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Abstract

This article reviews recent advances in the study of dynamic taxation, consid-
ering three main approaches: the dynamic Mirrlees, the parametric Ramsey,
and the sufficient statistics approaches. In the first approach, agents’ hetero-
geneous abilities to earn income are private information and evolve stochas-
tically over time. Dynamic taxes are not restricted ex ante and are set for
redistribution and insurance considerations. Capital is taxed only in order to
improve incentives to work. Human capital is optimally subsidized if it re-
duces posttax inequality and risk on balance. The Ramsey approach specifies
ex ante restricted tax instruments and adopts quantitative methods,which al-
low it to consider more complex and realistic economies. Capital taxes are
optimal when age-dependent labor income taxes are not possible.The newer
and tractable sufficient statistics approach derives robust tax formulas that
depend on estimable elasticities and features of the income distributions. It
simplifies the transitional dynamics thanks to a newly defined criterion, the
utility-based steady-state approach, which prevents the government from
exploiting sluggish responses in the short run. Capital taxes are here based
on the standard equity-efficiency trade-off.

801

mailto:sstantcheva@fas.harvard.edu
https://doi.org/10.1146/annurev-economics-100119-013035
https://www.annualreviews.org/doi/full/10.1146/annurev-economics-100119-013035


1. INTRODUCTION

This article reviews recent advances in the study of dynamic taxation. Dynamic taxation has been
addressed using three approaches in the literature: the dynamic Mirrlees, the parametric Ramsey,
and the sufficient statistics approaches. Considering each in turn, I describe some of their main
methods, derivations, and results; review some key papers; and discuss various extensions.

The dynamic Mirrlees approach covered in Section 2 adopts the static Mirrlees’s (1971) idea
that agents’ heterogeneous abilities to earn income are private information and lets productive
ability evolve stochastically over time. The ability to earn income can be stochastic among other
reasons because of health shocks, shocks to one’s human capital, individual labor market idiosyn-
crasies, or luck. Thus, agents not only start with heterogeneous skills but also face uncertainty
over their life cycles. The dynamic optimal tax problem is a mix between an optimal redistribu-
tion across initial heterogeneity and an optimal insurance problem to smooth consumption over
time.The tax instruments are not restricted a priori; rather, the goal is to solve for the optimal con-
strained efficient allocations subject to the informational constraints, and then look for possible
decentralized tax implementations. Section 3 describes recent extensions to the dynamic Mirrlees
approach that endogenize wages through human capital investments.

The parametric and quantitative Ramsey approach covered in Section 4 parametrically specifies
the tax instruments to use and quantitatively (or, more rarely, analytically) solves for the optimal
policies. The environments considered are often more complex than in dynamic Mirrlees models,
featuring overlapping generations, credit constraints, and incomplete markets, public goods, or
human capital investments. Some questions answered are what forces quantitatively matter for the
optimal levels and progressivity of taxes, how important tagging by age is, and whether positive
capital taxes are optimal.

The newer sufficient statistics approach to dynamic taxation described in Section 5 derives
robust tax formulas that depend on estimable factors such as the elasticity of supply of capital or
labor income with respect to their tax rate, the shape of the capital and labor income distributions,
and the social welfare weights at different levels of labor or capital income. This approach also
simplifies the transitional dynamics thanks to a newly defined criterion, the utility-based steady-
state approach, that essentially prevents the government from exploiting sluggish responses in the
short run, which is normatively more appealing and circumvents commitment issues. This ap-
proach is very tractable and empirically applicable. It allows addressing policy-relevant questions,
which are much harder to answer in more complex models: These are, for instance, nonlinear
capital taxation, income shifting between the capital and labor tax bases, heterogeneity in types
of capital assets and in individual returns to capital or preferences, or broader social fairness and
equity concerns.

One of the main findings from the dynamic Mirrlees literature is that taxes will be optimally
smoothed over the life cycle, featuring a persistent component that depends on last period’s taxes
and a drift term that captures the insurance motive. Their mean-reversion or persistence will
closely mimic that of the underlying stochastic skill process. In many settings, although the full
implementations are complex, age-dependent linear taxes appear to reap most of the welfare gains
from the constrained efficient allocations, although it is not clear how robust this result would be
to different stochastic processes, preferences, or social objectives than those typically studied in
the literature. Savings are typically discouraged at the optimum relative to the free-savings case
because higher levels of assets and lower work effort are complements. This is the inverse Euler
logic that arises when labor effort is not observed and needs to be incentivized.

With human capital added to the dynamic Mirrlees model, it is optimal to subsidize human
capital investments on net if and only if they do not benefit high-ability agents disproportionately;
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if human capital investments disproportionately benefit already high-ability agents, they increase
posttax inequality and tighten high-ability agents’ incentive constraints and should be taxed on net.
When human capital investments take the form of time (training) rather than resource (money)
investments, the key parameter is how substitutable or complementary they are to labor effort,
i.e., whether there is learning-and-doing or rather learning-or-doing.

The sufficient statistics approach delivers the key insight that the same linear or nonlinear
formulas as in a static setting apply, but using the long-run elasticities in lieu of short-run ones.
This greatly simplifies the study of dynamic taxation and permits making use of the many results
already derived for income taxation in static settings. To give some examples, a restricted, compre-
hensive income tax that does not differentiate between capital and labor income is optimally set as
in the static Mirrlees case, simply using the elasticities and distribution of total income. Such a tax
system is optimal if there is a lot of income shifting between capital and labor income. Similarly,
one can directly “plug in” different generalized social welfare weights that directly capture a broad
set of justice and fairness considerations, as in the static framework by Saez & Stantcheva (2016).
For instance, if the wealth distribution is considered fair, a zero capital tax rate will be optimal
for equity reasons. If, on the other hand, wealth is a tag for parental background and equality of
opportunity is valued, then a positive capital tax will be optimal.

These different approaches offer very distinct reasons for taxing or not taxing capital, among
other things. With restricted instruments in the parametric Ramsey approach, capital taxation
is often an imperfect substitute for missing age-dependent taxes and transfers. In the dynamic
Mirrlees approach, capital is taxed in order to provide more efficient labor supply incentives when
there is imperfect information and as part of the optimal insurance scheme against stochastic earn-
ings abilities. In the sufficient statistics approach, it is made clear that capital income is taxed based
on the standard equity–efficiency trade-off familiar from the static income tax literature. Capital
taxes will be positive for redistribution (equity) reasons as long as capital income is concentrated
among agents with relatively lower social welfare weights (typically, higher-income agents) and
the elasticity of capital to taxes (the efficiency cost) is not infinite. This is the case, for instance,
in a model with wealth in the utility function that generates finite elasticities of capital income
to taxes and a nondegenerate steady state. In the latter, heterogeneous wealth holdings arise from
heterogeneous returns and preferences for wealth.

2. THE DYNAMIC MIRRLEES APPROACH

This section is based on the core models and methods developed by Farhi & Werning (2013),
Golosov et al. (2016), and Kapicka (2013) and characterizes the optimal labor and savings dis-
tortions over the life cycle. We start with a dynamic life cycle model that features a Markov skill
process.The persistence of types poses particular challenges and also significantly affects the shape
of the optimal policies.1 The methodology is laid out in some detail for clarity.

The early papers in the dynamic Mirrlees literature focused on the savings distortion. Golosov
et al. (2003) demonstrate that it is optimal to distort savings downward for a general class of
economies with stochastic skills. This follows the core inverse Euler logic that is described be-
low and is already apparent in the more specialized settings by Diamond & Mirrlees (1978) and
Rogerson (1985). Kocherlakota (2005) shows that it also holds with aggregate shocks. Farhi &
Werning (2010) highlight that the capital distortions prescribed by the inverse Euler logic play
only a quantitatively small role in improving welfare once general equilibrium effects are taken

1All detailed derivations can be found in the appendix of Farhi & Werning (2013) or Stantcheva (2017).
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into account. For labor taxes, Werning (2002) derives an optimal smoothing result for income
taxes across time and states.

2.1. A Dynamic Life-Cycle Model

The economy consists of agents who live for T years, during which they work and consume.2

Agents who work lt ≥ 0 hours in period t at a wage rate wt make income yt = wtlt. The disutility
cost to an agent of supplying labor effort lt is φt(lt). φt is strictly increasing and convex. The wage
rate wt is simply equal to “ability” θ t, a catch-all term to capture the ability to earn income, such
as innate ability, skill, or labor market opportunities. For generality, I often maintain the notation
wt(θ t), which facilitates the transition to extensions such as endogenous wages through human
capital accumulation. There is a physical capital asset that yields a fixed gross interest rate R.
Investments in this physical capital are called savings. The analysis is in partial equilibrium in that
the wage function and the interest rate are taken as given.

Agents are born at time t = 1 with a heterogeneous earning ability θ1 that has distribution
f 1(θ1). Earning ability evolves according to a Markov process with a possibly time-varying transi-
tion function f t(θ t|θ t − 1) over a fixed support � ≡ [

θ , θ̄
]
.

Agents’ per-period utility is separable in consumption and labor; that is, we have

ũt (ct , yt; θt ) = ut (ct ) − φt

(
yt
θt

)
. 1.

In this equation ut is increasing, twice continuously differentiable, and concave.More complicated
tax formulas arise when utility is nonseparable in consumption and labor.

Denote by θ t the history of ability shocks up to period t, by �t the set of possible histories at t,
and by P(θ t) the probability of a history θ t; that is, we have P(θ t)� f t(θ t|θ t − 1). . .f 2(θ2|θ1)f 1(θ1). An
allocation {xt}t specifies consumption and output, for each period t, conditional on the history θ t,
i.e., xt = {x (θ t )}� t = {c (θ t ), y (θ t )}� t . The expected lifetime utility from an allocation, discounted
by a factor β, is given by

U
({
c (θ t ), y (θ t )

}) =
T∑
t=1

∫
βt−1

[
ut (c (θ t )) − φt

(
y (θ t )
θt

)]
P (θ t ) dθ t , 2.

where dθ t � dθ t. . .dθ1.

2.2. The Planning Problem

Every period, the planner can observe agents’ output yt and consumption choice ct, but ability θ t
is never observable and neither is labor supply lt = yt/θ t. Hence, if an agent produces low output,
the planner does not know whether it was labor effort or ability that was low.

In this technical part, I walk through a typical dynamic asymmetric information problem. Start-
ing from the full sequential problem with incentive compatibility constraints, two key steps are
taken:

1. The problem is turned into a relaxed program using a first-order approach that replaces the
(infinite) set of incentive compatibility constraints with agents’ envelope conditions.

2. The relaxed program is made recursive, using as state variables the promised utility and its
gradient.

2A retirement period during which agents only consume is typically also added. It only changes the results
quantitatively, as consumption is simply smoothed during this period, with no uncertainty and no labor supply
decisions.
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2.2.1. Incentive compatibility in a dynamic setting. Imagine a direct revelationmechanism in
which, each period, agents report their current ability θ t. Denote a reporting strategy, specifying a
reported type rt after each history, by r = {rt (θ t )}Tt=1, withR being the set of all possible reporting
strategies and rt = {r1(θ1), . . . , rt(θ t)} being the history of reports from this reporting strategy r.
Allocations are specified as functions of the history of reports by the planner. Let the continuation
value after history θ t under a reporting strategy r, denoted by ωr(θ t), be the solution to

ωr (θ t ) = ut (c(rt (θ t ))) − φt

(
y(rt (θ t ))
θt

)
+ β

∫
ωr

(
θ t+1) f t+1 (θt+1|θt ) dθt+1.

The continuation value under truthful revelation, ω(θ t), is a solution to

ω (θ t ) = ut (c (θ t )) − φt

(
y(rt (θ t ))
θt

)
+ β

∫
ω

(
θ t+1) f t+1 (θt+1|θt ) dθt+1.

Incentive compatibility means imposing that truth-telling yields at least weakly higher continua-
tion utility than any other reporting strategy; that is, we have

(IC) : ω (θ1) ≥ ωr (θ1) ∀θ1,∀r. 3.

Let X IC be the set of incentive compatible allocations. To solve this dynamic problem, a version
of the first-order approach is used (see the set of assumptions in Farhi & Werning 2013 and
Stantcheva 2017).

Consider a history θ t and one special deviation strategy r̃t , under which the agent reports truth-
fully until period t(r̃s (θ s ) = θs�s≤ t− 1) but reports r̃t (θ t ) = θ ′ �= θt in period t. Under this strat-
egy, the continuation utility is the solution to

ωr̃ (θ t ) = ut (c(θ t−1, θ ′ )) − φt

(
y(θ t−1, θ ′ )

θt

)
+ β

∫
ωr̃

(
θ t−1, θ ′, θt+1

)
f t (θt+1|θt ) dθt+1.

Incentive compatibility in Equation 3 implies that, after almost all θ t, the temporal incentive con-
straint holds, and we obtain

ω (θ t ) = max
θ ′
ωr̃ (θ t ). 4.

Inversely, if Equation 4 holds after all θ t − 1 and for almost al θ t, then Equation 3 also holds (see
Kapicka 2013, lemma 1). If we take the derivative of promised utility with respect to (true) ability,
there are two direct effects, namely on the wage (higher types have higher wages) and on the
Markov transition f t(θ t|θ t − 1), and indirect effects on the allocation through the report. By the
first-order condition of the agent, all indirect effects are jointly zero, and only the two direct
effects remain. This leads to the envelope condition of the agent, which is necessary for incentive
compatibility:3

ω̇ (θ t ) := ∂ω (θ t )
∂θt

= wθ ,t

wt
l (θ t )φl ,t (l (θ t )) + β

∫
ω

(
θ t+1) ∂ f t+1 (θt+1|θt )

∂θt
dθt+1. 5.

This envelope condition describes how the promised utility (or, equivalently, the informational
rent) has to vary with respect to the true type for allocations to be incentive compatible. The

3This is an application of Milgrom & Segal (2002, theorem 2).
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first term is the same as in the static screening model (Mirrlees 1971). It ensures that higher-
ability types in the current period need to be compensated to reveal their information to the
planner. The second is the future component of the information rent. An agent that reveals their
type to the planner today needs to be compensated not only for the gain that they could extract
by pretending to be another type today, but also for the gain they could extract in the future
from doing so. This is due to the persistence in types: Today’s type realization brings the agent
information about their type tomorrow. In particular, this second term would disappear under
independent and identically distributed (i.i.d.) shocks, when today’s type realization carries no
information about future realizations.

The planner’s objective is to minimize the expected discounted cost of providing an allocation,
subject to incentive compatibility as defined in Equation 3 and to the expected lifetime utility of
each (initial) type θ being above a thresholdU (θ ). Let U({c, y}; θ ) be lifetime utility as defined in
Equation 2 for agents with initial type θ . The relaxed planning problem, denoted by PFOA, replaces
the incentive constraint by the envelope condition and is given by

[PFOA] : min{c,y} �
({
c, y

} ;U (θ )�
)=

[
T∑
t=1

(
1
R

)t−1 ∫
� t

(c (θ t ) − y (θ t ))P (θ t ) dθ t
]
, 6.

such thatU
({
c, y

} ; θ) ≥U (θ ),

y (θ t ) ≥ 0, c (θ t ) ≥ 0,{
c, y

} ∈ X FOA.

The envelope condition is necessary, but not sufficient, for optimality. Unlike in the static
Mirrlees model, it is not easy to find conditions on the primitives that guarantee that the first-
order approach will deliver the optimum (Pavan et al. 2014). In general, incentive compatibility of
the candidate allocation, as well as any omitted nonnegativity constraint, is checked numerically
(see Farhi & Werning 2013 or Stantcheva 2017).

2.2.2. Recursive formulation of the relaxed program. Without persistent types, writing the
planning problem recursively requires specifying the promised utility as a state variable. This
ensures that in period t, the continuation value provided to the agent remains consistent with
what was promised to the agent by the planner in period t− 1 (and, working backwards, in earlier
periods, too). Let v(θ t) be the expected future continuation utility:

v (θ t ) ≡
∫
ω

(
θ t+1) f t+1 (θt+1|θt ) dθt+1. 7.

Continuation utility ω(θ t) can hence be rewritten as

ω (θ t ) = ut (c (θ t )) − φt

(
y (θ t )
θt

)
+ βv (θ t ). 8.

With persistence in types this is not sufficient, since the agent is promised not only a level of
continuation value but also a variation in that continuation value with their type. Thus, we need
to define the future marginal rent (the second term in the envelope condition) as

	 (θ t ) ≡
∫
ω

(
θ t+1) ∂ f t+1 (θt+1|θt )

∂θt
dθt+1. 9.
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The envelope condition can then be rewritten as

ω̇ (θ t ) = wθ ,t

wt
l (θ t )φl ,t (l (θ t )) + β	 (θ t ). 10.

The state variables in any given period t are then the promised utility, the promised marginal
utility, and the previous period’s type realization—respectively, vt − 1,	t − 1, and θ t − 1. Because the
shock process is Markov, θ t − 1 is all that needs to be known for the continuation of the problem.
The full history θ t − 1 is not needed. The expected continuation cost of the planner at time t given
these states is

K (vt−1,	t−1, θt−1, t ) = min

[
T∑
τ=t

(
1
R

)τ−t ∫
(cτ (θτ ) − yτ (θτ ))P

(
θτ−t

)
dθτ−t

]
,

where, with some abuse of notation, we have dθτ − t = dθτdθτ − 1. . .dθ t, and P(θτ − t) =
f τ (θτ |θτ − 1). . .f t(θ t|θ t − 1). A recursive formulation of the relaxed program is then, for t ≥ 2,

K (v,	, θ−, t ) = min
∫

(c (θ ) − wt (θ ) l (θ ) + 1
R
K (v (θ ),	 (θ ), θ , t + 1)) f t (θ |θ− ) dθ , 11.

subject to

ω (θ )= ut (c (θ )) − φt (l (θ )) + βv (θ ),

ω̇ (θ )= wθ ,t

wt
l (θ )φl ,t (l (θ )) + β	 (θ ),

v =
∫
ω (θ ) f t (θ |θ− ) dθ ,

	=
∫
ω (θ )

∂ f t (θ |θ− )
∂θ−

dθ ,

where the maximization is over the functions (c(θ ), l(θ ), ω(θ ), v(θ ),	(θ )).
To incorporate redistribution concerns, we can interpret the initial type θ1 as an arbitrary het-

erogeneity that agents start with. For each type θ1, the planner specifies a target utility to be
reached, (U (θ ))�. In period t = 1, the planner’s problem takes these target utilities as constraints.

2.2.3. Wedges. To characterize the optimal allocations, obtained as solutions to the relaxed
program above, the literature has relied on wedges, which are implicit taxes and subsidies. For
any allocation, define the intratemporal wedge on labor, τL(θ t), and the intertemporal wedge on
savings (also called capital wedge), τK(θ t), as follows:

τL(θ t ) ≡ 1 − φl ,t (lt )
wtu′

t (ct )
, 12.

τK (θ t ) ≡ 1 − 1
Rβ

u′
t (ct )

Et
(
u′
t (ct+1)

) . 13.

These wedges can be thought of as locally linear taxes. Absent government intervention, they
would be equal to zero. They are thus a measure of the distortion at an allocation relative to the
laissez-faire allocation. For instance, the labor wedge is defined as the gap between the marginal
rate of substitution and themarginal rate of transformation between consumption and labor,which
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would be zero in the laissez-faire allocation when an agent optimizes their labor supply. Imagine
the planner imposing a linear tax equal to τL(θ t) and letting an agent of type θ t choose their
labor supply locally around l(θ t). Equation 12 is a necessary condition for the agent’s labor supply
choice. A positive labor wedge means that labor supply is distorted downwards. Similarly, the
savings wedge τK measures the difference between the expected marginal rate of intertemporal
substitution and the return on savings.

For the exposition, denote by εx, y, t the elasticity of a variable xt to another variable yt, so that
εx, y, t � d log (xt)/d log (yt). Let εut be the uncompensated and εct the compensated labor supply
elasticities to the net wage, holding savings fixed.

2.3. Labor Income Taxation: Tax Smoothing, Persistence, and Age Patterns

The following proposition highlights the insurance and redistribution forces that drive the labor
wedge.

Proposition 1. At the optimum, the labor wedge is equal to

τ ∗
Lt (θ

t )
1 − τ ∗

L (θ t )
= μ (θ t ) u′

t (c (θ
t ))

f t (θt |θt−1)
εwθ ,t

θt

1 + εut

εct
14.

with μ(θ t) = η(θ t) + κ(θ t), where

η (θ t ) = τ ∗
Lt−1

(
θ t−1

)
1 − τ ∗

L,t−1 (θ t−1)

[
Rβ

u′
t−1 (c (θ t−1))

εct−1

1 + εut−1

θt−1

εwθ ,t−1

∫ θ̄

θt

∂ f (θs|θt−1)
∂θt−1

dθs

]

and

κ (θ t )=
∫ θ̄

θt

(
1 − gs

) 1
u′
t (c (θ t−1, θs ))

f (θs|θt−1) dθs 15.

with gs = u′
t

(
c
(
θ t−1, θs

))
λt−1 and λt−1 =

∫ θ̄

θ

1
u′
t (c (θ t−1, θm ))

f (θm|θt−1) dθm.

The insurancemotive is captured in κ(θ t). gs is themarginal social welfare weight on an agent of
type θ s, measuring the social value of one more dollar transferred to that individual, and 1/λt − 1 is
the social cost of public funds at time t.The insurancemotive would be zero with linear utility.The
redistributive term η(θ t) can be written recursively in terms of the previous period’s labor wedge
weighted by a measure of ability persistence. Recall that there can be a redistributive motive in the
first period if there is initial heterogeneity.4 This motive persists through η(θ t), and the more so
if types are more persistent. In one polar case, if θ t is i.i.d., only the contemporaneous insurance
motive κ(θ t) plays a role. If, in addition to i.i.d. shocks, utility is linear in consumption, the optimal
labor wedge is zero in all periods, except in the first one if there are different utility thresholds
(i.e., different social welfare weights) for different agents.

4In the first period, heterogeneity in θ1 leads to

μ (θ1) =
∫ θ̄

θ1

1
u′
1 (c1 (θs ))

(
1 − λ0 (θs ) u′

1 (c1 (θs ))
)
f (θs ),

where λ0(θ s) is the multiplier (scaled by f(θ s)) on type θ s target utility. With linear utility we obtain 1 =∫ θ̄
θ
λ0(θs ) f (θs ).
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We can also immediately see the counterpart to the classic “zero distortions at the top and bot-
tom” result in the static literature, which here holds in every period; that is, we have τ ∗

Lt (θ
t−1, θ̄ ) =

τ ∗
Lt (θ

t−1, θ ) = 0, �t. This result no longer holds if there is moving support, i.e., if the upper and
lower bounds θ̄t (θt−1) and θ t (θt−1) depend on the past type realization (Farhi & Werning 2013).

A special case is the log autoregressive process with persistence p such that

log (θt ) = p log (θt−1) + ψt , 16.

where ψ t has density f ψ (ψ |θ t − 1), with E(ψ |θ t − 1) = 0. In this case, we can rewrite the evolution
of the labor wedge over time as

Et−1

(
τLt

(1 − τLt )
εwθ ,t−1

εwθ ,t

εct

1 + εut

1 + εut−1

εct−1

(
1
Rβ

u′
t−1

u′
t

))

= εwθ ,t−1
1 + εut−1

εct−1
Cov

(
1
Rβ

u′
t−1

u′
t
, log (θt )

)
+ p

τLt−1

(1 − τLt−1)
. 17.

The risk-adjusted expectation for the labor wedge (on the left-hand side) depends on the past
period’s wedge weighted by the persistence in types p. Thus, the labor wedge’s persistence or mean
reversion reflects that of the stochastic ability process. In addition, the labor wedge evolves over
the life of the agents according to a drift term that captures the insurance motive; if there is no risk
in consumption, i.e., there is perfect consumption smoothing over time, the drift term is zero.Dy-
namic incentive compatibility implies a positive covariance between the growth of consumption of
an agent and their productivity, because the government induces high-productivity agents to re-
veal their type by promising them higher consumption growth. As a result, the value of insurance
increases and so does the labor wedge.

2.4. Capital Taxation: The Inverse Euler Equation Logic

The dynamic Mirrlees framework has strong implications for how capital and savings should be
treated. The uncertainty in types over time and the inability to control labor supply force the
planner to impose a distortion on savings to improve the provision of incentives to work.

Proposition 2. At the optimum, the inverse Euler equation holds:

Rβ
u′
t (c (θ t ))

=
∫ θ̄

θ

1
u′
t+1 (c (θ t+1))

f t+1 (θt+1|θt ) dθt+1. 18.

Thus, at the optimum, the inverse marginal utility in the current period is equal to the ex-
pected inverse marginal utility in the next period. By the concavity of marginal utility and Jensen’s
inequality, it is thus the case that

u′
t (c (θ

t )) < βR
∫ θ̄

θ

u′
t+1

(
c
(
θ t+1)) f t+1 (θt+1|θt ) dθt+1, 19.

i.e., agents are off their Euler equation and, in particular, would like to save more than they were
made to save at the optimal allocation. Savings are downward distorted and there is a positive
savings wedge τK. Another way to see this is that the desired labor supply at the optimal allocation
is incompatible with free savings. Increasing savings in period t increases disposable income in
period t + 1. Unless utility is quasilinear, this implies an income effect on labor supply, and the
agent is then tempted to work less. More savings in period t and lower labor supply in period
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t + 1 are complements. Ruling out such a deviation requires discouraging savings below the level
that would occur at the free-market rate.

Another way to understand the inverse Euler equation is to consider the cost of providing
utility—rather than consumption—in every period and state. Providing different utilities in dif-
ferent (reported) states is how incentives are provided. Switching to this utility metric, consider
the change in the planner’s expected resource cost above of moving resources from one period
to the next. Pick a history θ t and leave all allocations unchanged, except at node θ t, where we
perturb the utility by providing β · � less utility in period t, and � more utility for all θ t + 1 after
history (θ t); that is, let perturbed utilities be ut(c(θ t))− β� and ut + 1(c(θ t, θ t + 1))+�. If the original
allocation is optimal, it has to minimize the resource cost of providing utility across time at � =
0. That cost is

c (ut − β
) + 1
R

∫ θ̄

θ

(c (ut+1(θ t , θt+1) + 
)) f t (θt+1|θ t ) dθt+1.

Its first-order condition (FOC) evaluated at zero equates the inverse marginal utility in period t
(which is the resource cost of providing utility in period t) to the expected inverse marginal utility
in period t + 1 (which is the expected resource cost of providing utility in period t + 1). This is
exactly the inverse Euler equation. The standard Euler equation, on the other hand, equates the
marginal utility of allocating resources across time,which is what a consumption-smoothing agent
would do in the laissez-faire condition but not what a planner who seeks to efficiently allocate
incentives would do under incentive constraints.

Note that in the special case in which there is uncertainty in the first period but not thereafter,
we recover the result by Atkinson & Stiglitz (1976) that capital should not be taxed. As soon as
shocks are introduced from the second period (or some period t) onward, we obtain the inverse
Euler equation.

2.5. Implementation and Approximation

We now turn to the implementation of the optimal constrained efficient allocations using actual
taxes and subsidies and discuss how the policies can be approximated using simpler tools.

2.5.1. Implementation: concepts and examples. The issue of implementation can be for-
mulated as follows: Given the structure of the private market, are there (possibly complicated) tax
functions such that, if agents were left in the decentralized economy facing these taxes, they would
choose the allocations of the planner’s problem? In the static Mirrlees problem, the answer is im-
mediate under some regularity conditions: A nonlinear income tax can implement the constrained
efficient allocation.

In the dynamic problem, although it is very helpful to think about wedges as implicit taxes and
subsidies, the link between these implicit taxes and explicit tax functions is not immediate. This
is because each wedge characterizes the distortion in one of the actions of the agent, holding the
others fixed at the optimum; they are distortions along a single dimension. When an agent has
several actions to take, there is scope for joint deviations.

In the case of the savings wedge, it may be intuitive to think that a savings tax equal to the
wedge at each history as defined in Equation 13 would implement the allocation. However, the
savings wedge characterizes the marginal intertemporal distortion, holding labor supply constant
at its optimal level. It would implement the right amount of savings if the agent was choosing the
optimal level of labor in period t + 1. If the capital or savings tax was truly set to τK(θ t), the agent
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could jointly choose another level of savings and another level of labor supply in period t + 1,
according to the logic described for the inverse Euler equation.

Albanesi & Sleet (2006) propose a simple implementation that works only in the case in which
types are i.i.d., namely a nonlinear income tax that depends on the stock of wealth accumulated
to date.With i.i.d. shocks, wealth acts as a sufficient statistic for the past history, providing all the
information needed to give an agent their planned allocation.

Kocherlakota (2005) proposes an implementation with a nonlinear, fully history-contingent
labor income tax and a linear capital tax rate in period t that conditions not only on the past history
of income, but also on next period’s t + 1 income. This rules out a joint deviation in savings and
income. Although this savings tax raises on average no revenues, as Kocherlakota shows, it acts
by making the return to savings stochastic. In fact, the return to savings is made higher for good
realizations of the type. Thus, savings are turned into a worse hedge by the tax system, which
discourages savings, as the inverse Euler equation requires.

With more structure on the type process, other implementations can be found. In Golosov
& Tsyvinski’s (2007) work, agents face the risk of permanent disability, which is an absorb-
ing state. The optimal allocation is implemented with a transfer to agents with assets below
a certain threshold, which is essentially a disability insurance scheme that has an asset test for
benefits.

The implementation of a given allocation is in general not unique; however, all possible im-
plementations generate the same marginal distortions as characterized by the wedges. Moreover,
an implementation is always relative to a given market structure in the laissez-faire economy. For
instance, in the planning problem, it can be ignored that agents face credit constraints because
the incentive-compatible allocations directly specify private borrowing and saving. However, if
the laissez-faire economy features credit constraints, the taxes and transfers that implement the
planner’s allocation will be different from the ones that implement it in the absence of credit
constraints.

2.5.2. Approximations. Because the decentralized policies that implement an allocation are in
general quite complex, the literature has sought to find simpler parametric approximations to the
optimal policies. A recurring theme has been that linear, age-dependent tax rates can reap a large
share of the welfare gain from the constrained efficient allocations. Weinzierl (2011) shows that
moving from age-independent to age-dependent policies generates sizable welfare gains.

In practice, tax and transfer policies feature a nontrivial amount of age dependence. Sometimes
this dependence is explicit, as is the case for old-age pensions; in other cases, it is implicit and due
to factors that naturally evolve over the life cycle, such as marital status, children, and the life-
cycle shape of income. Supplemental Table 1 summarizes the many age-dependent features in
tax policy in several OECD countries.

Farhi &Werning (2013) go further and show that linear age-dependent policies approximate
the optimal policies well in their life-cycle model; Stantcheva (2017) shows that this holds true
even when there is endogenous human capital investment (in which case, a linear age-dependent
human capital subsidy is also required).The linearity result is, however, likely not valid for all types
of skill processes and may depend on the log-autoregressive processes assumed in the literature.
While this has not been shown formally, the approximation with linear policies is likely to domore
poorly if the variance of shocks is larger, if the planner is more redistributive, and if the agents
are more risk averse. In a new model applying dynamic tax methods to the design of corporate
taxation and innovation policies, with spillovers between firms, a linear corporate profit tax com-
bined with a nonlinear research and development (R&D) subsidy also does very well (Akcigit et al.
2016).
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2.6. Extensions of the Core Model

We now turn to several key extensions of the core model.

2.6.1. Further life-cycle considerations. Some papers have tried to incorporate a more real-
istic and complex life cycle in the dynamic Mirrlees problem, while simplifying the model along
other dimensions, for example, by focusing on a two-period model only or on simpler shock struc-
tures. Best & Kleven (2013) incorporate career effects, whereby current work effort also affects
future wages. Without age-dependent taxes, this tends to make the optimal tax schedule much
less progressive; with age-dependent taxes, taxes at older ages should be lowered. In a model
with endogenous retirement age,Ndiaye (2017) shows that retirement benefits that are increasing
with age are needed in addition to the age-dependent linear taxes in order to achieve the welfare
gain from the constrained efficient allocations.

2.6.2. Hidden savings. Ábrahám et al. (2016) propose a pure insurance model, in which agents
are ex ante identical and in each period the type is realized after the labor choice has been made. In
this case, labor and capital taxes are complements: A higher capital tax, by the inverse Euler logic,
helps provide incentives for working more efficiently. Thus, if private savings cannot be taxed
because they are unobservable, optimal labor taxes become less progressive (see also Ábrahám &
Pavoni 2008 and Ábrahám et al. 2011).

2.6.3. Restrictions on asset taxes. A less stark case of restriction on capital taxes is to rule
out nonlinear taxes, which happens if individual borrowing and lending are not observable but it
is possible to (linearly) tax the observable overall capital stock, as proposed by da Costa (2009),
da Costa & Werning (2002), and Golosov & Tsyvinski (2007). In Golosov & Tsyvinski’s (2007)
model, agents can privately trade in assets markets in order to self-insure.Whether capital should
be taxed a (linear) positive rate depends on the shock process: With i.i.d shocks or absorbing
disability shocks this is the case, but with more general skill processes, where the current skill
realization grants the agent significant advance information about their future skill, it may be
optimal to subsidize capital. Chang & Park (2018) derive a fully nonlinear income tax schedule in
the presence of private endogenous insurance and find that the optimal nonlinear tax rates can be
very different from those with no private insurance.

2.6.4. Innovation and externalities. A very recent development in this literature is to consider
the taxation of firms. Akcigit et al. (2016) build a new and general framework to study the taxation
of firms that captures key elements such as market power, investments, production, heterogeneity
in productivity, intellectual property, and asymmetric information. In their model, firms invest in
innovation,which has spillovers on other firms. Firms have heterogeneous research productivities,
i.e., abilities to convert a given set of research inputs into innovation. Productivities are stochastic
and are private information. Theoretically, they show how the Pigouvian subsidies on R&D and
taxes on corporate income should be increased or decreased due to screening considerations and
depending on the relative complementarities between observable R&D investments, unobservable
R&D inputs, and firm productivity. Quantitatively, the model is estimated on the US Census’s
longitudinal business data matched to patent data, and it shows that implementing the constrained
efficient allocation only requires using very simple policies. In particular, a nonlinear, separable
Heathcote-Storesletten-Violante (HSV)-type subsidy (as described in Section 4) combined with
an HSV-type profit tax reaps almost all of the benefits of the full optimum. It features lower
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marginal taxes for more profitable firms and lower marginal subsidies at higher R&D investment
levels. In fact, making the profit tax linear only generates a small additional welfare loss.

3. ADDING HUMAN CAPITAL TO THE DYNAMIC MIRRLEES MODEL

As in the static Mirrlees model, the work presented in the previous section assumes that agents’
wages are exogenous. A major development in dynamic life-cycle tax models has been to make
the wages endogenous by modeling human capital accumulation. Investments in human capital—
through money, time, or a mix of both—play a key role in shaping the skill and income distri-
butions that ultimately drive the revenue-raising, redistribution, and insurance motives behind
taxation. In turn, investments in human capital depend on their net return, which is affected by
the tax and transfer system. In this section, I describe recent work that incorporates human capital
and skill acquisition into the dynamic life-cycle tax model.

3.1. Literature

A first strand of the literature has focused on dynamic models with persistent heterogeneity across
agents and without uncertainty or risk (Bohacek & Kapicka 2008, Kapicka 2013). Other papers
have rather focused on the risk aspects of human capital, without incorporating heterogeneity
(Anderberg 2009, Grochulski & Piskorski 2010). Findeisen & Sachs (2016) include both hetero-
geneity and uncertainty and focus on a one-shot investment during college, before the work life of
the agent starts, with a one-time realization of uncertainty. Stantcheva (2017) extends the core dy-
namic Mirrlees model above, with heterogeneity and uncertainty, to include monetary (resource)
investments in human capital over the life cycle. Stantcheva (2015a) instead considers time invest-
ment in human capital. Kapicka & Neira (2014) propose a human capital accumulation process
with time investments and a fixed ability, and they consider the case in which the effort spent
to acquire human capital is unobservable. Perrault (2015) considers loss of human capital from
unemployment. Kapicka (2015) studies a Ben-Porath economy in which both ability and human
capital are unobservable. Stantcheva (2015b) considers an intergenerational setting in which par-
ents invest in children’s human capital and can choose to transfer resources in the form of bequests
and human capital. Koeniger & Prat (2018) study a very similar setting and provide quantitative
results. Makris & Pavan (2019) consider income taxation when there is learning-by-doing, i.e.,
human capital acquisition happens as a by-product of working.

3.2. Model

The general setup is as in Section 2, but the wage that an agent receives is now a function not only
of their stochastic type but also of their human capital. Each period, agents can build their stock
of human capital st by spending money; below we also consider time investments. A monetary
investment Mt(et) increases human capital by et ≥ 0. The cost function is increasing and convex,
and we have M ′

t (0) = 0. Human capital st evolves according to st = st − 1 + et. The wage wt is
determined by the stock of human capital built until time t and stochastic ability θ t:

wt = wt (θt , st ).

Here, wt is strictly increasing and concave in each of its arguments, but no restrictions are placed
on the cross-partials. As the wage can depend on age, human capital could yield different returns
at different ages.
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Let wm, t denote the partial of the wage function with respect to argument m (m � {θ , s}),
and wmn, t denote the second-order partial with respect to arguments m, n � {θ , s} × {θ , s}. A key
parameter turns out to be the Hicksian coefficient of complementarity between ability and human
capital in the wage function at time t (Hicks 1970, Samuelson 1974), denoted by ρθ s, t. It is defined
as

ρθ s ≡ wθ sw

wswθ

. 20.

A positive ρθ s means that higher-ability agents reap higher marginal benefits from human cap-
ital, but it also means that human capital increases the exposure of the agent to stochastic ability
and risk. A value of ρθ s > 1 means that higher-ability agents reap proportionally higher returns
from human capital, i.e., the wage elasticity with respect to human capital is increasing in ability.
A separable wage function of the form wt = θ t + ht(st) for some function ht implies that ρθ s, t =
0. A multiplicative form wt = θ tht(s), the one typically used in the taxation literature, implies that
ρθ s, t = 1. A constant elasticity of substitution (CES) wage function wt = [α1tθ1−ρt + α2t s1−ρtt ]

1
1−ρt

has ρθ s, t = ρt.
The planning problem is as above, except that an allocation now also specifies a desired level of

human capital per period, in addition to consumption and output. Ability θ t and labor supply are
unobservable in any period. The envelope condition above was written more generally in terms
of the wage function, and hence it is still valid, but the wage is now explicitly a function of human
capital as well. In addition, the recursive problem now has an extra state variable, which is human
capital in the last period.

The recursive formulation of the relaxed objective is then, for t ≥ 2,

K (v,	, θ−, s−, t ) = min
∫

(c (θ ) +Mt (s (θ ) − s− ) − wt (θ , s (θ )) l (θ )

+ 1
R
K (v (θ ),	 (θ ), θ , s (θ ), t + 1)) f t (θ |θ− ) dθ ,

where the maximization is over the functions (c(θ ), l(θ ), s(θ ), ω(θ ), v(θ ),	(θ )), subject to the same
constraints as in Equation 11. As above, the formulation is modified for period t = 1 to capture
redistributive concerns.

3.3. Optimal Human Capital Policies

Similarly to the labor and the savings wedges above, we can define the human capital wedge,

τS (θ t )≡− (1 − τL (θ t ))ws,t lt +M ′
t (et ) − βEt

((
u′
t+1 (ct+1)
u′
t (ct )

) (
M ′

t+1 (et+1) − τSt+1
))

, 21.

as the gap between marginal costs and marginal benefits from human capital investments. Implic-
itly, the agent’s net marginal cost of investing in human capital is locally reduced toM ′

t (et ) − τSt .5

There are many simultaneous distortions here, and thus a zero human capital wedge does not
mean that human capital is not distorted: Part of this subsidy is simply undoing some of the effects
of the labor and capital distortions on human capital investments. A useful object is the net human
capital subsidy, which ensures that the tax system is neutral with respect to human capital—i.e.,

5Human capital yields flows of returns in all future periods. It is written recursively here, replacing the latter
stream by the next period’s marginal cost.
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that, conditional on the labor choice, the human capital decision is chosen as in the first best
with perfect consumption smoothing. Formally, we have ltwst (st , θt ) = M ′

t (st − st−1) − 1
REt (M

′
t+1

(st+1 − st )).
To grasp this concept, consider a one-period version of the model, with s = e and linear taxes

and subsidies. An agent of type θ solves max s, lu(w(s, θ )l(1 − τL) − M(s) + τ Ss) − φ(l). If we set
the subsidy to be τ S = τLM′(s), the agent chooses human capital as in the first best, (1 − τL)(wsl −
M′(s)) = 0. This is equivalent to making human capital expenses fully tax deductible, i.e., taxable
income is only wl − M(s). The net subsidy on human capital is (appropriately scaled)

tst ≡ τS − τLM ′(s)
(τS −M ′(s))(1 − τL )

.

It is zero when there is full deductibility, and it is positive when human capital is encouraged more
than at full deductibility.

In this more complex multi-period model, I introduce a similar concept of full dynamic, risk-
adjusted deductibility, taking into account that (a) marginal utility varies across states due to im-
perfect insurance, (b) there is a stream of benefits from human capital, (c) savings are distorted,
and (d) there are also human capital subsidies in future periods. Hence, I define the net wedge as
the gross wedge from which I filter out all the parts just listed that only go toward compensating
for the other distortions.

First, for any variable x, define the “insurance factor” of x,

ξx,t+1 ≡ −Cov
(
β
u′
t+1

u′
t
, xt+1

)
/

(
Et

(
β
u′
t+1

u′
t

)
Et (xt+1)

)
,

with ξ x, t + 1 � [ − 1, 1]. If x is a flow to the agent, it is a good hedge if ξ < 0 and a bad hedge
otherwise. With some abuse of notation, define also

ξ ′
x,t+1 ≡ −Cov

(
βu′

t+1

u′
t

− 1
R
, xt+1

)
/

(
Et

(
βu′

t+1

u′
t

− 1
R

)
Et (xt+1)

)
,

which, up to an additive constant, captures the same risk properties as ξ x, t + 1.

Definition 1. Define the net wedge on human capital expenses, tst, as

tst ≡ τ dSt − τLtM ′d
t + Pt(

M ′d
t − τ dSt

)
(1 − τLt )

, 22.

where τ dSt ≡ τSt − (1−ξτS )
R(1−τK )Et (τSt+1) is the dynamic risk-adjusted subsidy, and M ′d

t ≡ M ′
t −

(1−ξM′ )
R(1−τK ) Et

(
M ′

t+1

)
denotes the dynamic, risk-adjusted cost. Pt ≡ τK

R(1−τK ) (1 − τLt )(
1 − ξ ′

M′
)
Et

(
M ′

t+1

)
captures the risk-adjusted savings distortion.

If τSt = τLtM ′d
t − Pt + (1−ξτS )

R(1−τK )Et (τSt+1), such that for every marginal investment et a locally linear
subsidy τ Stet is received, there is full dynamic risk-adjusted deductibility.

Proposition 3. At the optimum and at each history, the labor and human capital wedges
need to satisfy the following relation:

t∗st =
(

τ ∗
Lt

1 − τ ∗
Lt

)
εct

1 + εut
(1 − ρθ s,t ). 23.
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Despite the complexity of the model, Equation 23 gives us a clear link between the labor wedge
and the net human capital wedge. This relation can be used to simply check for the optimality of
a given existing tax and subsidy system. The two wedges need to comove if and only if ρθ s < 1.6

If the wage is a CES function as above, with ρt constant, and disutility is separable and
isoelastic φ(l ) = 1

γ
lγ (γ > 1), the ratio of the net human capital and labor wedges is constant

cross-sectionally and over time:

t∗st/
(

τ ∗
Lt

1 − τ ∗
Lt

)
= (1 − ρ )

γ
.

The sign of the net human capital wedge is determined by the Hicksian coefficient of comple-
mentarity, ρθ s: The net human capital wedge is positive if and only if ρθ s < 1.

Proposition 4. When there is a positive labor wedge, τ ∗
Lt (θ

t ) ≥ 0, we have

t∗st (θ
t ) ≥ 0 ⇔ ρθ s,t ≤ 1.

The optimal net wedge results from the balance of two effects. First, it increases human capital
and the returns to work, thereby encouraging labor supply,which is a beneficial labor supply effect,
given that there is a positive labor wedge. Second, it affects the pretax income distribution. If ρθ s >
0—i.e., if ability is complementary to human capital in the wage—human capital mostly benefits
already able agents, and hence it compounds existing pretax inequality due to intrinsic differences
in θ t. The opposite occurs if ρθ s < 0, in which case human capital reduces inequality. This effect
will be labeled the inequality effect.What happens on net is determined by the gap between ρθ s and
1. If ρθ s < 1, the positive labor supply effect outweighs the inequality effect, i.e., on net, posttax
inequality is reduced. Human capital then has a positive insurance and redistributive effect on
after-tax income inequality.

Intuitively, the inequality effect comes from agents’ incentive compatibility constraints. If high-
productivity agents benefit more from a marginal increase in human capital (ρθ s > 0), an in-
crease in their human capital tightens their incentive constraints. What is relevant for social wel-
fare is whether the overall increase in resources from more labor is completely canceled out by
the information rent forfeited to high-productivity agents or not. When ρθ s < 1, human capi-
tal investments generate positive net resources to be used for redistribution and insurance of all
agents.

With a multiplicatively separable wage w = θh(s) for some function h, for which ρθ s = 1, a
null net wedge is optimal. This is an application of Atkinson & Stiglitz’s (1976) result on the
nonoptimality of differential commodity taxation under preference separability.

If there are several types of human capital, s1, . . . , sJ, with different Hicksian coefficients of
complementarity ρθ s j , with j = 1, . . . , J, Equation 23 applies to each, so that at the optimum we
obtain

t∗s j t
1 − ρθ s j ,t

= t∗sit
1 − ρθ si ,t

∀(i, j). 24.

It is thus optimal to subsidize at higher rates the human capital types that have the highest redis-
tributive and insurance effects.

6Note that the zero distortion at the bottom and top result, familiar for the labor wedge, holds here for the
net human capital wedge. It does not hold for the gross wedge τSt, underscoring again that the true incentive
effects are captured by tst, not τSt.
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It is also possible to rewrite the net human capital wedge recursively to show that it inherits the
persistence of the shock process and also features a drift term, the sign of which is driven by (1 −
ρθ s).When human capital has a positive redistributive or insurance value, it is optimally increasing
with age as it provides valuable insurance against the compounding skill shocks (see Stantcheva
2017).

3.3.1. Implementation. The optimal policies can be implemented with a system of income-
contingent loans, whereby agents receive loans throughout life in order to invest in their human
capital and repay the loan in an income-contingent way, paying more in periods and after histories
in which their income realizations are better.

3.3.2. Unobservable human capital investments. If human capital investments are unobserv-
able, as shown by Stantcheva (2014), the labor wedge is used to indirectly incentivize the right
amount of human capital investments, but the labor wedge need not be smaller with unobservable
human capital than it is when human capital is observable. When the desired net wedge on hu-
man capital (were it observable) is negative, the labor wedge could be higher with unobservable
human capital. In addition, as hidden human capital investments are an alternative to physical cap-
ital (i.e., savings) for transferring resources to the future, their presence invalidates the standard
inverse Euler equation.While the planner does control the total financial resources allocated per
period, they do not control how these resources are allocated by the agent between consumption
and human capital expenses. The agent’s standard Euler equation in human capital holds, which
imposes a restriction on the marginal utilities from consumption in different periods and modifies
the inverse Euler equation for physical capital.

3.4. Training

In addition to spending resources, people spend a lot of time acquiring human capital through-
out their lives, whether through formal college, continuing education, online degrees, on-the-job
training, or vocational training. The peculiarity of time investments in human capital is that they
are immutably linked to a given agent: Not only do their returns depend on an agent’s ability, but
also their costs depend on the agent’s labor supply. In this section, I present a model based on pre-
vious work (Stantcheva 2015a) in which agents can invest in training and work every period, and
the disutility from training depends on labor supply. I introduce two concepts: learning-or-doing
and learning-and-doing.The former indicates that labor and training time are substitutes, because
time spent working cannot be spent training. The limit case of this is the standard opportunity
cost of time model by Ben-Porath (1967), in which agents have a given set of hours to allocate
between training and working. Learning-and-doing is the case in which labor and training are
complements, the limit case of which is the canonical learning-by-doing model of Arrow (1962),
in which training is a direct by-product of labor.

Let zt denote the stock of training time, or the stock of human capital of an agent, at time t,
and let it denote the incremental training time acquired in period t. Human capital, zt, evolves
according to

zt = zt−1 + it .

The disutility cost to an agent who provides lt ≥ 0 units of work and spends it ≥ 0 units in train-
ing is φt(lt, it), strictly increasing and convex in each of its arguments. The wage wt is determined
by the training acquired as of time t and by a stochastic ability θ t: wt = wt(θ t, zt). Define ρφlz to
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be the Hicksian complementarity coefficient between labor and training in the disutility function
φ: ρφlz ≡ φlzφ

φlφz
.

Let me illustrate the optimal policies in a simple one-time investment framework before gener-
alizing the results. For any type θ , define the training wedge τZ(θ ), or implicit subsidy on training,
as follows:

τZ (θ )≡ φz

u′(c)
− (1 − τL(θ ))wzl . 25.

The implicit subsidy on training τZ can be thought of as the incremental pay received by an
agent for training for one more unit of time. Following the same logic as above, it is useful to find
a measure of the net distortion on human capital, the one that goes beyond just compensating for
the presence of a labor distortion. The net wedge on training time tz is defined as

tz ≡
τZ − τL( φz

u′ (c) )

(( φz
u′ (c) ) − τZ )(1 − τL )

. 26.

Proposition 5. At the optimum, the net subsidy for training and the labor wedge are set
according to

t∗z (θ ) = τ ∗
L (θ )

1 − τ ∗
L (θ )

εc

1 + εu

(
1 − ρθz − εφz

εwz
ρ
φ

lz

)
, 27.

where εφz � d log (φ)/d log (z) is the elasticity of disutility, and εwz � d log (w)/d log (z) is
the elasticity of the wage with respect to training.

In this simple one-period model, there are three effects from subsidizing training that are bal-
anced at the optimum. The labor supply effect and the inequality effect are the same as described
for resource investments in human capital in the previous section. The third and new effect is the
direct interaction with labor supply through the disutility function, i.e., either learning-or-doing
or learning-and-doing. Rearranging this, we can see that the total effect of a training subsidy on
labor is positive if and only if

εwz > εφl z with εφl z ≡ ∂ log (φl ) /∂ log (z),

i.e., if and only if the wage is more sensitive to training than the marginal disutility of work is.7

The question, then, is whether the increase in total resources from the total labor effect of
training more than compensates for the increased rent transfers (the inequality effect). The net
subsidy on training will be positive if and only if the answer to this question is yes, i.e., if and only
if we have

1 − εφz

εwz
ρ
φ

lz > ρθz. 28.

With learning-and-doing (ρφlz < 0), as long as ability and human capital are not too comple-
mentary (say, ρθz < 1), the net subsidy on training is positive. Intuitively, training does not distract
from labor, and so it is good to encourage it as long as high-ability types do not disproportionately
benefit from it. However, if there is learning-or-doing, training makes labor supply more costly.
In this case, even if the coefficient of complementarity ρθz is small, it might not be sufficiently
small to compensate for the lost work effort.

7Note that (εφz,t/εwz,t )ρ
φ

lz,t = εφl z,t/εwz,t .
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In the special case in which the wage is multiplicatively separable and φ is additively separable,
with φ(l, z) = φ1(l) + φ2(z), an application of the Atkinson-Stiglitz theorem (Atkinson & Stiglitz
1976) to the two commodities c and z yields tz = 0 (through a simple variational argument).

I point out some additional special cases,which also hold in the dynamicmodel if human capital
fully depreciates between periods.

1. If the wage is multiplicatively separable, w(θ , z) = θz, and the disutility is Cobb-Douglas,
φ(l , z) = 1

γα
lγ zα , we obtain a simple negative relation between the optimal labor wedge and

the optimal training wedge at any point in the skill distribution, such that t∗z (θ ) = − τ∗
L (θ )

1−τ∗
L (θ )

α

γ

and tz(θ ) < 0 at any interior type.
2. If the wage takes a CES form w(θ , z) = (θ1−ρ + z1−ρ )

1
1−ρ and the disutility is separable, with

φ(l, z) = φ1(l) + φ2(z), then we have t∗z (θ ) = τ∗
L (θ )

1−τ∗
L (θ )

εc

1+εu (1 − ρ ). If, in addition, disutility is

isoelastic in labor, with φ1(l ) = 1
γ
lγ , then we obtain t∗z (θ ) = τ∗

L (θ )
1−τ∗

L (θ )
(1−ρ )
γ

. Hence, the net
wedge on training is positive if and only if ρθz < 1, i.e., if ability and training are not too
complementary in generating earnings.

3. If the wage is separable, with w(θ , z) = θ + z, and the disutility is again Cobb-Douglas as
above, we have t∗z (θ ) = τ∗

L (θ )
1−τ∗

L (θ )
(1−α)
γ

. In this case, the optimal wedge is again negative, since
α > 1.

Note that, in general,with asymmetric information,money and time investments are not equiv-
alent: One cannot be perfectly converted into the other because training time interacts with un-
observable labor supply. It is only when the disutility is separable in labor and training that we
exactly recover the same formulas and results as for the monetary investments above.

In the full-fledged dynamic model, the subsidy on training time has an additional direct inter-
action with future labor supply through the disutility function (in addition to all aforementioned
static effects). Even if training diverts time away from contemporaneous labor supply, the effects
on future labor supply can motivate a positive net subsidy. If contemporaneous labor supply and
training are complements, then current training and future labor supply are substitutes and vice
versa, because investing in human capital today means having to invest less tomorrow to reach any
given level of it.

With learning-or-doing, the net wedge comoves positively with the future income tax rate
τLt + 1 but negatively with the current tax rate τLt. When there is a higher current wedge on la-
bor, training that is a substitute for labor will be fostered indirectly, with less need to subsidize it
directly. The opposite holds for the future labor wedge.

3.5. Intergenerational Concerns

We can also consider human capital policies in an intergenerational model, where each t is a
generation, as is done by Stantcheva (2015b). Parent i in generation t can buy an education amount
st + 1 for their child of generation t+ 1.This setup reflects the fact that most investments in human
capital occur before and during college and are in large part paid by parents.

The wage wti of agent i in generation t is determined by their stock of human capital and their
stochastic ability θ ti, that is,

wti (s) ≡ w (s, θti ) .

Ability θ ti is drawn from a stationary ergodic distribution that allows for correlation between
generations. Unless there is perfect persistence, parents face some uncertainty regarding their
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children’s ability realizations at the time they are making education investment decisions. In ad-
dition to financing their education, parents can also leave financial bequests to their children.
Bequests left by generation t are denoted by bt + 1i and earn a generational gross rate of interest
R. Thus, generation t inherits a pretax bequest of Rbti from their parents. The initial generation 1
has an exogenously given distribution of bequests b1i.

First, by the inverse Euler logic described above, there is optimally a positive wedge on be-
quests, i.e., τB > 0. In addition, the relation between tax treatment of bequests and human capital
at the optimum is as follows.

Proposition 6. At the optimum, the following relation needs to be satisfied:

R = E
(

ws,t+1lt+1

(
1 + τLt+1

εct+1

1 + εut+1
(1 − ρθ s,t+1)

))
.

The left-hand side is simply the (social) return on bequests and it is equated to the right-hand
side,which is the social return to education.The first part of the social return to education is simply
the wage increase of the next generation from education. The second part captures the incentive
implications of education for the next generation. Education has two effects on the incentives of
children. First, it encourages their work effort, which relaxes their incentive constraints. This is
the so-called labor supply effect. Second, depending on the sign of the complementarity between
human capital and ability, education may increase or decrease pretax inequality. If ρθ s > 0, educa-
tion increases pretax inequality and benefits mostly able kids. This tends to reduce the effective
incentive-adjusted benefit of education, and it is called the inequality effect. The net effect on
children’s incentives depends on the sign of (1 − ρθ s), i.e., the redistributive and insurance effect
of human capital. This is scaled by a multiple of the labor wedge, which captures the efficiency
cost of taxation, i.e., the value of relaxing children’s incentive constraints.

At the optimum, the return on bequests is not equated to the return on human capital invest-
ments; instead, it needs to be equated to the expected, incentive-adjusted return on education that
takes into account the direct increase in earnings as well as the labor supply effect and the inequal-
ity effect on the incentive constraint. Whereas bequests benefit all types uniformly in marginal
terms, human capital investments have redistributive incentive effects.8

If education is highly complementary to ability (i.e., ρθ s > 1), which means that high-ability
children benefit more in proportional terms from their parents’ education investments, then the
return to education investments will be reduced below the return on bequests. Put differently,
education investments by parents will be taxed relative to bequests. The opposite happens when
education is not too complementary to children’s ability (ρθ s < 1), in which case parental education
investments should be subsidized relative to bequests. With the separable wage function that has
ρθ s = 1, parental education investments and bequest choices should not be distorted relative to
each other, i.e., R = E(ws, t + 1lt + 1).

4. THE QUANTITATIVE RAMSEY APPROACH

A middle-of-the road approach between the fully unrestricted dynamic Mirrlees approach in the
previous section and the sufficient statistics one in the next section is the parametric and quan-
titative Ramsey-style approach. This framework ex ante parametrically specifies the type of tax
instruments to be used and quantitatively (more rarely, analytically) assesses optimal policies. The

8Bequests would have income effects that would interact with agents’ types if utility were not separable in
consumption and labor.
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key advantage is that, thanks to the restrictions on instruments and the use of quantitative meth-
ods, more complex and realistic economies can be studied.

It is impossible to do justice to the very long-standing Ramsey tax literature and the very large
number of papers studying either tax reform or optimal tax policy in very different settings. In the
interest of space, I only present some very recent studies and findings using a quantitative Ramsey
approach. The key foci of this recent quantitative literature have been on the optimality of age-
dependent taxes, on when a positive capital tax is optimal, and on what shapes the progressivity
and level of income taxes.

Heathcote et al. (2017) propose a parsimonious two-parameter tax function—already used by
Benabou (2002)—that captures the level and progressivity of taxes: T(y) = y − λ · y(1 − τ ). In a
life-cycle model with skill investment, heterogeneous tastes for work, a public good, and wealth
in zero net supply, they study what factors shape the progressivity of the tax and transfer system.
Quantitatively, the disincentives that taxes have on endogenous skill investment and labor supply,
as well as the desire to finance government purchases, matter to similar extents. The progressivity
in the actual US tax system can be obtained as optimal in a version of their model where credit con-
straints at low-income levels prevent efficient investments in skills. Karabarbounis (2016) shows
that tagging the level of taxes by age, household assets, and filing status (married versus single)
improves the efficiency of the tax system. Heathcote et al. (2019) also study age-dependent taxa-
tion in their parametric setting, allowing both the level and the progressivity of taxes to vary by
age.

Using a quite general parametric tax function, Conesa & Krueger (2006) show that the op-
timal income tax system for the United States (which does not differentiate between labor and
capital income) is well approximated by a flat tax of 17.2% combined with a fixed deduction of
$9,400. Allowing for a distinction between capital and labor income, Conesa et al. (2009) develop
an overlapping generations (OLG) life-cycle model with uninsurable idiosyncratic labor income
risk, and they show that, in the absence of age-dependent labor income taxes, positive capital taxes
are optimal as they imperfectly mimic the age dependency that would be needed. They thus gen-
eralize the same finding of Erosa & Gervais (2002) to a case with idiosyncratic risk. Findeisen &
Sachs (2017) focus on a life-cycle model with heterogeneity and risk in skills and solve for the
optimal nonlinear labor income tax that only depends on current income and the optimal linear
capital tax. Insurance against idiosyncratic skill shocks drives the labor income tax, and the capital
tax is optimally positive. Guvenen et al. (2019) show that with heterogeneous returns a wealth tax
targets the unproductive entrepreneurs and increases the savings rate of productive ones relative
to a capital income tax. Quantitatively, it can raise productivity while also reducing consumption
inequality.

Some recent papers also adopt this parametric approach to study human capital policies.
Benabou (2002) concludes that financing education produces more growth than using taxes and
transfers to alleviate credit constraints that prevent efficient investments in education, but at the
cost of providing less consumption insurance. Krueger & Ludwig (2013) incorporate education
investments in the form of college into a large-scale OLG model with uninsurable idiosyncratic
income risk, borrowing constraints, intergenerational transmission of wealth and ability, and in-
complete financialmarkets.They show that the optimal tax and transfer system features substantial
progressivity in labor income taxes complemented with a large subsidy for college education.

5. THE SUFFICIENT STATISTICS APPROACH

The goal of the sufficient statistics approach to dynamic taxation is to better connect the theory of
optimal capital taxation to the policy debate by providing a tractable framework to address many
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policy questions. The goal is to derive robust optimal capital tax formulas expressed in terms of
elasticities of capital and labor supply with respect to the net-of-tax rates that can be estimated in
the data and to distributional considerations that society may have.

When it comes to studying capital taxation more specifically, the aim is also to build a model
that generates an empirically realistic response of capital to taxes (unlike the infinite elasticities
obtained in Chamley-Judd), is sufficiently tractable to yield results for a variety of policy topics
related to capital taxation, and is general enough for these results to be robust to a broader set of
models.

Some examples of the policy topics that have traditionally been hard to deal with in dynamic
optimal capital tax models and that can be dealt with here include, among others, income shifting
between capital and labor, economic growth, heterogeneous returns to capital across individuals,
and different types of capital assets and heterogeneous tastes for each of them. This approach
is also very amenable to incorporating a broader range of justice and fairness principles related
to capital and labor taxation through the use of generalized social welfare weights, as done by
Saez & Stantcheva (2016). In short, the optimal tax for different justice and fairness principles can
be obtained by simply plugging into the formulas the corresponding generalized social welfare
weights.

The analysis in this section is based on work by Saez & Stantcheva (2018).Golosov et al. (2014)
provide a more general and formal analysis of dynamic taxation using perturbation and sufficient
statistics methods.

5.1. Setup

Individual i has instantaneous utility with functional form ui(c, k, z) = c + ai(k) − hi(z), linear in
consumption c, increasing in wealth k with ai(k) increasing and concave, and with a disutility cost
hi(z) of earning income z that is increasing and convex in z. One strength of this framework is that
the index i can represent any arbitrary heterogeneity in the preferences for work and wealth or in
the discount rate δi. The discounted utility of i from an allocation {ci(t), ki(t), zi(t)}t ≥ 0 is

Vi({ci(t ), ki(t ), zi(t )}t≥0) = δi ·
∫ ∞

0
[ci(t ) + ai(ki(t )) − hi(zi(t ))]e−δit dt. 29.

The net return on capital is r. The initial wealth of individual i is kiniti . Consider a given time-
invariant tax schedule T(z, rk) based on labor and capital incomes. The budget constraint of indi-
vidual i is

dki(t )
dt

= rki(t ) + zi(t ) − T (zi(t ), rki(t )) − ci(t ). 30.

T ′
L(z, rk) ≡ ∂T (z, rk)/∂z denotes the marginal tax with respect to labor income, and T ′

K (z, rk) ≡
∂T (z, rk)/∂ (rk) denotes the marginal tax with respect to capital income.

Because utility is linear in consumption, (ci(t), ki(t), zi(t)) jumps immediately to its steady-state
value (ci, ki, zi) characterized by h′

i(zi ) = 1 − T ′
L, a

′
i(ki ) = δi − r(1 − T ′

K ), ci = rki + zi − T (zi, rki ).
Lifetime utility can be rewritten as

Vi({ci(t ), ki(t ), zi(t )}t≥0) =Ui(ci, ki, zi ) = [ci + ai(ki ) − hi(zi )] + δi · (kiniti − ki ). 31.

The last term represents the utility cost of going from wealth kiniti to wealth ki at instant 0. The
dynamic model of Equation 29 is thus mathematically equivalent to a static representation where
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the agent simply chooses (ci, ki, zi) to maximize the static utility equivalent in Equation 31 subject
to the static budget constraint ci = rki + zi − T(zi, rki). Anticipated and unanticipated reforms
have the same effect.

Individuals in this model accumulate different levels of wealth based on their heterogeneous
tastes for wealth and impatience levels as well as on the net-of-tax return r̄ = r(1 − T ′

K (z, rk)). As
a result, steady-state wealth levels are heterogeneous, even conditional on labor earnings. Because
of this, the zero tax result of Atkinson & Stiglitz (1976) does not apply.

The wealth-in-the-utility feature puts a limit on individuals’ impatience to consume; there is
value in keeping some wealth. At the optimum, the value lost in delaying consumption δi − r̄ is
equal to the marginal value of holding wealth a′

i(k), and the optimum for capital holding is interior.
Capital hence exhibits a smooth behavior in the steady state,with a finite elasticity of capital supply
with respect to the net-of-tax return.

Having wealth in the utility makes sense for conceptual and empirical reasons. Conceptually,
wealth can be held for reasons other than just smoothing consumption and can bring other bene-
fits than just the future consumption flows. Empirically, it is difficult to rationalize the very large
wealth holdings purely based on a consumption-smoothing motive. In addition, wealth holdings
are heterogeneous even conditional on labor earnings, and the wealth distribution is much more
skewed than could be explained by a model in which wealth is purely the result of different-ability
people saving their labor income. This shows that there is additional heterogeneity in prefer-
ences related to wealth, over and beyond heterogeneous abilities to work. More precisely, wealth
in the utility can be microfounded by a bequest motive, a utility cost or disutility benefit from
entrepreneurship, services provided by wealth (such as liquidity), or social status concerns.

5.2. Optimal Tax Formulas

The social welfare function (SWF) is defined as

SWF =
∫
i
ωi ·Ui(ci, ki, zi )di, 32.

whereωi ≥ 0 is the Pareto weight on individual i.We denote by gi =ωi ·Uic =ωi the social marginal
welfare weight on individual i and normalize �iωidi = 1. The government sets the time-invariant
tax T(z, rk), subject to budget balance, to maximize this social welfare objective. We start with
linear taxes and then derive nonlinear taxes.

5.2.1. Optimal linear capital and labor taxation. With linear taxes, the government rebates tax
revenue lump-sum, and the transfer to each individual is G = τK · rkm(r̄) + τL · zm(1 − τL ), where
zm(1 − τL) = �izidi is the aggregate labor income that depends on 1 − τL, and km(r̄) = ∫

i kidi is
the aggregate capital stock, which depends on r̄ = r(1 − τK ). τK and τL are chosen to maximize
SWF in Equation 32, with ci = (1 − τK ) · rki + (1 − τL ) · zi + τK · rkm(r̄) + τL · zm(1 − τL ).

Let eK be the elasticity of aggregate capital km with respect to r̄, and let eL be the elasticity of
aggregate labor income zm with respect to the net of tax rate 1 − τL. There are no income effects
with the utility assumed. Hence, we have eL > 0 and eK > 0. Applying the individuals’ envelope
theorems for the choice ki, we can obtain the optimal linear capital tax.

Proposition 7 (optimal linear capital tax). The optimal linear capital tax is given by

τK = 1 − ḡK
1 − ḡK + eK

, with ḡK =
∫
i gi · ki∫
i ki

and eK = r̄
km

· dk
m

dr̄
> 0. 33.
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The optimal labor tax can be derived exactly symmetrically:

τL = 1 − ḡL
1 − ḡL + eL

, with ḡL =
∫
i gi · zi∫
i zi

and eL = 1 − τL

zm
· dzm

d(1 − τL )
> 0. 34.

We can now see that the optimal capital tax will be zero only if ḡK = 1 or eK = ∞. The former
case occurs when there are no redistributive concerns regarding capital income (i.e., gi is uncor-
related with ki). However, as long as capital is concentrated among individuals with lower social
marginal welfare weights (i.e., gi is decreasing in ki), we have ḡK < 1, and the optimal capital tax is
strictly positive. The revenue-maximizing tax rates are obtained by setting ḡK = 0 and ḡL = 0. If
there is no wealth in the utility, capital responses are no longer smooth; the elasticity eK is infinite,
which drives the Chamley-Judd zero optimal capital tax result.

Supplemental Table 2 shows a summary of the empirical literature on the tax elasticities of
capital and distinguishes between capital gains, dividends, ordinary capital income, and bequests
and inheritances. Although there is substantial variation in the estimates based on the settings and
tax considered, and although the elasticities are typically larger than those known for labor income,
they are not as large as the standard tax model of Chamley-Judd would predict. This justifies the
need for a theory that generates steady states with nondegenerate wealth distributions that feature
very large wealth holdings and finite smooth responses of capital to taxation.

5.2.2. Optimal nonlinear separable taxes. Consider now nonlinear, separable, and time-
invariant tax schedules TL(z) and TK(rk). Let ḠK (rk) [symmetrically, ḠL(z)] be the average relative
welfare weight on individuals with capital income higher than rk (symmetrically, labor income
higher than z). We obtain

ḠK (rk) =
∫

{i:rki≥rk} gidi

P(rki ≥ rk)
and ḠL(z) =

∫
{i:zi≥z} gidi

P(zi ≥ z)
. 35.

The cumulative distributions of capital and labor income are HK(rk) and HL(z), and hK(rk) and
hL(z) are the corresponding densities when the tax system is linearized at points rk and z. The
local Pareto parameters of the capital and labor income distributions (which depend on the tax
system) are

αK (rk) ≡ rk · hK (rk)
1 −HK (rk)

and αL(z) ≡ z · hZ (z)
1 −HZ (z)

.

The local elasticity of k with respect to the net of tax return r(1 − T ′
K (rk)) at income level rk is

denoted by eK(rk), and that of z with respect to 1 − T ′
L(z) is denoted by eL(z).

Proposition 8 (optimal nonlinear capital and labor income taxes). The optimal non-
linear capital and labor income taxes are

T ′
K (rk) = 1 − ḠK (rk)

1 − ḠK (rk) + αK (rk) · eK (rk)
and T ′

L(z) = 1 − ḠL(z)
1 − ḠL(z) + αL(z) · eL(z)

. 36.

Most ordinary capital income in many countries is taxed jointly with labor income by the indi-
vidual income tax (e.g., interest earned from a standard savings account). Within this framework,
the optimal nonlinear tax on comprehensive income y � rk + z of the form TY(y) takes the same
form as found by Mirrlees (1971) and Saez (2001).
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Let ḠY (y) =
∫
{i:yi≥y} gidi
P(yi≥y) be the average welfare weight on individuals with total income higher

than y,HY(y) be the cumulative distribution of the total income distribution, and hY(y) be the cor-
responding density, assuming again a linearized tax system at point y. The local Pareto parameter
for the distribution of total income y is αY (y) ≡ yhY (y)

1−HY (y) , and the elasticity of total income to the
net of tax rate 1 − T ′

Y (y) at point y is eY(y).

Proposition 9 (optimal tax on comprehensive income).

1. The optimal nonlinear tax on comprehensive income y = rk + z is given by

T ′
Y (y) = 1 − ḠY (y)

1 − ḠY (y) + αY (y) · eY (y)
.

2. The optimal linear tax on comprehensive income is

τY = 1 − ḡY
1 − ḡY + eY

, 37.

with ḡY ≡
∫
i giyi
ym

= zmḡL + rkmḡK
zm + rkm

and eY ≡ dym

d(1 − τY )
(1 − τY )
ym

= zmeL + rkmeK
zm + rkm

. 38.

A tax system based on comprehensive income may be optimal for equity reasons if society consid-
ers it unfair to discriminate income based on its source, or for efficiency reasons, if there are stark
income-shifting responses between the capital and labor income bases.

5.2.3. Extensions. In this framework, it is easy to incorporate, among others, the following
extensions: (a) jointness in preferences between work and wealth, which introduces an additional
cross-elasticity term in the formula for capital τK = (1 − ḡK − τL

zm
rkm eL,(1−τK ) )/(1 − ḡK + eK ) (and

symmetrically for the labor tax); (b) heterogenous returns to capital, which can be captured by just
plugging into the tax formula ḡrK =

∫
i gi ·riki∫
i riki

and erK = d log (riki)/d log (1 − τK); and (c) different
capital assets, such as financial assets or real estate, which have different returns and for which
agents have different tastes. If there are no cross-elasticities, for asset j the tax formula is simply

τ
j
K = 1−ḡ jK

1−ḡ jK+e jK
, where ḡ jK =

∫
i gi ·k

j
i∫

i k
j
i

and e jK = r̄ j

km, j · dkm, j

dr̄ j > 0 are the average social welfare weight and

the tax elasticity of that particular asset’s income, respectively. The formula can be extended easily
to the case with nonseparabilities in preferences for different assets (see Saez & Stantcheva 2018).

5.3. Generalization and a New Steady-State Approach

In the generalized model with concave utility for consumption and wealth in the utility, individual
i chooses (ci(t), ki(t), zi(t))t ≥ 0 to maximize

Vi = δ

∫ ∞

t=0
ui(ci(t ), ki(t ), zi(t ))e−δt dt such that

dki(t )
dt

= rki(t ) + zi(t ) − Tt (zi(t ), rki(t )) − ci(t ).

The steady state (ci, ki, zi) is characterized by

uik/uic = δ − r(1 − T ′
K ), uic · (1 − T ′

L ) = −uiz, and ci = rki + zi − T (zi, rki ), 39.

where uic, uik, and uiz denote the partial derivatives of ui(c, k, z), and T ′
K and T ′

L denote the marginal
tax rates on capital income and labor income, all evaluated at the steady state (ci, ki, zi).
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First, assume that the government always chooses a period-by-period neutral budget constraint
so that for all t we have

∫
i
Tt (zi(t ), rki(t ))di = 0.

Second, assume time-invariant tax rates τK and τL with a budget-balancing lump-sum rebate
G(t). Hence, we obtain Tt(z, rk) = τLz + τKrk − G(t). From the per period budget balancing
assumption, we derive G(t) = τLzm(t) + τKrkm(t), where km(t) and zm(t) are average wealth and
earnings at time t.

Third, assume that at time 0, the economy is already in steady state with its initial tax system,
which means that G, ci(t), zi(t), ki(t), km(t), and zm(t) are all equal to their (time-invariant) steady-
state values. In the steady state, average capital km = �iki and average earnings zm = �izi will be
functions of 1 − τK and 1 − τL (since the lump-sum rebate G is also a function of τK, τL through
budget balance). Steady-state capital km has a finite elasticity with respect to the net-of-tax return
r̄ = r(1 − τK ). Steady-state elasticity, denoted by eK, is given by

eK = r̄
km

dkm

dr̄
. 40.

Note that eK mixes substitution and income effects and changes in G. The presence of utility
for wealth remains crucial for having a finite elasticity eK. The cross-elasticity of km with re-
spect to 1 − τL, denoted by eK ,1−τL = ((1 − τL )/km ) · dkm/d(1 − τL ), is also finite, as are the elas-
ticities of aggregate labor earnings zm with respect to both 1 − τL and r̄. The cross-elasticity
eL,1−τK = (zm/r̄)(dzm/dr̄) measures how labor earnings respond to changes in r̄. Note that such
cross-elasticities arise not only if there is jointness of (k, z) in utility but also through income
effects, as the marginal utility of consumption uic affects labor supply decisions.

There are typically two approaches that can be taken to determine the optimal tax rate: The
first considers unanticipated reforms, the second anticipated reforms. Both have issues. The unan-
ticipated reform approach makes it very tempting to exploit sluggish responses and aggressively
tax the existing capital stock, thus creating commitment issues. The anticipated reform approach
puts very low social welfare weight on impatient agents (which gets discounted heavily in the social
objective), assumes infinite foresight and anticipation of policy by agents, and generates extremely
large (in the limit, infinite) responses of capital.

Saez & Stantcheva (2018) propose an alternative, new, and nonstandard solution to the op-
timal capital tax problem: the utility-based steady-state approach. Their goal is to neutralize the
ability of the government to exploit sluggish responses. However, this is not done by using the
anticipated reform approach, which has undesirable features. Instead, it is achieved by (a) letting
the government explicitly recognize the long-run steady-state behavioral responses as the norma-
tively relevant ones and (b) imposing that the government should also respect individual savings
choices. The solution arising based on this approach is to use the standard optimal tax formulas
with the steady-state elasticities.

Consider a small reform dτK at time 0. The actual response to this tax change is sluggish, so
that the real change in taxes collected at time t is given by dG(t) = rkmdτK + τKrdkm(t) + τLdzm(t).
To formalize that the government does not want to exploit sluggish responses, assume that the
government in fact considers that the budgetary effect at time t is dG = rkmdτK + τKrdkm +
τLdzm and absorbs the difference between dG(t) and dG. For instance, for a tax increase dτK > 0,
responses are smaller at first, so that dG(t)> dG, but the government dissipates this surplus. From
a normative perspective, then, the government ignores the gains it can make by exploiting slow
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responses. Formally the goal is to find the tax system (τK, τL) that maximizes SWF but assuming
that the lump-sum grant G(t) is equal to the steady-state lump-sum grant, G = rτKkm + τLzm,
instead of the actual lump-sum grant rτKkm(t) + τLzm(t).

Proposition 10 (optimal linear capital tax in the utility-based steady-state
approach). The optimal linear capital tax is

τK = 1 − ḡK − τL
zm
rkm eL,1−τK

1 − ḡK + eK
with K =

∫
i
gi · ki/km. 41.

A symmetric equation holds for the optimal labor income tax rate τL. Hence, the same tax
formulas hold by simply using the steady-state elasticities. One advantage of this approach is its
robustness to introducing heterogeneity in discount rates across individuals, as heterogeneity in
discount rates is normatively irrelevant in the steady state. Importantly, all of the applications from
the linear utility model as derived by Saez & Stantcheva (2018) carry over to capital taxation with
small modifications related to the fact that a concave utility introduces cross-elasticities between
capital and labor (but there are no transitional dynamics). Another advantage of the utility-based
steady-state approach is that all the work done in the literature to incorporate more realistic fea-
tures of labor taxation in static settings can carry over here to the taxation of capital in a dynamic,
general setting.

Note that this approach is related to, but not identical to, choosing the budget-balanced tax
system that maximizes steady-state welfare SWF = �iωi · ui(ci, ki, zi)di, because the steady-state
maximization objective is paternalistic. Intuitively, increasing wealth looks good in the steady state
because it “forgets” that accumulating wealth required sacrificing consumption in the past, which
artificially creates a positive welfare effect of wealth accumulation that tends to lower the optimal
capital income tax. The simplest way to resolve this issue of paternalism is to intentionally ignore
the effect of dki on individual welfare by stating that any behavioral response triggered by a tax re-
form should have zero first-order effect on individual welfare through the envelope theorem.This
amounts to saying that the government respects individual savings decisions. With this “forced”
envelope theorem assumption, the optimal tax can be derived entirely in the steady state without
dynamic considerations.The optimal steady-state tax formula is given exactly as in Proposition 10.
This is thus an alternative way to obtain the same results.

6. CONCLUSION

I conclude here with what appear to be productive avenues for future research. In the dynamic
Mirrlees approach, a general theory of approximation of the optimal, often complicated policies
would represent a big advance. It is, for instance, not known how well the linear age-dependent
approximations do outside of the parameterizations currently used in the literature. In addition,
more realistic features of the economy—such as general equilibrium effects—should be added,
which will require more quantitative analysis. This will go hand in hand with fuller estimations of
the underlying parameters that go beyond calibrations. The parametric Ramsey approach, on the
other hand,would gain from the exploration of less standard andmore complex tax instruments. In
that sense, a middle-ground combination of the strengths of the dynamic Mirrlees approach (i.e.,
less restricted instruments) and the Ramsey approach (i.e., more realistic quantitative features)
would probably be very fruitful.

In the sufficient statistics approach, the key challenge is to obtain credible empirical estimates
of the relevant longer-run elasticities. As better individual-level tax data have become available
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over time, credible estimates of the short- or medium-run responses based on policy variation
can be obtained. The best way to go may then be to embed these reduced-form estimates into a
structural model to estimate the long-run responses.

SUMMARY POINTS

1. Three main approaches are used to study dynamic taxation: (a) the dynamic Mirrlees
approach, (b) the parametric dynamic Ramsey approach, and (c) the dynamic sufficient
statistics approach. These give different answers to the question of how capital should
be taxed.

2. The dynamicMirrlees approach assumes that agents’ abilities to earn income are hetero-
geneous, stochastic, and private information. Tax instruments ex ante are unrestricted.
The model solves for the optimal allocations using dynamic mechanism design (subject
only to incentive compatibility constraints) and then considers how to implement these
allocations using decentralized tax systems.

3. Taxes are set for redistribution and insurance reasons. Capital is taxed only in order to
improve incentives to work. Human capital is optimally subsidized if it reduces posttax
inequality and risk on balance.

4. The dynamic Ramsey approach specifies restricted parametric forms for tax instruments
and adopts quantitative methods, which allow it to consider more realistic and complex
economies.

5. In the Ramsey approach, capital taxes are typically optimal when age-dependent labor
income taxes are not feasible.

6. The newer and tractable sufficient statistics approach derives robust tax formulas that
depend on estimable elasticities and features of the income distributions. It simplifies the
transitional dynamics thanks to a newly defined criterion, the utility-based steady-state
approach, that prevents the government from exploiting sluggish responses in the short
run.

7. Capital is taxed here for the same reasons labor income would be taxed, based on the
equity–efficiency trade-off. Capital taxes are higher when capital income is more un-
equally distributed or when redistributive concerns are stronger. They are lower when
the elasticity of capital to taxes is higher.

FUTURE ISSUES

1. The dynamicMirrlees approach needs a general theory of approximation of the optimal,
often complicated, policies. How does the best approximation depend on the primitives
of the economy?

2. More realistic features of the economy—such as general equilibrium effects—should be
added to the Mirrlees approach, which will require more quantitative analysis, going
beyond calibration and toward full estimation of the underlying parameters.

3. The parametric Ramsey approach, on the other hand, would gain from the exploration
of less standard and more complex tax instruments.
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4. A middle-ground combination of the strengths of the dynamic Mirrlees approach (i.e.,
less restricted instruments) and the Ramsey approach (i.e., more realistic quantitative
features) would probably be very fruitful.

5. In the sufficient statistics approach, the key challenge is to obtain credible empirical
estimates of the relevant longer-run elasticities.

6. As better individual-level tax data have become available over time, credible estimates of
the short- or medium-run responses based on policy variation can be obtained.

7. The best way to go may then be to embed these reduced-form estimates into a structural
model to estimate the long-run responses.
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