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Abstract

The dynamic causal effect of an intervention on an outcome is of paramount
interest to applied macro- and microeconomics research. However, this
question has been generally approached differently by the two literatures.
In making the transition from traditional time series methods to applied
microeconometrics, local projections can serve as a natural bridge. Local
projections can translate the familiar language of vector autoregressions and
impulse responses into the language of potential outcomes and treatment
effects. There are gains to be made by both literatures from greater integra-
tion of well-established methods in each. This review shows how to make
these connections and points to potential areas of further research.
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1. INTRODUCTION

Impulse response functions estimated with vector autoregressions (VARs) are a standard statistic
used to investigate dynamic macroeconomic relationships. Though many associate impulse re-
sponses with the work of Sims (1980), there are references in economics already in the work of
Frisch (1933). Of course, before their arrival to economics, impulse responses could trace their
origin to the field of signal processing. A. W. Phillips (of the Phillips curve fame) built a hydrome-
chanical analog computer in 1949 (know as the Monetary National Income Analogue Computer,
or MONIAQC) to illustrate the inner workings of Keynesian and Robertsonian economics. The
effects of monetary policy were modulated by the flow of water through a system of pipes and
valves representing different sectors of the economy, which activated a pen that drew an impulse
response on a roll of graphing paper.

Traditionally, estimation of impulse responses has been viewed as a time series exercise that
requires characterizing the entire dynamic system under consideration in order to study how
policy interventions propagate over time, just as Phillips’s MONIAC did. VARs were just a con-
venient and useful empirical approximation to such a dynamic system. Local projections (LPs)
(Jorda 2005) shifted this system perspective to one where the impulse response could be directly
estimated with univariate methods and without reference to other parts of the system.

LPs compare two conditional means of a future outcome given today’s available information,
one of which is subject to an intervention while the other is not. Immediately, one can think
of this situation as comparing two forecasts under different circumstances or as comparing the
conditional mean of treated and control subpopulations. Further, because forecasts and impulse
responses are tightly linked, it quickly becomes apparent that traditional time series concepts
and policy evaluation ideas stemming from the Rubin causal model (Rubin 1974) must be tightly
connected as well. One area can benefit from the time series tradition of modeling dynamic rela-
tionships, as much as the other area can benefit from a rich tradition in the identification of causal
effects. Though seemingly obvious, the connection took some time to sprout (see, e.g., Angrist &
Kuersteiner 2011, Angrist et al. 2018), just as it took some time to make the connection between
direct forecasts (see, e.g., Cox 1961, Klein 1968) and impulse responses (Jorda 2005).

The flexibility of LPs, which helps establish this macro-micro nexus, is at the same time a
potential weakness. Because LPs are a univariate semiparametric approach, they cannot compete
in mean-squared error terms with the specification of a traditional structural multivariate time
series model (see, e.g., Plagborg-Moeller & Wolf 2021, Li et al. 2022), even though in population
they estimate the same response in many settings (again, see Plagborg-Meller & Wolf 2021).
This should come as no surprise. The more restrictions one can place in describing the data, the
more efficient the estimates, the smaller the mean-squared forecast errors, and the broader the
scope to experiment with policy variations within the model. Moreover, since many models of
the macroeconomy have solutions (or approximate solutions) that consist of a system of linear
difference-differential equations, it is natural to impose the same structure on the data to extract
estimates of the deep parameters of the model. LPs are not universally preferable, and one must
recognize those situations where alternative methods have an edge.

However, by the same token, neither are traditional multivariate time series models universally
preferable. For example, the consistency of an impulse response estimator depends on the trun-
cation lag used to specify the infinite order approximation (see, e.g., Kuersteiner 2005, Jorda et al.
2020, Plagborg-Meller & Wolf 2021). This issue of potential misspecification is easily resolved
using LPs (see, e.g., Jorda et al. 2020). Moreover, the natural efficiency losses of a less restrictive
model, such as LPs, can often be significantly reduced, as several authors have shown (see, e.g.,
Barnichon & Brownlees 2019, Lusompa 2021, Montiel Olea & Plagborg-Meller 2021, Li et al.
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2022). Furthermore, in infinite order settings, Xu (2023) shows that LPs are semiparametrically
efficient if the order is allowed to grow with the sample. Importantly, just because a theoretical
model of the economy is written in linear form, it does not mean that a structural linear multi-
variate model will describe the data correctly. More recently, the desire to stratify the responses
according to some economic condition (see, e.g., Auerbach & Gorodnichenko 2012, Jorda &
Taylor 2016, Tenreyro & Thwaites 2016, Ramey & Zubairy 2018) is trivially met using LPs, but
it is much harder to meet using VARs. In general, nonlinearities can be investigated more easily
in univariate rather than multivariate models.

The trade-off between VARs and LPs evokes that between ordinary least squares (OLS) and
instrumental variables (IV) estimation. IV estimates are always less efficient (often times, wildly
s0), yet much of the profession prefers them to OLS estimates, almost regardless of the efficiency
loss. The premium is on bias over efficiency, not on minimizing mean-squared error loss.! LPs by
themselves do not resolve the issue of identification. However, researchers may prefer using LPs
over VARs in settings where getting the dynamic response correctly is at a premium. More gener-
ally, efficiency losses in LPs can be greatly contained relative to the substantial bias improvements
at medium to long horizons, especially with persistent data.

These issues become more pronounced as researchers tackle panel data and generally richer
data sets. Moreover, the natural stratification resulting from the policy evaluation paradigm and
the Kitagawa—Oaxaca—Blinder decomposition (Kitagawa 1955, Blinder 1973, Oaxaca 1973) does
not fit traditional structural time series models well, whereas it is naturally accommodated using
LPs (see Cloyne et al. 2023). Going the other way, policy evaluation of interventions that have
effects over time, or interventions administered over time, possibly with different doses each time,
could greatly benefit from the lessons learned over the past 40 years of applied macroeconomic
research.

Extensions to panel data applications look like an especially fruitful area for LPs. In recent
research, Dube et al. (2023) show that in difference-in-differences (DiD) settings with absorbing
but heterogeneous treatments, LPs can greatly simplify the analysis and can even accommodate
repeated treatments, thereby encompassing several of the methods recently proposed in the lit-
erature to tackle specific situations. Similar recent developments, such as regression discontinuity
designs, probably deserve further exploration with LPs.

This review focuses on the applied macro-micro nexus through the method of LPs. The
goal is not to provide an encyclopedic review of the LP literature but rather to highlight recent
developments and avenues for research. The more points of commonality exist between these
two venerable literatures, the more opportunities there are to advance each field through cross-
pollination. The review therefore spends the first few sections going over basic estimation and
inferential procedures for LPs and then dedicates the second half to showcasing LP applications
that take advantage of widely used policy evaluation methods.

2. A BRIEF INTRODUCTION TO LOCAL PROJECTIONS

Let me begin by briefly discussing the intuition behind LPs with a simple example. Suppose
w, refers to a vector of stationary random variables observed over ¢ = 1,...,T periods.’ I as-
sume stationarity for simplicity, although it is not necessary more generally.® Further assume that

I"Though, admittedly, this is a trade-off worth revisiting.

2T use boldface to indicate vectors and capital letters for matrices.

3T am purposefully vague in the statement of many conditions to make the article more accessible. Formal
statements can be found in the references provided.
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W, = Wiey oo oy Wty ..., W) for j =1,..., k follows a simple VAR(1):
(w, —p) =A(w,_; — p)+€&; € ~D0,Q). 1.
It is well known that the response of wj.,, due to a shock of size §; in ¢, is simply
Rij(h) = E[wjiysle, = 8w, 1] — E[wjrsle, = 0; w, 1] = A 18,

forb=0,1,...,H and where A’[”/ denotes the j row of the matrix 4 raised to the b power. Here
§; refers to the size of the shock for each component of €, chosen by the experimenter to reflect an
identified experiment to the /" variable in w,. Since the residuals ¢, are usually correlated with one
another, §; can be seen as the linear combination that recovers the underlying structural residuals
for the /" variable. I set aside different ways to achieve identification (i.e., finding the right §,) to
later sections. Finally, I use the notation R;;(5) to denote the response from a shock in variable 7
to variable j that happens 4 periods after the initial intervention or shock.

Though this may seem like a restrictive example, note that the state-space representation of
a VAR with p lags [a VAR(p)] and the approximate representation of other interesting stochastic
processes have a VAR(1) representation. The more general case is derived by Jorda (2005). Further,
for cointegrated systems readers may refer to Chong et al. (2012), who show how to decompose
an impulse response in terms of the dynamics due to long-run equilibria and due to short-run
dynamics separatedly. Jorda (2005) and Plagborg-Meller & Wolf (2021) formally establish the
asymptotic equivalency of LPs and VARs under a variety of identification assumptions, and Stock
& Watson (2018) and Plagborg-Meller & Wolf (2021) present the conditions under which IVs
and LPs can be used to identify noninvertible* systems. Importantly, it is not necessary to assume
that the data are generated by a VAR; it simply helps our reasoning.

As long as the model in Equation 1 accurately represents the data-generating process (DGP), a
consistent estimate of the coefficient matrix 4 is all that is needed to calculate the impulse response
at any horizon.

The LP approach instead uses recursive substitution,’ yielding

(Wi — ) = Ah+l(wt—l ) + A+ + A% 1,
with 4° = I. The previous expression suggests that a regression of wj.,; on w,_; such as
Wity = Cjp + Bipr1Wro1 + Vjryps  Vip = By& + -+ + Bo€ryy 2.
forh=0,1,...,H gives us an estimate of the impulse response, since we have
Rij(h) = E[wjisle; = 8;; w,1] — E[wjrisle, = 0; w, 1] = B4,

(;,19i as long as the DGP coincides with that in Equation 1. Note that
B; = A" in this simple example.

which will be equal to A*

As discussed by Jorda (2005), estimates based on Equation 2 have several advantages, some
of which are worth highlighting. First, Equation 2 can be estimated equation by equation, which
makes estimation of nonlinearities and stratification simpler; examples of this are discussed in later
sections. Second, Equation 2 is a direct estimate of the impulse response so that standard errors do
not require the delta method or simulation-based methods (though they require adjusting for the
serial correlation in the residuals or lag augmentation, as we shall see). Third, Equation 2 is less
sensitive to misspecification since each impulse response coefficient is estimated using a different

*Loosely speaking, a noninvertible system is one in which the structural residuals cannot be recovered from
the reduced-form residuals.
Note that recursive substitution does not require stationarity.
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regression. One can broadly think of LPs as a semiparametric approach to estimating impulse
responses.

Moreover, when instruments are available, estimation of Equation 2 can be done with the
method of IVs (see, e.g., Jorda & Taylor 2016, Ramey & Zubairy 2018). I postpone a more detailed
discussion of IV estimation to Section 5, where I discuss how to estimate LPs generically using
the generalized method of moments (GMM), and to Section 7, where I provide formal conditions
for IV estimation. Here, though, there exist parallels with the literature on proxy VARs, where
instruments are used to identify structural shocks from reduced-form shocks (see, e.g., Stock &
Watson 2012, Mertens & Ravn 2013).

In summary, the main takeaways from this section are the following.

m Impulse responses can be equivalently estimated from a VAR or with LPs.
m However, because LPs can be estimated by univariate regression, they are more flexible,
such as when generalizing to nonlinear settings and panel data.

3. TRANSFORMATIONS AND MULTIPLIERS

Macroeconomics data often exhibit trending behavior. Think of GDP or the price level over
time, for example. Such trends can often be well described by a unit root—in time series parlance,
they are I(1), or integrated of order one. If the data are log transformed, the first difference can
be interpreted as the approximate percentage change in the variable (for example, the growth
rate of GDP or the rate of inflation). To fix ideas, let y, denote the log of an I(1) variable, let
the first-difference be denoted as Ay, =y, — y,_1, and let the long difference be denoted as
ApYers = Yrp — Yr—1- The latter measures the approximate percentage change in the outcome
from # — 1 to b periods in the future. In addition and for later use, let s, denote a (randomly
assigned) intervention of interest (to make things simple).

LPs can be estimated on the long differences (A,y..;) or the first differences (Ay.;) in
response to an intervention 5,.* However, the interpretation of the impulse response is different
in each case. LPs on A,y,., measure the overall percentage change in the outcome since inter-
vention. Notice that Apy,ip = Yers — Verbo1 + Yerho1 + - — Ve + Ve — Vem1 = Ay + -+ + Ay,
Adjusting the notation to indicate that s is the intervention that affects the outcome y however
transformed, this means that the LP on the long difference measures the cumulative of the
per-period percentage changes, that is, Ry (h) = R;a,,(h) = Z};:o Reay(f)-

A related statistic of interest is the multiplier. An early reference to the multiplier can be found
in the work of Keynes (1936). The Keynesian (fiscal) multiplier compares two dynamic responses.
The fiscal impetus in the first year a fiscal package is passed has effects on output that are felt over
subsequent years. From this perspective, the multiplier might seem quite large. However, fiscal
packages are usually implemented over several years, so that the overall effect of the fiscal package
is best evaluated as the ratio of the overall gains in output relative to the overall fiscal expenditures
over the duration of the package.

Therefore, the multiplier can be calculated as the sum of the cumulative changes in GDP due
to the fiscal package over the cumulative sum of changes in the deficit due to the fiscal package. It
is clear that the multiplier will be of interest in any setting in which an intervention is administered

%They can also be estimated on the levels, y,.,. However, this is not generally recommended even though the
response on the levels and the long differences coincide when y,_ is included on the right-hand size. The
reason is that when y,; is I(1), omitting y,— (as sometimes happens) can lead to invalid estimates and/or
inference.
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over several periods (we may call it a treatment plan) and one is interested in evaluating the overall
effect of the treatment plan and not just the first intervention.

Consider a stripped-down model to fix ideas. Suppose that y; = ys; +u, and s, = ps,_1 + u,
with E(u),2.) = 0 for any value of 7. In this simple model the treatment variable s, is ran-
domly assigned, though treatments are serially correlated. It is easy to see that R,(h) = yp” and
Re(h) = p. Define the multiplier as

_ Zf‘:o Ry(7) Y Z_};:o o’ —y
Z?:o R (/) Z?:o o7

In economics terms, the overall effect of the treatment plan on the outcome happens to be the

myp

same as the effect on impact, though in more general settings this will not generally be the case.
It is also useful to notice that since the effect on impact is y and there are no internal propagation
dynamics, the multiplier is simply the sum of the treatments over time, scaled by their per-period
impact y.

The LP estimator for Ry(h) can be obtained from y,i; = Bjs + v,y +»» and hence a di-
rect estimate of Zﬁ'zo Ry (j) can be obtained from the modified LP Y,,; = 65, +v,,, where
Yiih =yp + - + ;. Clearly we have that ) =By +---+ g, =y(L+ p+--- + p”). One can
similarly construct S, = 65, + v}, and therefore obtain 7, = QZ /6;. However, one can go one
step further by noting that if an instrument 2, is available such that E(z,,#/) = 0 for j = y, 5, then
we have

cov(Vyp,2:) = QZCOV(&, 2) OZ cov(¥; i, %)

— my, = — =
cov(Sip,2z) = QZCOV(%Zr) 0; cov(Si 14, Zz),

which can be directly estimated from the auxiliary LPIV (LP estimated with IVs)
Yivp = mpSin + vers, 4.

estimated using z, as an IV. This is the approach proposed by Ramey (2016). The advantage of
using this direct approach is that standard errors can be directly obtained from the regression
output. Note that estimating this LP by OLS would not generate valid estimates even if S, were
completely assigned at random. In general, of course, we would include a vector of controls x, in
the previous expression and use more than one instrument if additional instruments are available.
Ramey (2016) provides a more complete discussion.

In summary, this section has established the following.

m LPs estimated in levels or in long differences generate the same response (as long as enough
lags of the outcome are included on the right-hand side).

m LPs can also be estimated in first differences, but the response then has a different economic
interpretation.

m Multipliers evaluate the overall change in an outcome due to the overall treatment changes
(treatment plan) over a given period of time.

m A direct estimate of such multipliers can be directly obtained with the auxiliary regression
in Equation 4 estimated by IVs.

4. INFERENCE

As Equation 2 shows, the residuals of an LP generally have a moving average structure. Because
they are dated ¢ to # + b, they do not affect the consistency of the LP estimate, ;. However, the
residual serial correlation affects the construction of standard errors.

Forda



A semiparametric solution offered by Jorda (2005) was to use a Newey—West heteroscedasticity
and autocorrelation consistent (HAC) estimator. Though this estimator is simple to use, several,
more efficient alternatives have been proposed in the literature that are worth reviewing. Perhaps
one of the more elegant solutions has been proposed by Montiel Olea & Plagborg-Maller (2021)
and consists in adding an additional lag to the LP. Lag augmentation is known to improve inference
in autoregressive models (see Toda & Yamamoto 1995, Dolado & Liitkepohl 1996, Inoue & Kilian
2020). A simple univariate example helps illustrate the main idea behind lag augmentation, though
the method is shown to work with a generic VAR(p) DGP.

Thus, suppose the data are generated by a simple AR(1) model such as w; = aw,_; + ¢,. For
convenience, we may assume that w, is strictly stationary with |4| < 1 and €, ~ D(0, o). Consider
estimating the LP w,y;, = Byw; + v,45. Plugging the AR(1) into the LP results in the expression
Wiy = Brer + VWit + Vryp-

Clearly, €, is not directly observable. However, we can use the Frisch—-Waugh-Lovell logic
to obtain B, by regressing (w4, — y,w,—1) on (w, — aw,_;). The estimator from this auxiliary
two-step regression is such that

T—h T—hr2 A2
5 Z —1 Ur+h€:r ~2/D =1 Vi€
ﬂbZﬁbﬂ-% — Uz(ﬁb)zﬁ-
=1 € (Zr=1 Er)

The reason this approach works is that under the assumptions made on ¢,, the term v, €, is serially
uncorrelated even if v, itselfis serially correlated. This feature comes from the assumption thate,
is strictly stationary with E(e,|{€}wz).” As a result, a simple way to obtain correct inference for the
LP is to add an additional lag as a regressor and then select a heteroscedasticty robust estimator
to compute the standard errors—there is no longer a need to correct for serial correlation.® In
the same paper, Montiel Olea & Plagborg-Moller (2021) propose a parametric wild bootstrap
procedure where data are simulated from a VAR and then LPs are fitted to the simulated data to
construct percentile t-confidence intervals.

A second option is to use a parametric specification of the residual covariance matrix. For ex-
ample, Lusompa (2021) provides a simple feasible generalized least squares (FGLS) procedure
that takes advantage of previous LP stages to correct the A stage residuals. Specifically, the
idea is to estimate the first LP (i.e., for » = 0) as usual and collect for use in subsequent stages
the residuals {¢;} and the estimate of the impulse response coefficient, say Bo. For h = 1 con-
struct the left-hand side variable 1 = y,4; — Boé, and obtain B; from the LP based on Jr+1. For
h = 2, construct the left-hand side variable as .42 = y,42 — (Boéry1 + B1é;). Similar adjustments
to the left-hand side variable are applied with subsequent horizons.

Lusompa (2021) shows that it is not necessary for the DGP to be a VAR for this procedure
to correct for residual serial correlation (as long as the data are strictly stationary). Monte Carlo
evidence in his paper shows that FGLS generates considerable gains in efficiency, especially when
the data are highly persistent. Moreover, Lusompa (2021) also provides a bootstrap version using
the score wild bootstrap (see Kline & Santos 2012) and a version for structural multi-step infer-
ence. Below I set up the GMM version of the LP estimator, which will make the underpinnings
of this procedure perhaps easier to understand.

"In practical settings, it will be important to include enough lags to ensure that this condition is met.

8For example, in STATA, one would simply use the command regress f‘h’.w w 1(1/‘p’).w,
vce(robust), where ‘h’ is a local that controls the impulse response horizon and ‘p’ is a local for the
lag length. Other heteroscedasticity robust alternatives provided in STATA, such as vce (hc2) and vce (he3),
may be preferred.
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a Newey-West vs. lag augmentation b Gaussian basis function vs. lag augmentation

0.6 0.6
0.4 0.4
0.2+ 0.2

0- \/\/ 0

-0.2 4 -0.2
0 5 10 15 0 5 10 15
Period Period

Figure 1

Comparing error bands. The figure shows the local projection of the response of x to y in the system
: 0.7 0.2 0.8 ) .
(Lﬁ) = (o,z 0.7)+(Zﬁﬁ+ ”"), Uy, iy ~ N0, 1).

Panel # compares error bands computed by Newey—West (6 lags) and lag augmentation. Panel » compares
the error bands from panel # to a fitted Gaussian basis function estimated using the generalized method of
moments with Newey—West robust standard errors.

Recent work by Xu (2023) shows that in settings where the true lag order is unknown and
possibly infinite, LPs are semiparametrically efficient as long as controlled lags are allowed to
grow with the sample size. This means that the efficiency loss relative to VARs diminishes the
more lags one includes, and it effectively vanishes in the limit. The author then proposes two
robust methods of inference.

Yet a fourth option consists of shrinking the variation of the LP coefficients. By adding some
mild constraints, one can make considerable efficiency improvements yet retain much of the flexi-
bility of LPs. A VAR does this automatically; with LPs this can be done in a variety of ways (see, e.g.,
Barnichon & Matthes 2018, Barnichon & Brownlees 2019, Miranda-Agrippino & Ricco 2021).

As an illustration, Figure 1a compares the error bands computed with Newey—West and lag
augmentation using simulated data. Figure 15 fits a Gaussian basis function instead [such as the
one proposed by Barnichon & Matthes (2018)] and shows error bands constructed using a direct
GMM estimation with Newey—West robust standard errors. Panel # shows that, for this exam-
ple, Newey—West and lag augmentation generate very similar (nearly indistinguishable) bands, as
the theory predicts. Panel 4 shows that smoothing the LP responses can generate considerable
reductions in uncertainty.

Several bootstrap methods have been proposed in the literature. The basic idea is as follows.
First, estimate a VAR and generate bootstrap replicates of the data with it. Second, estimate LPs
on these bootstrap replicates. The bootstrap sample of LPs can be used to construct inference.
The procedure can be paired with a wild bootstrap to correct for potential heteroscedasticity. The
reader should consult Montiel Olea & Plagborg-Maeller (2019, 2021) for a detailed presentation
of the procedures.
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This section can be summarized as follows.

m Standard errors for LPs can be calculated using a HAC robust estimator.

m A simpler alternative is to use lag augmentation and a heteroscedasticity robust estimator.
m Smoothing the LP response can tighten inference considerably.

m Bootstrap procedures are available when simulation methods are preferred.

5.JOINT LOCAL PROJECTION ESTIMATION USING
THE GENERALIZED METHOD OF MOMENTS

A useful way to think about estimation of LPs is by using the GMM, which naturally accom-
modates IV estimation. Let y,.;, be an outcome variable observed at time ¢ + 4, and let s; be a
treatment/intervention/policy variable whose effect on the outcome at some point in the future
we are interested in characterizing. Let &, refer to a 1 x k vector of exogenous and predetermined
variables that include lags of the outcome and the treatment variable. Let z, denote a 1 x / vector
of instruments for s;, which naturally include «;. When no instruments are available, then we have
2, = &, as one would have in a situation in which identification is achieved by conditioning on a
rich set of right-hand-side variables via regression control.
Then, the # LP in a linear model satisfies the moment condition

Elg(w:; B)] = E[(rs — Bysi)z] =0 for h=0,1,...,H.

Stacking the left-hand-side variables into the (H + 1) x 1 vector Y;(H) = (y, yr+1, - -, Yr+h), the
(H+ 1) x 1 vector of impulse response coefficients 8 = (B, B, ..., Bu) can be estimated as the
solution to the GMM objective function

= ! =i
max (T—H Z g(wy; ﬂ)) W, (T—H ; glws; ﬂ)),

1 T-H 1 T-H
max | ——— Y(H) = Bs)z: | W | 57— (Y,(H)—ﬂft)zr>, 5.
B (T—H ; ) <T—H ;

where, in the overidentified case, it is common to use the Newey—West version of the optimal
weighting matrix I,

A A v
w; =F0+Z|:1—
v=1 q+1

] (. +10),
T—-H

r, = ﬁ > glw; Bgw, ;B
t=v+1

One could also take advantage of the known structure of the residual correlation in an LP using, for
example, the continuously updated estimator of Hansen et al. (1996). Importantly, under standard
regularity assumptions, estimation with Equation 5 delivers an estimate of the covariance matrix
for B, say g, which will turn out to have important uses to conduct simultaneous inference, as I
will show next. Figure 15 combines the GMM expressions just presented and assumes that the
coefficients of the impulse response (the B in the previous expression) can be well approximated
by a Gaussian basis function (which only depends on three parameters), as shown by Barnichon
& Matthes (2018).

Of course, we do not need to be limited by linearity, and below I explore some natural nonlinear
extensions, but then care must be observed in interpreting the LP. A simplified example illustrates
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how this should be done in a nonlinear setting:
2
Yevh =y + Bpst + VpS; + €.

Note then that the impulse response is no longer unique: It will depend on the values of the
benchmark (say, s, = 5) and the treatment (say, s, = s; = 5o + 8). That is, we have

R(B)[s0, 8] = (Best + ¥551) — (Brso + v455) = Brd + vu8 + V508 -

nonlinear terms

In this and in many alternative nonlinear specifications (some of which I discuss below), LPs
remain linear in parameters so that the GMM objective function can be easily set up and estimated.
This section can be summarized as follows.

m The covariance matrix of the LP response coefficients can be obtained by jointly estimating
the LPs with GMM.

m Nonlinearities are easily accommodated (and in many cases the LPs remain linear in
parameters); however, one should be careful when interpreting the parameter estimates.

6. JOINT INFERENCE AND SIGNIFICANCE BANDS

Impulse response plots typically include error bands around the response estimates to provide
a measure of estimation uncertainty. However, they are often misused to make inferential state-
ments about the shape of the impulse response. This is problematic because impulse response
coefficients are correlated with one another, as Jorda (2009) pointed out. The problem is analo-
gous to using individual ¢-ratios instead of a x?- or F-test to do a joint hypothesis test in linear
regression with correlated regressors. This section tackles these issues by building on the inferen-
tial methods presented above and building appropriate simultaneous inference bands. Ultimately,
we want to display error bands that allow us to produce valid inferential statements under a variety
of scenarios.

6.1. Simultaneous Inference

Asymptotically, and quite generally, we may assume that a vector of impulse responses estimates
B = (Bo,Bi,...,PRu) is such that B — N(B, %4). The joint null hypothesis Hy : B = 0 could be
tested with the traditional Wald statistic based on the Mahalonobis distance (Mahalonobis 1936),
which turns out to be the sum of the square of the t-ratios when standardizing g by 4. This
Wald statistic will have an asymptotic x? distribution with critical value d(H, ). Jorda (2009) then
proposed constructing the individual critical values for the confidence interval of each B, by using
Scheffé’s S-method (see Scheffé 1953), which in this example turns out to be \/d(H,«)/H. That
is, Scheffé’s S-method leads to more conservative error bands, which however have the correct
coverage for any hypothesis test of the impulse response that can be expressed in linear form
(such as joint significance).

Montiel Olea & Plagborg-Moller (2019) provide a more elegant solution. The idea is to
provide bounds that can accommodate a variety of hypotheses of interest while providing the
desired nominal coverage—say, with at least probability 1 — «. The idea is to construct an interval
for each element in the response vector such that, in the worst case scenario, the null hypothesis
of the element that is farthest from the estimate will still have the desired nominal coverage
1 — a. This is called the sup-¢ procedure and Montiel Olea & Plagborg-Meller (2019) show that
it provides tighter bounds than the Scheffé S-method.

Here is how it works. Suppose as before that the estimates of an impulse response of interest
are such that 8 —> N(, T ). This asymptotic argument can be justified under a variety of rather
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general assumptions that apply to most situations observed in practice. Hence, define the auxiliary
vector § = (1, ..., nu) ~ N(0, Zp), with o, = Zp . The idea is to find the smallest critical value
¢ such that for the collection of intervals around the response estimates we have that

H
P (Q [ﬂb e B, :I:c&;,]) — P (mbaxw;, | < c).
Alas, there are no tabulated values for the distribution of the maximum element of a normally

distributed vector (the right-hand side of the previous expression), so that critical values have to
be constructed via Monte Carlo simulation as

c=q1-o(2) = q1-0 <mhax o, ! 77b|)-

Based on this principle, Montiel Olea & Plagborg-Moeller (2019) provide in addition bootstrap and
Bayesian methods. The main advantage of constructing error bands in this manner is that infer-
ence on a subset of impulse response coefficients (e.g., are coefficients for horizons 3 to 6 different
from zero?) will be correct. Of course, this comes at the cost of more conservative bands.

6.2. Significance

In many applications, it is common to see an impulse response with error bands that straddle the
zero line. Many authors therefore conclude that the response is not significant, even though in
many of these situations the response is uniformly positive (or negative). An example is provided
in Figure 2. The figure shows the response of 100 times the log consumer price index (CPI) in
the United States to a Romer & Romer (2004) shock over the sample 1969:Q1-2007:Q4. The
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p-value of joint significance test: 8.07e-28

T T T
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Figure 2

Response of inflation to a Romer & Romer (2004) monetary shock. The figure shows the local projection of
the cumulative change of the consumer price index (CPI) on four lags of CPI inflation, four lags of real GDP
growth, and four lags of the federal funds rate. The sample is the period 1969:Q1-2007:Q4. The shaded area
shows two standard deviation pointwise confidence bands using heteroscedasticity robust standard errors.
Dashed lines are computed by inverting the F-statistic around zero using Scheffé’s method.
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specification includes four lags of CPI inflation, real GDP growth, the federal funds rate, and the
Romer & Romer shock itself.

The impulse response displayed in Figure 2 is typical of many applications. It shows a time
profile that is zero for about one year and is negative over the remaining four years. The point-wise
error bands (shown at 95% confidence level) straddle the zero line, thus leading many researchers
to conclude that the impulse response is not significant. However, as the figure shows, a joint
test of the null hypothesis that all the response coefficients are zero can be easily rejected (with a
p-value of 8.07¢-28). To make the point clearer, Figure 2 also displays two dashed lines. These are
calculated by inverting the statistic of the null hypothesis that all impulse response coefficients are
zero. Thatis, I display approximate 95% significance bands constructed as +6;/d(H, «)/H, since
under the null hypothesis the coefficient estimates are approximately uncorrelated. Note that in
the figure, for about the first two years, the impulse response is largely within these significance
bands but clearly strays outside thereafter, thus confirming the result of the p-value (8.07¢-28)
reported for the joint test of significance.

Economically, the impulse response displayed shows that the CPI inflation is about 2 percent-
age points lower after five years, which is equivalent to a decline of CPI inflation of about 0.4% on
average over the five years—a nonnegligible effect in economic terms even if individual response
coefficients are imprecisely estimated.

What explains this disparity? As argued above, impulse response coefficients are highly corre-
lated. Like regressions with near-collinearity, individual t-statistics are not significant, but a joint
test of significance overwhelmingly rejects the null hypothesis. A good practice is therefore to
report the joint test, which more closely corresponds to the scientific test of the hypothesis that
the intervention has no effect on the outcome.

The arguments in this section can be summarized as follows.

m Error bands based on inverting t-ratios convey parameter estimation uncertainty but should
not be used to conduct inference.

m The sup-t procedure provides correct coverage for multiple hypothesis testing but it is
conservative.

m Assessing the overall significance of the response is best done with a joint test.

7. IDENTIFICATION
In a typical LP of the form

Yerh = Op + Bpst + Vuxe +veq; h=0,1,...,H,

with &, containing exogenous and predetermined variables, OLS estimates will be consistent as
long as variation in s; is exogenous given &;. For example, the Cholesky identification assumption
common in the VAR literature amounts to including the contemporaneous values of the system
variables causally ordered first in x,. However, since the goal is to ensure that variation in s, is
as good as if it were exogenous, it seems that the safest route in general would be to include all
available information to ensure orthogonality of s, regardless of the position of s; in the causal
order.

Similarly, identification with other methods common in the VAR literature (such as long-run
identification restrictions or sign-based identification, for example) can be easily incorporated, as
shown by Plagborg-Meller & Wolf (2021). I refer the reader to their paper for more details.

As previewed in the Introduction, one of the strong points of the policy evaluation literature
is the emphasis on causation and hence on providing additional ways to approach identification.
Expanding the idea behind regression control, I discuss in Section 8.4 inverse propensity score
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weighting, where control for «, is allowed to be semiparametric (see, e.g., Hirano et al. 2003,
Jorda & Taylor 2016, Angrist et al. 2018) based on ideas first discussed by Horvitz & Thompson
(1952).

However, perhaps the more typical approach to identification in regression is the use of IVs,
which can control for endogeneity. I have sprinkled references to identification with IVs at several
points in the previous sections, in particular when discussing how to estimate LPs using GMM in
Section 5. That said, it is useful to state formal conditions for when this approach is appropriate.

Specifically, denote the vector of instruments g, for the intervention variable s,. Further de-
note 27 = 2, — P(z:|x;) and, similarly, s” = 5, — P(s; |x,), where P(w|v) means the projection of w
onto v. The first condition is that the instruments must be relevant:

m Relevance: E(s",2") # 0.

2%t

Next, we need the instruments to be exogenous. The exogeneity condition in an LPs setting is
slightly different than usual due to the dynamic structure of the problem:

m Lead-lag exogeneity: E(v,45,2" ) = 0 for all 5.

Stock & Watson (2018) and Plagborg-Maeller & Wolf (2021) discuss these conditions in greater
detail and provide more formal statements, though the main thrust of whatis needed for I'V estima-
tion is summarized by the relevance and lead-lag exogenenity conditions just presented. Just like
one can show the equivalence between VAR and LP responses, one can also show the equivalence
of structural VAR (SVAR)-IV and LPIV (see, e.g., Mertens & Montiel-Olea 2018).

I conclude this section with a brief statement about an advantage of LPs over VARs highlighted
by these authors. It consists in noting that, although invertibility is necessary for proxy-VARs
(as VARs identified using IVs are typically referred to), this condition is not required for LPs.
Invertibility essentially means that the structural residuals can be recovered from the reduced-
form residuals. The condition usually fails when the span of the reduced-form residuals is smaller
than the span of the structural shocks, as is common, for example, in models with news about
future shocks.

The arguments in this section can be summarized as follows.

m Identification methods used for VARS can also be used for LPs.

m However, IV estimation is a more natural way to achieve identification.

m In addition to relevance, IVs need to meet a lead-lag exogeneity condition.

® An advantage of LPs over VARSs is that invertibility is not required for identification.

8. THE DYNAMIC AND STATIC EFFECTS OF A POLICY
INTERVENTION

In order to draw a closer link to the policy evaluation literature, I draw from variations of a simple
model involving an outcome and a binary intervention or treatment. Suppose thaty is an outcome
variable of interest and s is a latent variable that determines policy/treatment/intervention accord-
ing to I(s;) = I, € {0, 1}. I leave the rule implicit in I, undefined for the moment, though a simple
example would be I, = I(s, > ¢) for some c, as is common when estimating a logit or probit model.
In some settings, I take s to be directly observable. In such cases, clearly, s # 0 can be directly
interpreted as the dose given to a treated unit. Further, suppose that

= BL + pyy_1 +u E u, ~ D 0 : oy 0 ' 6.
5= PyYiot + PuSi—1 U 0/°\0 o
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This expression has several useful features. First, it is written in structural form. The residuals ]
and #] are orthogonal to each other (explaining the switch from the ¢, to the #, notation). Second,
the outcome variable and the policy variable allow for possible internal propagation dynamics.
Third, interventions can be thought of as randomly assigned when p,, = 0. When p,, # 0, inter-
ventions are endogenously determined by previous outcome values. Several interesting cases can
be studied using this simple model.

8.1. No Serial Correlation

If pj = 0 for i, j = s, y, there are no internal propagation dynamics. A sample of ¢t =1,...,T
observations behaves like a cross section. Hence, the effect of an intervention is g on impact and
zero thereafter. This effect can be estimated as we would in a cross section, that is, by taking the
following difference in sample means:

T T T
1 1
Rzy(0)=7l§ yflt—f)i w(l=1L): Ti=Y1L: T=T+T; Le{0,1. 7.
r=1 t=1

t=1

Of course, this could be simply estimated with the LP consisting of regressing y, on I,. The estimate
of the constant term would be the mean for the untreated units, and the coefficient on I, would
be the effect of the intervention, 8. It is easy to recognize from these two expressions the parallels
with how one would estimate the treatment effect in a randomized controlled trial.

Using the potential outcomes notation, one would conjecture that the observed data come
from a mixture distribution of two unobserved latent variables, y,(1) for observations in the
treated subpopulation and y,(0) for the control subpopulation. Specifically, the observed data are
¥yr = y{(DI; + y,(0)(1 — ). Since y,(j) for j = 0, 1 are not directly observable for each element
of the sample, a quantity of interest is usually the average treatment effect, defined as 7(0) =
Ely,(1) — 5:(0)], which under random assignment can be directly estimated with Equation 7.

8.2. Serial Correlation in the Outcome

Next, suppose that p,, = p # 0, but p,, = p,, = 0.In that case, we have R;, = (B, Bp, ..., Bp", ...);
that is, the intervention f is propagated by the internal dynamics of the outcome, but the assign-
ment of the intervention I, is still random. In principle, we can use the same difference in means
as in the previous expression. However, to improve the efficiency of the estimator, we would want
to take advantage of regressing the outcome on y,_; first, since in general we have

Vet = Pbﬂlz + P/]H)’t—l + Uiy,
Vrph =ty UL, o plu)+
Bliwy + pBlyp1+ -+ Pb_lﬁlﬁ—l,

future interventions

which is just the LP of y,;, on I, and y,_;. The residuals contain terms associated with future
interventions or shocks. Under our assumptions, these are as if randomly assigned, so they do
not cause an inconsistency with the LP estimate of p” 8. However, if the I,,, are observable (and
under the maintained assumptions for this example), nothing prevents one from including them
as regressors (by construction they are uncorrelated with the ), . for any j), so that the LP that

t+j
one would estimate becomes

Yewh = aobeyp +arloyp 1 + - Fapl, oy F v vy ~ MAD),
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where z; = p/B for j =0,...,h, ¢, = p**1, and the short-hand notation MA(h) indicates that the
residuals have a moving-average structure of order 4. In this case, we can therefore estimate the
impulse response with a single LP set for the desired length, that is, 7A21y = (do,...,4p) .

How would one approach estimating the average treatment effect in similar fashion to Equa-
tion 7?7 Note that for this example, one would be interested in 7(h) = E[y.1s(1) — ys(0)|Aris],
where A,y = Lipy ..., 415 y1-1, and, based on our example, y,_; is a summary statistic for the ef-
fects of previous interventions. Conditioning on future treatments isolates the effect of the current
treatment. Thus, let y,. ;4 denote the value of y,,, conditional on A, (say, from a regression of
Ye+s 00 Aryp). Then an alternative estimate of the impulse response is

N N
1 1
Ry(h) = N, E Yewbiady — N E Yerna(l = L) = Bp”,
t=1 t=1

withN =T —h, N| = Zil L,and N = N + N;. In a moment, the usefulness of this derivation
will become apparent.

8.3. Serially Correlated Interventions

Suppose that p, = p # 0 but p,, = p, = 0. In this case, interventions are serially correlated
but still randomly assigned. When a unit receives an intervention, it is likely that it will receive
interventions in the next few periods, since we have that L., = I(p’s; + U+ o, e+
0" 1ut). Interventions are still as if they were randomly assigned; however, the usual LP in this
case would include past values of the intervention as a right-hand-side variable. That is, we have
Yeub = Bl + pplio1 + vy Vs ~ MAB),  Riy(h) = B
In light of the previous example, it is natural to ask why would one not be also including fu-
ture values of the intervention as regressors, as is done in the definition of A,;;. Recent papers
from the DiD literature argue that LPs estimate the wrong object for this reason (see, e.g., De
Chaisemartin & D’Haultfoeuille 2022). However, this is just a confusion about the object of in-
terest. In a typical impulse response, the effect of the intervention accommodates the possibility
that future interventions will be subsequently administered with some probability, as is the case
when s, is serially correlated. That is, the usual macroeconomics response answers the question
of identifying the likely effect on the outcome of an intervention at time #, recognizing that the
intervention itself generates subsequent interventions. This is the effect we most likely see in the
data. However, conditioning on future interventions is also valid but answers a different question,
that of the effect of a one-off intervention.

De Chaisemartin & D’Haultfoeuille (2022) and others are interested in the effect of the in-
tervention in isolation from any subsequent potential intervention. This is an equally legitimate
question to ask. Here, once again, we can make a connection to a literature in applied macroeco-
nomics that studies the fiscal multiplier (see, e.g., Mountford & Uhlig 2009, Ramey 2016, Ramey
& Zubairy 2018), as I will show.

That said, a key observation is worth noting. In panel data settings where treatment effects
may be heterogeneous across units, the difference between these two approaches matters. In a
traditional time series setting, an implicit yet critical assumption is that the effect of subsequent
treatments is homogeneous, that is, the specific time that treatment is administered does not alter
the treatment effect, all else being equal. In the burgeoning literature on DiD estimation (see Roth
et al. 2022 for an overview), it is becoming standard to assume that treatment is heterogeneous. I
will return to this issue below.

By the same token, an issue often overlooked in the DiD literature is the role of expectations.
That is, in a setting where agents expect interventions to follow after the initial (and possibly
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randomly assigned) intervention, their behavior will take into account such an eventuality. Thus,
conditioning on past information and on future treatments will not completely account for the
effect of expectations, except in situations where agents are completely backward looking, for
example. It seems safer to adopt instead the standard macroeconomics practice of reporting the
impulse response without removing the effect of future interventions and focus on measuring
multiplier effects, as discussed above.

Summarizing, when interventions are serially correlated, an intervention today will likely be
followed by subsequent interventions. The traditional impulse response measures the effect on the
outcome of the entire treatment plan, that is, of the intervention implemented today and the set of
subsequent interventions expected to follow due to serial correlation. This is the effect we are likely
to see in the data. Thus a practitioner may well be interested in calculating a multiplier consisting
of the sum total of the effects of the intervention plan on the outcome over some horizon, divided
by the sum total of the interventions over that same horizon, as is done in the calculation of 7,
presented in Section 3.

The policy evaluation literature tends to simply focus on the effect of the initial intervention
by sterilizing the effect of subsequent interventions. In our example, this is equivalent to the mul-
tiplier (though in richer settings this will not be exactly the same). Note that the impulse response
can also be thought of as the interaction of the one-time intervention effect scaled by the serial
correlation pattern in the intervention plan. In practice, the role of expectations is often ignored,
which can make sterilization based on future interventions insufficient and the estimates therefore
invalid—it is a trivial violation of the no anticipation assumption common in DiD studies.

8.4. Endogenous Assignment

This final example will allow us to briefly discuss inverse propensity score estimators based on
some conditional ignorability assumption (to be stated momentarily), often found in applied mi-
croeconomics research. Suppose that the coefficient on y,_; in the equation for s, is nonzero, that
is, py = p # 0. For simplicity, assume that p,, = p, = 0.

In the general case in which the parameters of Equation 6 are unrestricted, the impulse response
can be calculated in several ways. First, notice that if p,, # 0 then assignment is no longer random;
it is determined by past values of the outcome. However, owing to the structure of the problem,
assignment is as if it were random if one linearly controls for y,_;. Hence, the response R, (h)
can be calculated with a typical LP of y,4 on I, and y,_;. Alternatively, one can first regress y,,
on y,_1 and then use the residuals from this regression, which we can call y;;4,—1, to compute the
difference in means. We obtain

N 1N
R = 5 ; yeme-th + 5 ; Yeeer (L= 1),

where N, Ny, and N are as defined above.

Yet a third alternative is to use inverse propensity score weighting. In situations where the
experimenters are willing to assume that, conditional on observables, assignment is as good as if
it were random, they may not be willing to assume that the relationship is linear. What are the
experimenters to do? Here I follow two recent macroeconomic applications by Jorda & Taylor
(2016) and Angrist et al. (2018).

Let p, = p(I, = 1|Z,) denote the propensity score, where Z, refers to information available up
to ¢ (or, in the example, simply y,—;). Angrist et al. (2018) propose a conditional independence, or
selection on observables assumption, so that y,,5() L L|y,—1 for i = 0, 1, where y,,,() denote po-
tential outcomes. The assumption basically says that, conditional on y,_;, assignment to treatment
is not influenced by the potential outcomes one may experience. However, by properties of the
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propensity score, this assumption can be rewritten as y,4,(?) L L|p,. Using the results of Hirano
et al. (2003), Jorda & Taylor (2016) and Angrist et al. (2018) show that a doubly robust estimate
of the impulse response is
N N
Rly(b) = NLI ;)’th—lgt + NLO ;)’H—b\t—l %1?7
where N, Ny, and N are as defined before. The doubly robust feature is reflected on the fact
that the notation y,,,—; indicates a regression of the outcome on past information. That is, one
controls via regression and via the propensity score. In practice, there are more efficient ways
of estimating the model using doubly robust, inverse propensity score weighting. Importantly,
standard errors should be adjusted for the first-stage estimation uncertainty in p,. Of course, this
could be done with, for example, a paired bootstrap.
We can summarize as follows.

m Feedback and internal propagation dynamics imply that interventions have effects over
several periods, which in turn affect the likelihood of future interventions.

m When expectations are rational, one cannot simply control for future interventions to
calculate the thought experiment of a one-off intervention.

m Instead, a better practice is to calculate multipliers.

9. THE KITAGAWA DECOMPOSITION

In the previous examples, treatment/intervention is conveniently assigned at random, a situation
rarely encountered in practice with observational data. With random assignment, covariates pro-
vide tighter, more efficient estimates of the treatment effect, but otherwise, whether they are
included or not has no effect on bias. However, this view assumes that the influence of the co-
variates on the outcome remains impervious to treatment. This is implicitly assumed in a VAR.
What if this assumption is wrong? What if the manner in which a covariate interacts with the
outcome depends on whether treatment is administered or not?

In applied microeconomics, one can account for how covariates and treatment interact using
a decomposition first proposed by sociologist Evelyn Kitagawa (Kitagawa 1955) and introduced
to economics by Oaxaca (1973) and Blinder (1973). An extensive review of this decomposition is
provided by Fortin et al. (2011). I hence refer to this as the Kitagawa decomposition. It turns out
that the Kitagawa decomposition provides a natural way for thinking about how to stratify LPs
and even estimate time-varying LPs while still using simple regression analysis. The results that I
present next are based on work by Cloyne et al. (2023).

Let me start with a simple cross-sectional setting first, with as stripped down a notation as
possible. Without loss of generality, one can write y(j) = u; + v; for j = 0, 1, the two potential
outcomes (1 for treated, O for control), and where E(v;) = 0. Covariates introduce heterogeneity. A
simple way to model this heterogeneity is by assuming that v; = (¥ — E(x))y; + €, which ensures
that E(v;) = 0 by assuming that E(e;) = 0. Here, x refers to a vector of exogenous or predetermined
variables, which could include lags of the outcome and the treatment variables. Using the same
notation as above, let I(s;) = I, € {0, 1} denote the treatment indicator, which I will denote simply
as I when the subscript is redundant to understand the main ideas. Hence, the average treatment
effect (under linearity) can be written as

E[y(DI = 1] = E[y(O)ll = 0] = E[E[y(1)|x,] = 1] = E[y(0)lx,] = 0]]
= E[p + E[x — E@)Il = 1]y1 + E(e; [ = 1)]
— E[po + Elx — E(®)lI = 0]yo + E(ei 1] = 0)].

www.annualreviews.org o Local Projections

623



624

Note that by assumption E(¢;|l = j) = 0 for j = 0, 1. Further, by adding and subtracting
E[x — E(x)|I = 1]py, the previous expression can be rearranged into

EyI = 1] = Epy(OI = 0] = ju1 — po
+ Elx — E@)II = 1](y1 — y0)
+ (Elx — E@)|I = 1] — E[x — E@)II = 0])y0. 8.

Equation 8 hence decomposes the effect of treatment into three components: (#) a direct effect
coming from the difference in unconditional means between treated and control subpopulations;
(b) an indirect effect due to differences in the manner the covariates affect the outcome, which
leads to the natural hypothesis Hy : y1 = po; and (c) a composition effect due to the fact that
in small samples, random assignment is imperfect. A test of the balance condition—if assign-
ment is truly random, the means of the covariates should be the same in the treated and control
subpopulations—is therefore a test of the null hypothesis Hy : 1} = u0.

Based on these standard derivations, Cloyne et al. (2023) show that, under fairly general
assumptions, these three effects can be obtained from the augmented LP

Yors = 1+ @ —B)VL + LB + L(x, — )0 v, 9.
usual LP interaction
forb=0,1,...,Hand t = b,..., T, where v,y is a residual term. Based on this linear regres-

sion in the parameters, note that one can calculate the following three elements of the Kitagawa
decomposition:

Direct effect: b — b = g%,

Indirect effect: (& — X’ — #) = @ — 00"
Composition effect: (x — EO)%’ .

Cloyne etal. (2023) highlight several interesting features of this decomposition. First, the LP in
Equation 9 is still linear in the parameters and, therefore, very easy to estimate. Second, as Fortin
et al. (2011) highlight, the decomposition is noncausal, unless the x, are identified (say, using an
instrument). As long as interventions are as if randomly assigned with respect to the stratification,
this should not pose a problem.” Third, if the sample is balanced, then the composition effect will
be approximately zero, since we have ¥, ~ ¥, ~ ¥, which provides an easy way to check for failure
of identification. Fourth, on average, the indirect effect will be close to zero in a balanced sample,
since, as we have just seen, ¥; ~ ¥. However, the indirect effect can be quite large for individual
values of x,, which can easily deviate from ¥. Fifth, note that the interaction of the treatment with
x, means that for each value of x; we obtain a different impulse response. In other words, we just
made the impulse response time varying as long as 6* # 0.

As an example, consider a highly stylized economy. Suppose y, refers to an economic activity
outcome (e.g., output growth); let x, refer to a monetary policy stance (say, the difference between
the policy rate and the natural rate), which for simplicity I assume to have mean zero; and let
I, € {0, 1} if the government implements a fiscal consolidation (I, = 1) of size s,. These variables
are assumed to be generated by the following potential outcomes model,

7:0) = o + yox: + if =0,

(1) = w15 + yi5% + o) if =1,

?Gongalves et al. (2022), following Cloyne et al. (2023), emphasize this point.
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that is, if there is a fiscal consolidation, I, = 1, the effect is scaled by the size of the consolidation,
s;. Further assume that

S
St = PsSe—1 + Uy,

Xp = PpX—1 + ”;(5

so that the observed data are generated by
Ve = 1o + vox, + Ls,(B+ 0x,) + u).

Both policy variables, x,, and I, (and, indeed, s5,) are determined at random, which is not how we
expect an economy to operate, of course. In this setting, suppose that we are interested in the
impulse response to a fiscal consolidation of size s, = 1, given that the monetary policy stance is
x;. We obtain

Ry (b) = Bp! + 0 plx,.

If the monetary stance is neutral (v, = 0), or if yo = y1, then we have R, (h) = Bp’, the usual
impulse response in a linear model. However, if the stance is not neutral (x; # 0) and yo # y1,
then the term 6 p’x, will modulate the initial response to a fiscal consolidation. It is easy to see
that the LP in Equation 9 would deliver direct estimates with which to construct R, (%) for any
value of x;.

Figure 3 provides an example of the type of analysis that the Kitagawa decomposition al-
lows. It is based on a simulation of the simple example we just discussed. Panel # shows that,
for each observation in the sample, x, will attain a different value, which in turn will accentuate
or attenuate the response. This is the most visible for the response to s, on impact. To rein-
force this point, panel 4 shows the response when x, = 0 (so/id blue line) with two standard error
confidence bands. The response is purposely designed to be almost 0. However, note that de-
pending on the value of the second treatment variable, «,, the response can be greatly accentuated
(nearly 2 on impact) or greatly attenuated (nearly —2 instead).

At this point, it is helpful to draw the connections to the multiplier calculation reported above.
Let’s focus on the fiscal experiment when the monetary stance is neutral, that is, x, = 0. In that
case, we have R, (h) = o, and the multiplier 7, is easily seen to be the same as that calculated
in Section 3, that is, 7, = B. However, when «, # 0, then we have R,,(b) = Bp! + 6 p’x, and in
this case the multiplier is

h . h j j
ijo Ry () _ ijo Bol + 6 pix, _ o 1+ p.+ ;Oi + -+ ,Oe)
Yy Ra) Y0l "A+ptpit+-+p)

Kj (xr)

my(x) =

In other words, the earlier equivalency between the multiplier and the average treatment effect
breaks down since now we have 7z, (x;) = B + K, (x;), which is a function of x,.
In summary, this section has presented the following arguments.

® An intervention can modify the manner in which the covariates affect the outcome. This
results in nonlinear effects that depend on the value of the controls at the time of the
intervention.

m The Kitagawa decomposition allows for a natural stratification of the response.

m The extended LP is linear in parameters, yet it generates time-varying impulse responses.
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Figure 3

Kitagawa decomposition of the impulse response. Both panels in the figure are based on simulated data as in
the example discussed in the text. Panel # displays the variation of selected impulse response coefficients over
time due to variation in «;. Panel 4 shows how the impulse response varies depending on different values of x;.

10. PANEL DATA LOCAL PROJECTIONS

The ability to estimate impulse responses with univariate regression greatly facilitates their cal-
culation in panel data settings. Given a sample of 7 = 1,...,n units observed overt = 1,...,T
periods, the LP can be written as

Yigh = @i + & + Bpsic + YiuXir + Vigyp,

where «; are unit-fixed effects and §, are time-fixed effects. Because lags of the endogenous vari-
able are often included in «;, potential incidental parameter biases could arise in short panels
with a highly serially correlated endogenous variable (see, e.g., Alvarez & Arellano 2003). In such
situations, an Arellano-Bond estimator or subsequent refinements are recommended (see, e.g.,
Arellano & Bond 1991, Arellano & Bover 1995, Blundell & Bond 1998).
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Panels, in principle, offer opportunities to take advantage of the cross-sectional and time se-
ries dimensions to adjust standard errors for serial correlation and potential heteroscedasticity.
Intuitively, clustering by unit/group uses the cross-sectional dimension to calculate autocovari-
ances, thus adjusting for serial correlation nonparametrically and adjusting for clustering and
heteroscedasticity. Clustering by time exploits the time dimension to construct residual variance
estimates that vary by unit, thus correcting for heteroscedasticity nonparametrically.

However, the literature on clustered standard errors is rapidly evolving (see, e.g., Abadie
et al. 2023). For example, Petersen (2009) emphasizes using clustering by unit rather than using
Driscoll-Kraay standard errors (Driscoll & Kraay 1998)—that is, the panel version of a Newey—
West standard error that emphasizes large 7, small N asymptotics. Clustering by group relies on
having a large number of groups so that the asymptotic approximation works in favor of clustering
over Driscoll-Kraay. That said, Petersen (2009) finds the biases of Driscoll-Kraay to be relatively
small in many situations. For short 7" panels, Monte Carlo evidence seems to indicate that it is
sufficient to use time-fixed effects and one-way clustering.

Cameron etal. (2008,2011) and Cameron & Miller (2015) emphasize that with small numbers
of clusters, cluster-robust inference can be wildly incorrect (i.e., small N regardless of T asymp-
totics). In particular, simulation evidence by Cameron & Miller (2015) shows that there can be
significant distortions, leading the authors to recommend bootstrap-based procedures (see also
MacKinnon etal. 2022). Generally speaking, cluster-robust standard errors (and two-way cluster-
ing in particular) are highly sensitive to having a sufficient number of groups and time periods for
the asymptotic theory to provide a good approximation.

To my knowledge, there is no theoretical result yet justifying lag augmentation procedures
similar to those discussed above as a possible alternative/complement, though proving this result
seems possible. As an example of an application of LPs in panels, I now discuss recent work by
Dube et al. (2023).

It has been well documented (see, e.g., De Chaisemartin & D’Haultfoeuille 2020, Callaway
& Sant’Anna 2021, Goodman-Bacon 2021, Sun & Abraham 2021) that in either static or dis-
tributed lag specifications in which there are multiple treated groups and treatment periods with
heterogeneous treatment effects, the traditional two-way fixed effects (TWFE) estimator can be
severely biased. This is true even when parallel trends hold with staggered treatment effects that
are dynamic and possibly heterogeneous.

Previously treated units are invalid controls for currently treated units, which creates prob-
lems in distributed lag specifications. However, this is easily handled with LPs by using the clean
control condition of Cengiz et al. (2019). In particular, let P, = 0 for any period before inter-
vention and 1 thereafter, and let A4; = 0 for an untreated unit, 1 for a treated unit. Hence, define
D;, = P, x A;. In a simple setting with no covariates, the DiD estimator of dynamic treatment
effects can be estimated with

Yigsh = Yiem1 =8 + ByAD; + vipup: b =0,1,...,H
by restricting the sample to observations that are either
m treated: AD;, =1
or
m clean control: AD; ;1 =0fork=—-H,...,b.

The key advantage of LPs over distributed lag TWFE estimators is that differencing is in
the outcomes, not in the treatments. Dube et al. (2023) show how the same estimator can be
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obtained by defining a dummy variable thatis 1 for unclean controls by appropriately interacting
this dummy variable with the regressors. I refer the reader to their paper for more details.

Simulation evidence shows that the LP approach is easier to implement, it is computationally
much faster (which is important when using simulation-based inference, such as the bootstrap),
and it provides consistent estimates of the treatment effects. Thus, this example shows that there
are potentially many gains from incorporating LPs in other common situations in applied micro-
economics in which treatment may have effects over more than one period. Examples may include
regression discontinuity designs, synthetic control, and so on.

We can summarize as follows.

m Implementation of LPs on panel data is straightfoward.

m However, inference can be complicated by the dimensions of the panel. This is no different
than in typical panels in microeconometrics research.

m LPs offer considerable advantages in the estimation of settings with dynamic, heteroge-
neous, staggered treatments.

11. CONCLUSION

In this review, I have focused on presenting the basic tools of LP estimation so as to establish the
nexus between applications in applied macro- and applied microeconomics. That said, of necessity
there is a great deal that fell on the editing floor. Examples include nonlinear applications of
LPs, for example, to binary dependent data (see, e.g., Ferrari Minesso et al. 2023) and quantile
regression (see, e.g., Jorda etal. 2022); Bayesian estimation of LPs (see, e.g., Tanaka 2020, Miranda-
Agrippino & Ricco 2021); and smoothing and shrinkage methods (see, e.g., Barnichon & Matthes
2018, Barnichon & Brownlees 2019), to name a few.

More importantly, I have argued that impulse responses and dynamic treatment effects are
close relatives to the point that LPs can offer a bridge between two literatures that up to this point
appear to have developed quite separately from one another: time series analysis and methods
in applied microeconomics research. The sections above showcase several examples where these
literatures intersect. The hope is that this review will spur much more research at this intersection.

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might
be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

I am grateful to Hélene Rey for suggesting that I write this review and to my colleagues Colin
Cameron, James Cloyne, Alan Taylor, and Takuya Ura for helpful suggestions.

LITERATURE CITED

Abadie A, Athey S, Imbens GW, Wooldridge J. 2023. When should you adjust standard errors for clustering?
Q. 7 Econ. 138(1):1-35

Alvarez ], Arellano M. 2003. The time series and cross-section asymptotics of dynamic panel data estimators.
Econometrica 71(4):1121-59

Angrist JD, Jorda O, Kuersteiner GM. 2018. Semiparametric estimates of monetary policy effects: string
theory revisited. 7. Bus. Econ. Stat. 36(3):371-87

Angrist JD, Kuersteiner GM. 2011. Causal effects of monetary shocks: semiparametric conditional
independence tests with a multinomial propensity score. Rev. Econ. Stat. 93(3):725-47

Forda



Arellano M, Bond S. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application
to employment equations. Rev. Econ. Stud. 58(2):277-97

Arellano M, Bover O. 1995. Another look at the instrumental variable estimation of error-components models.
7. Econometr: 68(1):29-51

Auerbach AJ, Gorodnichenko Y. 2012. Fiscal multipliers in recession and expansion. In Fiscal Policy After the
Financial Cyisis, ed. A Alesina, F Giavazzi, pp. 63-98. Chicago: Univ. Chicago Press

Barnichon R, Brownlees C. 2019. Impulse response estimation by smooth local projections. Rev. Econ. Stat.
101(3):522-30

Barnichon R, Matthes C. 2018. Functional approximations of impulse responses. 7. Monet. Econ. 99:41-55

Blinder AS. 1973. Wage discrimination: reduced form and structural estimates. 7. Hum. Resourc. 8(4):436-55

Blundell R, Bond S. 1998. Initial conditions and moment restrictions in dynamic panel data models.
7. Econometr. 87(1):115-43

Callaway B, Sant’Anna PH. 2021. Difference-in-differences with multiple time periods. 7. Econometr.
225(2):200-30

Cameron AC, Gelbach JB, Miller DL. 2008. Bootstrap-based improvements for inference with clustered
errors. Rev. Econ. Stat. 90(3):414-27

Cameron AC, Gelbach JB, Miller DL. 2011. Robust inference with multiway clustering. 7. Bus. Econ. Stat.
29(2):238-49

Cameron AC, Miller DL. 2015. A practitioner’s guide to cluster-robust inference. 7. Hum. Resourc. 50(2):317—
72

Cengiz D, Dube A, Lindner A, Zipperer B. 2019. The effect of minimum wages on low-wage jobs. Q. 7. Econ.
134(3):1405-54

Chong Y, Jorda O, Taylor AM. 2012. The Harrod-Balassa-Samuelson hypothesis: real exchange rates and
their long-run equilibrium. Inz. Econ. Rev. 53(2):609-34

Cloyne ]S, Jorda O, Taylor AM. 2023. State-dependent local projections: understanding impulse response
heterogeneity. NBER Work. Pap. 30971

Cox DR. 1961. Prediction by exponentially weighted moving averages and related methods. 7. R. Stat. Soc. B
23(2):414-22

De Chaisemartin C, D’Haultfoeuille X. 2020. Twwo-way fixed effects estimators with heterogeneous treatment
effects. Am. Econ. Rev. 110(9):2964-96

De Chaisemartin C, D’Haultfoeuille X. 2022. Difference-in-differences estimators of intertemporal treatment effects.
NBER Work. Pap. 29873

Dolado JJ, Liitkepohl H. 1996. Making Wald tests work for cointegrated VAR systems. Econometr. Rev.
15(4):369-86

Driscoll JC, Kraay AC. 1998. Consistent covariance matrix estimation with spatially dependent panel data.
Rev. Econ. Stat. 80(4):549-60

Dube A, Girardi D, Jorda O, Taylor AM. 2023. A4 local projections approach to difference-in-differences event studies.
NBER Work. Pap. 31184

Ferrari Minesso M, Lebastard L, Le Mezo H. 2023. Text-based recession probabilities. IMF Econ. Rev. 71:415—
38

Fortin N, Lemieux T, Firpo S. 2011. Decomposition methods in economics. In Handbook of Labor Economics,
Vol. 4A, ed. O Ashenfelter, D Card, pp. 1-102. Amsterdam: Elsevier

Frisch R. 1933. Propagation problems and impulse problems in dynamic economics. In Publikasjon, Vol. 3,
pp- 171-206. Oslo, Nor.: Univ. Okonomiske Inst.

Gongalves S, Herrera AM, Kilian L, Pesavento E. 2022. When do state-dependent local projections work? Res. Dep.
Work. Pap. 2205, Fed. Reserve Bank Dallas, Dallas, TX

Goodman-Bacon A. 2021. Difference-in-differences with variation in treatment timing. 7. Econometr.
225(2):254-77

Hansen LP, Heaton J, Yaron A. 1996. Finite-sample properties of some alternative GMM estimators. 7. Bus.
Econ. Stat. 14(3):262-80

Hirano K, Imbens GW, Ridder G. 2003. Efficient estimation of average treatment effects using the estimated
propensity score. Econometrica 71(4):1161-89

www.annualreviews.org o Local Projections

629



630

Horvitz DG, Thompson DJ. 1952. A generalization of sampling without replacement from a finite universe.
7. Am. Stat. Assoc. 47(260):663-85

Inoue A, Kilian L. 2020. The uniform validity of impulse response inference in autoregressions. 7. Econometr.
215(2):450-72

Jorda O.2005. Estimation and inference of impulse responses by local projections. Azz. Fcon. Rev. 95(1):161-82

Jorda 0. 2009. Simultaneous confidence regions for impulse responses. Rev. Econ. Stat. 91(3):629-47

Jorda O, Kornejew M, Schularick M, Taylor AM. 2022. Zombies at large? Corporate debt overhang and the
macroeconomy. Rev. Financ. Stud. 35(10):4561-86

Jorda O, Singh SR, Taylor AM. 2020. The long-run effects of monetary policy. NBER Work. Pap. 26666

Jorda O, Taylor AM. 2016. The time for austerity: estimating the average treatment effect of fiscal policy. Econ.
7.126(590):219-55

Keynes JM. 1936. The marginal propensity to consume and the multiplier. In The General Theory of Employment,
Interest, and Money, pp. 101-16. London: Macmillan

Kitagawa EM. 1955. Components of a difference between two rates. 7. Am. Stat. Assoc. 50(272):1168-94

Klein LR. 1968. Essay on the Theory of Economic Prediction. Helsinki, Finl.: Yrjo Jahnsson Lect.

Kline P, Santos A. 2012. A score based approach to wild bootstrap inference. 7. Econometr. Methods 1(1):23-41

Kuersteiner GM. 2005. Automatic inference for infinite order vector autoregressions. Econometr. Theory
21(1):85-115

Li D, Plagborg-Meller M, Wolf CK. 2022. Local projections vs. VARs: lessons from thousands of DGPs. NBER
Work. Pap. 30207

Lusompa AB. 2021. Local projections, autocorrelation, and efficiency. Unpublished manuscript, Fed. Reserve Bank
Kansas City, Kansas City, MO

MacKinnon JG, Nielsen M&, Webb MD. 2022. Cluster-robust inference: a guide to empirical practice.
7. Econometr. 232(2):272-99

Mahalonobis P. 1936. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 2:49-55

Mertens K, Montiel-Olea JL. 2018. Marginal tax rates and income: new time series evidence. Q. 7. Econ.
133(4):1803-84

Mertens K, Ravn MO. 2013. The dynamic effects of personal and corporate income tax changes in the United
States. Am. Econ. Rev. 103(4):1212-47

Miranda-Agrippino S, Ricco G. 2021. Bayesian local projections. Work. Pap., Univ. Warwick, Coventry, UK

Montiel Olea JL, Plagborg-Meller M. 2019. Simultaneous confidence bands: theory, implementation, and an
application to SVARs. 7. Appl. Econometr. 34(1):1-17

Montiel Olea JL, Plagborg-Meller M. 2021. Local projection inference is simpler and more robust than you
think. Econometrica 89(4):1789-823

Mountford A, Uhlig H. 2009. What are the effects of fiscal policy shocks? 7. Appl. Econometr. 24(6):960-92

Oaxaca R. 1973. Male-female wage differentials in urban labor markets. Int. Econ. Rev. 14(3):693-709

Petersen MA. 2009. Estimating standard errors in finance panel data sets: comparing approaches. Rev. Financ.
Stud. 22(1):435-80

Plagborg-Moller M, Wolf CK. 2021. Local projections and VARs estimate the same impulse responses.
Econometrica 89(2):955-80

Ramey V. 2016. Chapter 2 - Macroeconomic shocks and their propagation. In Handbook of Macroeconomics, ed.
JB Taylor, H Uhlig, pp. 71-162. Amsterdam: Elsevier

Ramey VA, Zubairy S. 2018. Government spending multipliers in good times and in bad: evidence from US
historical data. 7. Political Econ. 126(2):850-901

Romer CD, Romer DH. 2004. A new measure of monetary shocks: derivation and implications. An. Econ. Rev.
94(4):1055-84

Roth J, Sant’Anna PH, Bilinski A, Poe J. 2022. What's trending in difference-in-differences? A synthesis of
the recent econometrics literature. arXiv:2201.01194{econ.EM]

Rubin DB. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. 7. Educ.
Psychol. 66(5):688-701

Scheffé H. 1953. A method for judging all contrasts in the analysis of variance. Biometrika 40(1-2):87-110

Sims CA. 1980. Macroeconomics and reality. Econometrica 48(1):1-48

Forda



Stock JH, Watson MW. 2012. Disentangling the channels of the 2007-09 recession. Brook. Pap. Econ. Act.
43(1):81-156

Stock JH, Watson MW. 2018. Identification and estimation of dynamic causal effects in macroeconomics using
external instruments. Econ. 7. 128(610):917-48

Sun L, Abraham S. 2021. Estimating dynamic treatment effects in event studies with heterogeneous treatment
effects. 7. Econometr. 225(2):175-99

Tanaka M. 2020. Bayesian inference of local projections with roughness penalty priors. Comput. Econ.
55(2):629-51

Tenreyro S, Thwaites G. 2016. Pushing on a string: US monetary policy is less powerful in recessions. Anz.
Econ. 7. Macroecon. 8(4):43-74

Toda HY, Yamamoto T. 1995. Statistical inference in vector autoregressions with possibly integrated processes.
7. Econometr. 66(1-2):225-50

Xu KL. 2023. Local projection based inference under general conditions. Tech. Rep., Indiana Univ., Bloomington,
IN

www.annualreviews.org o Local Projections

631





