methods to refine the
set predictions for these outcomes (borrowing perhaps from recent advances in methods to
do inference in a subset of parameters in partially identified models) (Kaido et al. 2019). Al-
ternatively, we can reframe the problem entirely and do inference on a population objective

15The first fully nonparametric, nonexperimental test for different levels of rationality in game-theoretic mod-
els was developed by Kosenkova (2019) for first-price auctions.
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function based on the counterfactual policy we want to analyze. Results from the theoretical
literature on policy robustness (see Hansen & Sargent 2016) can be explored.

Most of the methods described in Sections 4 and 5 have the computational advantage of not re-
quiring a search for all existing solutions. In fact, many do not require searching for any solution
but rely instead on necessary conditions for an outcome to be a solution. This stands in contrast,
for example, to dynamic models (games and single-agent models), which typically rely on comput-
ing a fixed point and devote significant efforts to computational methods that can find solutions
(Aguirregabiria &Mira 2007, Bajari et al. 2007) with good properties. Instead, the most important
computational challenges in most of the models studied here are the same ones encountered in
partially identified models. These include developing computationally feasible methods to per-
form inference for the sharp identified set (Beresteanu & Molinari 2008, Beresteanu et al. 2011,
Galichon & Henry 2011, Chesher & Rosen 2017), improving on existing grid search procedures
in the estimation of confidence sets (Kline &Tamer 2016), and constructing nonconservative con-
fidence regions for a subset of parameters or lower-dimensional functionals of the parameters in
the model (Kaido et al. 2019, Torgovitsky 2019). Inference in static games will continue to benefit
from research in these areas.
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