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Abstract

An enormous amount of work has been done on aging in Drosophila
melanogaster, a classical genetic and molecular model system, but also in nu-
merous other insects. However, these two extensive bodies of work remain
poorly integrated to date. Studies in Drosophila often explore genetic, de-
velopmental, physiological, and nutrition-related aspects of aging in the lab,
while studies in other insects often explore ecological, social, and somatic
aspects of aging in both lab and natural populations. Alongside exciting ge-
nomic and molecular research advances in aging in Drosophila, many new
studies have also been published on aging in various other insects, includ-
ing studies on aging in natural populations of diverse species. However, no
broad synthesis of these largely separate bodies of work has been attempted.
In this review, we endeavor to synthesize these two semi-independent liter-
atures to facilitate collaboration and foster the exchange of ideas and re-
search tools. While lab studies of Drosophila have illuminated many fun-
damental aspects of senescence, the stunning diversity of aging patterns
among insects, especially in the context of their rich ecology, remains vastly
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understudied. Coupled with field studies and novel, more easily applicable molecular methods,
this represents a major opportunity for deepening our understanding of the biology of aging in
insects and beyond.

1. INTRODUCTION

For the past century, biologists have used the vinegar or fruit fly Drosophila melanogaster as a model
in aging research—that is, as an organism whose physiology, cell biology, and genetics have been
studied in great depth in the hope of illuminating biological processes that operate in all animals.
A historical account of aging research in Drosophila reads much like a history of major advances
in evolution, genetics, cell biology, and biochemistry. By aging (or senescence), we mean the age-
related decline in intrinsic function, age-specific survival, and reproduction. In parallel with studies
of senescence in Drosophila, researchers have pursued diverse lines of inquiry into aging in other
insect species, not only in species commonly studied in the lab, like 7ibolium and the bean wee-
vil, Callosobruchus maculatus, but also in many nontraditional systems. While a few of these other
insect species have contributed substantially to some areas of aging research (as we detail below),
no other insect has been studied as broadly or intensively as D. melanogaster. In this article, we
review the range of aging research in Drosophila and other insects and use this review to pursue
two broad goals. First, we contrast work in Drosophila with aging research in less studied insect
species, including those that capture some of the stunning diversity found across the class Insecta
(Figure 1). By examining this breadth of research against the backdrop of fly studies, we show
where studies in nontraditional insect species support discoveries from Drosophila and where fly
research has yet to be replicated in other systems and outside of the lab. Second, in setting up the
juxtaposition of Drosophila and other species, we hope to illustrate how nontraditional species offer
an opportunity to address questions that are not easily answered in Drosophila and the potential
for research tools to be transferred across systems. With these two major goals in mind, we aim to
highlight the tremendous potential for new directions in aging research, both in Drosophila and in
nontraditional insect species. We structure our comparison of Drosophila and other insect systems
by broad intellectual topic.

2. THE DEMOGRAPHY OF INSECT AGING

Measures of age-related changes in demographic processes such as survival and reproduction make
up a common thread running through all of aging research. Accordingly, we start with a brief
overview of how we define and measure aging demographically and of the concept of demographic
trade-offs, which is central to our understanding of aging in insects.

2.1. Measuring Aging

We see clear signs of aging across almost all species and within individuals across diverse traits,
including physiology (Section 2.2), behavior (Section 4), body structures, and molecular pathways.
These functional senescence changes can result in age-related decline in age-specific reproduc-
tion and survival. It is ultimately age-specific survival and reproduction that define fitness (34).
Thus, these demographic traits shape the evolution of aging in functional traits and lie at the
heart of evolutionary models of aging (34). While both reproduction and survival are obviously
critical to fitness, throughout this review we focus primarily on age-specific survival or its inverse,
age-specific mortality. The rate of increase in age-specific mortality is known as actuarial aging or

Promislow e Flatt « Bonduriansky



Q Queens
M Laboratory W Workers T T T T T
M Field-cage  (max.) Maximum observed
M Field d  Males

Collembola Folsomia: candida (108) _—

Odonata Coenagrion puella (9,117) -
Sympetrum danae L

Zygentoma Ctenolepisma longicaudata (104) e

Ephemeroptera Dolania americana (33,44,162,163) -
Epeorus ikanonis _—

Dermaptera Chelisoches morio (24,155,156,186) _—
Nala lividipes _—

Plecoptera Megarcys signata (39,172) -
Zelandobius furcillatus —

Orthoptera Teleogryllus commodus (143,182) —
Gryllus campestris E

Phasmatodea Didymuria violescens (3,130)
Extatosoma tiaratum pr—

Mantodea Mantis religiosa (65,138) _—
Galepsus lenticularis

L
Blattodea Periplaneta americana (47,66) —
Macrotermes bellicosus & W

Hemiptera Cyrtorhinus lividipennis (23,41,141) _—
Apiomorpha strombylosa —

w
Hymenoptera Solenopsis invicta (31,58)

(m.
Coleoptera Bolitotherus cornutus (60,72) —
Callosobruchus maculatus -

Lepidoptera Euphaedra medon (11,120) (’"-a’")
Melanargia galathea

Diptera Drosophila melanogaster (48,149,181) -
Paratanytarsus grimmii -

1 1 1 1 1
104 103 100 10 1
Approximate lifespan in days (log scale)

(Caption appears on following page)

www.annualreviews.org o Aging in Insects 85



Figure 1 (Figure appears on preceding page)

Variation in insect lifespan. Lifespan varies by four orders of magnitude in the insects. The plot shows lifespan variation within and
between some major insect orders and Collembola. For each group, one or two species are shown for comparison, with approximate
mean or maximum lifespan in days (log-transformed) based on lab, field, or field-cage studies. Although some species exhibit
considerable sexual dimorphism in lifespan, all lifespans shown are for females unless otherwise indicated. For social insects, lifespans are
shown separately for queens and workers. Note that lifespan can be strongly affected by environmental factors such as diet, temperature,
and crowding, and small differences between species in estimated mean lifespan should therefore be interpreted with caution.
References are listed in parentheses to the right of Order name. Phylogeny is based on Reference 175.
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demographic aging. Mortality rates are measurable, at least in principle, in all populations, includ-
ing those that do not reproduce, like sterile hymenopteran workers. Moreover, mortality rates are
comparable between species with diverse reproductive strategies.

Two often-used measures of aging are mean and maximum lifespan, but these do not actu-
ally measure actuarial aging (Figure 2). To understand how a species ages, we need to measure
individual ages at death. Even with a modest sample size, age-at-death data allow us not only to
measure rates of aging, but also to identify factors associated with survival, using Kaplan-Meier
or Cox Proportional Hazard models (99).
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Figure 2

Insect mortality in the lab and the wild. (@) Drosophila melanogaster male courting a female in a vial in the lab.
(b)) A marked male antler fly (Proropiophila litigata) guarding a female while being pursued by a marked rival
male on a moose antler in a forest in Algonquin Park, Ontario. (¢) Survivorship (proportion alive) as a
function of age. (d) Age-specific mortality rate, plotted on a log10 scale. Curves A and B are representative of
mortality patterns typically observed in lab-housed insects. Curve C (blue) shows a population in which
mortality rates are constant (i.e., no sign of demographic aging), a pattern more commonly seen in the wild.
Photos courtesy of R. Bonduriansky.
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Age-specific mortality curves across diverse vertebrate and invertebrate taxa exhibit a common
pattern, with low rates in early adult life that then increase with age, often following the exponen-
tial increase described by the Gompertz equation (64):

e = P, 1.

where p, is the instantaneous mortality rate at age x, and & and B are constants. Taking the loga-
rithm of both sides, we obtain

1n(ﬂx) = 1H(Ol) + Bz, 2.

where In(e) and B represent the intercept and slope, respectively, of the plot of log(mortality)
versus age (Figure 2d). Many researchers use the Gompertz slope 8 as a measure of the rate of
actuarial aging.

While it was long thought that actuarial aging would be rare in nature, it has been shown to
be common among mammals (135) and even in insects by studies using capture-mark-recapture
methods. An early use of this approach followed wild Drosophila for their entire lifespan (146).
Bonduriansky & Brassil (19) provided the first compelling evidence for actuarial and reproductive
aging in a wild insect by marking and following male antler flies (Protopiophila litigata) living on
discarded moose antlers. Molleman et al. (119) captured and marked more than 30,000 butterflies,
showing that some butterflies can live for at least 9 months, though even these large numbers were
not sufficient to provide estimates of rates of actuarial aging.

Of course, it is not always feasible to track individual insects in the wild longitudinally. An
alternative approach has been to measure lifespan in wild-caught insects housed in the lab. Using
this approach, Carey (33) found that newly emerged mayflies showed signs of aging over their
lifespan of just a few days. While the age of wild-caught adults at capture is typically not known,
Carey and colleagues (124) developed methods to estimate mortality curves in Tephritid flies based
on duration of life following capture of adults of unknown age, a method that has since been
applied to other species (e.g., 13).

2.2. Demographic Trade-Offs

While we often focus on age-specific survival and reproduction in aging research, also of great
interest and importance are the trade-offs, or negative correlations, between these fitness traits
(155), such as the cost-of-reproduction trade-off between early fecundity and survival (15, 54).
These trade-offs make up a central tenet of life-history theory and evolutionary theories of aging
(94, 173). Trade-offs can be physiological (e.g., individuals that reproduce more live shorter lives)
and/or evolutionary (e.g., evolution of higher reproductive effort causes reduced lifespan) (155). In
terms of physiology, trade-offs might arise from competitive resource allocation, as when energy
invested into reproduction is not available for maintenance and survival (see below). For example,
in male crickets, the same adult diet maximizes both survival and reproduction (107). What really
matters evolutionarily is that such trade-offs are genetically based. Negative genetic correlations
arise primarily from alleles with antagonistic pleiotropic effects on the traits involved; antagonistic
pleiotropy (AP) is thought to be one of the key factors underlying the evolution of aging (173).
Some of the clearest evidence for genetically based trade-offs comes from artificial selection
and experimental evolution experiments, mainly in D. melanogaster, selecting for late-life fertility
and/or postponed senescence (54). While the best-known examples of trade-offs come from fruit
flies (for reviews, see 34, 54, 145), there are many studies, both in the field and in the lab, that have
looked at trade-offs in other insects, such as crickets (142), water striders (87), and C. maculatus
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(115). Results have been mixed, however: In some cases, we see clear negative phenotypic correla-
tions between reproduction and survival, while in others, these two traits are positively correlated.
In the field cricket, Gryllus campestris, for example, males that emerge earlier (and presumably start
reproducing sooner) live longer than late-emerging males (for recent reviews, see 54, 142).

Much work has focused on the physiology of costs of reproduction (16, 55, 69). Using genetic
or surgical manipulations that curtail reproduction, it has been found that reproductive arrest ex-
tends lifespan in Drosophila (56) and the grasshopper Romalea microptera (45), but not in the bug
Pyrrbocoris apterus (75). Likewise, mating manipulations in fruit flies and C. maculatus have estab-
lished survival costs of mating (59, 132). In terms of mechanisms, many studies have examined the
endocrine underpinnings of trade-offs (55, 57). Ablation of insulin-producing cells in the brain
or the corpora allata, the gland producing juvenile hormone (JH), reduces or abolishes fecun-
dity and extends lifespan in D. melanogaster, the butterfly Danaus plexippus, P. apterus, and several
grasshoppers (Anacridium aegyptium, Schistocerca gregaria, Locusta migratoria) (for reviews, see 26,
57,75, 177). This supports the idea that insulin-like peptides and JH have gonadotropic effects
that promote senescence (for a review, see 57; see also 157, 167). The lifespan-shortening effects of
JH might be due to its negative effects on oxidative stress resistance and immunity, as suggested by
results from Drosophila; the mealworm beetle, Tenebrio molitor; and the damselfly Calopteryx virgo
(see also 40; for a review, see 57). Similarly, evidence from honey bees (Apis mellifera) indicates
that the yolk precursor vitellogenin, an endocrine factor downstream of insulin and JH, affects
immunity, oxidative stress, and lifespan of workers and might contribute to the long life of queens
(5,43, 128). Remarkably, costs of reproduction can also depend on sensory perception: In female
and male D. melanogaster, food-derived odors and olfaction affect lifespan (102). Similarly, in male
flies, the costs of reproduction seem to be associated with the pheromone perception of females;
abolishing pheromone perception abolishes these costs (70).

Because the costs of reproduction might be due to resource allocation trade-offs, several stud-
ies have employed diet manipulation in Drosophila, C. maculatus, butterflies (Bicyclus anynana, Pieris
napi) (51, 54, 165) and other insects (see Section 5). While some studies have found that nutri-
tion might mediate the survival-reproduction trade-off (165), experiments quantifying resource
allocation and metabolic stores in grasshoppers and D. melanogaster have found only weak or no
support for this notion (54). Nonetheless, biochemical and metabolic studies of wing polymorphic
crickets (Gryllus firmus) have established a resource allocation trade-off between reproduction and
investment in flight ability (for a review, see 69). Likewise, manipulation of resource availability
during development has shed light on trade-offs between investment in reproduction-related traits
and juvenile and adult survival in neriid flies (79). Metabolomic studies are likely to advance our
understanding of these issues (for an example in Drosophila, see 76), as they are readily applicable
to most insects.

The ready availability and rapid improvements of physiological methods (endocrinology,
metabolic assays, metabolomics, transcriptomics) mean that many physiological aspects of senes-
cence and trade-offs can now be studied in insects beyond Drosophila.

3. INSECT AGING IN THE LAB VERSUS THE WILD

As most work on insect aging takes place in the lab, we need to be mindful of the influence of the
lab environment not only on measures of aging in the short term, but also on how populations
might evolve in lab culture over the longer term. To understand how senescence evolves and
diversifies, we must also study senescence in natural populations. Senescence integrates numerous
life-history traits (i.e., fitness components such as fecundity and age-specific survival) that are
highly plastic and context dependent in their expression and their effects on fitness (55). Because
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the lab environment differs in many ways from natural environments, captive populations are likely
to express senescence differently and to experience different patterns of selection on senescence.
"This means that lab studies could yield misleading results (25).

As we note in Section 2, benign lab environments can mask costs and trade-offs, but not only
due to effects of diet. Mortality risk from most biotic and abiotic sources is dramatically reduced
under typical lab conditions, meaning that captive animals are likely to experience much weaker
selection on traits that affect mortality risk and to survive much longer than they would in the
wild (89, 110). For example, in the wild, individuals that reproduce more or earlier might be more
vulnerable to mortality from predation, illness, or harsh weather. In contrast, elevated reproduc-
tive effort might have little effect on mortality risk in the lab, where such extrinsic mortality risks
are absent. For similar reasons, an allele that affects senescence rate in natural populations (e.g.,
by altering the costs of reproduction or vulnerability to predators or parasites) might have a much
weaker effect on age-specific mortality in the lab than it would in the wild (although the controlled
lab environment might make allelic effects easier to detect and so amplify narrow-sense heritabil-
ity). Lab animals are also typically provided with abundant, rich food and plentiful water, reducing
selection on foraging ability. Thus, while selection in natural populations might act against an al-
lele that induces earlier or greater investment in reproduction because of the associated risks and
costs, the same allele might be under net positive selection in a benign lab environment, where
such risks and costs are greatly reduced. At the same time, truncation of reproductive lifespan in
lab culture (e.g., by propagating populations from eggs laid early in life) can select for reduced
longevity and rapid aging in the lab and result in accelerated aging in lab-adapted flies relative to
natural populations (151).

In some cases, environmental or genetic effects on senescence could be not only masked
but also altered qualitatively by the lab environment. For example, numerous studies on
D. melanogaster and other insects have shown that protein restriction increases lifespan (100, 107),
a response interpreted as an adaptive reallocation of metabolic resources toward somatic main-
tenance that enables animals to survive periods of famine (95). However, because dietary protein
also enhances physiological capacity to respond to challenges such as infection and injury, protein
restriction might increase some mortality risks in natural environments (2).

Another example of how the lab environment could influence results of research on senescence
is the role of extrinsic mortality in the evolution of lifespan and senescence. Extrinsic mortality
(i.e., mortality that results at least partly from factors external to the organism) can result from a
variety of biotic factors (such as predators or pathogens) and abiotic factors (such as harsh weather
or accidents). In insects, spikes in ambient temperature could represent especially important abi-
otic sources of extrinsic mortality (130). Theory and empirical evidence suggest that the evolution
of senescence depends not only on the levels but also on age-specific patterns of extrinsic mor-
tality and fecundity. If extra mortality is random but limited to adult ages, then the ability of
selection to purge mutations that increase mortality erodes faster with age. If extra mortality is
random with respect to all ages, then age-specific selection will not change unless mortality leads
indirectly to something else, such as increased density dependence of age-specific fecundity (120,
173). However, if mortality is strongly condition dependent, then alleles that promote survival
could be favored, potentially resulting in the evolution of slower senescence (1, 35, 141). Thus, if
mortality is more strongly condition dependent in the wild than in the lab, an increased mortality
rate could have very different consequences for the evolution of senescence in natural versus lab
environments.

Little is known about patterns of senescence in natural populations of D. melanogaster, although
some studies have compared the longevity of lab- versus wild-adapted lines in the lab (e.g., 151),
and a few studies have estimated longevity in the wild using cohort-marking techniques (146) or
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field cages (see, e.g., 109). However, some insects are more amenable to longitudinal field studies
(180). Such studies suggest that captive animals can exhibit dramatically different rates of senes-
cence from their wild counterparts (89) and that dietary protein might affect senescence differently
in lab versus natural environments (110). This evidence supports the need for more research on
senescence in natural populations of insects, as well as in seminatural or stressful environments in
the lab (25, 180). Research on natural populations might also contribute to our understanding of
the diversity of senescence patterns (see 38, 86).

4. AGING, BEHAVIOR, AND COGNITION

The impact of aging is manifest in diverse physiological and behavioral systems. In insects, the abil-
ity to perform complex behaviors such as locomotion, foraging, reproduction, and antipredator
defense contributes enormously to variation in fitness. Because behavioral performance depends
on cognition, a decline in brain or neuronal function with advancing age could contribute sub-
stantially to senescent declines in behavioral performance and fitness. While theory predicts that
all aspects of performance decline with age (173), behavioral performance might decline especially
rapidly because it integrates so many biological systems, relying on the condition and functional-
ity of relevant brain regions, sense organs, motor neurons, muscles, and the cuticle and joints of
locomotory appendages (legs, wings). Reduced functionality in any one system could reduce the
ability to walk, fly, forage, or perform courtship.

In Drosophila, aging is associated with reductions in many aspects of cognitive and behavioral
performance, including memory and learning (113, 114, 161), flight performance (97), locomotion
and sleep (85), visual acuity and phototactic ability (32), courtship (36), and response to social cues
(22). These changes are associated with structural and chemical changes in the nervous system,
including loss of neuronal synapses and changes in mushroom bodies in the brain (17, 67, 101,
170), as well as changes in neurotransmitter release (181). Interestingly, age at breeding can affect
cognitive and behavioral performance of descendants. For example, offspring and grand-offspring
of older flies exhibit reduced memory (29), and both maternal and paternal ages at breeding affect
reproductive behavior in offspring (123) (see Section 6).

Studies in other insects suggest that patterns of behavioral senescence can vary markedly among
taxonomic groups. For example, older cockroaches exhibit reduced ability to solve mazes (27),
but there is little evidence of declining cognitive or behavioral performance in ant or honey bee
workers (12,63, 147). Moreover, senescent declines appear to be reversed when honey bee workers
switch tasks (126). Yet, like D. melanogaster, old honey bee workers exhibit pronounced changes in
brain structure and chemistry (50, 125, 150), suggesting the possibility of more subtle or context-
dependent changes in performance (e.g., changes in some forms of learning or memory).

While behavioral performance declines with age in many insects, behavioral interactions could
also contribute to senescence. For example, male-male combat can cause wear and tear (e.g., 14).
Likewise, intersexual conflict over mating can result in injury or elevated predation risk (68, 139).
It remains unclear to what extent such interactions impose immediate versus latent costs, but both
types of costs could influence the evolution of senescence.

Understanding the implications of cognitive and behavioral senescence for fitness will require
research in natural and seminatural environments. Both the expression of behavioral traits and
the fitness consequences of such variation are likely to be strongly environment dependent. The
behavior of individual insects in the lab does not necessarily predict their behavior under natural
conditions (53). Lab housing can restrict the opportunity to exhibit many types of behavior as a
result of limited space to fly, run, or jump. Moreover, without a need to disperse, locate food, or es-
cape from predators, locomotory performance might have much less impact on fitness in captivity
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(except perhaps in a sexual context). The lab environment could also affect the rate of decline of
cognitive and behavioral traits. For example, flight performance in D. melanogaster declines more
rapidly with age when flies are prevented from flying (97).

D. melanogaster is very challenging to study in the wild because these tiny and highly mobile
animals are difficult to mark and resight over the course of their lives. However, some evidence for
behavioral senescence from natural populations of other insects is starting to emerge. For example,
in natural populations of P. /itigata, male reproductive aging involves both increased time-out
from mating aggregations and a reduction in the ability to mate twice per day (20). Wild cricket
(G. campestris) males exhibit declining call rate and reduced ability to dominate rivals as they age
but do not show declines in mate searching or mating promptness (143). Nonetheless, while older
males attract more females, mating rate still declines with age (143). Very little is known about
behavioral senescence in natural populations of most other insects.

5. ENVIRONMENTAL EFFECTS ON AGING AND LIFESPAN

In insects, age-related fitness traits are exquisitely sensitive to diverse environmental factors, in-
cluding temperature, humidity, diet, and oxygen levels. In this section, we focus on two of the most
commonly studied environmental factors affecting lifespan—temperature and diet.

5.1. Temperature

Some of the earliest work on the biology of insect aging focused on the effect of temperature on
lifespan. Over a century ago, Baumberger (10), in a study of wild-caught individuals from diverse
orders of insects, showed not only that chronic exposure to high temperature was negatively as-
sociated with longevity, but also that a brief early exposure to high temperature was positively
associated with longevity.

The negative correlation between chronic high temperature and lifespan has been demon-
strated in numerous subsequent studies, starting with a review of diverse insects by Alpatov &
Pearl (4); then in greater detail in other Drosophila species [e.g., Maynard Smith (111, 112) re-
capitulated the effects of brief and chronic heat exposure in Drosophila subobscura]; and later in a
diverse range of other systems, from grasshoppers (116, 172) to bedbugs (80, 184) and more (see
90). Just as warm temperatures shorten lifespan, cool temperatures lengthen it (106, 111), and in
some cases, cold-induced diapause can dramatically slow aging (e.g., 166).

The observation by Baumberger (10) and Maynard Smith (112) that early-life exposure to high
temperature might increase lifespan (a phenomenon known as hormesis) generated much excite-
ment when it was rediscovered in D. melanogaster (92) and some other Drosophilids (148). Nu-
merous mechanisms have been suggested for this hormetic temperature effect. High temperature
induces expression of heat shock proteins, key molecules in maintaining proteostasis, providing
long-term benefits to individuals that are primed with a nonlethal heat stress (74).

The compelling effects of temperature on aging raise an important question: How might cli-
mate change alter life history strategies in general, and aging in particular (30)? The tremendous
diversity of insects provides a powerful framework with which to address this question. Numer-
ous studies (28, 93) have shown that warming climate over the past decades has changed insect life
histories. With warming climate, through direct and indirect effects, insects often emerge earlier
in the season; breed earlier; and, in the case of multivoltine species, go through more generations
each year. These warming patterns can also lead to changes in overwinter survival and fitness.
Thus, we might also expect changes in selection on aging due to shorter generation times and
age-specific responses to changes in temperature or resources. On a shorter timescale, extreme
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weather events, including temperature spikes and natural disasters, could lead to mass mortality
events with longer-term consequences on life histories. Although this is beyond the scope of this
discussion, changes in CO; levels might also affect insect lifespans (131). A key issue is whether
natural populations of insects will be able to adapt to these environmental changes (77). To ad-
dress this, moving the focus back to the lab and studies of D. melanogaster might provide invaluable
insight into natural populations (77).

5.2. Diet

As with temperature, the first studies of the effects of diet on survival began a century ago (106),
and numerous studies have established the ability of both intermittent feeding and dilute or chem-
ically defined diets [dietary restriction (DR)] to extend lifespan in Drosophila (133). There is con-
siderable debate regarding the generality of the effects of DR on increasing lifespan. Some have
argued that the phenomenon is an artifact of the benign lab environment (i.e., absence of factors
such as predation or temperature stress that might elevate risk for diet-restricted individuals) and
suggested that DR might have no or even a negative effect on lifespan in a natural environment
where individuals are exposed to many stresses and risk factors (2). We see considerable genetic
variation in the response to DR in Drosophila (84), with some genotypes living shorter lives under
DR. Among other insects and spiders, one can find examples of DR leading to increased lifespan
(e.g., 8,49, 71), leading to decreased lifespan (42, 118), or having no effect. Given this consider-
able variation, in-depth analyses of insects other than Drosophila might shed critical light on the
evolutionary and molecular mechanisms that underlie the DR effect on lifespan.

Both diet- and temperature-related stressors, as well as changes in photoperiod, can provide
cues indicating upcoming stressful environments. In response, many insects can enter diapause, a
state of developmental arrest associated with increased stress resistance and somatic maintenance.
For example, numerous adult insects (e.g., Drosophila, Phormia, grasshoppers, butterflies, bugs)
undergo reproductive diapause or dormancy, a state of reproductive arrest that promotes somatic
persistence and adult survival (for a review, see 168). Reproductive diapause can thus be viewed as
a case of phenotypic plasticity of lifespan and associated life-history traits (168). Similar to larval
diapause in Caenorbabditis elegans, which is also connected to the regulation of adult lifespan, insect
reproductive diapause is under neuroendocrine control (52, 55, 168).

5.3. Biotic Interactions

Age-specific mortality and fecundity rates determine how selection shapes life-history strategies
in general and senescence in particular. Moreover, the literature on the evolution of aging not only
distinguishes between the effects of extrinsic versus intrinsic mortality (156), but also investigates
whether mortality depends on population density (1), individual condition (174), and frequency-
dependent selection (122). These different types of responses to mortality risk might affect how
aging evolves.

However, typically missing from these discussions is the consideration of how biotic factors
might generate different evolutionary responses to mortality risk. Perhaps this is not surprising
given that most studies are carried out in the lab. In the wild, insects might die as a result of
interspecific interactions with predators (149), micro- and macroparasites (127), and plant-derived
toxins (81). Insects also underscore the importance of intraspecific causes of mortality, including
cannibalism (6), mate competition (105), and sexual conflict (21, 136). Natural populations of
insects offer a powerful resource for exploring these very diverse sources of mortality and their
demographic and evolutionary consequences.
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6. THE GENETICS OF INSECT LONGEVITY
6.1. Quantitative Genetics

Quantitative genetics is concerned with the generation, evolution, and maintenance of genetic
variation for phenotypes of interest. We can show this mathematically as the simple equation P =
G + E + cov(G,E), which states that phenotypic variance P is the sum of genetic variance G, envi-
ronmental variance E, and the interaction (covariance) between the two. Genetic variance in turn
can be broken down into component parts, including contributions due to alleles with additive or
dominant effects, epistasis, maternal and paternal genetic effects, and inbreeding. Genetic vari-
ance components influence not only how variable traits are among individuals, but also how they
evolve. Researchers have sought to parse genetic variance for aging into its various components in
an effort to describe the underlying architecture of aging in genetically variable populations and
thereby to test theories of aging (for a review, see 54). While the vast majority of molecular genetic
studies of aging in insects have focused on D. melanogaster, the quantitative genetic literature is
replete with examples from other insect species (e.g., 7, 18, 87, 138). This literature includes not
only tests of predictions arising from the evolutionary genetic theories of aging, but also studies
asking more broadly how genetic and environmental variation affects aging.

Drosophila researchers have invested considerable effort into testing for the relative importance
of the two major evolutionary genetic theories of aging—AP and mutation accumulation (for
reviews, see 34, 54). Some of the earliest studies, on the effects of inbreeding on longevity, were
carried out in the 1950s using D. subobscura (78). The following two decades saw relatively little
work until a series of independent studies showing that artificial selection for long lifespan led to
reduced early-age fecundity, in support of the AP or trade-off model for the evolution of aging
(for a review, see 145). This work sparked decades of research on the quantitative genetics of aging
not only in Drosophila, but also in other insects such as C. maculatus.

Maternal age effects have long been of interest to researchers working on aging in insects.
While maternal age effects have not been a formal component of classical evolutionary models of
aging until recently (121), Lansing (98) showed in rotifers that older mothers produced short-lived
offspring, inspiring numerous studies on parental age effects. The Lansing effect is sometimes re-
capitulated in insects, for example, in butterflies (46) or ladybirds (154), but other studies have
found that older mothers produce longer-lived offspring, as in C. maculatus (61), or have found
no effect of maternal age, as in burying beetles (83). This lack of consistency raises the inter-
esting challenge of identifying the biological or environmental factors that determine the nature
of parental age effects among species. To date, very few studies have investigated whether age at
breeding can affect the longevity of descendants over more than one generation, but some intrigu-
ing findings have come to light. For example, in Drosophila serrata, maternal and grand-maternal
ages at breeding have interactive effects on the viability of descendants (73). In the neriid fly
Telostylinus angusticollis, age-at-breeding effects interact over two generations in both matrilines
and patrilines, with large effects on descendants’ mortality rate and longevity (176). The potential
for maternal and paternal age effects to persist and interact across multiple generations suggests
that such effects could represent a substantial source of aging-related variation among individu-
als. Likewise, the potential for parental environments (e.g., temperature or diet) to influence the
longevity and senescence rate of descendants warrants investigation.

6.2. Molecular Genetics of Lifespan in Insects

Even though the evolutionary geneticist John Maynard Smith (111) had already investigated a
long-lived mutant of the grandchildless gene in D. subobscura in 1958, the molecular genetic study of
lifespan in multicellular organisms only began in earnest with the discovery of long-lived mutants
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in the nematode worm C. elegans in the early 1980s (for a review, see 91). The corresponding
longevity genes were later cloned and characterized by the Ruvkun and Kenyon labs. Several of
these genes turned out to belong to the conserved insulin/insulin-like growth factor signaling (ILS)
pathway (91). These groundbreaking discoveries paved the way for molecular studies of longevity
in other metazoans, mainly in D. melanogaster and the mouse Mus musculus (134, 163, 164).

The first longevity mutant to be studied in D. melanogaster was a mutation in the methuselah
(mth) gene, which encodes a G protein—coupled receptor (103). Mutations that extend fly lifespan
were also found in a gene that encodes a tricarboxylic acid—cycle transporter and is named I a2 not
dead yet (Indy) (144). Around the same time, the first transgenic studies of fly lifespan showed that
overexpression of antioxidant enzymes and heat shock proteins extends lifespan (for a review, see
162). Most notably, work by the laboratories of Marc Tatar and Linda Partridge in the early 2000s
found that mutations in IIS genes homologous to those identified in C. elegans markedly extend
lifespan in the fly, suggesting that the effects of this pathway on longevity are evolutionarily con-
served (37, 164, 167). Downregulation of the target of rapamycin (TOR) pathway, which closely
interacts with the IIS pathway, was also found to promote longevity in Drosophila (88).

By leveraging the powerful genetic toolbox in the fly, subsequent work identified numerous
other genes and pathways impacting longevity, including the histone deacetylase Sir2, first discov-
ered as a factor affecting aging in yeast; JNK signaling; the Imd and Toll immune pathways; the
energy sensor AMPK and the amino acid sensor GCN2/ATF4; Ras-Erk-ETS signaling; the tran-
scription factor Myc; the DNA repair factor dPRP19; steroid hormone (ecdysone) signaling; and
others (e.g., see 134 and references therein). Many of these genes and pathways interact with each
other, and they often converge onto the IIS/TOR network. This body of work has also revealed
how lifespan is correlated with other fitness-related traits such as stress resistance and fecundity,
often revealing the existence of trade-offs between lifespan and other fitness components (54).

Unfortunately, much less is known about the molecular genetics of longevity in insects other
than D. melanogaster, mainly due to the unavailability of genetic tools, with a few notable excep-
tions. For example, RNA interference (RNAI) has been leveraged to show that the yolk precursor
gene vitellogenin (Vg) and the insulin receptor substrate gene affect worker lifespan in the honey bee
(A. mellifera) (82, 128). Similarly, RNAi knockdown of Vg has been found to extend lifespan in
the lubber grasshopper (Romalea microptera) (171). While progress in insects outside Drosophila
has been slow, the rapid improvements of genetic tools such as transgenesis, RNAi, and—most
importantly—CRISPR/Cas9 genome editing hold the promise that the mechanisms of aging can
soon be studied in a variety of insects, at least in those that can be bred easily in the lab (62, 158).
Such tools are now applicable to many insects, including the silk moth (Bombyx mori) and other
lepidopterans, the flour beetle (Tibolium castaneun), mosquitoes (Aedes aegypti, Anopheles stephensi),
the linden bug (Pyrrhocoris apterus), and the clonal raider ant (Ooceraea biroi). Notably, recent work
in the brown planthopper (Nilaparvata lugens) has employed CRISPR/Cas9 to induce mutations
in the insulin-like receptor gene, showing that heterozygous mutants are long-lived and suggesting
that the effects of reduced IIS upon lifespan are conserved between planthoppers and Drosophila
(182). There is also much scope for research on the potential roles of epigenetic factors (such
as DNA methylation and chromatin structure) in shaping variation in lifespan and aging rate in
insects and mediating the effects of environmental factors on these traits.

7. CONCLUSIONS

Among the millions of insect species that exist, we have barely scratched the surface of the diversity
in patterns and mechanisms of aging. This diversity provides us with a fantastic opportunity to
learn how ecology and physiology shape patterns of aging and about its underlying mechanisms,
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from evolutionarily conserved traits to those found in a single taxon. We now have molecular
tools to explore this realm of aging far beyond Drosophila and indeed beyond traditional lab-based
studies. In this section, we highlight five research areas likely to prove especially fruitful in the
coming years.

First, scientific discovery starts with observation. We urge the next generation of researchers
to explore the full diversity of aging and life-history strategies found in insects (e.g., Figure 1).
How is the evolution of aging affected by whether a species is semelparous or iteroparous, a cap-
ital versus an income breeder (e.g., C. maculatus versus D. melanogaster), hemimetabolous versus
holometabolous, aposematic versus cryptic, winged versus wingless, and so forth? Similarly, how is
aging influenced by the extraordinary range of environments in which insects are found, in terms
of both plastic responses within species and long-term evolutionary responses across taxa?

Second, to better understand how selection shapes aging and the entire life history, we need to
investigate how genes and physiological systems interact with key environmental variables such as
nutrients, temperature, and parasites or symbionts. Such research is very challenging to do with
D. melanogaster because these animals have low site fidelity (i.e., they do not form stable aggrega-
tions and lack a defined home range). However, such work can be done using field systems such as
antler flies, which have a high degree of site fidelity that makes it possible to observe individually
marked insects throughout their lives in the wild. Many other insects, including Drosophila, can be
studied in seminatural enclosures such as field cages and under controlled stressful environments
in the lab.

Third, comparative phylogenetic studies of aging have highlighted the enormous diversity of
lifespans among species, ecological factors associated with this diversity, and even potential ge-
netic determinants (96). While comparative studies of aging have focused largely on vertebrates,
the phenomenal genetic, ecological, and life-history diversity of insects is a powerful resource for
understanding the evolution of longevity and senescence. Drosophila melanogaster has been enor-
mously fruitful as a research model for understanding highly conserved processes in aging, but
rigorous phylogenetic studies are needed to achieve a full understanding of how natural selection
shapes aging.

Fourth, many molecular and genomic tools—previously limited to D. melanogaster and a
few other animals—are becoming increasingly available for use with other insects. Conversely,
techniques developed for field research (e.g., mark-recapture studies) could be applied to
D. melanogaster to better understand the natural ecology of this lab model. We believe that such
transfer of tools and approaches harbors great potential for enhancing our understanding of the
ecology and evolution of senescence. These tools will make it possible to investigate aging at
physiological, cellular, genetic, and ecological scales in a diverse range of insect species exhibiting
distinct ecological niches and vast differences in body size, morphology, physiology, and longevity.
The transfer of tools between species will make it possible to take full advantage of insect diversity
in aging research.

Finally, in Section 5, we discuss the potential impact of climate change on patterns of aging
in insects. Researchers have already begun to consider the effect of global warming on insect
phenology (28). This area is particularly rich with important research opportunities. Research on
a diverse range of insect species, especially those found in climate change hotspots, will provide
us with critically important biotic indicators of the speed with which this change is occurring and
its short-term (demographic) and long-term (evolutionary) impacts on aging in insects.

Aging is a conceptual hub with the potential to link diverse realms of biological inquiry, from
ecology and evolution, to physiology and behavior, to biophysics and molecular and systems bi-
ology. In our effort to improve aging research by bridging these disciplines, these bridges can
inform broad areas of research. What better way to pursue this agenda than against the backdrop
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of the stunning diversity of insects, including the diversity in patterns of aging that we are only
beginning to discover?
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