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Abstract

Winter provides many challenges for insects, including direct injury to tis-
sues and energy drain due to low food availability. As a result, the geographic
distribution of many species is tightly coupled to their ability to survive win-
ter. In this review, we summarize molecular processes associated with winter
survival, with a particular focus on coping with cold injury and energetic
challenges. Anticipatory processes such as cold acclimation and diapause
cause wholesale transcriptional reorganization that increases cold resistance
and promotes cryoprotectant production and energy storage. Molecular re-
sponses to low temperature are also dynamic and include signaling events
during and after a cold stressor to prevent and repair cold injury. In addi-
tion, we highlight mechanisms that are subject to selection as insects evolve
to variable winter conditions. Based on current knowledge, despite com-
mon threads, molecular mechanisms of winter survival vary considerably
across species, and taxonomic biases must be addressed to fully appreciate
the mechanistic basis of winter survival across the insect phylogeny.
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1. THE IMPORTANCE OF WINTER

The winter in temperate and polar regions is a time of extreme challenge for insects. They face an
array of abiotic and biotic challenges that operate synergistically, and synchronizing life histories
with the timing of seasonal transitions is critical for survival (129, 147). Specific abiotic chal-
lenges in winter include exposure to low temperatures, potential ice formation, and limited water
availability, while biotic challenges include starvation due to low food availability and immune
challenges due to direct exposure to pathogens or being huddled in high-density overwinter-
ing conditions where disease transmission can easily occur (147). Insects have developed several
unique adaptations to cope with these challenge, and the molecular and biochemical mechanisms
underlying these adaptations have been intense areas of focus in insect physiology (60, 91, 128).

Low temperature is the most obvious challenge in winter, and as small ectotherms, insects
must be able to maintain homeostasis over a broad range of body temperatures. Biochemical pro-
cesses may be impaired at low temperatures for multiple reasons. First, Arrhenius effects dictate
that, at lower temperatures, reaction rates are reduced. However, since biochemical reactions are
catalyzed by enzymes, reduced enzyme flexibility or outright protein denaturation at low temper-
atures may have a much greater impact on reaction rates than Arrhenius effects alone (124, 141).
Second, membrane fluidity is significantly reduced at low temperatures, which decreases reaction
rates of membrane-bound enzymes and reduces diffusion rates across membranes (49, 110). Fi-
nally, low temperatures increase hemolymph viscosity andmay significantly decrease physiological
transport (58). As a result of all of these mechanisms, low temperature can induce chilling injuries
independently of ice formation (91).

Based on the strategy used to survive subfreezing conditions, insects have been classically di-
vided into either freeze-tolerant or freeze-intolerant species (119), with freeze-intolerant species
being further divided into those that survive down to the supercooling point (i.e., freeze-
avoiding) and those that succumb to cold injury at relatively high subzero temperatures (i.e.,
chill-susceptible) (91). Cold tolerance is a complex trait and can be measured with a variety of
metrics, so we direct the reader to Sinclair et al. (119) for a useful primer. In particular, careful
measurement of survival following the onset of freezing (as detected by a transient increase in
body temperature due to a freezing exotherm) is essential for correctly classifying a species as
freeze tolerant or freeze avoidant.

Freeze-tolerant insects must cope with internal ice formation, which poses both mechanical
and osmotic challenges. As ice crystals form and grow, they can cause outright physical damage
to tissues, and ice crystal formation is almost invariably lethal in intracellular spaces (122). Ice
crystals also tend to exclude solutes, thereby significantly increasing the osmolarity of unfrozen
fluids and often leading to cellular desiccation as water leaves cells (143). Ice formation can occur
spontaneously below the supercooling point, but it can also be nucleated at relatively high tem-
peratures, either internally as a result of food particles or bacteria in the gut or as a result of ice
in the microenvironment nucleating across the cuticle (150). Internal ice formation is lethal for
most insects, and the handful that have evolved the ability to tolerate ice formation are interesting
case studies for evolutionary physiologists (for a review, see 143).

While desiccation can happen internally due to ice formation, it is also an ecological stressor
that occurs due to low water availability in the environment when water is locked up in ice and
snow. Indeed, for some insects, water availability is one of the primary challenges of winter (6).
On the other side of the coin, dehydration can confer cross-tolerance to cold stress, as these two
stressors share many features at the physiological level (120).Desiccation is coupled with low food
availability: Many plants die back and prey species become scarce as most invertebrates seek shel-
ter in hibernacula. As a result, many insects are faced with severe metabolic challenges, spending
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several months with extremely low food and water availability. In these situations, low tempera-
ture and even freezing may be beneficial for overwintering insects, as low temperature reduces
metabolic rate, and freezing suppresses metabolic rate even further (78).

The challenges of winter mean that species distributions are often tightly linked to winter
conditions (147), and climate change has intensified the importance of understanding insect over-
wintering biology. Climate warming is proceeding fastest both in the winter months and at higher
latitudes in the northern hemisphere (77). On the one hand, winter climate change is significantly
shortening the winter season and reducing extreme cold events, and on the other hand, snow cover
depth and duration are simultaneously declining, potentially exposing overwintering soil insects
to colder and more variable conditions (108). Although the overall trend is an increase in temper-
ature, extreme cold events, such as the North American polar vortex of 2018/2019, are projected
to continue. One potential consequence of increased average temperature is that it may impair in-
sects’ ability to properly acclimatize or remain acclimatized for winter (123). Thus, winter climate
change is expected to have complex consequences for insect populations, and understanding the
adaptations that permit winter survival is essential for predicting insect responses to future con-
ditions. In this article, we review the molecular mechanisms that underscore two of the primary
adaptations for coping with winter stress, cold acclimation and diapause. This review is intended
to be an entryway into the topic for entomologists interested in exploring winter adaptations for
their system of interest and a springboard for what we consider to be fruitful questions for future
research.

2. MECHANISMS OF COLD ACCLIMATION, RAPID COLD
HARDENING, AND RECOVERY FROM COLD STRESS

For the purposes of this review, we divide our discussion between the molecular mechanisms
of cold acclimation and those of diapause, although we acknowledge that these mechanisms
may sometimes be difficult to disentangle. Coping with winter stress occurs on several distinct
timescales, which are summarized in Figure 1. In brief, cold acclimation occurs in the weeks and
months leading up to winter, as temperature gradually decreases (17). Short-term responses to
low temperature are also prevalent. Rapid cold hardening is a short-term (i.e., minutes to hours)
acclimation response that occurs in response to a sudden decrease in temperatures (134), and rapid
physiological responses also occur during recovery from a cold stressor.Thus,we highlight molec-
ular mechanisms that are (a) activated in preparation for winter, (b) activated in direct response to
winter stressors, and (c) involved in recovery from winter stress. Recent reviews have highlighted
physiological mechanisms (e.g., organ and systems level) of chilling (91) and freezing (143) tol-
erance, molecular mechanisms of cold and freezing injury (109), and evolutionary responses to
changing winters (77). In this review, we focus primarily on processes that protect against winter
stress at the molecular (i.e., gene) level, with an emphasis on recent work (for earlier reviews on
molecular mechanisms of cold tolerance, see 16, 48, 84). While the specific strategy used to sur-
vive cold (e.g., freeze tolerance versus freeze intolerance; see above) is an important consideration,
most of the information presented in this review is for chill-susceptible insects, which have had
the greatest number of molecular studies.

2.1. Mechanisms of Cold Acclimation

As discussed above, cold and other abiotic stressors are the primary challenges for insects in the
winter. Like many traits, cold tolerance is a function of both genotype and environment, and in
many cases, phenotypic plasticity has a stronger impact on cold tolerance than does genetic adap-
tation (4). While anticipatory processes like diapause can increase cold tolerance in the absence
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Figure 1

Distinct timescales on which molecular responses to winter stress occur. The top part of the figure
summarizes a representative time course for a photoperiodically controlled diapause, while the bottom part
summarizes direct responses to temperature change. In this example, the insect enters diapause in early fall
prior to the onset of temperatures that elicit cold acclimation. Depending on the timing of diapause entry
and the onset of low temperatures, cold acclimation could also occur before the onset of diapause. In
addition, in this example, diapause terminates in mid-winter, meaning the insect has the capacity for
development at that time, but postdiapause quiescence caused by low temperatures prevents the resumption
of development until spring. The solid black line shows an arbitrary temperature progression, and the
dashed line indicates 0°C. Thermal fluctuations are shown in winter to highlight the potential challenges of
FTRs. In reality, temperature would fluctuate in all seasons, but attempting to capture realistic fluctuations
in this schematic would obscure the general trends that we are highlighting. The boxes summarize molecular
mechanisms associated with distinct aspects of winter; these lists are not meant to be comprehensive, but
instead highlight some of the important functions that have been identified. Abbreviations: FTR, fluctuating
thermal regime; RCH, rapid cold hardening.

of temperature change (70, 144), cold acclimation (and acclimatization) in response to decreasing
temperature is the primary means by which insects enhance cold hardiness in the winter (42, 55,
91). The capacity for cold acclimation appears to be nearly ubiquitous among insects, especially
those in temperate regions, although the exact mechanisms by which it is accomplished appear to
vary across species (see 132 and discussion below). Cold acclimation can be further distinguished

322 Teets • Marshall • Reynolds



depending on whether it occurs throughout the life cycle or is restricted to a single life stage (17),
although whether distinct types of cold acclimation have different mechanisms at different stages
within a single species is an open area of investigation.

Cold acclimation involves large-scale changes in gene expression, and many of these changes
are directly involved in enhancing abiotic stress tolerance during winter. Perhaps the best-studied
genes involved in stress tolerance are the heat shock proteins, molecular chaperones that assist in
refolding damaged proteins (39). These genes are unfortunately named because they also play an
important role in cold stress. Heat shock proteins belong to several different families, and there
is considerable evidence that these genes are an important part of the overwintering machin-
ery, though the specific heat shock protein–encoding genes and even families that are involved in
winter stress tolerance vary from species to species (60).Heat shock proteins are commonly upreg-
ulated during cold acclimation (26, 28, 75, 126), and knocking down heat shock protein expression
impairs cold tolerance in overwintering insects (107, 126). Importantly, while heat shock protein
expression typically occurs in direct response to protein denaturation (86), upregulation during
cold acclimation is often observed at nonstressful temperatures, suggesting a different mode of
transcriptional regulation is involved beyond the usual heat shock factor–mediated expression that
occurs during protein denaturation.

Cold acclimation includes large-scale transcriptional changes beyond canonical stress genes,
suggesting complex molecular regulation of this phenotype. For example, in the common fruit fly,
Drosophila melanogaster, approximately one-third of the transcriptome is differentially expressed
during cold acclimation (75). Comparing transcriptomes of diverse insects reveals a few common
threads, despite this complexity. For example, cold acclimation often alters expression of ionoreg-
ulatory genes and/or aquaporins to maintain osmotic balance during prolonged periods of cold
(28, 36, 75, 142); this maintenance of ion balance is one of the primary physiological challenges
associated with both low temperature and internal ice formation (for a review, see 91). These
classes of genes are also involved in local adaptation to low temperature, as evidenced by the fact
that genes related to ion transport and neuromuscular structure and function are differentially
expressed between high- and low-elevation populations of bumble bees that have variable critical
thermal minima (94). Another well-established mechanism associated with winter cold hardiness
is cryoprotectant synthesis, and the biochemical regulation of this process has been extensively
covered (e.g., 128). At the gene level, diapause and cold acclimation can result in differential ex-
pression of genes that promote glycolysis, gluconeogenesis, and cryoprotectant synthesis (16, 36,
91). In the case of the cricketGryllus veletis, genes encoding cryoprotectant transporters are upreg-
ulated, presumably to facilitate uptake of cryoprotectants into tissues (142), but genes involved in
cryoprotectant synthesis are unchanged by cold acclimation. A third common feature of cold ac-
climation involves cytoskeletal rearrangements and accompanying changes in expression of genes
like actin (27, 59), presumably to maintain cell structure at low temperature.

Finally, for some cold-adapted species, seasonal production of specialized ice-binding proteins
can contribute to cold hardening (32). These proteins are typically secreted into the hemolymph
to control ice formation and may increase cold hardiness by (a) preventing ice crystal growth to
stabilize the supercooling point, (b) nucleating ice formation to facilitate controlled ice crystal
growth, and (c) inhibiting ice crystal recrystallization (for a review, see 9). While these activi-
ties may seem to be at odds, they should be interpreted relative to the cold tolerance strategy of
the species in which they occur. For example, prevention of ice crystal growth occurs in freeze-
avoidant species such as the eastern spruce budworm, Choristoneura fumiferana (30). The latter
two mechanisms may improve survival in freeze-tolerant species (150), such as the fire-colored
beetle, Dendroides canadensis (61). In all cases, these proteins act in a noncolligative fashion, with
high activities at relatively low concentrations. Interestingly, these proteins appear to have evolved
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Ice-binding proteins as a case study for the evolvability of cold tolerance. (Left) Similarity tree of all known terrestrial arthropod
ice-binding proteins with both sequence data and confirmed laboratory activity (data taken from 9) and inferred by using the maximum
likelihood method and the Whelan and Goldman model (146). The tree with the highest log likelihood (−8,659.18) is shown. Initial
tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise
distances estimated using the Jones-Taylor-Thornton model and then selecting the topology with superior log likelihood value. A
discrete Gamma distribution was used to model evolutionary rate differences among sites [five categories (+G, parameter = 3.0607)].
The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 69 amino acid
sequences with a total of 439 positions in the final data set. Evolutionary analyses were conducted in MEGA11 (131). Protein models
for select species were produced from primary sequence by AlphaFold (56) and visualized in Mol∗ Viewer (113). Triangles indicate
where several very similar sequences from a single taxon (as indicated by labels) were collapsed and are sized relative to the number of
sequences. The tree indicates convergent evolution of ice-binding proteins across the arthropod phylogeny. (Right) Taxonomic
relatedness of the insects on the left tree, as generated by the NCBI Taxonomy Browser. Only the topology is represented. Silhouette
images were obtained from PhyloPic [credits to Didier Descouens (Choristoneura sp., Campaea perlata), T. Michael Keesey (Choristoneura,
Campaea perlata,Dendroides canadensis), Melissa Ingala (Chironomidae), Mathilde Cordellier (Ixodes sp.), Gregor Bucher (Tenebrio
molitor), Max Farnworth (Tenebrio molitor), Maxime Dahirel (Dorcus hopei binodulosus), and Birgit Lang (Hypogastrura harveyi)]; copyright
is https://creativecommons.org/licenses/by-sa/3.0/.

convergently multiple times in insect evolution (and indeed animal evolution broadly) (9)
(Figure 2), suggesting that they can readily evolve from a wide range of potential precursors.

2.2. Mechanisms of Rapid Cold Hardening

Responses to cold stress are dynamic, and there are many molecular changes that occur both dur-
ing and after a cold event. Rapid cold hardening is a type of rapid plasticity that allows insects
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to quickly adjust physiology during a sudden cold event, and the mechanisms of this widely used
adaptation are reviewed in Reference 134. Unlike gradual cold acclimation and diapause, rapid
cold hardening appears to operate in the absence of large-scale changes in gene expression. As
discussed above, one of the primary causes of physiological injury during cold stress is membrane
depolarization followed by ion dysregulation (91).However, in the context of rapid cold hardening
(i.e., mild cold in advance of more severe cold), insects use these ion movements to trigger protec-
tive responses.Chilling that induces cold hardening elicits a gradual influx of intracellular calcium,
and blocking calcium entry or inhibiting downstream calcium-sensing proteins prevents harden-
ing from occurring (137). Interestingly, calcium influx also appears to be responsible for triggering
cell death in the cold (5), and thus the degree of calcium influx determines whether a protective or
detrimental response occurs. Cold also leads to rapid activation of the stress signaling protein p38
mitogen-activated protein kinase (40), but the downstream actions of calcium and p38 that lead to
enhanced function in the cold are unknown. Using an unguided phosphoproteomics approach,
Teets & Denlinger (133) identified several proteins that are differentially phosphorylated in
the cold, including cytoskeletal proteins, heat shock proteins, signaling proteins, and proteins in-
volved in lipid metabolism. While the functional significance of these changes requires further
investigation, these results suggest that posttranslational modifications like phosphorylation may
be an important physiological regulator during acute low temperature stress, when transcription
and translation may not be possible.

2.3. Mechanisms of Recovery From Cold Stress

Although gene expression appears to play only a minor role during severe cold stress, numerous
gene expression changes are activated during recovery. For example, in the flesh fly, Sarcophata
bullata, roughly 10% of the transcriptome is differentially expressed 2 h after a severe cold shock
(136), and in larvae of D. melanogaster, roughly 2% of genes remain differentially expressed 24 h
after cold stress (127). As in preparation for cold, heat shock proteins are overexpressed during
recovery from cold stress (18, 121, 126, 136), indicating that this class of genes has a dual role in
both preparatory and repair processes. However, in the honey bee Apis cerana cerana, while two
heat shock proteins are upregulated during recovery from cold stress, a majority are downreg-
ulated (148), again indicating that heat shock protein responses to cold are species specific. In
D. melanogaster, knocking down expression of the 22- and 23-kDa heat shock proteins impairs re-
covery (18), which suggests that restoring protein homeostasis is critical for successful recovery
from cold stress. In Drosophila, frost is robustly upregulated during recovery from cold stress (8,
121), but frost appears to lack orthologs in other insect taxa, so it is not clear whether this gene has
a role in cold stress in other insects.

Recovery from cold stress also elicits expression of immune-related genes (127, 151); this could
be because cold-stressed insects are more susceptible to pathogens, but it could also be the re-
sult of cross-talk between cold and immunity pathways (120). In addition to changes in gene
expression, recovery from cold stress involves neuroendocrine signaling (for a review, see 73). In
D. melanogaster, CAPA neuropeptide accumulates during cold stress and is released during recov-
ery. Knockdown of the transcript encoding CAPA increases recovery time (139). These processes
activated during recovery from cold are also likely responsible for the beneficial effects of fluc-
tuating thermal regimes (i.e., repeated cycles of cooling and warming) during prolonged cooling
(19). Together, recent research indicates that recovery from cold stress is a dynamic, and likely
underappreciated, aspect of coping with winter environments.However, molecular studies to date
have been heavily biased toward Diptera, so additional work is needed to identify key processes
that operate during recovery from cold stress across the diversity of insects.
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3. DIAPAUSE AS A SOLUTION TO THE CHALLENGES OF WINTER

Entering diapause prior to the onset of winter stressors is a strategy used by numerous insects to
mitigate the challenges of winter—especially issues with energetic stress and physical damage to
cell structures and macromolecules. Diapause is obligatory for some insects, but for many oth-
ers, it is an alternative developmental pathway initiated in response to token cues (e.g., changes
in photoperiod, temperature, or food quality) that signal the advent of winter (23). Diapause is
generally characterized by developmental arrest, metabolic depression, and increased tolerance of
environmental stresses (44, 46, 60). Given its importance in insect life histories, and the profound
developmental and physiological changes that accompany it, the mechanistic basis of diapause has
been an intense area of investigation. In this section, we summarize the molecular regulation of
diapause, from the upstream signals that trigger it to its downstream effectors. These molecular
mechanisms are also summarized in Figure 3.

Diapause was initially viewed as a period of stasis but has since been found to be a dynamic
developmental program that is divided into distinct phases, including preparation, maintenance,
and termination phases (63). During the past 20 years, candidate gene approaches and high-
throughput transcriptome studies have identified genes that are up- or downregulated during these
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Figure 3

General schematic for diapause regulation. Changes in the number of daylight hours are detected by the central circadian clock. In
turn, changes in the abundance of Period, Timeless, and other clock-associated proteins alter the production of neurotransmitters and
neuromodulators [e.g., dopamine, serotonin, and pigment dispersing factor (PDF)] that regulate the production and secretion of
insulin-like peptides (ILPs) by insulin-secreting cells (ISCs) in the brain. Downstream of the ILPs, juvenile hormone ( JH) and
Forkhead box protein O (FoxO) influence the expression of genes responsible for physiological changes. Note that pathways involving
JH signaling would likely only operate during an adult reproductive diapause. Neurosignaling events also regulate the production and
release of prothoracicotropic hormone (PTTH) and the production of ecdysone.MicroRNAs that are regulated by ecdysone titers (e.g.,
let-7, miR-252, and miR-8–3p) influence developmental timing, cell cycle progression, and metabolism. Figure adapted from images
created with BioRender.com and licensed under BioRender’s Academic License Terms (https://biorender.com/academic-license/).
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distinct phases of diapause. For example, a microarray study in Chymomyza costata found distinct
mRNA expression profiles for each phase of diapause (65). The molecular regulation of diapause
initiation is covered extensively below; in brief, it involves endocrine signals that reprogram de-
velopment and gene expression changes that facilitate metabolic reprogramming (e.g., 65, 100).
During diapause maintenance, development is repressed, and insects are prepared to cope with
winter stressors, so molecular processes during this phase of diapause are predominantly involved
in cryoprotection and shifts in energy metabolism (60, 95, 98, 100, 102). While diapause termi-
nation is not well studied, in both C. costata and Rhagoletis pomonella, termination is accompanied
by upregulation of Wnt and target of rapomycin (TOR) genes (65, 99), although studies on addi-
tional species are necessary to determine whether this pattern extends beyond Diptera. Because
diapause involves such a dramatic developmental shift, the processes involved in upstream regula-
tion and initiation of diapause are better characterized than those downstream; thus the remainder
of this section focuses on upstream processes, such as the circadian clock and endocrine signaling
pathways, and,when possible, how these pathways are coupled tometabolism and stress resistance.

3.1. Mechanisms of Photoperiodic Measurement

Accumulating evidence from gene expression studies, knockdown experiments, and/or screens for
genetic variants across populations suggests that circadian clock genes (e.g., period, timeless, and
cryptochrome 2) have important timekeeping roles in regulating photoperiodic diapause (64, 67, 82,
93, 97, 153). Transcriptome studies on Delia antiqua (102), C. costata (125), and Nasonia vitripen-
nis (21) show that period and timeless are differentially regulated in diapausing individuals relative
to nondiapausing counterparts. Knocking down period, timeless, or cryptochrome 2 in Culex pipiens
produces female mosquitoes with a nondiapause phenotype, even if they are reared in short-day
diapause-inducing conditions (83). Conversely, knocking down the clock-associated gene pigment
dispersing factor (PDF) leads to ovarian arrest in long-day conditions that normally avert diapause.
Similarly, in the cabbage beetle, Colaphellus bowringi, knockdown of period and timeless during pre-
diapause prevents lipid accumulation by altering the expression of genes involved in lipogenesis
and lipolysis (153). A whole-genome study on Ostrinia nubilalis shows a correlation between the
clock-related proteins Period and PDF Receptor and the timing of diapause termination (67).
However, the precise nature of the relationship is still unclear. In D. melanogaster, which does not
have a robust diapause, seasonal differences in chill coma recovery times observed for wild-type
females are not found in null mutants of period, timeless, or clock (93). Together these results indi-
cate that at least some circadian clock genes play a general role in regulating diapause and other
seasonal responses.

3.2. Endocrine Signaling and Physiological Outcomes

Diapause entry, maintenance, and termination are endogenously regulated by the endocrine sys-
tem. Diapause during larval and pupal stages is associated with reduced levels of ecdysone, while
adult, reproductive diapause is characterized by reduced levels of juvenile hormone (25). The en-
docrine system is recognized as a link between the circadian clock or endogenous timekeeping
mechanisms and physiological outcomes that define diapause (2, 35). In brains from pupae of the
sugar beet moth, Scobilpalpa ocellatella, there is a negative correlation between levels of Period and
Timeless proteins and amounts of Prothoracicotropic hormone (PTTH) and ecdysone (2). In
Bombyx mori, knocking out Period increases expression of the gamma-aminobutyric acid (GABA)
receptor, which inhibits the release of Diapause hormone (DH) in adult females and prevents dia-
pause initiation in the subsequent generation of embryos (20). In Antheraea pernyi, Period and the
Clock/Cycle heterodimer regulate synthesis of melatonin, which, in turn, controls PTTH release
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from the prothoracic gland, synthesis and release of ecdysone, and ultimately diapause termina-
tion (85). Additional studies with Lepidoptera suggest that neuropeptides and neuromodulators
(e.g., dopamine, serotonin, melatonin, and PDF) connect circadian clock–related genes with the
endocrine system (52, 114). Several of these, including PDF and dopamine, regulate diapause in
at least some species of Lepidoptera and Diptera (45, 54, 64, 68, 83), but the mechanisms have yet
to be completely worked out.

Insulin and insulin-like peptides also play an important role in diapause, particularly in regu-
lating metabolic shifts (100, 117).Unlike mammals, insects can have multiple insulin-like peptides
that play diverse roles, leading to complex regulation of metabolism. A recent review of insulin-
like peptides suggests that this complex regulation can be co-opted to produce dramatic metabolic
phenotypes such as diapause (14). In Drosophila, insulin signaling is coupled to the circadian clock
through a feedback loop that includes insulin and Timeless (29, 87). Neuropeptides and neuro-
modulators (e.g., serotonin, dopamine, octopamine, GABA, and short neuropeptide F precursor)
also regulate insulin production and secretion by acting on insulin-producing cells in brains of
D. melanogaster (88). Whether these interactions regulate diapause has not been experimentally
tested.

In Cx. pipiens, insulin signaling is coupled to diapause-related changes in metabolism and stress
resistance through the transcription factor Forkhead box protein O (FoxO). Reduced levels of
insulin activate FoxO and regulate genes involved in energy homeostasis, environmental stress
resistance, and other key features of diapause (90, 116, 118). FoxO has been best studied in Cx.
pipiens, but it is also associated with diapause in Locusta migratoria (47),B.mori (12),Laodelphax stri-
atellus (149), Bombus terrestris (66), Bactrocera minax (13), and Antheraea pernyi (72). As we discover
more about the molecular regulation of diapause, it will be interesting to see whether FoxO has a
conserved role in integrating information from the circadian clock, endocrine signaling pathways,
and physiological outcomes, despite diapause having evolved multiple times throughout the insect
phylogeny (97).

3.3. Epigenetic Regulation of Diapause

Accumulating evidence suggests that epigenetic processes (e.g., DNA methylation, histone modi-
fications, and noncoding RNAs) regulate diapause-specific changes in gene expression (103, 104).
DNA methylation (i.e., covalent attachment of a methyl group to DNA) has been implicated in
diapause initiation in B. mori and N. vitripennis (103). However, it is worth noting that Diptera
appears incapable of DNA methylation, and the extent of methylation varies considerably across
the insect phylogeny (7). Histone modifications (i.e., reversable attachment of acetyl-, methyl-,
or other functional groups to nucleosomes), which make certain regions of the genome more
or less accessible to the polymerase machinery, may regulate gene expression in diapausing
S. bullata (105). Histone modifications may also be important for other aspects of winter sur-
vival, including responding to temperature fluctuations (115). Small noncoding RNAs, especially
microRNAs, likely influence gene expression during diapause by regulating translation of target
gene transcripts. MicroRNAs are differentially expressed before, during, and/or postdiapause in
flies, mosquitoes, and moths (for specific examples, see Figure 3) (104, 106).While this area of re-
search is relatively new, it is becoming increasingly clear that modifications toDNA and chromatin
structure, as well as expression of noncoding RNAs, likely play important roles in the wholesale
changes in gene expression that accompany diapause.

4. EVOLUTIONARY GENETICS OF WINTER SURVIVAL

The complex molecular regulation of cold tolerance and diapause, discussed above, provides many
opportunities for selection to act on these phenotypes in subtle and sometimes complex ways.

328 Teets • Marshall • Reynolds



Understanding the evolution of overwintering traits contributes to our understanding of insect
diversification and distribution at large, and evolutionary genetics studies can also yield novel
mechanistic insights. In addition, with winter conditions rapidly changing, in terms of both higher
average temperatures and increased variability (147), evolutionary studies of overwintering biol-
ogy are needed to determine whether insects can keep pace with these changes. Broadly speaking,
work on the evolutionary genetics of overwintering survival in insects has either focused on cold
tolerance or diapause. In either case, the vast majority of work has focused on Drosophila species,
which are remarkable in neither their cold hardiness nor their diapause. However, by leveraging
the tools available in Drosophila; its cosmopolitan nature, which allows collection and study across
a wide geographical area; and the power of the Drosophila radiation itself for evolutionary studies,
researchers have made significant progress in understanding the importance of the genetics of
overwintering traits as an important driver of adaptation in insect populations. In addition, work
on other models such as the apple maggot fly, R. pomonella; the European corn borer, O. nubilalis;
the pitcher plant mosquito, Wyeomyia smithii; and the flesh fly, S. crassipalpis has broadened this
work. This work has generally proceeded one species at a time (although see 33, 100), so while
we comment on generalities where possible, we also present case studies where the evolutionary
genetics have been well worked out.

At the broadest level, it is clear that insect cold tolerance evolves readily. The ability to survive
freezing has independently evolved numerous times both across insect orders and within partic-
ular insect lineages (for a review, see 143). Species of Drosophila with higher cold tolerance tend
to have higher-latitude poleward range limits (50), and similarly, poleward populations of a given
species are generally more cold tolerant than are equatorward populations (10, 96). Similarly, in
the widespread bumble bee Bombus vosnesenskii, the population-specific critical thermal minimum
is strongly correlated with local minimum temperatures that vary with both latitude and altitude
(94). This ready evolution of cold tolerance is not particularly surprising, as the molecular mech-
anisms of cold tolerance are generally exaptations—i.e., repurposing of molecules that evolved
for other purposes. For example, glycerol is one of the most common insect cryoprotectants, and
it is used in multiple biochemical pathways and structures, such as phospholipid membranes and
ATP generation (124). Similarly, ice-binding proteins have evolved repeatedly from multiple in-
dependent origins, such as proteases, c-type lectins, and even noncoding DNA (for a review, see
9) (Figure 2). These single mechanism–focused examples are supported by work at the transcrip-
tome level across New Zealand stick insects, which repeatedly and independently colonized alpine
zones and show species-specific transcriptomic responses to cold shock (33). This ready evolution
of molecular mechanisms of cold tolerance suggests significant selective pressure and relatively
simple adaptations.

Macromolecules can evolve greater ability tomaintain function in cold conditions by increasing
their fluidity. For example, the glycolytic enzyme phosphoglucose isomerase (PGI) has frequently
been found to evolve intraspecifically, with well-worked-out genotypes in the willow leaf beetle,
Chrysomela aenicollis, that correlate with latitude and altitude (101). Similarly, the Pgi genotype
determines low-temperature flight ability in the Glanville fritillary, Melitaea cinxia (111). In the
eastern spruce budworm,C. fumiferana, a single-nucleotide polymorphism (SNP) in the glycolytic
enzyme glycerol 3-phosphate dehydrogenase has been identified as segregating on a linkage block
between more poleward versus more equatorward populations (74). While sequence variation
in conserved metabolic enzymes appears to drive cold adaptation in many in cases, occasionally,
biochemical novelty can appear. For example, the extremely freeze-tolerant Eurosta solidaginis has
evolved a novel acetylated triacylglycerol as a storage lipid,which allows its storage lipids to remain
liquid (and therefore accessible to metabolism) at much lower temperatures than usual storage
lipids (80).With the advent of novel algorithms like AlphaFold that allow for routine predictions of
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protein structure and greater access to non–model organism genomes, we anticipate an increasing
number of studies that test the links between cold tolerance, selection, and population variation
across latitude.

Within Drosophila, several genetic screens have identified important loci for cold tolerance. In
Drosophila ananasse, just three quantitative trait loci explain 60% of the variation in chill coma
recovery time (62). In D. melanogaster, many genes have been linked to cold tolerance, but their
mechanisms remain unclear. For example, selection for increased cold resistance changed expres-
sion of 94 genes, none of which corresponded to previously identified cold tolerance genes (138).
The underlying genetic architecture of cold tolerance likely depends on the particular cold tol-
erance trait being measured, as, at least in D. melanogaster, many different cold tolerance traits do
not correlate well across genotypes and often have sex-specific correlations (41). However, when
a particular cold tolerance trait, such as critical thermal minimum, is studied in depth, a genome-
wide association study (GWAS) can identify multiple candidate genes that are also differentially
expressed in response to cold, indicating that there is at least some overlap between variants that
associate with cold tolerance and those that are dynamically expressed during a cold event (69). In-
terestingly, in the DrosophilaGenetic Reference Panel, SNPs associated with variation in baseline
cold tolerance (measured by survival after a cold shock) do not overlap with SNPs associated with
capacity for short- or long-term plasticity in cold tolerance (43), although SNPs associated with
each trait had overlapping molecular functions. Taken together, these results suggest that there
are many ways to achieve increased cold tolerance from a genetic perspective.

The evolutionary genetics of diapause have also been investigated thoroughly (for a review,
see 97). As described above, diapause is a complex trait that can be divided into multiple phases.
Studies on the evolution of diapause have, out of necessity, focused on easily distinguished traits
such as diapause incidence and phenology to allow for robust association with genetic variation.
Even so, the role of diapause-related genes in local adaptation is clear. In D. melanogaster, SNPs
in genes associated with insulin-sensing and couch potato (cpo) are clinal (34, 112), and similar
variants are also associated with the time of year in which a particular population is collected
(37). In the apple maggot fly, R. pomonella, the introduction of apple trees (which fruit earlier) to
North America initiated an allochronic speciation event as some populations switched from their
native hawthorn host, which fruits later. The separation in host plant timing caused a separation in
reproductive timing in the flies, leading to speciation (38). This divergence again evolved rapidly,
with transcriptional evidence indicating that it is likely due to differences in development rate
during diapause (31). Thus, selection on diapause phenotypes can also be an important driver
of speciation, as changes in phenology restrict gene flow and can allow for canalization of the
diapause phenotype under selection.

5. BROADER IMPLICATIONS AND PRACTICAL APPLICATIONS
FOR MOLECULAR STUDIES OF OVERWINTERING

Given the heritability of, latitudinal variation in, and selection for cold tolerance traits, it is clear
that cold tolerance is a key fitness trait in insect populations. However, cold tolerance can be
difficult to study. It is a complex trait that can be measured in multiple ways and involves not
only a wide array of biochemical and physiological mechanisms, but also a variety of underlying
genetic architectures.As climate change proceeds, the ability of a given insect population or species
to take advantage of the warming climate and spread poleward will rely on the genetic resources
available, as well as the evolvability of cold tolerance and its plasticity.Therefore, broadly speaking,
predicting the impacts of climate change on insect populations will rely on better linking these
mechanisms of cold tolerance to population-level impacts.
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One potentially fruitful way to link these diverse traits to fitness is through the use of ener-
getics. Overwintering insects are frequently unable to feed, yet they must deploy cryoprotective
mechanisms from the same energetic stores that supply ATP for maintaining homeostasis. As
a result, increased investment in cryoprotection can come at the cost of future egg production
(140) or can result in lowered survival at the end of winter (79). While there have been multiple
studies investigating the correlations between lower thermal limits and poleward range expan-
sion (1, 130), we caution that these studies often do not assess cold tolerance of overwintering
life stages and therefore may not provide an accurate representation of the cold tolerance for a
particular species. Therefore, we look forward to the development of population and mechanistic
models (e.g., NicheMapR; 76) that include realistic assessments of insect overwintering that en-
compass lethal limits, plasticity in cold tolerance, and sublethal traits like energetics and postwinter
reproduction.

In addition to providing fundamental insights into processes that limit insect survival and that
may be under selection in changing environments,molecular studies of overwintering insects may
have potential field applications. For example, the ability to manipulate diapause at the molecular
level may improve management of both pests and beneficial insects. Hormone agonists can be
used to prevent either entry into or termination of diapause in the corn earworm Helicoverpa zea
(152), and field application of these compounds could reduce overwintering populations. Similar
disruptions of diapause may also benefit beneficial insect release programs. For example, the lady
beetle Hippodamia convergens is one of the most popular commercial biological control agents for
gardens and greenhouses, but beetles in diapause either disperse from the release point or fail
to consume prey (22). Thus, the ability to prevent, break, or extend diapause through molecular
means could improve the field performance of beneficial predators and pollinators.

Organismal-level thermal traits have long played a role in improving species distribution
models (15, 76), and we propose that molecular studies may be similarly able to contribute to
predictions of insect distributions. It is impossible to characterize the overwintering biology
of every insect species, but phylogenetically informed mechanistic studies can identify the key
genes and processes that limit overwintering ability in select insects. With large-scale genome-
sequencing initiatives like the Sequencing Five Thousand Arthropod Genomes (i5K) (51) and
Earth BioGenome Project (71), it may be possible to predict the overwintering biology of a novel
species through an analysis of gene content and sequence. We recognize that this idea is some-
what speculative, but small-scale meta-analyses suggest that there are transcriptional hallmarks
for specific diapause strategies (100), and it is likely that similar signatures exist in the genome.
For example, the success of the invasive mosquito Aedes albopictus can be partly attributed to its
ability to overwinter in environments much colder than its native range and to rapidly evolve its
diapause timing in different environments (24). Perhaps future invasions could be anticipated by
using genomics to determine whether a particular species has the requisite complement of genes
to overwinter in a particular habitat.

6. FUTURE DIRECTIONS AND CONCLUSIONS

As detailed above,molecular research on insect overwintering biology has exploded in recent years.
However, while the amount of information that we have has increased dramatically, in many ways
our understanding has not advanced as rapidly. While some common threads are emerging, vari-
ation in study designs, methodology, and species of interest has made it challenging to develop a
unifiedmodel for molecular responses to low temperature and other winter stresses, and it remains
unclear if such a model even exists. Moving toward a unified model requires phylogenetically in-
formed studies and careful considerations of ecologically relevant conditions, as have been done
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for some groups or for organismal-level assessments of cold tolerance (3, 57). A meta-analysis of
transcriptional responses to diapause suggests a lack of a phylogenetic signal but instead similarity
depending on the specific stage of diapause and thus indicates that there is some evolutionary con-
vergence in mechanisms (100). However, at the time of that meta-analysis, the taxonomic breadth
of diapause transcriptomes was limited, and whether such convergence characterizes other over-
wintering phenotypes (i.e., cold acclimation, recovery from cold stress, etc.) remains to be seen. As
was probably clear from the discussions above, in-depth molecular studies of cold tolerance traits
are biased toward Drosophila, a taxon that has robust plastic responses to cold but is otherwise
unremarkable in its cold tolerance. While the past decade has brought incredible new insights
into insect overwintering physiology, the next decade will require carefully designed studies and
collaboration among groups specializing in different insect taxa.

In addition to increasing the taxonomic diversity of molecular studies, there is great oppor-
tunity to functionally validate the expanding list of molecular correlates of diapause and cold
hardiness. RNA interference (RNAi) has been used to test important hypotheses including the
importance of heat shock proteins (18, 107) and cryoprotectant synthesis genes (92, 145), the role
of clock genes in regulating diapause entry (53, 83), and the functional role of genes associated with
cold tolerance through GWAS approaches (135). However, RNAi and other reverse genetic ap-
proaches are relatively underutilized in studies of overwintering stressors. Newer approaches like
CRISPR/Cas9 allow sequence-specific modifications to genes and/or the routine creation of null
mutants, but to date only one study has used this approach to investigate molecular responses to
cold; in this study,Newman et al. (89) demonstrated that frost,which has long been associated with
cold responses inDrosophila, plays a minor role in preserving reproduction after cold stress but has
no other effect on cold tolerance phenotypes. A major challenge to adopting CRISPR/Cas9 with
other species is reagent delivery, as embryonic injection has not been optimized or is challenging
or impossible for many species. However, new approaches to delivery, including those that use
maternal injection coupled with reagents that are taken up by ovaries (11), may pave the way to
expand this powerful tool into insects with unique overwintering adaptations. In principle, the
tools are in place to turn any insect into a model species (81), and these tools are necessary to pre-
dict responses to climate change, manipulate overwintering biology for pest control, and improve
overwintering survival of beneficial insects.
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65. Koštál V, Štětina T, Poupardin R, Korbelová J, Bruce AW. 2017. Conceptual framework of the

eco-physiological phases of insect diapause development justified by transcriptomic profiling. PNAS
114:8532–37

66. Koubová J, Jehlík T, Kodrík D, Sábová M, Šima P, et al. 2019. Telomerase activity is upregulated in the
fat bodies of pre-diapause bumblebee queens (Bombus terrestris). Insect Biochem. Mol. Biol. 115:103241

67. Kozak GM,Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, et al. 2019. Genomic basis of
circannual rhythm in the European corn borer moth. Curr. Biol. 29:3501–9.e5

68. Leal L,Talla V,Källman T, FribergM,Wiklund C, et al. 2018.Gene expression profiling across ontoge-
netic stages in the wood white (Leptidea sinapis) reveals pathways linked to butterfly diapause regulation.
Mol. Ecol. 27:935–48

69. Lecheta MC, Awde DN, O’Leary TS, Unfried LN, Jacobs NA, et al. 2020. Integrating GWAS and
transcriptomics to identify the molecular underpinnings of thermal stress responses in Drosophila
melanogaster. Front. Genet. 11:658

70. Lee RE, Denlinger DL. 1985. Cold tolerance in diapausing and non-diapausing stages of the flesh fly,
Sarcophaga crassipalpis. Physiol. Entomol. 10:309–15

71. Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, et al. 2018. Earth BioGenome Project:
sequencing life for the future of life. PNAS 115:4325–33

www.annualreviews.org • Molecular Mechanisms of Winter Survival 335



72. Li YN, Ren XB, Liu ZC, Ye B, Zhao ZJ, et al. 2021. Insulin-like peptide and FoxOmediate the trehalose
catabolism enhancement during the diapause termination period in the Chinese oak silkworm (Antheraea
pernyi). Insects 12:784
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