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Abstract

Palm weevils, Rhynchophorus spp., are destructive pests of native, ornamen-
tal, and agricultural palm species. Of the 10 recognized species, two of
the most injurious species, Rhynchophorus ferrugineus and Rhynchophorus pal-
marum, both of which have spread beyond their native range, are the best
studied. Due to its greater global spread and damage to edible date indus-
tries in the Middle East, R. ferrugineus has received more research interest.
Integrated pest management programs utilize traps baited with aggregation
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pheromone, removal of infested palms, and insecticides. However, weevil control is costly, devel-
opment of resistance to insecticides is problematic, and program efficacy can be impaired because
early detection of infestations is difficult. The genome of R. ferrugineus has been sequenced, and
omics research is providing insight into pheromone communication and changes in volatile and
metabolism profiles of weevil-infested palms. We outline how such developments could lead to
new control strategies and early detection tools.

IMPORTANCE, NATIVE DISTRIBUTION, AND INVASION HISTORY
OF PALM WEEVILS

Species of Rhynchophorus Herbst (100) (Coleoptera: Curculionidae: Dryophthorinae), commonly
known as palm weevils, are pests of native, ornamental, and agriculturally important palm species
(Arecales: Arecaceae) because of highly destructive feeding by larvae in meristematic regions of
infested palms. Extensive larval feeding damage to meristem in offshoots or the palm crown fre-
quently results in palm death, and damage permits entry of pathogens and other pest insects that
may also be lethal (63, 79, 142). Rhynchophorus spp. all have native distributions confined to the
tropics and subtropics (200). Palm weevils are naturally occurring in parts of Asia, Sub-Saharan
Africa, Mexico, Central and South America, the Caribbean, and the southeastern United States
(79, 200). In some of these native ranges, weevil larvae, collected from infested palms or commer-
cially farmed, are consumed by humans (101, 150, 181) or used as a protein source in animal feed
(17).

Three species,Rhynchophorus ferrugineus (Olivier),Rhynchophorus vulneratus (Panzer), and Rhyn-
chophorus palmarum (L.), have successfully colonized areas outside of their native ranges (73, 104,
105). The most successful invader, the red palm weevil, R. ferrugineus, first officially recorded
outside of its native Asian range in the Middle East in 1985 (5, 73), was unintentionally moved
via imports of weevil-infested palms (10, 79). Continued export of live palms infested with R.
ferrugineus facilitated an extensive range expansion throughout the Middle East, the Mediter-
ranean, the Canary Islands, the Maghreb region of North Africa, Japan, China, and the Caribbean
(79). In 2022, populations of R. ferrugineus were confirmed from Uruguay. Invasive R. fer-
rugineus populations may threaten conservation of some native palm species (33), UNESCO
World Heritage Sites (203), and ornamental landscape palms (142). Native and invasive R. fer-
rugineus populations can destabilize food and income security derived from economies based
on edible dates (Phoenix dactylifera L.) (10, 79), oil palms (Elaeis spp.) (159), and coconuts (Co-
cos nucifera L.) (63). More than 50% of edible date–producing countries are infested with R.
ferrugineus, in contrast with just 15% of coconut-producing countries (63). The first record of
R. vulneratus outside of its native range, Indonesia, was made in 2010 in California, and it was
later eradicated (105). Range expansion of R. palmarum in Mexico commenced around 2000,
when established populations were detected in Baja California Sur for the first time (77). By
2014, R. palmarum had likely established in southern California. Prior to 2014, populations of
R. palmarum had not been recorded elsewhere in theUnited States (104), despite collection records
of dubious quality purporting collections in what was termed Lower California and in Texas (200).

Invasive R. ferrugineus and R. palmarum populations have established permanent populations
in areas with desert, semiarid, and Mediterranean climates, which suggests that some tropical
palm weevil species have broad ecological amplitudes, possibly due to cold tolerance (121) rather
than desiccation resistance (201), and can thrive in climatically diverse habitats where palms grow.
Conversely, Rhynchophorus cruentatus (F.), a subtropical species with a natural range spanning from
Florida through to the coastal regions of South Carolina and Texas (110), has not expanded its
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range despite extensive movement of plant material from its home range to other parts of the
United States.

SYSTEMATICS OF RHYNCHOPHORUS SPECIES

Taxonomy

Due to extensive variability in size and color, the taxonomy of Rhynchophorus species has been
confused. In 1795, Herbst (100) established the genus Rhynchophorus for 22 species of weevil.
Of these, three species remain valid: R. palmarum, R. ferrugineus, and R. cruentatus. The type
species, R. palmarum, designated by Schönherr (184), was originally described by Linnaeus in
Curculio in 1758 (123). The most comprehensive and detailed taxonomic study of Rhynchophorus
was undertaken by Wattanapongsiri (200), who recognized 10 valid species, including two new
species and eight junior synonyms. Of the 10 species of Rhynchophorus currently recognized, two
(Rhynchophorus distinctus Wattanapongsiri from West Sumatra and Rhynchophorus lobatus Ritsema
from Borneo) are each known from single specimens and are suspected to be variants of R.
vulneratus (157). Rhynchophorus lobatus was not studied by Wattanapongsiri (200), and based on
the original description, he was unable to determine if it was a synonym of R. ferrugineus or
R. vulneratus. Based on the geographical occurrence of the species (173), R. lobatus is probably
a junior synonym of R. vulneratus (157). However, whether unique morphological features,
including the distinctive male genitalia (200) of R. distinctus, represent intraspecific variation
of an aberrant male R. vulneratus (157) or a separate species altogether, as determined by
Wattanapongsiri (200), remains to be confirmed. The remaining eight Rhynchophorus species
include three from Australasia, Rhynchophorus bilineatus (Montrouzier), R. ferrugineus, and
R. vulneratus; three from the New World, R. cruentatus, R. palmarum, and Rhynchophorus ritcheri
Wattanapongsiri; and two from the Afrotropical region, Rhynchophorus phoenicis (F.) and Rhyn-
chophorus quadrangulus Quedenfeldt. A map showing the distributions of Rhynchophorus species in
both native and invaded ranges is shown in Supplemental Figure 1.

Morphology and Identification

The probable nonmonophyly of Rhynchophorus is apparent from efforts to determine diagnostic
characteristics for adult specimens. Many features, such as the dorsal surface and the shape of
the rostrum, the shape of mandibles and the scutellum, and the relative length of the dorsal
margin of the metepimeron, are shared among Dynamis Chevrolat, Omotemnus Chevrolat,
Paratasis Chevrolat, Protocerius Schoenherr, Rhynchodynamis Heller, Rhynchophorinus Günther, and
Rhynchophorus.However, the following characteristics may serve to distinguish Rhynchophorus from
similar-looking genera: The rostrum is usually cylindrical (except in R. quadrangulus), dorsally
densely setose (except in R. cruentatus), and granulate or toothed in the male; the scutellum is
long and broad at the base; the pronotum has a complete basal submarginal sulcus and is usually
without a basal lobe (19, 120, 157); and the spermatheca is distally truncate (200).

In addition to adult Rhynchophorus (176, 200), the egg (11, 200), larva (20, 34, 37, 137, 195,
200), pupa (200), and fibrous cocoon (200) are well documented. Eggs of Rhynchophorus spp. are
indistinguishable among species (200).Differences among the six species for which the larvae have
been described lie mainly in the number, shape, and relative placement of setae on the labrum and
sensory pores on the epipharynx; the location of medial epipharyngeal setae; and the morphology
of dorsal malar setae on the maxillae (94, 195, 200). For the six species of exarate Rhynchophorus
pupae studied, the presence or absence and relative placement of the tuberculate setae on the
epicranium, rostrum, thorax, and abdominal tergites are diagnostic (200).
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Identification of Rhynchophorus species is challenging, particularly for sympatric species of the
Australasian region, which may exhibit high variation in body color and patterns, as well as mor-
phology. Adults of allopatric Rhynchophorus species can be distinguished morphologically with
examination of the armature of the endophallus (157). However, this characteristic is not con-
sistently different between the Australasian R. ferrugineus and R. vulneratus, yet it differentiates
R. bilineatus (157). Additional morphological features used to distinguish adults are primarily on
the head: morphological variability of the shape of the apex of the submentum, subgenal sutures,
and indentation of the mandibles (94, 157). Rhynchophorus males and females are subequal in size,
color, and markings (200). Males have setose profemora and curved rostra with dorsal setae, as
opposed to the straight and glabrous rostra in females, and male R. ferrugineus and R. vulneratus
have a shorter rostrum and less pointed pygidia than females (200).

Morphometrics has been used with limited success to distinguish species (173, 182, 183);
molecular-based methods may be more reliable when used correctly (51, 53, 128, 173, 178).
Species-level identifications can be made using DNA sequences of the mitochondrial cytochrome
c oxidase subunit I (COI) gene and regions of the nuclear ribosomal genes (e.g., the D2 domain
of 28S rRNA and the internal transcribed spacers, e.g., ITS2) (52–54, 173). However, molecu-
lar identification tools must be rigorously validated, and users should proceed with care and an
awareness of potential pitfalls. Simple errors, like failure to trim primers or errors in checking the
direction of sequence reads, or issues related to sampling small geographic populations (51–53, 94,
173) may result in incorrect species identifications, the outcomes of which could have significant
negative implications for research findings and trade and quarantine decision makers.

Phylogeny

Higher-level phylogenetic studies necessary to understand the evolution and natural limits of
Rhynchophorus and relatives are limited (35, 160). Phylogenetic studies of Curculionoidea, includ-
ing Rhynchophorus, which originated 15–35 million years ago (35), have firmly placed the subfamily
Dryophthorinae within Curculionidae and corroborated its monophyly (91, 120, 133–136, 141,
151, 185). Although the subtribe Rhynchophorina is monophyletic, the genus Rhynchophorus may
be paraphyletic with respect to Dynamis and Cyrtotrachelus Schoenherr (35, 160).

Phylogeographic studies have focused mainly on understanding the species limits of
Australasian Rhynchophorus (51–53, 94, 173, 174). Importantly, Rugman-Jones et al. (173)
recognized three species in the region, R. ferrugineus, R. bilineatus, and R. vulneratus, the last
of which was elevated from synonymy with R. ferrugineus (173). Each species has a distinct
geographic distribution (173) (see Supplemental Figure 1 for a species distribution map).

DEVELOPMENTAL BIOLOGY, REARING,
AND POPULATION DYNAMICS

Egg-to-adult development of palm weevils most commonly occurs in palm hosts, and the subset of
genera and species that successfully support development is extensive. At least 40 palm species in
at least 19 genera are known reproductive hosts for R. ferrugineus (79). Similarly, R. palmarum and
R. cruentatus can develop in a diversity of palm species (93, 109, 110). Interestingly, Phoenix ca-
nariensisChabaud is a highly preferred host for R. ferrugineus (85),R. palmarum (109),R. cruentatus
(110), and R. vulneratus (105), none of which has a natural association with this species.

Oligophagy extends to nonpalm hosts such as sugarcane, which supports the development of
R. ferrugineus,R. palmarum, and R. cruentatus (80, 93, 122). Additionally,mango, papaya, and bread-
fruit are recorded as reproductive host plants for R. palmarum (93), and R. cruentatus can be reared
on pineapple fruit (80). Artificial, semiartificial, palm, and nonpalm plant diets can be used to rear
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palm weevils (7, 13, 58, 76, 115, 177). Food type may have significant impacts on larval devel-
opment times and survivorship rates; the number of larval instars; and subsequent adult female
reproductive parameters, which affect demographic rates and drive population growth (7, 12, 41,
114, 177).

Females oviposit eggs into holes that are excavated into suitable host material with mandibles
located at the distal end of the rostrum, and eggs are covered with a rapidly drying secretion (79,
93). Gravid females can lay multiple eggs per day, which can amount to hundreds of eggs laid over
the course of a several-months-long lifetime (93, 114). Daily egg laying and hatching rates decline
as females age (93, 114). Weevil larvae build cocoons from palm fibers within which they pupate
(200). Adult mating is frequent and promiscuous (64, 111, 194). Survivorship and development
rates and population growth parameters are strongly influenced by temperature (41, 45, 122).

Degree-day models constructed from temperature-driven developmental rate data can be used
to estimate the number of weevil generations under varying temperature scenarios (41, 42, 122),
which can enable interpretation of phenology data (45) and development of ecological niche mod-
els to predict spread (73, 78). Use of ecological niche modeling to examine the effects of climate
change on the distribution of R. ferrugineus in China, part of the invaded range, suggests that
the overall distribution of this weevil will not change greatly. However, the suitability of differ-
ent geographic regions within occupied areas could change, resulting in favorable areas becoming
less suitable for R. ferrugineus, while marginal areas may increase in favorability (78). However,
predicted changes in distribution resulting from climate change may be tempered by the cryp-
tic lifestyles of immature and mature Rhynchophorus species, which protect weevils from extreme
climatic conditions, possibly enabling persistence of populations across a wide range of climates
(73).

Population dynamics ofRhynchophorus species can be tracked over time using baited pheromone
traps, which can be used to assess effects of climate, location, host palm species, trap-type efficacy,
and time of year on weevil densities (2, 38, 131, 161, 180, 202). Weevil density time series data
derived from trap capture data can be correlated with palm mortality rates (110) and used to
determine impacts of multiyear management programs (102) and to evaluate spatiotemporal fac-
tors influencing range expansion patterns following invasions into new areas (85) or infestation
patterns in commercial palm plantations (49).

FLIGHT DISPERSAL CAPABILITIES

In the laboratory, flight mill studies indicate that individual weevils are capable of sustained flight
over a 12–24 h period (28, 103, 106, 107) and that multiple flights over the course of a lifetime
are possible (32, 108). Flight mill assays, regardless of Rhynchophorus species tested, indicate that
test weevils exhibit a range of flight distances (zero to tens of kilometers flown), with a small
proportion (<5%) of weevils, so-called superdispersers, being capable of flying >100 km in a
24 h period (103, 107). Cumulative lifetime distances flown by R. ferrugineus and R. palmarum can
exceed 300 and 750 km, respectively (32, 108). Flight distances are not significantly correlated with
weevil size, weight, sex, or mating status for R. ferrugineus (28, 106) or R. palmarum (107), and flight
distances tend to decrease with increasing weevil age and number of repeat flights (32, 108). Flight
data can be analyzed to determine the underlying probability distribution of distances flown. The
tails of probability distributions (i.e., kurtosis) have important implications for dispersion models
investigating rates and patterns of spread and for the development of monitoring andmanagement
plans (103, 106, 108). Flight mill data are generated under highly artificial conditions and should
be viewed with caution, as it is unknown if Rhynchophorus spp. exhibit these types of flight activities
outside of the laboratory.
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Field studies in the invaded and native ranges of R. ferrugineus, R. vulneratus, R. palmarum,
and R. cruentatus indicate that flight is predominantly diurnal (68, 93, 202), and flight activity is
influenced by temperature, humidity, solar radiation, and wind speed (27, 68, 201). Mark-release-
recapture studies indicate that R. ferrugineus can be recaptured up to 0.5–7 km from release sites
after 3–7 days (2, 27).Mark-release-recapture data need to be interpreted carefully, as flights from
release points to traps where weevils are collected are probably not linear, and distances flown
are likely underestimated. Additionally, traps close to release points tend to catch more released
weevils, and individuals that may have been capable of longer dispersal distances are inadvertently
trapped. In addition, as distances from release points increase, the number of traps deployed per
unit area decreases, which reduces the likelihood of capturing weevils, potentially resulting in
underestimation of dispersal capabilities (204).

SYMBIONTS

Microbiome and Endosymbionts

Palm weevils host a diverse assemblage of protozoan, fungal, viral, and bacterial species, the
majority of which have been documented in R. ferrugineus (18, 29, 113, 145, 152, 191). A
γ-proteobacterial endosymbiont lineage, Nardonella, an intracellular obligate specialist, is found
in symbiotic organs called bacteriomes in R. ferrugineus. Nardonella provisions tyrosine, a key
component for cuticle formation and hardening in weevils (18). Interestingly, Wolbachia, a sex-
ratio-distorting rickettsia-like organism commonly associated with weevils (147), has not been
isolated from Rhynchophorus spp. (15, 29).Gut microbiome studies of larval R. ferrugineus are domi-
nated bymetagenomes of proteobacteria. At least seven bacterial species have been identified from
R. ferrugineus gut microbiome studies, of which two dominate and, together with one yeast isolate,
exhibit cellulolytic and probiotic functions (23, 113, 145, 152, 153, 191).These endosymbiontsmay
contribute to the digestion of palm material or have immune-related functions for maintaining
homeostasis by mediating the production of antimicrobial peptides targeting pathogens (92, 145,
152, 154).

A complete understanding of the contribution of microbial endosymbionts to weevil phys-
iology, reproduction, and detoxification of plant secondary metabolites in palm weevils, and
R. ferrugineus in particular, remains elusive. Improved understanding of the identities and func-
tions of microbial endosymbionts may provide insights into coevolutionary relationships with
palm weevils and processes affecting weevil interactions with palm hosts.

Macrosymbionts

Phoretic mite associations with dryophthorine weevils are at least 19 million years old (39). In
native and invaded ranges, phoretic mites have been recorded in association with adults of all
known species of Rhynchophorus (200), and they tend to be primarily species belonging to the
infraorder Uropodina (Acari: Mesostigmata) (86).

At least 30 mite species representing at least 23 genera in approximately 14 families have
been recorded from R. ferrugineus, R. palmarum, and R. phoenicis pupae and adults in 12 countries
(Supplemental Table 1). Limited mite surveys have been conducted in weevil native ranges (48,
118, 129, 172). The majority of mite faunistic studies have examined invasive R. ferrugineus popu-
lations, primarily in the Middle East and the Mediterranean Basin (3, 9, 60, 71, 98, 117, 163, 186).
A commonly encountered phoretic mite, Centrouropoda almerodai Hiramatsu and Hirschmann,
lays eggs on rotting palm fibers. Deutonymphs associate themselves with prepupal larvae and are
enclosed within cocoons made by weevil larvae. Prior to adult weevil emergence, deutonymphs
cluster onto teneral adults and attach themselves, most commonly under the elytra, with an anal
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pedicel, which remains under the elytra after the deutonymphs abandon their hosts (163). Dis-
persing weevils introduce mites into new palms. In contrast to C. almerodai, Fuscuropoda marginata
(Koch) (often listed as Uroobovella marginata) preferentially attaches to exposed surfaces of the
sternum, pygidium, head, and legs (86); thus, attachment site may be a good indicator of mite
species (163). Adult Uropodina are primarily saprophytic and seldom form phoretic associations
with weevils (4).

Centrouropoda almerodai and Centrouropoda rhynchophorus (El-Bishlawy and Allam) have delete-
rious impacts on the fitness (e.g., reduced life span) of adult weevils, possibly due to feeding on
pupae, indicating that these mites may function as facultative parasites (4, 138). Invasive Rhyn-
chophorus spp. can introduce new mite species into areas where they did not previously exist.
Consequently, phoretic mites may act as biomarkers that provide insight into invasion pathways,
patterns of spread, and temporal changes in mite species compositions over the course of an
invasion (86).

Numerous nematode species associated with R. palmarum,R. cruentatus, and R. ferrugineus have
been identified. Individual weevils can simultaneously harbor more than one nematode genus, and
the ecological niche occupied by weevils influences the nematode community (40).Generally, little
is known about the biological (e.g., parasitic effects) and ecological (e.g., commensal saprobionts)
relationships that nematodes have with palm weevils. Notable exceptions are the effects that en-
tomopathogenic nematodes used as biological control agents have on weevil survivorship and the
well-documented association of R. palmarum with the red ring nematode (RRN), Bursaphelencus
cocophilus Baujard (Nematoda: Aphelenchoididae), the causative agent of a lethal palm malady, red
ring disease (RRD). RRN, an obligate palm specialist, is restricted to parts of Mexico, Central and
South America, and the Caribbean. Annual mortality rates of approximately 15% attributable to
RRN in coconut and oil palm plantations cause significant economic impacts (81). RRN is ac-
quired by weevil larvae feeding on infested palm material, and heavy nematode loads significantly
reduce adult weevil size, fat body content, and fecundity (88). RRN cannot multiply within weevil
hosts; approximately 16% of female R. palmarum vector RRN; and during oviposition, infective
third-stage dauer juveniles move from the hemocoel via the ovipositor into oviposition wounds
in palms (88, 116). As few as 10–50 infective dauer juveniles inoculated into oviposition wounds
can cause RRD (87). Weevils are attracted to palms infested with RRN, further intensifying rates
of attack, RRN acquisition and spread, and subsequent RRD incidence (82). It is possible that
all Rhynchophorus spp. can vector RRN, and the potential destructiveness of RRD will be greatly
enhanced if additional species of Rhynchophorus come into contact with infected palms and acquire
RRN (81). This situation likely exists now in the Caribbean and Uruguay, where R. ferrugineus,
R. palmarum, and B. cocophilus are sympatric; this possibility warrants research attention.

WEEVIL AND HOST PALM OMICS

Palm weevil and host palm omics (e.g., genomics, metabolomics, phenomics, proteomics, tran-
scriptomics, and volatilomics) are emerging new research areas with potential applications for
management (Figure 1).

Transcriptomics

Palm weevil research on transcriptomics commenced in 2013 with the release of the first large-
scale transcriptome data set for R. ferrugineus (199). Subsequently, the annotation of numerous
genes involved in important biological functions, such as chemoreception, detoxification, diges-
tion, reproduction, neurobiology, and immunity, has been achieved (21, 23, 25, 61, 168, 199,
205–207). Importantly, peripheral chemosensory gene families have been identified and coupled
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Proteomics
Palm and weevil proteome
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Transcriptomics
Expression pro�ling;

identi�cation of genetic markers;
and elucidation of functions

of miRNA, siRNA, and RNAi with
potential control applications

Metabolomics
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Metabolite and volatilome pro�ling
and diversity studies on weevil-

infested palms allows identi�cation of
biomarkers and gene expression

a�ecting antioxidative defense responses

Figure 1

An overview of the potential integration of omics research for management of palm weevils. Data on weevil
and palm genomics and transcriptomes may help with the development of gene editing of palms and
potentially weevils and permits investigation of RNAi for the production of potential biopesticides targeting
weevils. Metabolomics and volatilomics research can identify biomarkers produced by palms in response to
weevil attack that may be of use for early detection of weevil infestations. Proteomics provides insight into
production of defensive secondary metabolites by palms that may have use in developing next-generation
biopesticides. Phenomics exploits phenotypic and haplotype variations that are used to elucidate invasion
histories and pathways and to identify insecticide-resistant populations and mechanisms underlying
resistance development. When taken together, information from omics research may provide new avenues
for detecting, monitoring, and managing palm weevils. Abbreviations: miRNA, microRNA; RNAi, RNA
interference; siRNA, small interfering RNA.

with functional studies (22, 24, 112, 187). This has enabled the deciphering of the molecular
basis of R. ferrugineus chemoreception, especially pheromone communication (22, 24, 25, 187).
Functional genomics studies include loss-of-function experiments with RNA interference (RNAi),
which can be used to induce disruption of pheromone communication (187) by impairing the
function of odorant-binding proteins and odorant receptors in antennae (22, 24) (Figure 2a–d).
Furthermore, work using the heterologous expression for functional characterization of odorant
receptors identified a receptor of a nonhost volatile that repels palm weevils (112), as well as a
pheromone receptor that responded selectively to ferrugineol and ferrugineone, the two com-
ponents of the R. ferrugineus male-produced aggregation pheromone (24). Practical applications
of this latter finding could result in the development of biosensors for the early detection of
R. ferrugineus infestations (Figure 2e).
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Figure 2 (Figure appears on preceding page)

(a,b) Graphical representation of the antennal sensilla and (c) peripheral odor detection of the red palm
weevil, Rhynchophorus ferrugineus. (d) Based on results from functional genomics studies, the putative binding
of the odorant binding protein (OBP) to one component of the aggregation pheromone, ferrugineol, results
in transportation to receptors and subsequent interaction of ligands with the odorant receptor (OR) and the
odorant coreceptor (Orco) proteins housed within the odorant receptor neuron (ORN) membrane.
(e) Application of findings from panels a–d could result in the development of biosensors based on the
function of the OBP and OR that respond to interaction with a ligand(s), ferrugineol and/or ferrugineone,
the two components of the R. ferrugineus aggregation pheromone. Detection of palm weevil aggregation
pheromone by the biosensor results in the transmission of an alert via cellular networks to an app on a smart
device warning of a potential weevil infestation. This field detection method using palm weevil aggregation
pheromones would be species specific and potentially highly sensitive and amenable to automation.

Transcriptome profiling and insecticide-induction analyses have identified a family of detox-
ifying enzymes, cytochrome P450–dependent monooxygenases (P450s), and identified two key
P450s that might play a role in developing tolerance to neonicotinoid insecticides (21). This
study demonstrated through RNAi that upregulation of P450 gene expression has evolved as an
adaptation to insecticide stress arising from exposure to systemic insecticides like imidacloprid
(21). Similarly, RNAi knockdown of the antioxidant enzyme catalase in R. ferrugineus larvae sig-
nificantly increased larval mortality due to increased susceptibility to oxidative stress (6). These
types of RNAi proof-of-principle studies demonstrating successful knockdown of target genes
may guide development of novel methods for palm weevil management (6, 21, 22, 24, 169, 187).

Genomics

There are several online resources for the R. ferrugineus genome (see, e.g., https://bipaa.
genouest.org/is/coleoptera/) (46, 99, 146). The two published R. ferrugineus genomes (i.e., the
complete set of DNA) resulted in estimated genome sizes that differed: 590 Mb (46) and 720 Mb
(99), respectively. This outcome is likely due to the number of individuals (single versus multiple
males and females) and assembly method (nonhybrid versus hybrid) used to construct the genome
sequences.The R. ferrugineus genome analysis revealed the duplication of gene families (i.e., genes
with chemosensory, detoxification of secondary metabolites, insecticide resistance, digestion, and
immunity functions) essential for weevil adaptation to palm trees (46, 99).

Volatilomics, Metabolomics, and Proteomics of Weevil-Infested Palms

Volatilomics, metabolomics, and proteomics have been used to generate information on palm
responses to weevil infestations (83, 84, 126, 166, 167). The volatilome diversity of economically
important palms such as date palm, coconut, and oil palm is well documented (47, 70, 74, 188) and
provides insights into metabolic processes that can be indicative of internal physiological changes
(e.g., defense responses) due to weevil infestations (30). Volatilomics identified airborne organic
compounds (e.g., esters, acids, alcohols, and ketones) released by damaged palms (5), in contrast
to the terpene hydrocarbons associated with healthy plant tissue (192).

Transcriptome analyses showed higher transcript abundances for fatty acid, tryptophan, and
phenylpropanoid metabolism in weevil-infested palms (83). Weevil infestations induce a repro-
gramming of carbohydrate and organic acid metabolism and selective upregulation of genes
involved in synthesis of secondary metabolites, especially terpenoids and alkaloids (84), which
have larvicidal and growth-inhibiting activities (16).

Proteomics studies have identified 32 differentially expressed peptides related to plant stress,
defense compounds, and protein degradation in association with R. ferrugineus infestations in date
palm (166). Studies investigating R. ferrugineus infestation of coconut and date palm reported an
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increase in enzymatic antioxidant activity and antioxidant production, suggesting induced activa-
tion of host antioxidative defense responses that increase weevil susceptibility to oxidative stresses
(132). Proteomic analyses on oil palm artificially infested with R. ferrugineus showed abscisic acid
hormone signaling to be the primary driver of responses to insect herbivory (97).

Signature compounds identified from volatilomics, transcriptomics, and proteomics research
could enable early detection programs if rapid, accurate, and cost-effective technologies amenable
to large-scale field use can be developed.

Phenomics and Invasion Pathways of Rhynchophorus ferrugineus

Analyses of the mitochondrial COI gene from R. ferrugineus populations throughout native
and invaded ranges identified weevil lineages with strong geographically isolated and mixed
haplotypes (54, 75, 173, 174, 190, 198). These studies suggest that the native range of R. fer-
rugineus is likely southeast Asia, from where it was introduced into Middle Eastern countries
through Pakistan. A westward expansion out of India then followed (173). Invasive R. ferrugineus
populations in the Mediterranean Basin, characterized by the H8 haplotype (54), may have been
introduced fromChina, where this weevil is also invasive. COI analyses indicate that R. ferrugineus
populations in the Mediterranean Basin are closely related to weevils that inhabit parts of the
native range in Thailand and Malaysia and invaded regions in southern China (36, 173, 198). The
invasive H8 haplotype is closely related to haplotypes (H17–H36) from Cambodia, Vietnam, and
the Philippines (173). However, conclusive information on R. ferrugineus genetic variations in
southeast Asian countries needed to confirm the origins of invasive populations remains elusive
due to insufficient sampling in the native range.

PALM WEEVIL MANAGEMENT

Economic Impacts

Analyses of the economic impacts of Rhynchophorus spp. are limited. Weevil-induced mortality of
palms results in economic losses due to yield reductions and costs to remove infested or dead
palms and subsequent control expenditures associated with monitoring, trapping, and insecticide
treatments. Additional expenses include replanting; decreased trade due to quarantine restric-
tions; adverse environmental impacts due to regular chemical treatments; and aesthetic damage
and property value reductions in urban, recreational, and heritage landscapes due to mortality of
ornamental palms, especially P. canariensis (142, 159; https://gd.eppo.int/taxon/RHYCFE).

Across the six nations that comprise the Gulf Region of the Middle East, annual losses due to
removal of R. ferrugineus–infested date palms were estimated to range from US$5.18 million
to US$25.92 million at 1% and 5% infestation levels, respectively (55). In Egypt, total losses due
to R. ferrugineus infestations of date palms from 1992 to 2019 were estimated to be US$400 mil-
lion, with an estimated total annual management cost of approximately US$20 million (1). Losses
incurred by ornamental palm growers in Veracruz,Mexico due to R. palmarum–RRN infestations
are estimated at US$6,000 per hectare (162). Similarly, R. palmarum–RRN infestations can cost
oil palm producers in Costa Rica millions of US dollars per year (159). Furthermore, replacement
costs for transplanting mature P. canariensis to replace palms killed by R. palmarum in California
may exceed US$5,000 per palm (104).

Economic Thresholds

Economic threshold levels define the relationship between pest densities and impacts on yield,
which drives economics-based decisions on whether control measures are warranted (189).
Economic thresholds are not well established for palm weevils. Because palms are high-value
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agricultural and ornamental crops, and palm weevil infestations are lethal to palms, pest toler-
ance levels are very low. An economic threshold of a 1% infestation rate for R. ferrugineus is used
in commercial date gardens (63), and use of statistically derived sampling plans is recommended
to assess infestation levels to determine if control is needed (65).

Early Detection

Early detection of infested palms, combined with monitoring of adult weevils using pheromone
traps, is key to successful palm weevil management (69; https://gd.eppo.int/taxon/RHYCFE,
https://gd.eppo.int/taxon/RHYCPA). Although visual inspection to detect palm weevil infes-
tation is difficult, it is recommended (10). Technologies for use in early detection include sniffer
dogs, visual inspection of palm crowns by cutting observation windows or use of drones with
high-resolution optics, acoustic detection, detection of key volatile chemicals and metabolomics
signatures, use of infrared cameras, and thermal and satellite imaging (26, 50, 130, 156, 165, 170).

Cultural Practices

Decreasing planting density, precision irrigation methods, and use of weevil-free planting mate-
rials are important practices that affect success of palm weevil management (69, 179). Build-up
of humidity within palm plantations because of closely spaced palms that are flood irrigated is fa-
vorable for the development of R. ferrugineus populations. Increased planting distances and use of
precision watering systems can reduce environmental suitability to R. ferrugineus (179). Injury to
palm tissue due to frond and offshoot removal releases volatiles that attract gravid females. Prun-
ing during winter when weevil activity is low can mitigate risks associated with frond removal (41).
Sanitation of infested material, by rogueing and destruction of infested palm trunks and fronds
via shredding, chipping, or burial, are important management tactics that kill larvae, pupae, and
adult weevils (69; https://gd.eppo.int/taxon/RHYCPA). Destruction of infested trunk material
via shredding is costly. An alternative approach is to cut infested trunk parts into logs and treat
with insecticides to kill emerging weevils or adults attracted to cut material (72). Interestingly,
diversity and density of palms in ornamental nurseries and frequency of fertilizer and insecticide
use affect R. palmarum phenotypes, potentially increasing pestiferousness (162).

Biological Control

More than 50 species of natural enemy (viruses, fungi, bacteria, nematodes, predators, and par-
asitoids) are known to attack Rhynchophorus palm weevils; of these, the natural enemy species
associated with R. ferrugineus in native and invaded ranges are best documented (139, 155).
The parasitoids Billaea menezesi (Guimarães) and Billaea rhynchophorae (Blanchard) (Diptera:
Tachinidae: Dexiini) (127, 148, 149) are potentially important natural enemies associated with
R. palmarum. Parasitism rates of up to 72% have been recorded for B. menezesi (148), while
year-round parasitism by B. rhynchophorae averages 40% (149). In Spain, use of commercially avail-
able entomopathogenic nematodes, Steinernema sp., alone and in combination with neonicotinoid
insecticides (43) and entomopathogenic fungi (44, 90) has demonstrated efficacy against R. ferrug-
ineus. However, economically feasible management with natural enemies has not been achieved at
a significant scale in the field, and concealed life stages increase the difficulty associated with this
approach (10, 139, 155).

Insecticides

Insecticides are widely used to control palm weevils and are applied as sprays or paints to stipes,
frond bases, and trunks; as soil and trunk injections; or as soil or crown drenches (42, 63, 124,
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142). Insecticides can be applied prophylactically to protect uninfested palms from weevils or
used curatively to kill weevils during the early stages of infestation. These procedures need to be
carried out with caution and by trained professionals or under technical supervision (69). Overuse
of insecticides can result in resistance development and unacceptable residue levels in edible palm
crops (56, 102, 197).

Male-Produced Aggregation Pheromones and Mass Trapping

Male-produced aggregation pheromones are known for seven Rhynchophorus spp. and are critical
components of trapping programs used for detecting, monitoring, and controlling populations of
pest weevils, especially R. ferrugineus and R. palmarum (95, 96, 158, 159, 171). Interestingly, the
alcohol and ketone components of the aggregation pheromone are the same for R. ferrugineus
and R. vulneratus (31, 159). However, a minor male-specific compound, 3-methyloctan-4-ol, is
produced only by R. vulneratus and differentiates this species from R. ferrugineus (31).

Aggregation pheromones attract both males and females, but females are attracted at signif-
icantly higher rates (102). Traps loaded with pheromone and baited with fermenting fruit are
widely used to mass trap adult weevils that threaten date, coconut, and oil palm plantations (63,
96, 159).Windowed bucket traps are commonly used, but retention efficacy is low, approximately
30% (144). In comparison, cone-shaped ground traps are more efficient and retain >90% of wee-
vils attracted to them (144). Olfactometer studies indicate that only 35% of R. ferrugineus adults
are attracted to the pheromone alone, and attraction declines with mating and increasing weevil
age (57). Therefore, pheromones must be combined with other volatile stimuli, like fermenting
fruit bait, to enhance attractiveness (82, 143, 159, 196). Esters of ethyl acetate, ethyl propionate
blends, acetoin, and ethanol improve captures in food-baited pheromone traps (89, 175, 193).

Trap deployment rates in mass-trapping programs for population-level suppression of R. fer-
rugineus vary from 1 to 10 traps per hectare (66). However, regardless of program efficacy,
maintaining trap densities greater than one trap per hectare in date gardens is not sustainable,
as costs associated with biweekly servicing to replace food bait and record weevil capture data
are not economical. In contrast, R. palmarum–RRN in oil palm plantations in Costa Rica can be
managed effectively with 1 trap per 5 hectares (159). Smart traps, which exploit the Internet of
Things (IoT), make it possible to automate monitoring, and wireless data transmission enables
data visualization in near real time using smart devices (14, 164).

Sterile Insect Technique

Work on the sterile insect technique (SIT) for palm weevil control has focused on R. ferrugineus.
Irradiation doses between 15 and 80 Gy cause a significant drop in sperm quality and egg hatch
rates (8, 119, 140). Field application of the SIT against R. ferrugineus in India, where seven releases
totaling >7,700 sterile R. ferrugineus males on an isolated island with a 2-ha coconut plantation,
reportedly reduced population densities (119). An estimated ratio of 10 sterile males to 1 wild
male was needed to reduce population densities. The expense of this approach dictates use only
when weevil populations are low; thus, the SIT could be viable following effective trapping and
insecticide treatment programs (119). Sterile R. ferrugineus males can be used to vector Beauveria
bassiana (Balsamo-Crivelli), an entomopathogenic fungus, to weevil-infested palms (125).

Push-Pull and Attract and Kill

Semiochemicals that act as repellents (e.g., tumerone) have been identified that, in combination
with attractants, such as aggregation pheromones, could be used to develop push-pull strategies
in which repellents push weevils from areas of concern, and baited pheromone traps generate the
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pull to lure weevils away from the area of concern. When used in combination, these chemicals
provide control (67). Another way to exploit the chemical ecology of palm weevils is through
attract and kill techniques, where an inert matrix infused with an aggregation pheromone attracts
weevils, and upon interaction with the matrix, they obtain a lethal dose of a contact insecticide
(59).

Population Eradication

Eradication of invasive palm weevil populations is possible if, at the time of program inception,
populations are small and isolated; sensitive monitoring tools (i.e., pheromones) are available to
detect very low-density populations; and there is sustained public, political, and regulatory support
for the program. Rhynchophorus vulneratus, possibly originating from Bali, Indonesia (173), was
detected in California in 2010 and declared eradicated in 2015 (105). Similarly, R. ferrugineus has
been eradicated from the Canary Islands (62).

Combining Efficacious Management Tactics into Integrated
Pest Management Programs

Combining different tactics, such as strict quarantinemeasures to preventmovement and propaga-
tion of infested planting material, good sanitation and orchard management practices, monitoring
and early detection of infested palms, trapping, and judicious use of insecticides, forms the core
of sustainable palm weevil management programs. Comprehensive management programs need
to be applied area wide, and use of geographic information systems–based spatial and temporal
maps and databases can assist with implementation, coordination among program participants,
and long-term application of control methods (64). Various combinations of these tactics have
been integrated to successfully manage R. palmarum and R. ferrugineus (62, 102, 158, 159, 196).

FUTURE CHALLENGES AND OPPORTUNITIES

Technologies that are accurate, simple to operate, and amenable to automation; have long field
durability; and are cheap enough for massive field deployments are needed for early detection
of weevil infestations of palms and for population monitoring. Advances in omics and electronic
sensing may potentially lead to the development of new tools for early detection. One possibility
could be the deployment of arrays of electronic noses or biosensors in the crowns of individ-
ual date palms in commercial date gardens that detect species-specific aggregation pheromones.
Pheromone detections in GPS-tagged palms reported via IoT could provide expeditious and pre-
cise tree-specific information on possible new infestations that could then be managed rapidly.
IoT is being similarly applied to weevil monitoring through the use of smart traps, which could
be improved with the development of highly attractive dry or bait-less traps. Proactive surveillance
programs using new technologies in areas vulnerable to invasion would enable rapid detection and
containment, making eradication of incipient populations more likely and control in commercial
production areas more efficacious. Identification of additional odorant ligands may help identify
new attractants or repellents with potential use as behavioral disruptors.

Classical and “new association” biological control of invasive Rhynchophorus weevils with ta-
chinid flies, Billaea spp., about which very little is known, deserves significant research attention.
Foreign exploration in the hotter, drier interior regions of Bahia State in Brazil may result in the
discovery of flies adapted to environmental conditions that typify regions (i.e., the Middle East,
Mediterranean, andNorth Africa) invaded by R. ferrugineus, a potential new association host. Sim-
ilarly, Billaea spp. could have use in a classical biological control program targeting R. palmarum
in California. Phylogenomic analyses, focusing on comprehensive taxon sampling of all species
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and relevant populations, are needed to bring a stable classification and natural limits to species
and genera of Dryophthorinae. Findings from phylogenomics may result in improved predictions
identifying future pest species and natural enemy associations with potential for use in biological
control programs targeting pest Rhynchophorus species. Additional novel controls for palm wee-
vils may result from ongoing research into the development of RNAi-based biopesticides. Gene
editing of commercial and ornamental palm species could produce altered metabolomes and pro-
teomes that increase resistance or tolerance to weevil and RRN infestations or altered volatilomes
that make airborne semiochemicals produced by palms less attractive to adult weevils. As palm
weevils continue to invade and potentially vector destructive palm pathogenic nematodes into
new regions, demand for development and application of new management technologies will in-
crease. Fortunately, significant innovative work, as outlined in this review, is already underway and
may be utilized in the near future.
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108. Hoddle MS, Hoddle CD, Milosavljević I. 2021. Quantification of the life time flight capabilities of the
South American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae). Insects 12:126

109. Hoddle MS, Johansen G, Kast E, Lopez AM, Shaw MM. 2021. Four new palm species records for
Rhynchophorus palmarum (Coleoptera: Curculionidae) in California. Fla. Entomol. 104:143–44

474 Hoddle et al.



EN69_Art23_Hoddle ARjats.cls December 10, 2023 17:8

110. Hunsberger AGB, Giblin-Davis RM, Weissling TJ. 2000. Symptoms and population dynamics of
Rhynchophorus cruentatus (Coleoptera: Curculionidae) in Canary Island date palms. Fla. Entomol.
83:290–303

111. Inghilesi AF, Mazza G, Cervo R, Cini A. 2015. A network of sex and competition: the promiscuous
mating system of an invasive weevil. Curr. Zool. 61:85–97

112. Ji T, Xu Z, Jia Q, Wang G, Hou Y. 2021. Non-palm plant volatile alpha-pinene is detected by
antenna-biased expressed odorant receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera:
Curculionidae). Front. Physiol. 12:701545

113. Jia S, Zhang X, Zhang G, Yin A, Zhang S, et al. 2013. Seasonally variable intestinal metagenomes of the
red palm weevil (Rhynchophorus ferrugineus). Environ. Microbiol. 15:3020–29

114. Ju R-T, Wang F, Wan F-H, Li B. 2011. Effects of host plants on development and reproduction of
Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). J. Pest Sci. 84:33–39

115. Kaakeh W. 2005. Longevity, fecundity, and fertility of the red palm weevil, Rhynchophorus ferrugineus
Olivier (Coleoptera: Curculionidae) on natural and artificial diets. Emir. J. Agric. Sci. 17:23–33

116. Kanzaki N. 2016. Pine wilt and red ring, lethal plant diseases caused by insect-mediated Bursaphelenchus
nematodes. In Vector Mediated Transmission of Plant Pathogens, ed. JK Brown, pp. 87–107. St. Paul, MN:
Am. Phytopathol. Soc.

117. Kontschán J,Mazza G,Nannelli R, Roversi PF. 2014.The true identity of the red palm weevil associated
Uropodina mite, Centrouropoda almerodaiHiramatsu and Hirschmann, 1992. Redia 97:83–88

118. Kontschán J, Tambe JT, Riolo P. 2012. Uroobovella phoenicicola sp. n. a new Uropodina mite (Acari:
Megostigmata) associated with the African palm weevil (Rhynchophorus phoenicis Fabricius, 1801) from
Cameroon. Afr. Invertebr. 53:593–600

119. Krishnakumar R, Maheshwari P. 2007. Assessment of the sterile insect technique to manage red palm
weevil Rhynchophorus ferrugineus in coconut. In Area-Wide Control of Insect Pests from Research to Field
Implementation, ed. MJB Vreysen, AS Robinson, J Hendrichs, pp. 475–85. Berlin: Springer

120. Kuschel G. 1995. A phylogenetic classification of the Curculionoidea to Families and Subfamilies.Mem.
Entomol. Soc. Wash. 14:5–33

121. León-Qunito T, Serna A. 2022. Cryoprotective response as part of the adaptive strategy of the red palm
weevil, Rhynchophorus ferrugineus, against low temperatures. Insects 13:134

122. Li L,QinW-Q,MaZ-L,YanW,Huang S-C, et al. 2010.Effect of temperature on the population growth
of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) on sugarcane. Environ. Entomol. 39:999–1003

123. Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum
caracteribus, differentiis, synonymis. Tomus I. Edition decima, reformata. Stockholm: Laurentii Salvii

124. Llácer E, Dembilio Ó, Jacas JA. 2010. Evaluation of the efficacy of an insecticidal paint based on
chlorpyrifos and pyriproxyfen in a micro encapsulated formulation against Rhynchophorus ferrugineus
(Coleoptera: Curculionidae). J. Econ. Entomol. 103:402–8

125. Llácer E, Santiago-Álvarez C, Jacas JA. 2013. Could sterile males be used to vector a microbiological
control agent? The case of Rhynchophorus ferrugineus and Beauveria bassiana. Bull. Entomol. Res. 103:241–
50

126. Lo Verde G, Fileccia V, Lo Bue P, Peri E, Colazza S, Martinelli F. 2019. Members of the WRKY gene
family are upregulated in canary palms attacked by red palm weevil. Arthropod-Plant Interact. 13:109–16

127. Löhr B,Negrisoli A,Molina JP. 2019.Billaea rhynchophorae, a palmweevil parasitoid with global potential.
Arab. J. Plant Prot. 37:101–8

128. Löhr B, Vásquez-Ordoñez AA, Becerra Lopez-Lavalle LA. 2015. Rhynchophorus palmarum in disguise:
undescribed polymorphism in the “black” palm weevil. PLOS ONE 10:e0143210

129. Lokela JCM,LeGofGJ,Kayisu K,Hance T. 2021.Phoretic mites associated with Rhynchophorus phoenicis
Fabricius (1880) (Coleoptera: Curculionidae) in the Kisangani region,D.R.Congo.Acarologia 61:291–96

130. Mankin RW. 2011. Recent developments in the use of acoustic sensors and signal processing tools to
target early infestations of red palm weevil in agricultural environments. Fla. Entomol. 94:761–65

131. ManzoorM,Ahmad JN,Ahmad SJN,Naqvi SA, ud-dinUmarU, et al. 2020.Population dynamics, abun-
dance, and infestation of the red palmweevil,Rhynchophorus ferrugineus (Olivier) in different geographical
regions of date palm in Pakistan. Pak. J. Agric. Sci. 57:381–91

www.annualreviews.org • Palm Weevil Biology and Management 475



EN69_Art23_Hoddle ARjats.cls December 10, 2023 17:8

132. Manzoor M, Yang L, Wu S, El-Shafie H, Haider MS, et al. 2022. Feeding preference of Rhynchophorus
ferrugineus (Oliver) (Coleoptera: Curculionidae) on different date palm cultivars and host biochemical
responses to its infestation. Bull. Entomol. Res. 112:494–501

133. Marvaldi AE. 1997. Higher level phylogeny of Curculionidae (Coleoptera: Curculionoidea) based
mainly on larval characters, with special reference to broad-nosed weevils. Cladistics 13:285–312

134. Marvaldi AE, Duckett CN, Kjer KM, Gillespie JJ. 2009. Structural alignment of 18S and 28S
rDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and
Chrysomeloidea). Zool. Scr. 38:63–77

135. Marvaldi AE, Morrone JJ. 2000. Phylogenetic systematics of weevils (Coleoptera: Curculionoidea): a
reappraisal based on larval and adult morphology. Insect Syst. Evol. 31:43–58

136. Marvaldi AE, Sequeira AS,O’Brien CW, Farrell BD. 2002.Molecular and morphological phylogenetics
of weevils (Coleoptera,Curculionoidea): Do niche shifts accompany diversification? Syst. Biol.51:761–85

137. May BM. 1993. Larvae of Curculionoidea (Insecta: Coleoptera): A Systematic Overview. Fauna N. Z.—Ko te
Aitanga Pepeke o Aotearoa 28. Lincoln/Canterbury, N. Z.: Manaaki Whenua

138. Mazza G, Cini A, Cervo R, Longo S. 2011. Just phoresy? Reduced lifespan in red palm weevils
Rhynchophorus ferrugineus (Coleoptera: Curculionidae) infested by the mite Centrouropoda almerodai
(Uroactiniinae: Uropodina). Ital. J. Zool. 78:101–5

139. Mazza G, Francardi V, Simoni S, Benvenuti C, Cervo R, et al. 2014. An overview on the natural enemies
of Rhynchophorus palm weevils, with focus on R. ferrugineus. Biol. Control 77:83–92

140. Mazza G, Inghilesi AF, Stasolla G, Cini A, Cervo R, et al. 2016. Sterile Rhynchophorus ferrugineus males
efficiently impair reproduction while maintaining their sexual competitiveness in a social context. J. Pest
Sci. 89:459–68

141. McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD. 2009. Temporal lags and overlap in the
diversification of weevils and flowering plants. PNAS 106:7083–88
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143. Milosavljević I, Hoddle CD, Mafra-Neto A, Gómez-Marco F, Hoddle MS. 2020. Effects of food bait
and trap type on captures of Rhynchophorus palmarum (Coleoptera: Curculionidae) and trap bycatch in
southern California. J. Econ. Entomol. 113:2407–17
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