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Abstract

Dengue is an emerging viral disease principally transmitted by the Aedes
(Stegomyia) aegyptimosquito. It is one of the fastest-growing global infectious
diseases, with 100–400 million new infections a year, and is now entrenched
in a growing number of tropical megacities. Behind this rapid rise is the
simple adaptation of Ae. aegypti to a new entomological niche carved out
by human habitation. This review describes the expansion of dengue and
explores how key changes in the ecology of Ae. aegypti allowed it to become
a successful invasive species and highly efficient disease vector. We argue
that characterizing geographic heterogeneity in mosquito bionomics will
be a key research priority that will enable us to better understand future
dengue risk and design control strategies to reverse its global spread.
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DENGUE THE DISEASE AND DENGUE THE VIRUS

Dengue is a self-limiting disease with a broad range of symptoms that make clinical diagnosis
challenging (138). Classically characterized by high temperatures, headache, vomiting, myalgia,
joint pain, and rash, dengue shares symptoms with many other common infectious diseases in
its tropical setting (120). Only a small proportion of patients will see their illness develop into
severe dengue, in which vascular leakage may pose a threat to life if not identified and managed
appropriately (138). The majority of dengue cases (18–60%), however, have little or no contact
with the healthcare system, as they are either asymptomatic or self-managed (8). These cases are
still likely to be infectious but go undetected and thus impose a considerable challenge to disease
surveillance and control (34, 128). Despite a mild disease outcome for the individual, the volume
of these cases is the principal driver of the burden of dengue, with hospitals often overwhelmed
with outpatient consultations, billions of hours of work or school missed, and many patients with
chronic long-term infirmities, such as depression and fatigue (118, 129).

The dengue virus (DENV) is a single-stranded RNA virus and is the most globally prevalent
member of the Flavivirus genus, which also includes viruses such as yellow fever (YFV), West
Nile, and Zika that have also emerged as significant public health threats (38, 43). DENV exists
in at least four genetically distinct clades often referred to as serotypes. A defining feature of this
serotype grouping is that infection with one serotype confers lifelong immunity to that serotype
and temporary (6 months–2 years) cross-immunity to the other serotypes. Infection with a het-
erotypic serotype is a major risk factor for developing severe dengue due to the mechanism of
antibody-dependent enhancement (67, 110). However, it has been shown that within-serotype
antigenic variation is almost as broad as between-serotype variation, suggesting a more complex
genetic and immunological organization of DENV (66). This remains one of several different
hypotheses for why DENV exhibits such year-on-year variability in case numbers and disease
severity (63, 111).

THE EMERGENCE OF DENGUE FROM SYLVATIC CYCLES

DENV today exists in two distinct transmission cycles: a now ubiquitous human (urban) cycle,
where the virus is transmitted between humans via an Aedes genus vector, and a more complex and
ancient sylvatic cycle that sees occasional spillover to humans (133).

Much of our current understanding of sylvatic DENV comes from two research programs,
one established in Senegal, where longitudinal entomological surveillance gives insight into ento-
mological drivers of emergence (1), and the other in Malaysia, where more extensive nonhuman
primate sampling aims to explore transmission dynamics in sylvatic hosts (133). These programs
have proven the existence of permanent sylvatic cycles in Southeast Asia and Africa, with consis-
tent identification of DENV in a broad range of nonhuman primate species and canopy-dwelling
vector Aedes species (1, 52). How DENV is maintained in these sylvatic cycles remains unclear,
but herd immunity combined with population turnover (2), vertical transmission in mosquito eggs
(33), and environmental disturbance (82) have all been hypothesized to play a role in maintaining
sustainable sylvatic transmission cycles.

Unlike YFV, DENV does not appear to have yet established a sylvatic cycle in South America.
DENV has been documented in rodents, bats, marsupials, and primates across the continent, but
only human-adapted viruses have so far been identified (31, 92). This suggests that these represent
spill-back events into dead-end hosts likely due to increasing overlap between human and wildlife
populations (92). As we have seen with YFV, establishment of a sustained sylvatic cycle of DENV
in South America would jeopardize prospects for control and elimination, even in the presence of
a highly effective vaccine.
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The discovery that every humanDENV serotype clade has a sylvatic ancestor is suggestive that
the circulation of the four current DENV serotypes in the human cycle arose through multiple
independent zoonotic events, with the most recent occurring approximately 850 years ago (27,
126, 134). Both African and Asian origins have been suggested as the source of human-adapted
DENV (52). The Aedes (Stegomyia) furcifer vector (in Africa) and Aedes (Stegomyia) albopictus (in
Asia) have been found in abundance in environments at the edge of forests, and this, along with
their high plasticity in host feeding habits, makes them likely bridge vectors of sylvatic dengue
(32, 33, 98, 143).

GLOBAL SPREAD OF DENGUE

Following emergence, the global spread of dengue can broadly be divided into three distinct
phases: (a) the first urban outbreaks, (b) the co-circulation of serotypes, and (c) consolidation
(Figure 1).

With DENV-specific diagnostics not becoming available until the 1950s, much of our under-
standing of the early history of dengue, reviewed in detail by Gubler (47), comes from searching
historical literature for dengue-like illness.While the oldest description dates back to an epidemic
in China in 992, historical reports of dengue-like illness only begin to emerge with any regularity
around the eighteenth and nineteenth centuries (47). These reports detail outbreaks confined to
specific cities with brief (one- or two-year) durations that fit the profile of single DENV serotype
epidemics. These early reports are highly geographically diverse, with occurrences from all con-
tinents in the tropical and subtropical world; the Indian subcontinent, the Caribbean, and the
southern United States reported multiple outbreaks over this time (Figure 1). These historical
outbreaks have led some to suggest that early shipping routes, and in particular the slave trade,
caused the first global dengue pandemic between 1779 and 1916 (47, 57). However, with only
one serotype circulating at a time, this collection of short-lived, sporadic outbreaks lacked the
regularity and severe clinical outcomes of contemporary dengue transmission.

The end of the SecondWorld War precipitated a rapid increase in global trade, travel, and ur-
banization that has long been suspected to have aided the next wave of dengue expansion (46). For
the first time,multiple serotypes could co-circulate in major cities, leading to dengue hemorrhagic
fever (DHF), or what would now be diagnosed as severe dengue (51). The rise of hyperendemic-
ity (continuous co-circulation of more than one serotype) in the Americas was delayed by the
Pan American Health Organization (PAHO)’s three-decade-long attempt to eliminate Aedes (Ste-
gomyia) aegypti to prevent epidemics of urban yellow fever. Between 1947 and 1962,Ae. aegypti was
eliminated from over 20 countries through intensive vertically organized campaigns that allowed
access to indoor mosquito breeding habitats and made extensive use of DDT (112, 142). In con-
trast, in countries such as the United States, where the program was decentralized and community
led, nationwide Ae. aegypti elimination was never achieved (112).When enthusiasm for the project
waned in the 1970s, Ae. aegypti began to resurge (47), regaining much of its original distribution
by the time the program was officially disbanded in 1985 (69, 89).

The final phase of the expansion of dengue was its global consolidation. This began in the late
1990s, when DENV transmission moved beyond major cities to more rural areas to become a
ubiquitous threat throughout the tropical world (15, 122). Since 1995, the number of subnational
areas reporting dengue and Ae. aegypti has trebled (Figure 2). Major urban areas maintain high
viral diversity, with frequent urban–rural travel ensuring that even smaller communities can main-
tain high DENV prevalence (111). Increasing international movement, and thus introduction of
DENV via viremic humans, has also made maintaining dengue-free status challenging even with
intensive vector control programs. A key example of this is the resurgence of dengue in Singapore,
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Figure 1 (Figure appears on preceding page)

The expanding global distribution of dengue. (a) Cities with evidence of dengue-like illness prior to 1935 and the approximate range of
sylvatic dengue (47, 52). (b) The cumulative number of dengue serotypes reported in each area in the period 1945–1994 (first
administrative units or equivalent-sized countries) (87). (c) The contemporary (2015) predicted global distribution of dengue risk (86).

which has DENV seroprevalence levels >50% despite successful control in the 1970s and 1980s
and continued intensification of their vector control programs (96, 136). The high risk of reintro-
duction now presents a hurdle for modern dengue control programs, placing a renewed emphasis
on coordination in global dengue control efforts (139).

As with all emerging diseases, ascertainment bias (disentangling expansion of disease from
expansion of reporting of disease) is a challenge. The post–Second World War expansions co-
incide with the development of hemagglutination inhibition (HI) assays that provided the first
laboratory diagnosis of dengue (50). Wider adoption of electronic surveillance systems since the
mid-1990s; the development of global clinical guidelines for diagnosis in 1986, 1997 and 2009;
and the wider use of polymerase chain reaction (PCR)–based and point-of-care serological rapid
tests in the 2000s all likely improved dengue surveillance (50, 121, 137, 138). Understanding if or
how increases in urbanization, travel, and climate change have affected the global expansion of
dengue is therefore problematic when the relationships between these factors may be confounded
by changes in disease surveillance.What is clear is that, while it is highly plausible that all of these
factors affect dengue expansion, current research on the topic often falls short of the requirements
for causal inference (5).

FURTHER EXPANSION OF DENGUE

Understanding drivers of global dengue expansion is important for predicting whether dengue will
continue to expand. Both continental Europe and the United States were historically endemic, are
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Figure 2

The rise in the global number of areas (first administrative level, e.g., state) reporting (a) Aedes aegypti and
(b) dengue. Data taken from References 70 and 87.
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at the fringes of the current distribution of dengue, and have had recent small outbreaks (47, 81,
101). Historically, it was thought that human–vector contact was too low in these areas because
humans spend most of their time in well-screened, air-conditioned buildings that are unfavorable
for mosquitoes (104). However, recent large outbreaks in Madeira, Portugal (2012) (123) and
southern Florida (2009) (101) have brought this assumption into question. Wider use of virus-
sequencing tools offers the promise of reconstructing detailed chains of transmission, as was done
for the Zika outbreak in Florida (44). This revealed high heterogeneity in onward transmission
following imported infectious cases and suggested that large outbreaks are possible, and indeed
probable, if the number of imported cases is high enough and if they are introduced into certain
vulnerable population groups. With future North–South travel projected to increase (59), and
given the possibility that climate change could increase transmission in temperate areas (88), there
is justifiable concern that areas such as Europe, China, Australia, and the United States might be
at risk of further dengue expansion.

At least four separate attempts have been made to predict future change in the global distribu-
tion of dengue; they consider various projected climatic and socioeconomic changes (88). Future
predictions are limited by the availability of future global projections of key drivers of dengue
spread but also by a lack of mechanistic understanding of how these drivers affect the distribu-
tion of dengue (102). The effects of temperature on two important determinants of transmission
[mosquito survival (17, 18) and DENV incubation period (24)] have been well characterized, and
detailed future projections of temperature increases have been assembled for a variety of purposes
(60). As a result, many projections of dengue assume that temperature will be the principle or sole
determinant of future changes. However, these projections do not predict the current distribution
of dengue accurately, omit factors that we know have been important for the historical spread of
dengue (such as spread of Ae. aegypti), and underestimate uncertainty in future projections (88).
There is, therefore, a lack of consensus on the magnitude of the threat of future potential spread
of dengue but some agreement that areas at the fringe of the current distribution of dengue in the
southern United States, the Mediterranean basin, and southern China are likely to be most at risk.

HOW EXPANSION OF AEDES AEGYPTI ENABLED EXPANSION
OF DENGUE

A critical question is how dengue has been able to undertake such a rapid, sustained, and robust
global expansion. In this section, we explore how the spread of DENV’s primary vector species,
Ae. aegypti, enabled and perhaps even drove the expansion of dengue.

Up until approximately 500 years ago, ancestral Ae. aegypti was thought to be a forest-dwelling
sub-Saharan mosquito species that laid its eggs in tree holes and fed on nonhuman mammal hosts
(99). It has been hypothesized that, as human settlement expanded at the forest edge, human water
storage containers provided an ideal alternative larval habitat to avoid the effects of harsh seasonal
droughts (99). With closer proximity to humans came increasing potential for alternative blood
meal sources, and it is likely that the domestication of Ae. aegypti occurred in situ in West Africa
with frequent backcrossing with forest-dwelling species (41).

Genetic evidence points to a monophyletic split between African and New World Ae. aegypti
between 300 and 550 years ago (28, 41, 99, 119). This time coincides with the arrival of the slave-
trading period among Europe, West Africa, and the New World, and it is likely that Ae. aegypti
larvae were transported in drinking water containers between Africa and the New World (99).
It did not take long for Aedes-borne viruses to follow, with the first yellow fever outbreaks in
the New World confirmed in 1648 (85). A transatlantic crossing would have taken 2–4 months,
providing evidence of full domestication of Ae. aegypti by this time given the need to go through
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multiple transmission cycles to maintain YFV during the crossing (141). The modern Ae. aegypti
was then introduced into Asia later (140–230 years ago), either from the NewWorld or via a now-
extinct Mediterranean ancestral form of Ae. aegypti (99). It is possible that many of these early
translocations were soon followed by the kinds of sporadic port-city dengue outbreaks observed
from the eighteenth to the early twentieth century.

A lack of comprehensive historical Ae. aegypti sampling limits our ability to understand how
the mosquito spread after these transcontinental jumps. Resurgence of the mosquito following
the Ae. aegypti eradication program in the Americas presents a unique opportunity to understand
some historical aspects of spread. Reconstructing genetic relationships using microsatellite loci
has shown that reinvasion into Brazil likely occurred both overland and by sea, with northern
populations being closely related to those in neighboring Venezuela, whileAe. aegypti in the urban,
highly connected southeast were more closely related to populations in the Caribbean (68, 90).
Studies such as these have been instrumental in shaping the theory that the rapid spread and
maintenance of geographically disparate Ae. aegypti populations are supported by the utilization
of human trade and transport systems (54, 77). This process has only been directly observed in
a few circumstances, such as the incrimination of river boats in transporting Ae. aegypti outside
Iquitos, Peru (45), but it is likely that a wide variety of transportation methods are involved, with
the probability of establishment being proportional to frequency and timing of introduction, as
well as the size of the introduced population (77). This has resulted in the pattern that we observe
today of frequent gene exchange among cities at the regional and international level even among
smaller, less well-connected areas (42).

Despite frequent genetic mixing at themacro scale, within cities, there is genetic and evenmor-
phological diversity among Ae. aegypti populations in different neighborhoods that result in some
epidemiologically important phenotypes (113, 135).With a limited (typically<250m) flight range
(49) and ample food and egg-laying habitat locally (54), Ae. aegypti populations rarely spread and
can often be limited by simple urban features such as highways (113).Given the diverse range of ur-
ban habitats and different selective pressures imposed by varying insecticide exposures, local-scale
variation in Ae. aegypti populations is perhaps unsurprising. Our ability to detect and understand
these local variations is improving with the first wide-scale releases of modified mosquitoes (21,
94, 95, 113). These novel vector control strategies aim to either replace the wild-type mosquito
population with individuals infected with an intracellular bacterium (Wolbachia) that reduces their
competence for DENV or suppress the population through inviable mating [release of insects car-
rying a dominant lethal (RIDL) or male-onlyWolbachia release].With researchers having control
over the number of these laboratory-reared modified mosquitoes that are released and conduct-
ing intensive follow-up using ovitraps that can differentiate modified from wild-type mosquitoes,
such releases can give important insights into mosquito bionomics. Longitudinal measurements
of population size, relative fitness, mating competitiveness, insecticide resistance, and dispersal
can be obtained through simple dose-response measurements and made at a spatial scale orders of
magnitude larger (4) than existing mark-release-recapture studies (49). The ability to profile key
mosquito bionomics across an entire city adds a powerful tool to characterize the heterogeneity
in Ae. aegypti ecology that has limited existing vector control strategies. Identifying where and
why these interventions do not work as expected can build an understanding of how to combine
different vector control tools and give longer-term insights into the robustness of population re-
placement strategies to reinvasion and adaptation. One early example of this is the discovery of
diverse insecticide resistance profiles within Rio de Janeiro that prevented early establishment of
Wolbachia-infected mosquitoes in some neighborhoods (37).

The unique spatial ecology of Ae. aegypti therefore presents a considerable challenge: needing
tools that are simultaneously tailored to the bionomics of local mosquito populations and robust
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to reintroduction from any one of many possible long-distance sources. Unsurprisingly, this chal-
lenge has not yet been overcome, but it will be essential to solve it in a new era of vector-based
(36, 107) arbovirus control strategies.

WHY IS AEDES AEGYPTI SUCH AN EFFECTIVE VECTOR SPECIES?

Above, we describe and discuss why Ae. aegypti as a species was able to spread across the globe;
however, what makes Ae. aegypti such a successful vector species for DENV and other arboviral
pathogens extends beyond its ability as an invasive species. In this section, we briefly review the
particular bionomics of Ae. aegypti that optimize it for DENV transmission and allow it to evade
current vector control practices (Figure 3). For amore extensive review,we refer readers to Ritchie
(106).
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Schematic of the main factors making Aedes aegypti a highly effective vector for dengue and other arboviruses.
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Ae. aegypti exhibits dynamic, heterogeneous, adaptable, and unpredictable population dynam-
ics. Adult females skip oviposit, i.e., distribute their eggs heterogeneously across many different
water-holding container habitats (26, 103). Container preference balances the need to identify
habitats that contain adequate resources for development while avoiding intraspecific competi-
tion and is therefore often a complex combination of the size and shape of the container, the
cleanliness of the water within it, and the number of existing Ae. aegypti larvae, all of which help to
increase heterogeneity and adaptability (23, 103). Deposited eggs can survive long periods (up to
four months) of desiccation, enabling them to persist through seasonal dry periods and be trans-
ported over long distances (65, 109). Larval populations also exhibit a behavior known as stacking,
where cohorts of larvae will delay progression to pupal stages until sufficient resources become
available (106). When such resources do become available, rapid pupal production follows, and
large numbers of adult mosquitoes can emerge in a short period of time. It is thought that, his-
torically, these were adaptations that enabled Ae. aegypti to survive in areas with long periods of
drought (99), but with human habitation providing year-round habitat, they now ensure that Ae.
aegypti can generate large population sizes in a short amount of time and recover from vector
control efforts using just a small number of small, inaccessible containers.

The feeding habits ofAe. aegypti also contribute to its efficiency as a vector.There is evidence of
both genetic and neural changes underlying female Ae. aegypti preference for human biting (for a
review, see 84) and bloodmeal analysis fromwild-caught specimens suggests that 70–99%of blood
meals originate from human hosts (35, 53, 98, 115, 117). High-protein blood meals are good for
egg production, but to sustain metabolism without the fructose that many other mosquitoes access
through plant feeding requires nearly daily human blood meals, increasing the number of DENV
transmission opportunities (20). Unlike other highly human-adapted mosquito species, such as
Anopheles gambiae (40), Ae. aegypti bite predominantly during daylight hours (53). The elevated
risk of mortality that comes from biting during daylight hours means that feedings are usually
brief but frequent, with multiple feeds required per gonotrophic cycle, sometimes on different
hosts (29, 116).Daytime biting also increases the chance that mosquitoes bite visitors to the house,
which is a key mechanism that allows dengue to spread rapidly through urban areas despite limited
mosquito dispersal (125). Finally, day biting renders one of the most effective vector control tools,
insecticide-treated bed nets (10), ineffectual, and alternatives such as insecticide-treated curtains
(74) or clothing (6) have proven to be inadequate replacements.

Adult female Ae. aegypti also have several features that allow them to increase their longevity,
a parameter that disproportionately amplifies the abundance and vectorial capacity of the species
(16). By residing in dark, humid, and warm areas of households, Ae. aegypti minimize their ex-
posure to variable and harsh environmental conditions, which allows them to survive at times
when and in places where less anthropophilic species would not (114). By living most of their
lives either indoors or in shaded outdoor areas in close proximity to the household when more
open building structures are present (30, 54, 140), female Ae. aegypti only rarely have to undertake
inter-household dispersal. This allows them to minimize their chances of mortality due to harsh
environmental conditions, inability to find resources, and predation. A lack of dispersal would or-
dinarily have the disadvantage of limited variety and quantity of egg-laying containers; however,
so diverse is the urban habitat, and so adaptable is Ae. aegypti as a species, that it is able to lay its
eggs in a wide variety of containers. These can include containers as small as plant pots and as in-
accessible as rain gutters (7), and the diversity of containers presents a barrier to the effectiveness
of community-led clear-up campaigns (138). Finally, Ae. aegypti has developed resistance to many
known classes of insecticides, and efforts to contain the spread of insecticide-resistance genes have
been largely futile given the high long-distance mobility of the species, as discussed above (93).
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ALTERNATIVE VECTOR SPECIES OF DENGUE

While there is a consensus that Ae. aegypti is the primary urban vector of DENV, several alterna-
tive species play a role in transmission in specific geographies and environments. Members of the
Aedes scutellaris group, and in particular Aedes polynesiensis, have been shown to be competent and
abundant on various Pacific island nations (58, 80, 91, 108), including those that see dengue trans-
mission in the absence of Ae. aegypti.Ae. polynesiensis presents a unique vector control challenge in
these settings due to its use of both man-made and natural containers (including sea shells) that
are not reached by traditional community-based clear-up campaigns (19). In the Caribbean,Aedes
mediovittatus may also play a role in maintaining DENV transmission (48), although it rarely oc-
curs separately from Ae. aegypti, making its epidemiological contribution difficult to measure (76).

In contrast, a large amount of research effort has been expended to understand how much
risk Ae. albopictus poses for DENV transmission. This is due to three main factors. First, like Ae.
aegypti,Ae. albopictus has undergone a rapid and extensive recent global expansion that now includes
much of the tropical and temperate world, spreading as far north as the southern United States,
Europe, and China (71). This spread has also been aided by increasing human trade, in particular
shipping of used tires that form an ideal egg-laying habitat for the species (56, 127). Second,
in addition to demonstrating competence for DENV transmission in the laboratory (12), under
certain circumstances, Ae. albopictus has proven capable of sustaining outbreaks in the absence of
Ae. aegypti, as in Guangzhou, China (79). Third,Ae. albopictus is a proven competitor of Ae. aegypti
in peridomestic environments; it largely outcompetes Ae. aegypti larvae and pupae and can also
outcompete Ae. aegypti in adult mating competitiveness (64). Finally, in 2005, Chikungunya virus
underwent a single-point E1-A226V mutation that increased its ability to be transmitted by Ae.
albopictus and resulted in one of the highest-prevalence arboviral outbreaks ever observed (39,
131). Given these concerns, accurately assessing the threat that this vector poses is essential in
predicting whether dengue will continue to expand (69).

There are also several good reasons, reviewed extensively in Lambrechts et al. (73), to think that
the risk posed by Ae. albopictusmay be overestimated.Ae. albopictus, on average, exhibits lower vec-
tor competence for disseminatedDENV infection when compared toAe. aegypti (73).Ae. albopictus
also typically inhabits more rural environments, at least in areas in which the two species coexist,
such as southern Europe and Florida (55, 132), and has a broader host range than the human-only
Ae. aegypti (78). While the two species do compete, they also coexist in many places, particularly
within the native range of Ae. albopictus in Asia (70), and it is not widely known what limits com-
petition between the two species. Finally, and perhaps most critically, the significant outbreaks
of dengue that have occurred in Europe and the United States have been confined to the much
more geographically restricted areas where Ae. aegypti is present.Outbreaks in southern Florida in
2009–2010 (13) and Madeira in 2012 (123) caused hundreds and thousands of cases, respectively.
With the notable exception of the 2001 Hawaii outbreak (122 confirmed cases), outbreaks in Ae.
albopictus–predominating areas have been limited to<20 cases (130).More research is needed out-
side of temperate Europe and the United States, particularly from the species’ native range in Asia
(72), to better understand the threat that Ae. albopictus poses for dengue expansion, especially if
the investments in Ae. albopictus surveillance and research are to be justified and sustained.

THE IMPORTANCE OF MAPPING THE BIONOMICS OF AEDES
AEGYPTI FOR FUTURE RESEARCH PRIORITIES

One open question of global importance remains ascertaining the true burden of dengue in Africa.
Following growing amounts of evidence, particularly from returning infected travelers, it is now
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widely accepted that dengue is present across broad areas of sub-Saharan Africa (3, 15, 62). We
also know that the same kinds of multiserotype, urban, Ae. aegypti–vectored outbreaks do occur,
for example, in Ouagadougou (105) and Luanda (22) in 2013. Despite this, no African countries
routinely report case numbers in official health statistics (15, 138). The leading hypothesis for
the apparent absence of dengue from Africa is ascertainment bias on a vast scale brought about
by clinical misdiagnosis of dengue as one of many other causes of febrile illness present on the
continent and a near-complete lack of laboratory resources for DENV-infection confirmation
(61). Contrastingly, it seems unlikely that DENV transmission intensity in Africa is as high as in
South America or Asia, where millions of cases are reported each year (138). Given that Africa is
the ancestral source of the modern domesticated form of Ae. aegypti (99) and possibly of DENV
as well (52), it is difficult to explain why dengue would have such differing epidemiology in Africa.

Ae. aegypti has been historically characterized into two subspecies, a fully domesticated Ae. ae-
gypti aegypti present largely outside Africa and a more ancestral Ae. aegypti formosus within Africa
that retains many non-domesticated traits (25). It has been shown that Ae. aegypti formosus does
have lower vector competence for DENV (11) and has a lower preference for human blood
meals (83). However, others have argued that dividing Ae. aegypti into subspecies creates a false
dichotomy due to the broad genetic, bionomic, and phenotypic overlap between the suggested
groupings (100). Given the increasing frequent movement of humans and mosquitoes between
Africa and the rest of the world, there is also probably little reason why more domesticated forms
could not return to invade African cities (69, 127).

Understanding whether Africa already has a considerable unrecognized dengue burden and
whether it is vulnerable to dengue re-emergence is of critical importance for a continent that has
made important recent gains against vector-borne diseases (9) and infectious diseases in general
(38). Efforts to improve surveillance and surveillance policy for dengue in Africa are underway
(75, 139), but without thorough entomological studies, we will not know why the epidemiology
of dengue is so different in Africa, nor how risk will change for the continent in the future.

Improving our understanding of the geographic complexity of Ae. aegypti bionomics in Africa
could have global implications for dengue control.With the latest dengue vaccine exhibiting com-
plex efficacy (124), and with the emergence of Zika and Chikungunya as global threats, there has
been a return in emphasis on integrated control strategies that include different combinations
of vector control methods in different places (97, 139). Understanding geographic variation in
mosquito survival, biting behavior, connectedness, and population dynamics is essential for un-
derstanding why new and existing vector control tools work in some places but not others (14).

This understanding will prove pivotal in designing effective and robust national arbovirus
control strategies. While taking such measurements across whole countries or continents seems
a daunting task, the advent of modified mosquito approaches offers the hope of a new era of
intervention-driven entomological sampling and understanding (113). While this may mean that
many of the newest and most promising vector control tools suffer initial local failures (37), the
gain in understanding will ultimately lead to more effective and sustainable dengue control.

CONCLUSION

In this review, we describe how dengue emerged to become a pathogen of global importance and
explain how it was enabled by the domestication and then spread of the Ae. aegypti mosquito.
While we understand many of the fundamental reasons why Ae. aegypti is such an effective disease
vector and why it is so hard to control, complexity and geographic heterogeneity undermine our
efforts to design effective and sustainable control strategies. The arrival of new control methods
and sampling techniques that can measure mosquito bionomics in much greater volumes offers
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the hope of novel insights at the scale needed to control and even reverse the global spread of
dengue.
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