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Abstract

We live in a world filled with uncertainty. In this essay, I show that featur-
ing this phenomenon more in economic analyses adds to our understanding
of how financial markets work and how best to design prudent economic
policy. This essay explores methods that allow for a broader conceptualiza-
tion of uncertainty than is typical in economic investigations. These meth-
ods draw on insights from decision theory to engage in uncertainty quan-
tification and sensitivity analysis. Uncertainty quantification in economics
differs from uncertainty quantification in most sciences because there is un-
certainty from the perspective both of an external observer and of people
and enterprises within the model. I illustrate these methods in two example
economies in which the understanding of long-term growth is limited. One
example looks at uncertainty ramifications for fluctuations in financial mar-
kets, and the other considers the prudent design of policy when the quantita-
tive magnitude of climate change and its impact on economic opportunities
are unknown.
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1. INTRODUCTION
We must infer what the future situation would be without our interference, and what changes will be
wrought by our actions. Fortunately, or unfortunately, none of these processes is infallible, or indeed
ever accurate and complete.

—Frank H. Knight (1921, pp. 201–2)

We live in an environment in which uncertainty is pervasive. In the first decade of this century, we
experienced a financial crisis. The magnitude of the crisis caught many policy makers, academics,
entrepreneurs, and businesses by surprise, given the previous extended period of so-called great
moderation. As the COVID-19 pandemic unfolded at the end of the second decade, we have been
living through uncertainties such as (a) what exposure we have to the virus when we are in public
places, (b) how soon infections will show a permanent decrease, and (c) how soon a reliable vaccine
will be available. These two recent crises and other episodes reveal the limits to our knowledge in
ways that have a potentially important impact on the design of policy.

I read Knight’s comment from 1921 as a serious challenge to quantitative dynamic modeling in
economics. His century-old concern continues to apply today. Economists, as analysts external to
their models, face “outside-the-model” uncertainty when making inferences on limited data. Eco-
nomic agents, people and businesses, also face uncertainty when making decisions, such as con-
sumption and investment choices, not knowing for sure how the future will unfold. As discussed
in my previous work (Hansen 2014), my interest is in models with agents who are cognizant of
this “inside-the-model” uncertainty when making forward-looking decisions. The internal per-
spective on uncertainty adds an important twist to the external uncertainty quantification that is
often addressed in other scientific disciplines.

How, then, can we capture broad notions of uncertainty in formal ways that are amenable to
quantitative modeling? In this essay, I draw on results from decision theory under uncertainty
extended to dynamic settings. Following this literature, I push beyond the risk analyses that are
a familiar tool for most economists. Under what I and others call risk, the probabilities of fu-
ture outcomes are known with full confidence but not the outcomes themselves. The broader
notion of uncertainty that I embrace includes both ambiguity across alternative possible models
and the potential misspecification of each. Under the decision theories that I apply, there can be
uncertainty-modeling inputs such as subjective probabilities, as in the case of Bayesian priors over
alternative models. Instead of having full confidence in a complete probabilistic specification, a
decision maker conducts a sensitivity analysis over families of models or over the probabilities
assigned to such families. A decision maker explores the consequences of misspecification by sub-
stantially broadening the family of models under consideration. In line with the familiar aversion
to risk, this decision theory introduces an aversion to ambiguity over models or to their potential
misspecifications. This aversion effectively dictates how extensive the sensitivity analysis is: The
greater the aversion, the less restrictive the sensitivity analysis is. The approach is made opera-
tional by using a decision problem to isolate the most troublesome model or the probabilities
over the models subject to the restrictions imposed on the sensitivity analysis.

Rather than delineating axiomatic defenses for the alternative formulations of decision theory
under uncertainty, I illustrate their importance in two example economies. Both entail uncertainty
about the long-term forces driving the macroeconomy. Section 4 shows how to generate volatility
inmarket valuation by letting investors inside themodel be uncertain about futuremacroeconomic
growth prospects. Section 5 studies the social cost of carbon by considering a fictitious social
planner assessing the economic consequences of climate change when there is both geoscientific
and economic uncertainty.
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Before turning to the two applications, in Section 2 I discuss more the quantitative modeling
with highly stylized models. In Section 3, I show how to use asset pricing theory to quantify the
impact of long-term uncertainty in valuation over alternative cash-flow horizons. In this section,
I construct a martingale component to stochastic discount factor processes used for both mar-
ket and social valuation. This component dominates valuation adjustments for uncertainty over
long horizons and can have important implications also over shorter horizons. The uncertainty
adjustments to be characterized in Sections 4 and 5 contribute prominently to this martingale
component.

2. QUANTITATIVE STORYTELLING
Hominem unius libri timeo [I fear the man of a single book].

—St. Thomas Aquinas

Structural models in economic dynamics are meant to be tools that can help us gain a better under-
standing of a variety of phenomena and provide guidance for designing and evaluating economic
policy challenges. The models that interest me in this essay are models that are quantitative, that
allow for random impulses, and that therefore are stochastic in nature. Under rational expecta-
tions, the economic decision makers within the models recognize the existence of these shocks
in the future and know their probabilities. That is, they confront what I (and many predecessors)
formally call risk.

I find it attractive to think of each such model as providing a quantitative story.1 For a lot of
questions in economics, I am reminded of the quote of St. Thomas Aquinas mentioned at the
outset of this section. Here, I take the liberty to extend this quote to warn any decision maker
who is fully committed to one model and its associated story. Thus, for many purposes, I find
it valuable to entertain multiple model specifications (reflecting different economic structures or
alternative parameter configurations), which leads me to quantitative storytelling with multiple
stories. Looking across model specifications or constructions is often done informally, and poten-
tially across specific constructions, by different research groups.2 While it may make good sense
for the current review to drill down on the implications of a single model, there are many settings
in which a decision maker would be wise to look across models produced by different researchers
or research groups.

I explore the consequences of doing this more formally and within the actual model construc-
tion. In the first of my two substantive examples, I will have investors inside the model entertain
parameter uncertainty, including the possibility of time-varying parameters governing economic
growth. In the second example, a hypothetical policy maker aims to address climate change
in the presence of limited knowledge about the impact of CO2 emissions on future economic
opportunities.

I use the term “ambiguity” to capture the uncertainty associated with howmuch weight should
be assigned to the alternative models. One elegant solution supported by an axiomatic defense

1The term “quantitative storytelling” has been used elsewhere in a different but partially overlapping way (see,
e.g., Saltelli & Giampietro 2017). I do not intend to address nor do I fully embrace Saltelli & Giampietro’s
(2017) critiques of evidence-based policy; but I do share their concern about committing to one model with
excessive confidence when drawing on evidence and prior insights to derive optimal policies.
2An obvious exception is the extensive literature on Bayesian estimation of stochastic general equilibrium
models under rational expectations. This literature confronts unknown parameters with subjective probability
inputs, but typically decision makers within these models are presumed to know the unknown parameters, in
contrast to econometricians.
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is the subjective probability approach of de Finetti (1937) and Savage (1954). This argues for
assigning subjective probabilities or a prior over alternative models, which can be updated by
Bayes’s theorem based on evidence. But a decision maker who is unsure about these subjective
inputs may wish to explore the consequences of this uncertainty.This is the perspective of a robust
Bayesian. In some circumstances, the data may be so rich that the posterior probabilities are not
very sensitive to the prior inputs, in which case the consequences of ambiguity may be minimal.
We might expect this phenomenon to be pervasive in our current big-data environment, with
machine learning algorithms helping to assess the data implications; but often the data are not rich
along all dimensions of interest. It seems far too severe to limit our research questions to the ones
for which sensitivity over a substantively interesting set of priors is of little consequence.3 Both
examples I choose in this essay are cases in which, I argue, prior sensitivity remains an important
consideration.

My metaphorical use of the term “story” for a model is in part due to the fact that a model is
necessarily misspecified. It is a simplification or an abstraction that helps us think about the world
or how to design more prudent policies, and it is not intended as a complete accounting of a com-
plex economic environment. Designing omnibus statistical tests for misspecification seems to be a
bit beside the point, unless these tests direct researchers to salient and substantive improvements
in the model specification. Including a rich variety of random shocks to make models harder to
reject is a common practice, but it leaves open the question of whether these are best conceived
of as exogenous impulses or as devices to disguise model approximation errors. Excessive shock
proliferation can quickly make the model look like a black box. A harder, but I think important,
challenge is to explore systematically the potential consequences of model misspecification.What
potential consequences concern us? To address this question, it is natural to think in terms of a
decision problem.

3. SOME ASSET PRICING THEORY
The manner in which risk operates upon time preference will differ, among other things, according to
the particular periods in the future to which the risk applies.

—Irving Fisher (1930, p. 83)

I use an asset pricing perspective to address problems associated with both social and private
valuation. Because the primary focus of my essay is on uncertainty with long-term consequences,
I will describe a valuation framework that takes this into account. This framework will allow me
to address two questions:

� When will long-term uncertainty have short-term implications for markets?
� How does discounting compound over long horizons?

It is well known from the simplest exogenous growth models that both the subjective rate of
discount and the intertemporal elasticity of substitution affect how private and social cash flows get
discounted optimally or in equilibrium.Uncertainty contributes to discounting as well. A stochas-
tic counterpart replaces the single per-period discount rate because social or private payoffs that
are exposed to uncertainty in different ways should be discounted differently. Conceptually broad-
ening the uncertainty that markets and policy makers face alters the stochastic contributions to

3Of course, dogmatic priors cannot be dominated by the data. In my first example, I entertain such priors as
possibilities.
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valuation. Thus, my push beyond the risk mentioned by Irving Fisher in the quote above will be
important for the applications I consider.

3.1. Prior Literature

The framework I describe was originally inspired by a quantitative literature in macroeconomics
and finance that focuses on the contributions of risk and uncertainty to valuation over alternative
investment horizons. This entire literature is a direct outgrowth of Rubinstein’s (1976) funda-
mental paper on valuing flows that grow stochastically over time. The quantitative contributions
include, for instance, the works by Parker & Julliard (2003), Campbell & Vuolteenaho (2004),
Alvarez & Jermann (2005), Lettau&Wachter (2007),Hansen et al. (2008), Bansal et al. (2009), and
van Binsbergen et al. (2012).Much of this quantitative/empirical research works with log-linear or
log-normal approximations. I will not attempt to survey this literature, but instead I will suggest
a framework for understanding the valuation implications over alternative investment horizons
that is both mathematically convenient and able to accommodate nonlinearity. I find this to be a
valuable starting point for thinking about how growth rate uncertainty can affect valuation.

3.2. Framework

I represent valuation by taking as given the equilibrium solution to a dynamic stochastic equi-
librium model. I begin with some notation: Let X = {Xt : t = 0, 1, . . . } be a state vector process
including, for instance, endogenous capital and exogenous shifts in technology; letW = {Wt : t =
1, 2, . . . } denote a k-dimensional vector of independent and identically distributed shocks to the
macroeconomy; and let Ft represent the information generated by histories of W and the initial
state X0. For the time being, I presume that the model has been written in the form of a stochastic
steady state and that the state vectors are appropriately scaled to capture this. Thus, for now I take
the state vector X to be stationary, although the tools I expound do not require this restriction.4

From the solution of the economic model, I write

Xt+1 = ψ (Xt ,Wt+1) and

Yt+1 −Yt = κ (Xt ,Wt+1), 1.

where Y= {Yt: t= 0, 1, . . . } is a scalar process with stationary increments, and Y0 is initialized based
on the date-zero information captured byF0.The first equation gives the state vector dynamics as a
first-order Markov process for the state dynamics. I will use the dynamics in this second equation
flexibly to represent alternative economic and financial constructs, including the logarithms of
equilibrium consumption, investment, or capital as well as the logarithm of stochastically growing
cash flows and stochastic discount factors. We take these latter two constructs to be ingredients
to valuation.

3.3. Valuation

We exploit the recursive structure of the Markov formulation. For valuation, it is important that
we work in levels and not logarithms. Let us consider two applications of exp (Y), a stochastic
factor process S and a stochastic cash-flow processG. The product SG has the same mathematical

4For the application to climate change that I develop in Section 5, I necessarily feature the transition dynamics,
but I continue to exploit the Markov specification.
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structure. That is, if log S and log G have representations given by Equation 1 for a κ s and κg,
respectively, then so does their sum κ . Consider the price at time t of an asset with payoff Gt + τ :

πt,t+τ (G) = E

[(
St+τ
St

)
Gt+τ | Ft

]
= E

[(
St+τGt+τ
StGt

)
| Ft

]
Gt . 2.

In these formulas, St+τSt
is the stochastic discount factor over a horizon τ starting from date t. The

valuation of equity sums over such prices for τ = 1, 2, . . . .
With this computation in mind, we are led to study conditional expectations of the product

GS as well as the S and G components over alternative horizons in constructing proportional
uncertainty compensations, as I did in previous work (Hansen 2012). I express these in logarithms
to obtain

ρt,t+τ (G) =
(
1
τ

)(
logE

[(
Gt+τ
Gt

)
| Ft

]
− logE

[(
St+τGt+τ
StGt

)
| Ft

]
+ logE

[(
St+τ
St

)
| Ft

])
.

Themeasure ρt, t + τ (G) is the logarithm of the ratio of two expected returns, one with payoffGt + τ

and the other one with risk-less payoff normalized to be 1. To see this, observe that the first term
on the right is the expected payoff contribution, and the second one is the corresponding cost of
a claim to this payoff. Because the second one comes with a negative sign, the two terms taken
together give the logarithm of the expected return over horizon τ . The negative of the third term
is the logarithm of the risk-free return over horizon τ , and thus it provides a risk-less comparison
with the same horizon.

This uncertainty compensation measure, ρt, t + τ (G), depends on both the horizon τ and the
conditioning information Ft available at time t. In particular, the dependence on τ reflects the
impact of compounding.The compensation depends on the uncertainty in both the payoff process
G and the stochastic discount factor S. The stochastic discount factor contribution reflects the
price impact, and this will be of particular interest in this essay.

3.4. A Revealing Factorization

To set the stage for future discussion, I describe a factorization result that was originally formal-
ized by Hansen & Scheinkman (2009) and motivated by previous research by Alvarez & Jermann
(2005).5 I write the process exp (Y) as the product of three terms,

exp(Yt −Y0) = exp(ηt )
(
Mt

M0

)[
e(X0)
e(Xt )

]
, 3.

where M is a positive martingale for which logM has stationary increments with a stochastic
evolution given by Equation 1 with an appropriate choice of κ . In comparison, log e(X) inherits
the stationarity of X. Notice that M and e are both defined only up to scale. The real number
η gives a long-term growth rate or decay rate depending on the application. For instance, η is
negative when exp (Y) = S.

5Although Hansen & Scheinkman (2009) derive their result in a continuous-time environment, there is a
straightforward extension to discrete-time settings. Qin & Linetsky (2020) relax the Markovian assumption
in their extension of Hansen & Scheinkman’s (2009) framework.
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As stated, this representation may not be unique. For applications and for establishing the
uniqueness of the factorization, it is most advantageous to useM to induce a change in the prob-
ability measure. SinceM is a positive martingale, we have

E

(
Mt+1

Mt
| Ft

)
= 1.

In light of this outcome, we use an approach that is familiar in the pricing of derivative claims by
building a different probability measure with conditional expectation,

Ẽ (Bt+1|Ft ) = E

[(
Mt+1

Mt

)
Bt+1 | Ft

]
,

where Bt + 1 is a bounded random variable in the conditioning information at time t+ 1 of decision
makers in the economicmodel. It may be verified that this change in probability measure preserves
the same Markov structure as the original probability measure. There is, at most, one such fac-
torization for which this change of measure implies a Markov process that is stochastically stable,
by which I mean that the conditional expectations converge in the limit to well-defined uncon-
ditional expectations. This stability property is what allows us to use the factorization to provide
meaningful long-term characterizations of pricing.

I remark briefly on the long-term pricing implications of factorization (Equation 3) for limiting
uncertainty compensation. Let us write

lim
τ→∞

ρt,t+τ (G).

Let ηg be the growth rate of the cash flow, ηs the decay rate of the stochastic discount factor, and
ηgs the decay rate of the product GS. Then we obtain

lim
τ→∞

ρt,t+τ (G) = ηg + ηs − ηgs.

In the special case in which the stochastic discount factor process does not have a martingale
component, this limiting compensation is zero. More generally, the probability associated with
the martingale component of S is the long-term forward measure, as it absorbs the long-term
compensations for exposure to uncertainty. This is also the measure that Ross’s (2015) approach
would recover in this setting.6

In this essay, I am primarily interested in the martingale component to a stochastic discount
factor process. There are three ways to justify such a component:

� permanent shocks to the macroeconomy;
� recursive utility preferences that feature forward-looking components; and
� subjective beliefs, ambiguity-averse preferences, or concerns about model misspecification.

I will consider two example economies in which all three components are interconnected and
reinforcing. But before doing so, let me elaborate on each and describe why they are related. Spec-
ulation about potential macroeconomic growth provides an interesting channel for uncertainty.
Macroeconomists debate about the prospects of secular stagnation, and economic historians make
different conjectures about the future prospects for technological advances. What are the long-
term consequences of climate change on economic opportunities?Will potential future pandemics
alter permanently how economies provide goods and services? As emphasized by Bansal & Yaron
(2004), the recursive utility models of Kreps & Porteus (1978), Epstein & Zin (1989), and oth-
ers contribute a forward-looking component even to a one-period stochastic discount factor St+1

St
.

6Readers are referred to Borovička et al. (2016) for further discussion.
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Although these are risk-based models, the same implication is often true in models of ambiguity
aversion and model misspecification fears. As a decision maker grapples with uncertainty about
the model specification, long-term uncertainty can emerge as having the biggest adverse impact
on the decision maker’s discounted utility. Thus, once again, concerns about the unknown nature
of the long-term uncertainty can affect even the valuation of short-term assets such as one-period
returns. The pricing outcomes of a broadly conceived uncertainty aversion are conveniently rep-
resented by an altered probability specification capturing the uncertainty that affects decision
making in the most adverse way.

Here I propose one possible application of the factorization in Equation 3. I also feature the
interaction between all three rationales for the martingale component to valuation and illustrate
its quantitative importance.

4. UNCERTAINTY AND FINANCIAL MARKETS
[A] practical theory of the future. . .being based on so flimsy a foundation. . .is subject to sudden and
violent changes.

—John Maynard Keynes (1937, p. 214)

In this section, I describe an example economy in which investors confront uncertainty about the
future of macroeconomic growth. I base this example on a paper by Hansen & Sargent (2021).7

This example captures in a stylized way both the worrisome secular stagnation feared by some
macroeconomists and the uncertain prospects for technological advances debated by economic
historians. The model has a long-run risk component, like the one featured by Bansal & Yaron
(2004), entering into the evolution of capital. We include production to provide substantively
interesting interpretations of shocks. In the extensive literature that builds on or applies Bansal &
Yaron’s risk-based formulation of uncertain growth, the risk aversion that is imposed on investors is
typically very large. In the example economy, I show how a broader notion of uncertainty aversion,
including model ambiguity and misspecification concerns, provides a different perspective on how
uncertain growth affects asset valuation.Whereas the long-run risk literature typically introduces
stochastic volatility, specified exogenously, I abstract from that in the model I describe. I adopt this
simplification to feature what fluctuations in asset valuation can be induced by investors’ struggles
with pinpointing the precise nature of the uncertainty.

As I will show, the prices of uncertainty fluctuate because investors especially fear high persis-
tence of macroeconomic growth in bad states and low persistence in good ones. Why this asym-
metry? When an economy is growing, the salient fear preoccupying investors is that high growth
will not persist. But when the economy is stagnant, the salient fear is that sluggishness will persist.
We show how these concerns manifest themselves in relation to both model ambiguity and model
misspecification. Formally, they take the form of an endogenous nonlinearity in the stochastic
discount factor that investors use to evaluate the prospective payout streams that underlie asset
evaluations.This nonlinearity compounds itself over time in ways that provide a novel explanation
for how asset market fluctuations reflect uncertainty.

4.1. Setup

Suppose that capital,Kt, evolves according to the continuous-time stochastic differential equation
as

dKt = Kt
(
αk + βkZt + It

Kt

)
dt + Ktσk · dWt , 4.

7Hansen & Sargent (2019) offer a short perspective on this research.
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and output is proportional to the capital stock,

Ct + Ktφ
(
It
Kt

)
= aKt ,

where Ct is consumption, It is investment, φ is a convex function introduced to capture adjustment
costs, and dWt is a bivariate increment to a Brownian motion. I interpret capital broadly to include
potentially both human and organization capital.

For simplicity, I assume that investors have a unitary elasticity of intertemporal substitution
in preferences, which implies that, for an optimal resource allocation, consumption and capital
should be proportional. The process Z captures exogenous shifts in technology and is modeled as
a scalar autoregression,

dZt = αz − βzZt + σz · dWt .

While the Z process captures a form of long-run risk, I have purposefully abstracted from includ-
ing a stochastic volatility component, even though such a component is common in macrofinance
models. Although there is evidence for such volatility in the macroeconomy, my aim is to show
how concerns about uncertainty can induce fluctuations in the market price of uncertainty en-
dogenously, without imposing it through an external source.

There are two parameters that will be of particular interest to us. The first is βk > 0, which
determines how responsive the capital stock is to changes in the persistent technology process.
Larger values of βk imply more exposure to technological uncertainty. The second is βz > 0,
which determines the persistence of the process Z. Larger values of βz imply more mean reversion
and more pull toward the long-run mean. The counterpart to the discrete-time autoregression
coefficient is exp (−βz), which is closer to zero when βz is large.

I construct the rational expectations competitive solution by following Lucas & Prescott’s
(1971) approach, in which the equilibrium resource allocation is the outcome of a fictitious plan-
ner’s problem for a stochastic growth model à la Brock & Mirman (1972). I then compute the
three additional solutions:

� planner’s problem with a concern for the misspecification of a baseline model used in the
rational expectations solution;

� planner’s problem with a concern for ambiguity across models, as indexed by the parameter
pair (βk, βz); and

� planner’s problem with a concern for both model misspecification and ambiguity across
models.

The solution to the first problem illustrates the impact of robust preferences (as in Hansen &
Sargent 2001), the second illustrates the impact of ambiguity averse preferences (as in Chen &
Epstein 2002), and the third illustrates the impact of combining the two (as in Hansen & Sargent
2021).8

I treat the case with a unitary elasticity of substitution for pedagogical simplicity. Capital is the
sole source of wealth in this economy, and with this preference restriction, consumption is propor-
tional to capital. Similarly, there is a constant investment–capital ratio. Although changing how
investors confront uncertainty alters the equilibrium stochastic discount factor, the equilibrium

8The robust preferences used byHansen& Sargent (2001) and the generalization byHansen& Sargent (2021)
can be viewed as special cases of the dynamic variational preferences of Maccheroni et al. (2006).
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allocations for consumption and capital stay the same. I still solve a planner’s problem because
the minimizing probabilities from the planner’s problem, expressed as a function of the state vari-
ables and Brownian shocks, contribute an uncertainty adjustment to the stochastic discount factor
used to represent asset prices in a competitive equilibrium.9 Relative to the rational expectations
model, each of the three solutions induces a different martingale contribution. The martingale
contributions capture the uncertainty-adjusted probabilities deduced from the planner’s problem.
Because I posed the model in continuous time, the value functions and worst-case probabilities
solve Hamilton–Jacobi–Bellman equations, as in Hansen & Sargent’s (2021) article.

Had I not imposed a unitary elasticity of substitution, or had I introduced multiple capital
stocks with differential exposure to uncertainty, the quantity allocation would no longer be in-
variant across the three alternative preference specifications. Instead, changing the preferences as
described in the previous paragraph would have altered not only the stochastic discount factor
but also the equilibrium allocation of consumption and capital.10 Such generalizations provide
some additional insights into how uncertainty aversion alters precautionary motives for savings as
reflected in the evolution of capital. In particular, the ratio of consumption to aggregate capital
would be state dependent. Of course, such outcomes are of considerable interest, but here I have
chosen to focus on the implications for the equilibrium stochastic discount factor.

4.2. Modeling Details

Given the equivalence of the capital and consumption dynamics, I construct the baseline parameter
values from the estimates of (α̂k, β̂k, σ̂k, α̂z, β̂z, σ̂z ), as done by Hansen & Sargent (2021). They set
α̂z = 0, which means that the Z process has mean zero in the implied stationary distribution, and
the sum of α̂k and the investment–capital ratio gives the long-term growth rate in logarithms
for consumption and capital. They also set β̂k = 1. In the rational expectations equilibrium, the
investor has full confidence in the baseline parameter values.

To explore model misspecification, the investor considers alternative probability specifications,
each of which can be represented as a Brownian motion with drift. We use U to represent the
stochastic process of drifts. Then we obtain

dŴt =Utdt + dWU
t ,

where dWU
t is a Brownian motion under the change of probability measure. Thus, locally I

am changing the distribution of the underlying shocks from being multivariate standard normal
shocks to being shocks that have a mean that is not zero and instead can be time dependent and
state dependent. I use flexible specifications of the drift process U to capture alternative forms of
misspecification.

Themartingale associated with this drift distortion has a particularly simple dynamic evolution
under the baseline ·̂ dynamics: We have

dMU
t = MU

t Ut · dŴt ,

9While it is common to compute the competitive equilibrium allocation by solving a social planner’s problem,
I use an extended version of that same approach to compute the uncertainty adjustment for the equilibrium
asset prices (see Hansen & Sargent 2021 for more elaboration on this point).
10Eberly & Wang (2012) provide a tractable extension of this model with two capital stocks and risk-based
recursive utility.
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where the (at least local) martingale property follows, given that the conditional mean or drift is
zero. AsMU is a likelihood ratio, the evolution of the logarithm is also of particular interest:

d logMU
t = −|Ut |2

2
dt +Ut · dŴt

= |Ut |2
2

dt +Ut · dWU
t .

Thus, the local mean of expected log-likelihood ratio under theMU probability distribution is one
half the squared norm of the drift distortion U. This is the local contribution to relative entropy,
which is a well-known discrepancy and a mathematically convenient measure for assessing differ-
ences in probability measures. Relative entropy is also often referred to as Kullback–Leibler diver-
gence. This local contribution of relative entropy exploits the underlying Brownian formulation
with locally normal shocks. When the squared norm of the drift is large, the implied probability
measure is easy to distinguish from the baseline probability.

Motivated by results from the robust control theory,Hansen & Sargent (2001) include penalty,
which is a scaled version of

1
2
E

[∫ ∞

0
exp(−δt )

(
MU

t

MU
0

)
|Ut |2dt | F0

]
in the objective function of the fictitious planner.11 This objective includes the same subjective
discount rate, δ, as the one used in discounting the expected utility of the planner. I impose the
restriction so that the preferences are dynamically consistent. A larger penalty limits more the
decisionmaker’s exploration of the potential consequences of misspecification. Including this term
in the planner’s objective leads to a particularly simple choice ofU ∗

t for this example economy, that
is,

U ∗
t ∝ −

(
β̂k

β̂z + δ

)
σ̂z − σ̂k.

The right-hand side of this expression gives the negative of how the increment in the continua-
tion value (expressed in logarithms) responds to the Brownian increment. Notice that both slope
parameters contribute to this drift distortion. More exposure to the exogenous growth rate un-
certainty, captured by a larger value of β̂k, magnifies the contribution of σ̂z. More persistence in
this process captured by a smaller value of β̂z has the same qualitative impact. The proportionality
factor depends on the reciprocal of the scaling factor for the relative entropy penalty. In other
words, a large penalty results in a small implied drift distortion. Notice that while the drift distor-
tion can be state dependent, in the solution to the planner’s problem, this distortion is constant.
The decision maker repeatedly worries about permanent shifts in drift of the Brownian incre-
ment. The fact that −U ∗

t is constant provides a mechanism for enhancing uncertainty prices but
not for causing them to vary. Although this invariance is driven in part by the functional forms I
have assumed, more generally I expect the implied state dependence in the uncertainty prices to
be small.

I now consider ambiguity aversion relative to what Hansen & Sargent (2021) call a structured
set of models. This will also illustrate a version of Chen & Epstein’s (2002) formulation of ambi-
guity aversion. In this computation, to capture parameter ambiguity, I introduce a special case of

11For some related robust control references, readers are referred to Jacobson (1973), James (1992), and
Petersen et al. (2000).
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the drift distortion,

St = η0 + η1Zt ,

where η0 and η1 are two-dimensional vectors. Now rewrite the state vector dynamics as

dKt = Kt
(
α̂k + β̂kZt + It

Kt

)
dt + Kt σ̂k · dŴt

= Kt
(
αk + βkZt + It

Kt

)
dt + Kt σ̂k · dW S

t ,

dZt = α̂z − β̂zZtdt + σ̂z · dŴt , and

dZt = αz − βzZtdt + σ̂z · dW S
t ,

where

αk = α̂k + σ̂k · η0 βk = β̂k + σ̂k · η1,
αz = α̂z + σ̂z · η0 βz = β̂z + σ̂z · η1.

By varying η0 and η1, I obtain alternative parameters of the mean dynamics of the state variables.
Given the role of β̂k and β̂z in the previously constructed U ∗, I will feature ambiguity about

these two parameters. Thus, I hold fixed (αk, σk,αz, σz ) = (α̂k, σ̂k, 0, σ̂z ) and limit the parameter
uncertainty to (βk, βz). This leads me to focus on η1 and set η0 = 0.12 As Hansen & Sargent
(2020) argue, I cannot embed misspecification concerns of the type described previously within
this framework, because Chen & Epstein (2002) impose an instant-by-instant constraint. They
restrict Brownian motion drifts in this manner to implement a version of Gilboa & Schmeidler’s
(1989) ambiguity-averse preferences, extended to be dynamically consistent. To implement this
approach, we continue to use relative entropy but now in a much more limited way.

Consider for the moment a single alternative model given by a choice of η1. I could compute
the implied discounted relative entropy ϵ, which will be dependent on the realized state z. My
aim, however, is to build a constraint on structured models. Thus, I start with a function ϵ and
find values of η1 with the same relative entropy. This defines the boundary of the set of structured
models and is characterized by a quadratic equation in the two-dimensional vector η1, or equiva-
lently for (βk, βz). I also include in this ambiguity set the interior points, each of which is a drift
distortion associated with a value of η1. Given this constraint, the planner will justifiably focus on
the boundary when minimizing over S. As Hansen & Sargent (2021) make clear, this constraint on
S is much tighter than a date-zero constraint restricting relative entropy to be less than or equal
to ϵ(Z0).

The fictitious planner’s problem is actually a two-player max-min dynamic game that can be
expressed and solved using recursive methods. The maximization is over investment, and mini-
mization, conditioned on the investment choice, is over the structured drift distortion. For the
recursive minimization, I start with a functional equation for relative entropy for each η1 on the
boundary.13 I convert this equation into a constraint on η1 for each possible value of z by taking
as input the relative entropy ϵ as a function of z. For my application, this minimization problem
is quadratic given the state z.14

I depict the resulting constraints on the parameters in Figure 1. The decision maker is more
ambiguity averse when the ambiguity set is larger. To be in line with Chen & Epstein (2002), I

12Hansen & Sargent (2021) also present results when η0 is different from zero.
13This equation is a special case of the so-called Feynman–Kac equation.
14Readers are referred to Hansen & Sargent (2021) for more details.
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Ambiguity sets. These are parameter values constrained by relative entropy, where βk quantifies the exposure
to the macroeconomic growth rate process and βz quantifies the persistence of that process. The single point
is the baseline specification (β̂k, β̂z ), and the two regions are implied by a relatively tight (blue) and a relatively
loose (orange) relative entropy constraint. Figure adapted from Hansen & Sargent (2021) (CC-BY-NC-ND).

allow for the minimizing choice of (βk, βz) to depend on the alternative realized values z of Zt.
This is, indeed, an outcome of ourmodel solution. FollowingHansen& Sargent (2021), I motivate
this extra flexibility by allowing a priori the parameters to be time varying but constrained to
reside in the ambiguity parameter set. Alternatively, I could allow for a restricted set of nonlinear
specifications of the local means for the state vector evolution.

Investors in this economy start with a simple linear first-order autoregressive model of macroe-
conomic growth rate dynamics. Their concerns about ambiguity induce them to explore other
statistically similar specifications, including ones that they especially fear. In Figure 2, the linear
relation with the negative slope captures their baseline model with so-called mean reversion for
the growth rate process Z. The mean reversion is evident because there is a pull from the more
extreme growth states toward the center of the growth rate distribution. The vertical axis is the
local pull toward the center of the distribution of macroeconomic growth (net of its long-run av-
erage growth rate.) In the absence of random shocks, there is a pull toward zero. In Figure 2a I
also include a dotted red curve that is the ambiguity-averse response when investors confront a
set of statistically similar specifications. Formally, they explore the ambiguity set of parameters for
different macroeconomic growth states. The flatter slope (a smaller value of βz) to the left of zero
reflects the concerns of investors in bad economic times that the macroeconomy may be stuck
with more growth sluggishness than in the original model. The steeper slope to the right of zero
reflects opposite forces. Here, good macroeconomic growth outcomes are feared to be shorter-
lived than in the original model specification. Finally, in Figure 2a I plot the implied drift when
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Figure 2

Local dynamics for macroeconomic growth. Solid gray lines represent the baseline linear model. The gray
arrows depict the pull of the local dynamics toward the mean growth rate of the macro economy for the
baseline model. In panel a, the dotted red curve incorporates aversion to model ambiguity, and the dashed
blue line incorporates aversion to model misspecification. In panel b, the dashed magenta curve incorporates
aversions to both model ambiguity and model misspecification. Figure adapted from Hansen & Sargent
(2021) (CC-BY-NC-ND).

the only investor aversion is that the baseline model is misspecified, which just shifts the baseline
drift proportionally downward. There is a corresponding movement in the minimizing choice of
βk, which governs how exposed the economy is to the uncertain growth process.

Neither the dotted red curve nor the dashed blue line in Figure 2a is intended to represent
the beliefs of the planner or the investors inside our example economy. The computation of this
altered drift is part of deducing the averse response to ambiguity over the state dynamics. The
imputed drift distortion Sthinsp;∗ from the planner’s problem that implements the competitive
equilibrium is a nonlinear function of the growth state Z. Interestingly, it is a continuous-time
version of a threshold autoregression model. The martingale associated with this Sthinsp;∗, with
a drift given by

dMS∗
t = S∗

t · dŴt ,

contributes prominently to the martingale component of the stochastic discount factor.
In Figure 2b, I look at a specification featured by Hansen & Sargent (2021) that allows each

model in the ambiguity set to be misspecified. Here, the structured specifications of the drift
distortion S are in the same ambiguity set described previously, but I also include a relative entropy
penalty that is proportional to

1
2
E

[∫ ∞

0
exp(−δt )

(
MU

t

MU
0

)
|Ut − St |2dt | F0

]
.

The unstructured misspecification is captured by the drift distortion U, which is penalized rela-
tive to the set of structured models. Figure 2b shows the resulting minimizing unstructured drift
distortion given by the dashed magenta curve. The altered drift inherits a similar shape to that
of ambiguity-adjusted drift, but it is shifted downward. This downward shift is no longer propor-
tional, as it was when investors only considered a single specification.

Empirical evidence suggests that uncertainty compensations for the macroeconomy are larger
in bad times relative to good times. The local uncertainty compensation induced by an aversion to
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Figure 3

Term structure of uncertainty prices. The gray curve sets the initial growth state at the median of the
stationary distribution; the dashed red curve sets the initial state at the 0.9 decile; the dotted blue line sets
the initial state at the 0.1 decile. Panels a and b give the term structure of prices for exposures to the two
underlying shocks. Figure adapted from Hansen & Sargent (2021) (CC-BY-NC-ND).

ambiguity or model misspecification is governed byU ∗.To explore the pricing effects, we consider
a term structure of uncertainty prices captured by the formula

E
(
MU ∗

t U ∗
t | Z0

)
. 5.

I think of prices as building blocks of valuation adjustments due to uncertainty. Notice that
−σ k · U ∗, as depicted in Figure 2b, is large when the magnitude of the growth state is large. This
is true independent of whether growth is relatively high or relatively low.An important asymmetry
emerges, however, once we look at the horizon dependence reflected in Equation 5. The steeper-
sloping conditional mean for Z when z is positive means that under theMU ∗ probability, there is a
relatively fast escape from these states vis-à-vis the baseline probability specification. Conversely,
there is a slower escape for z negative. This asymmetry is reflected in Figure 3, which reports the
term structure of uncertainty prices given by Equation 5. These uncertainty prices depend on the
current growth state.We consider three values of this state: One is median (z= 0), and the others
are the 0.1 and 0.9 deciles of the Z stationary distribution under the base probability measure.
Whereas both the upper and lower deciles start substantially higher than the median uncertainty
prices, the 0.9 decile prices show substantial decay because of the likely escape from the high-
growth state.Figures 3a and 3b give the uncertainty prices for the two underlying shocks.Notice
that the patterns are very similar. In summary, the term structure reveals an intriguing asymmetry
in the uncertainty prices depending on macroeconomic growth.

4.3. Related Literature

In this example economy, I abstracted from learning by including alternative models with param-
eters whose prospective variations cannot be inferred from historical data. These time-varying
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parameter models differ from the decisionmaker’s baseline model, a fixed-parameter model whose
parameters can be well estimated from historical data. Other research imposes parameter invari-
ance and instead induces fluctuations using a robust Bayesian perspective. For instance, in work
by Hansen (2007) and Hansen & Sargent (2010), a representative investor’s robust model averag-
ing induces fluctuations in uncertainty prices. The investor carries along difficult-to-distinguish
models of macro growth. The investors make robust adjustments to Bayesian posteriors updated
with historical data. This leads the investors to act as if good news is temporary and bad news
is persistent, an outcome that is qualitatively similar to what we have found here. The decision
makers in their analyses confront dynamic consistency by playing a game against future versions
of themselves, although I speculate that similar qualitative insights could be obtained using the
continuous-time recursive formulation by Hansen & Miao (2018). Collin-Dufresne et al. (2016)
and Andrei et al. (2019) show that a comparable outcome emerges with a risk-based, recursive
utility formulation with Bayesian learning in which investors have full confidence in the subjec-
tive probabilities and are not concerned about model misspecification. Although it is valuable to
see this rational learning counterpart, the risk-based approaches miss part of what I consider to
be an important challenge investors face as they speculate about the future.

5. UNCERTAINTY AND POLICY
Even if true scientists should recognize the limits of studying human behavior, as long as the public
has expectations, there will be people who pretend or believe that they can do more to meet popular
demand than what is really in their power.

—Friedrich A. Hayek (1974)

There is often a tendency to overstate the knowledge base when providing public rationales for
policies aimed at addressing social and economic problems. Premising decisions on false knowl-
edge can lead to bad outcomes. Some might argue that unless we know something for sure (or at
least with great confidence), we should adopt a wait-and-see approach. But this conclusion does
not necessarily follow from the basic tenets of decision theory under uncertainty. Because there
can be a substantial cost to the delay, decision theory can justify acting now based on the possi-
bility of bad outcomes in the future should we fail to act. The aversion to uncertainty is meant to
resolve a trade-off in assessing decisions between focusing on best guesses and considering possi-
ble adverse outcomes even though they might be unlikely. My hope is that tools such as the ones
described in this essay can allow policy makers to confront uncertainty in sanguine discussions of
policy.

In this section, I explore the impact of the economic uncertainty of climate change by drawing
on the analysis by Barnett et al. (2020). In their research, these authors assess a stylized integrated
assessment model, incorporating both geoscientific and economic uncertainties. There exist many
such integrated assessment models, but my particular focus is on the consequences of uncertainty
for prudent policy making. Following Barnett and colleagues, I show that geoscientific and eco-
nomic uncertainties are in effect multiplicative in quantifying the social cost of carbon (SCC)
emissions. I accomplish this by using the tools from asset pricing to study social valuation in con-
trast to private valuation. A central part of Barnett and colleagues’ (and hence my) analysis is the
construction of probability measures that adjust the uncertainties pertinent to valuation. Specif-
ically, I construct a martingale component to the stochastic discount factor based on a cautious
approach to uncertainty.
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5.1. Social Cost of Carbon

The SCC is commonly referred to in policy discussions, but its meaning and implications for mea-
surement differ across applications. In this discussion, I use a well-posed version as an analytical
tool to assess the impact of uncertainty. I alter the technology in the previous section to include an
exploration sector that leads to increases in the stock of fossil fuel reserves. In addition, I modify
preferences to include a demand for emissions. Emissions will alter the climate, which in turn will
affect economic opportunities and social well-being in the future. I take the emissions’ impact on
climate and economic opportunities to be an externality not captured by market prices. I model
the SCC as a stochastic process of the implied shadow prices for emissions that is pertinent for
a fictitious social planner engaged in socially efficient resource allocation. The SCC in my com-
putations depends on the underlying state variables in the economy, and thus it varies over time.
The wedge between the market prices and the SCC is the process of so-called Pigouvian taxes on
emissions that would correct the externality.

Pigouvian tax policy could be dismissed as a pie in the sky, and the use of a single social plan-
ner as remarkably naive, since it ignores a variety of practical challenges in policy making. I am
sympathetic to such criticisms, and I will not address the many political and economic challenges
of climate change policy. Instead, I use the SCC as a barometer for gauging the quantitative im-
portance of uncertainty.

I bring in tools from asset pricing by viewing the SCC as a process of asset prices with a cor-
responding social cash flow. For simplicity, I use temperature as the measure of climate change.
The social cash flows of interest have two interconnected contributions:

� Geoscience: How do changes in CO2 emissions alter temperature in the future?
� Economics: How do changes in temperature alter economic opportunities in the future?

Both of these contributions can be conceived of as nonlinear, local impulse responses, the first
being the future responses of temperature to an emissions impulse, and the second being the future
responses of economic opportunities to a temperature impulse. In effect, I form a convolution of
these two response functions to get the social cash flow. The SCC agglomerates the social cash
flows using stochastic discounting, including a martingale adjustment for uncertainty.

The SCC is often defined as the social marginal rate of substitution between emissions and
consumption; thus, it is a shadow price of the resource allocation problem for a hypothetical plan-
ner. It could be implemented via a Pigouvian tax that would correct the private shadow price
for the externality, although we use this method to assess the impact of uncertainty, when con-
ceived broadly. Following the previous literature, we start by representing this social cost in terms
of partial derivatives of the value function of the social planner. We then apply an asset pricing
perspective to interpret the components to this social cost.

5.2. Prior Literature

As many previous researchers have investigated, the human impact on the climate is a poten-
tially important source of uncertainty that could play out over long horizons (see, for instance,
Weitzman 2012, Jensen & Traeger 2014, Cai et al. 2015,Nordhaus 2017,Hambel et al. 2018, and,
especially, Cai et al. 2017). Our use of an asset pricing perspective to interpret the SCC follows in
part discussions by Golosov et al. (2014) and Cai et al. (2017), who engage in an ambitious explo-
ration of the risk consequences for the SCC. My aim is to show how to extend these analyses to
include forms of uncertainty other than risk. Although I use a particular model of the climate sys-
tem for the sake of illustration, this same perspective also allows researchers to better understand
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the components to the social cost in more general settings. Millner et al. (2013) and Lemoine &
Traeger (2016) previously used the smooth ambiguity formulation of decision making motivated
by climate science. In contrast to the analysis that follows, they did not formally motivate their
calibration of ambiguity in terms of robustness and sensitivity considerations.

5.3. Setup

I use an AK model of the type I specified in Section 4 (see Equation 4), except that I modify the
output constraint to be

Ct + It + Jt = αKt ,

where Jt is investment in the discovery of new fossil fuel reserves. The stock of reserves evolves
according to

dRt = −Etdt + ψ0(Rt )1−ψ1 (Jt )ψ1 + RtσR · dWt ,

where Rt is the date-t stock of reserves, and Et is the date-t flow of emissions of fossil fuels drawn
from the reserve stock. The parameters satisfy the restrictions ψ0 > 0 and 0 < ψ1 ≤ 1. The well-
known Hotelling’s (1931) model of resource extraction with a fixed stock of reserves becomes
a special case of our reserves by setting ψ0 = 0 and σ R = 0 and by restricting Rt ≥ 0 for all
t ≥ 0.15

Capturing the externality induced by climate change requires the integration of a climate
change component into the model. It is difficult to integrate a complex and high-dimensional
climate model within a stylized economic model of the type that I use here. To get off the ground,
I adopt some seemingly stark approximations. Climate scientists have performed a variety of
model comparisons by using exogenously specified representative concentration pathways and by
using emission pulses of different sizes. Examples can be found in the work of Eby et al. (2009),
Joos et al. (2013), and MacDougall et al. (2017). The simplified dynamics are often specified
in terms of two subsystems: (a) the dynamic response of atmospheric carbon concentration to
emissions, and (b) the dynamic response of temperature to atmospheric carbon concentration.
The response of temperature to emissions is in effect a convolution of these two responses.While
it is common for integrated assessment models to formally specify these two subsystems, there is
a substantial literature that studies direct simplifications of the convolution by showing that the
temperature change over an interval of time is roughly proportional to the cumulative carbon
emissions over the same time period. Matthews et al. (2009), among others, proposed this as a
useful approximation. Many subsequent papers have assessed this approximation and have used it
for model comparisons and policy discussion. For instance, Ricke & Caldeira (2014) have argued
that, in fact, this proportionality emerges over a relatively short timescale. Dietz & Venmans
(2019) and Barnett et al. (2020), in independent contributions, have used this approximation
within an explicit economic optimization framework. The latter contribution proposes ways to
confront uncertainty, broadly conceived, within such a framework. Barnett and collaborators
use the cross-model uncertainty in the proportionality relationship as input in their analysis.
Figure 4a shows the cross-model histogram reported in MacDougall et al.’s (2017) paper for the

15Our introduction of a technology for investing in the exploration of new reserves follows from previous
contributions by Casassus et al. (2018) and Bornstein et al. (2019). While investment in new discoveries is
typically absent in Dynamic Integrated Climate Economy (DICE) models, DICE models introduce possible
mitigation to offset the economic damages induced by climate change.
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Figure 4

Uncertainty inputs. (a) Histograms and density for the climate sensitivity parameter across models. Evidence is from MacDougall et al.
(2017). I use the blue curve as a baseline specification of probabilities across models instead of an orange histogram to simplify
computation. (b) Two damage functions specified as proportional reductions in consumption due to climate change. Climate change is
measured as the climate sensitivity parameter times cumulative emissions. Figure adapted from Barnett et al. (2020) (CC-BY-NC).

proportionality coefficient β. Taking this histogram as a direct characterization of uncertainty
means that all of the inputs into the construction of the histogram are given equal weighting.
Although this might be an interesting starting point, we shall examine sensitivity to this choice.

From the economic side, I specify a damage function meant to summarize the economic conse-
quences of climate change.While there are good reasons to consider dynamic responses to climate
change through alternative forms of adaptation, like many scholars, including Dietz & Venmans
(2019) and Barnett et al. (2020), I posit a static relationship between temperature and damages,
denoted by Nt. I follow Barnett and colleagues by letting Nt capture a proportional reduction in
consumption due to climate change. Formally, they assume that

logNt = 

(
β

∫ t

0
Eudu

)
+ ζn(Zt ),

where

(y) =
{

−γ1y− γ

2 y
2 y ≤ 2

−γ1y− γ

2 y
2 − γ+

2
2 (y− 2)2 y > 2

}
.

The parameters γ 2 and γ +
2 give nonlinear damage adjustments. Specifically,γ +

2 > 0 gives a smooth
alternative to a carbon budget at 2°C. Notice that the function  is zero at zero, decreasing, and
concave.16 We include an exogenous shifter in this specification of damages via ζ n(Zt).

There is substantial divergence in the environmental economics literature on the magnitude
of damages. To illustrate this divergence, Figure 4b depicts exp [(y)] for two different possible
γ +
2 : One is zero and the other is positive. The construction of the  with γ +

2 = 0 is motivated by
the evidence reported by Nordhaus & Moffatt (2017), and the second more curved specification
of  with γ +

2 > 0 is loosely motivated by Weitzman’s (2012) arguments for much more severe

16As Barnett et al. (2020), I posit  as a function of the climate change component to temperature fluctuations
by omitting other exogenous components of temperature change that are not induced by economic activity.
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damages beyond 2°C. Given this specification of damages, we see that γ +
2 is multiplied by either

β or β2, implying that the uncertainty across the economic and climate inputs is multiplicative.
In the illustrative calculation, I impose a baseline subjective probability of equal weight on
the two values of γ +

2 and explore the consequences of making arguably small changes in these
probabilities.

The fictitious planner in our analysis confronts ambiguity in the distribution of the climate
sensitivity parameter β and the damage parameter γ +

2 . The planner uses baseline subjective prob-
abilities for both. We use Hansen & Miao’s (2018) framework for a recursive implementation
of the smooth ambiguity model in continuous time. The discrete-time version of smooth ambi-
guity was originally axiomatized by Klibanoff et al. (2005). Hansen & Sargent (2007) provide a
robust Bayesian interpretation of an important special case of the discrete-time smooth ambiguity
model, whereby the impacts of changes in the baseline posterior probabilities are explored recur-
sively, subject to relative entropy penalty.17 Hansen & Miao’s (2018) formulation preserves this
robustness interpretation. Like Hansen & Sargent (2007), Hansen & Miao (2018) also show how
to extend this decision theory representation to include concerns about model misspecification. In
the climate economic computations that I report, I feature only the model ambiguity component.
This is in contrast to the examples of the impact of uncertainty on financial markets that I de-
scribed in Section 4. The robust Bayesian interpretation provides an altered probability as part of
the planner solution for resource allocation, giving rise to a martingale component to a stochastic
discount factor that is pertinent for social valuation.18

5.4. Implications of Ambiguity for the Social Cost of Carbon

Although stochastic discounting has been extensively applied in market valuation, it is also perti-
nent in social valuation. It justifiably redirects the discussion about what should be the discount
rate for social valuation. Just as in market valuation, in social valuation there is a stochastic dis-
count factor that adjusts valuation for exposures to uncertainty in ways that can depend on both
the horizon and the current Markov state. Again, the martingale component is of particular inter-
est. As in market valuation under uncertainty, there is a measure that adjusts for the aversions to
ambiguity and model misspecification associated with this martingale component.

The SCC is an asset price associated with a particular social cash flow that reflects the ad-
verse impact of climate change on economic and social outcomes.19 This social cash flow is the
impulse response function of emissions today on damages in the future, where damages incorpo-
rate marginal utility adjustments from the different time periods. We then apply an asset pricing
perspective to interpret the components to this social cost. This social cash flow depends on the
interacting uncertainties about economic damages and climate change. Following Barnett et al.

17Whereas the example I report considers two potential damage functions, Li et al. (2016) consider a pa-
rameterized family of log-linear damage functions with a baseline exponential distribution over the unknown
slope parameter. They follow Hansen & Sargent (2007) by making a robustness adjustment to this baseline
distribution.
18Initial applications of smooth ambiguity models to the economics of climate change can be found in work
by Millner et al. (2013) and Lemoine & Traeger (2016), but without reference to robustness considerations
for the subjective probabilities.
19Such a discussion follows in part from Golosov et al.’s (2014) work. Cai et al. (2017) engage in a more
ambitious exploration of the risk consequences for the SCC. Barnett et al. (2020) also embrace an asset pricing
interpretation, but in particular, they show how to extend the analysis of the SCC to include aversions to
ambiguity and model misspecification.
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The initial weighting is the same for both the low- and high-damage specifications. The ambiguity-adjusted
probabilities remain very close to this initial weighting at year 50 (panel a) but are tilted toward the
high-damage specification (probability 0.59) at year 100 (panel b). Figure adapted from Barnett et al. (2020)
(CC-BY-NC).

(2020), I include the ambiguity-adjusted probabilities from the robust planner’s problem. This
change of probability measure contributes a martingale component to the valuation.20

In what follows, I report some calculations by Barnett et al. (2020).They abstract from learning
about unknown parameters and assume that the baseline probabilities for the climate sensitivity
parameter β, and those for the damage parameter γ +

2 , are invariant over time. The damage un-
certainty pertains to damages induced by temperature for which we do not have historical data.
This severely limits the possibility of Bayesian learning. For the parameter β, learning is also
particularly challenging. The cross-model uncertainty shown in Figure 4 seems unlikely to be
noticeably reduced in the near future. Although abstracting from learning is a reasonable starting
point, it may well be that if we start to experience even more extreme temperatures and more se-
vere damages, future evidence could become much more informative and helpful in resolving this
uncertainty. Even though the baseline probabilities are time invariant for the calculations I report,
the probability adjustments are time varying. This follows from the recursive formulation of the
decision problem. Specifically, the consequences of changing baseline probabilities become more
pronounced as damages increase with warmer temperatures, as shown in Figure 5. This is evi-
dent from the adjusted densities reported at year 50 versus year 100. By year 100, the high-damage
specification γ +

2 > 0 is assigned probability 0.59, in contrast to 0.5 for the baseline probability and
for the year 50 probability.

Although the probability adjustments displayed in Figure 5 may seem modest, they have a
quantitatively important impact on the SCC, as depicted in Figure 6. This figure reports the
SCC using stochastically discounted social cash flows, with expectations computed using two
distinct probabilities: uncertainty-adjusted probabilities and baseline probabilities. The former
is the correct calculation, and it includes a martingale component needed to adjust for ambiguity
about how to subjectively weigh the alternative climate model outcomes and how to weigh the
two alternative specifications of damages. The increases in the SCC for both trajectories, while

20While I use mathematical methods that are familiar from asset pricing theory, the implied shadow prices
are computed using a socially efficient allocation and not necessarily an observed allocation determined by
suboptimal policies and competitive markets.

www.annualreviews.org • Uncertainty Spillovers 391



0 20 40 60 80 100
0

200

400

600

800

1,000

Years

SC
C 

(d
ol

la
rs

 p
er

 to
n 

of
 c

ar
bo

n)

Total

Uncertainty

Figure 6

Social cost of carbon (SCC) computed under two probability measures. The solid blue curve gives the SCC
for the ambiguity-averse planner. The orange curve gives the counterpart computation with the same social
cash flow but using the benchmark probabilities without the martingale adjustment. Figure adapted from
Barnett et al. (2020) (CC-BY-NC).

reminiscent of Hotelling’s (1931) model, are induced by the potential impact of damages to
economic opportunities in the future and not to a finite stock of fossil fuel resources.

The model used in this section is purposely stylized to show how uncertainty can affect the
SCC. An enhanced version of the model, while computationally more demanding, could address
the uncertainty consequences for potential future policy and private sector responses to climate
change.These could include the transition from fossil fuel to renewable energy or green technolo-
gies, an increase of the sink capacity through biodiversity conservation, and endogenous economic
responses to climate change, including adaptation.These extensions will open additional channels
through uncertainty that will affect social and economic outcomes, making the tools discussed in
this essay all the more relevant.

6. CONCLUSION

For a variety of economic phenomena, researchers, policy makers, and economic agents are hard-
pressed to come up with a single model to use for analysis or for the design of a prudent policy.
The tools that I described preserve tractability while allowing for decision making when there
is ambiguity over models and each model has the potential to be misspecified. I used the term
“quantitative storytelling”metaphorically to capture the process of using a model with empirically
motivated inputs to make quantitative predictions without carrying the burden of being correctly
specified. This review addresses the need to balance off the implications of multiple stories in
decision making.

I presented two examples of quantitative storytelling with multiple stories to show how this
uncertainty affects the analysis and the conclusions. Empirical asset pricing researchers will have
little difficulty finding asset pricing anomalies that the first example fails to address. But my point
in developing this example is to expound a novel mechanism without the external clutter needed
to address a broader set of empirical evidence from financial markets. While the aim of my sec-
ond example is to quantify the SCC, other scholars have questioned the value of using integrated
assessment models for this purpose. For instance, Pindyck (2013) and Morgan et al. (2017) argue
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that SCC calculations from integrated assessment models are of limited value for setting policy
because of the modeling simplifications and the limited understanding of climate change and its
potential for damaging the economy.The methods I describe are meant to allow us to incorporate
a better characterization of the uncertainties and knowledge limits we encounter.With the simpli-
fied modeling inputs that I used in the illustration, some important policy-relevant questions are
off the table. Nevertheless, the methods that I illustrate open the door to a variety of important
extensions that will enlarge the scope of the analysis while continuing to acknowledge the existing
uncertainties.

I offer up the methods described here to reveal the sensitivity of quantitative conclusions to
model ambiguity and potential misspecification. The penalty parameters needed as inputs tie di-
rectly to (decision makers’) uncertainty aversions. A researcher using these methods need not
choose a single configuration of these parameters. Here, we can start with a broad array of model
specifications and subjective probabilities. The decision problem, in conjunction with credible
subjective inputs and empirical evidence, reveals where the subjective inputs have the biggest im-
pact on the decision making of economic agents or policy makers. The quantitative implications
depend on penalization parameters, but the approach ensures that dependence will be of low di-
mension. Inspired by Good (1952), I apply robust Bayesian methods, modified to be applicable to
the study of economic dynamics. A methodological achievement of the research I describe is pro-
viding a framework for showing how parsimonious penalized probabilities reveal sensible choices
on how to restrain the search over subjective inputs.

The two examples that I explored align the uncertainty perspectives of private agents in the
model with those of a fictitious planner. In the first example, this alignment is used to simplify the
computation of the competitive equilibrium prices. In presenting the second application, I suggest,
but do not formally derive, a competitive equilibrium counterpart subject to Pigouvian taxes de-
duced from a planner’s problem.More generally, however, the planner and the private agents may
have different perspectives on what is uncertain. It is common in macroeconomics to study the
design and implementation of policies by formulating Ramsey-type problems as dynamic games
played between a government and private agents. Hansen & Sargent (2012) formulate and com-
pare such problems with three different types of ambiguity. In two of the three formulations, the
heterogeneity between a government and private agents in terms of the ambiguities they confront
is reflected in the resulting equilibria. Karantounias (2013) uses one of these formulations to study
how a government that is fully confident in the probability model of its expenditures conducts fis-
cal policy when facing a skeptical public. In a dynamic, hidden-action contracting problem, Miao
& Rivera (2016) posit a principal who has doubts about probabilities when engaging a better-
informed and more confident agent. Importantly, these examples open the door to the study of
the impact that heterogeneous perspectives on ambiguity among agent types in an economy have
on contract and policy design.
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