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Abstract

Mites are masters at attaching to larger animals, often insects, in a tempo-
rary symbiosis called phoresy that allows these tiny animals to exploit patchy
resources. In this article, we examine phoresy in the Acari, including those
that feed on their carriers in transit, from a broad perspective. From a phy-
logenetic perspective, phoresy has evolved several times from free-living
ancestors but also has been lost frequently. Rotting logs appear to be the
first patchy resource exploited by phoretic mites, but the evolution of rapid
life cycles later permitted exploitation of short-lived resources. As phoresy
is a temporary symbiosis, most species have off-host interactions with their
carrier. These relationships can be highly complex and context dependent
but often are exploitative of the carrier’s resources or progeny. Transitions
from phoresy to parasitism seem widespread, but evidence for transitions
from obligate phoretic parasitism to permanent parasitism is weak.
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Deutonymph:
the third life stage of
mites after the egg

Free living: describes
mites with no life
stages that attach to
carriers or hosts

Natal habitat:
the place where eggs
are laid and most or all
immature stages
develop

1. INTRODUCTION

Mites include the smallest of all terrestrial arthropods, are the most diverse group of the Arach-
nida, and have infiltrated more habitats than the Insecta (142). Part and parcel of this acarine
conquest and radiation is phoresy, their ability to hitch a ride on larger animals. Initially, phoresy
was considered to include any relationship in which one animal transported another, even ants car-
rying their young; in which the relationship was temporary; and in which feeding on the carrier
did not occur (82). However, Janet (55) struggled with the divide between phoresy and parasitism.
Antennophorus species seem to be phoretic, but adult mites ride beneath the heads of ants, where
they feed by deceiving their carrier into trophallaxis (40), while also being transported to new nests
where their young develop as inquilines.

During the twentieth century, authors devised more restrictive definitions. Intraspecific trans-
port was dropped, species that feed on the host continued to be excluded, and some definitions
precluded development during transit—while also suggesting that movement should be from
a less to a more suitable habitat (36). Since then, however, these definitions have increasingly
broadened again. For the purposes of this review, we prefer the definitions of Camerik (21)
and Walter & Proctor (142), with slight modification: Phoresy is a temporary symbiosis where
one life stage of a smaller animal (the phoretic) attaches to another larger animal (the carrier)
for dispersal. We emphasize that the symbiosis is temporary and usually interspecific. Thus,
phoretics can have an additional interaction with a carrier; in this review, we discuss examples of
mutualists, commensals, parasites, and parasitoids with a phoretic symbiosis within their life cycle.
In addition, although the outcome of phoresy is dispersal, we do not exclude negative impacts on
the carrier. Thus, impeding movement of the carrier or feeding from the host are still within the
realm of a phoretic relationship.

Our preferred definition is, however, more restrictive than that of Bartlow & Agosta (7), which
includes parasites such as ticks. Ticks may disperse to new habitats on hosts; however, this appears
to be incidental, and we exclude these species. Our definition does include those parasites for
which dispersal is integral to the relationship with the host, particularly those that are parasitic
in only one life stage. This includes the highly diverse Parasitengona (larval parasites), several
groups of Astigmata with parasitic deutonymphs, and groups such as the Heterozerconina and
Paramegistidae that are parasitic as adults. We emphasize that phoresy is a symbiosis executed by
one life stage. In mites, this is usually either a deutonymph or an adult (Figure 1). Exceptions
are explicable. For instance, the flower-inhabiting miteHattena panopla lives in flowers, and adults
ride on visiting honeyeaters. As the duration of each flower is shorter than the life cycle of the
mites, immature mites are also phoretic—but by riding on phoretic adult mites, a rare case of
intraspecific phoresy (127).

In contrast, there is little question as to whether a mite is free living or phoretic. Free-living
mites that occasionally appear on larger animals are termed accidental phoretics (1) or facultative
phoretics (21). Accidental phoresy can be ecologically significant, as exemplified by the surprising
number of ground-dwelling Oribatida found on birds (81) and beetles (100). Indeed, the earliest
purported case of phoresy, from theCarboniferous Period (121), could be an accidental association
between an oribatid and an insect.

Various authors have tried to classify phoretic relationships into subtypes (e.g., 132, 134, 144);
the most enduring of these classifications is the division into facultative and obligate phoresy (1).
The terms themselves are unfortunate, as phoretic species must, at some time, make an obliga-
tory movement from the natal habitat. In this spirit, Camerik (21) redefined facultative phoresy
as equivalent to accidental phoresy, while separating obligate phoretics into species that exhibit
frequent obligate phoresy (i.e., in short-term habitats) and those exhibiting infrequent obligate
phoresy (i.e., in long-term habitats).
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Edaphic: associated
with the soil

Saproxylic: feeding on
dead or decaying wood

Figure 1 (Figure appears on preceding page)

Phoretic mites. (a,b) Astigmata: (a) phoretic deutonymph, ventral view; (b) on ologamasid mite venter. (c) Heterostigmata:
Polyphagotarsonemus latus adults on Bemisia tabaci. (d) Parasitengona: Arrenurus water mite larvae on venter of Tramea loewii.
(e) Parasitidae deutonymph (left) and Ereynetidae adults (right) on six-spined bark beetle, Ips calligraphus. ( f ) Mesostigmata,
Trigynaspida:Megisthanus thorelli and Fedrizziidae adults on passalid beetle. (g) Mesostigmata, Uropodina: phoretic deutonymph,
attached by anal pedicel. (h) Mesostigmata: Poecilochirus deutonymphs on Nicrophorus carrion beetle. Panels a–c copyright DE Walter.
Panel d copyright Narelle Power and Damian White. Panel e copyright Clarence Holmes. Panel f copyright Anthony O’Toole. Panel g
copyright Benjamin Fabian. Panel h copyright Jason Headley. All images used with permission.

It has been several decades since the last reviews of phoresy in various groups of Acari (3, 14,
31, 52, 53, 58, 103). The phylogeny of mites is now better resolved, allowing us to explore phoresy
within a phylogenetic framework.We look for patterns within the major groups of phoretic mites,
and across the Acari, before exploring three important aspects of phoresy: the impact on carriers,
phoresy as part of a dynamic relationship between the mite and its carrier, and the evolution of
other symbioses from phoresy.

2. THE ORIGINS OF PHORESY

Mites comprise two monophyletic superorders, Acariformes and Parasitiformes, which are of un-
certain affinity to each other and other arachnid groups (66, 111). Associations with insects have
formed multiple times in both groups, sometimes exhibiting highly specialized morphologies and
phoretomorphic stages (142).

2.1. Acariformes

Acariform mites have a significant fossil record starting from the early Devonian Period (134).
These early forms occurredmostly in soils, with the exception of Triassic records of plant-parasitic
Eriophyoidea (125). None are obviously phoretic or otherwise symbiotic with insects until the
Cretaceous Period. By this time, the major insect-associated lineages of acariform mites, Para-
sitengona (29, 73), Heterostigmata (61, 92, 93), and Astigmata (68) (Figures 2 and 3), are known
from fossils.

These three major lineages have completely different associations with insects. Furthermore,
several other groups have formed phoretic associations with insects, illustrating the propensity for
mites to independently form phoretic relationships.

2.1.1. The Parasitengona. The Parasitengona comprise approximately 12,000 spp. that are
almost all parasites as larvae and predators thereafter (38, 136). They include the chiggers (Trom-
biculoidea), which usually parasitize vertebrates; the water mites (Hydrachnida), which usually
parasitize adult aquatic insects (Figure 1d); and several other families that parasitize terrestrial
arthropods. The natal habitat is often not patchy or ephemeral, being a large body of water or
a general habitat through which the mites search for prey. However, the free-living stages may
occupy ephemeral habitats, such as temporary ponds (18) or nests (133). Thus, dispersal between
these habitats as parasitic larvae is an essential part of their life cycle and possibly integral to the
evolution of this unique life history (146).

2.1.2. The Heterostigmata. The Heterostigmata are a large, ecologically diverse group of
mites with numerous associations with insects, including phoresy and permanent parasitism (58)
(Figure 2). Early lineages associate closely with edaphic habitats and the nests of saproxylic so-
cial beetles, i.e., Passalidae and Scolytinae (Tarsocheylidae,Heterocheylidae). Beetles are common
carriers, but the Pygmephoroidea include numerous myrmecophiles (8). Fungivory predominates
throughout the group, with adults traveling on insects between habitats rich with mycelia (48, 58).
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Phoretomorph:
a heteromorphic
phoretic stage with a
morphology differing
from nonphoretic
forms of the same
stage

Sporothecae:
special pockets for
transporting
ascospores
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Figure 2

Phylogeny of Heterostigmata (84): species diversity (updated from Reference 148), primary host relationships (smaller circles indicate
less representation), primary carriers or hosts (up to four, from most to least important), attachment method of phoretics, and primary
off-carrier relationship.

However, in later branches, egg parasitoidism is prevalent, especially in the Pyemotoidea, where
adult females ride a host and attack eggs as they are laid.

Early derivative taxa attach to carriers with their chelicerae (Tarsocheylidae, Heterocheylidae,
Dolichocyboidea), as do the derived Tarsonemoidea (Figure 2). Permanent parasitism arises only
in Tarsonemoidea (58, 84), notably the Podapolipidae, a radiation found primarily on beetles and
orthopteroids (118, 131). Attachment to carriers via chelicerae may thus be a preadaptation to par-
asitism.Withinmost Trochometridioidea, Pygmephoroidea, and Pyemotoidea, attachment occurs
via a claw-like structure at the tip of the tarsus (often a phoretomorph) that clasps the setae of the
carrier. Notable variants are the bizarre Caraboacaridae, in which females attach via chelicerae
and coxal suckers (59), and Paracarophenax (Acarophenacidae), which secrete a glue-like plug that
they pinch for attachment (143).

The Heterostigmata present a shift from phoresy back to free-living lifestyles, a surprising
theme also found in the other major groups exhibiting phoresy. The Tarsonemidae have made the
shift most spectacularly, with numerous nonphoretic fungivorous and phytophagous taxa among
phoretic lineages (84). Of the phoretic taxa, the best known are those within the nests of scolytine
beetles that spread pathogenic bluestain fungi in sporothecae (48). However, some tarsonemids
have more intimate or curious symbioses with their carriers. Iponemus are egg parasitoids of their
scolytine beetle carriers (83), several tarsonemellines cause galls in figs and are transported on
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Life stage plasticity:
the ability to vary
developmental
patterns according to
environmental
conditions

Figure 3 (Figure appears on preceding page)

Phylogeny of Astigmata (105): species diversity (updated from Reference 123), primary host relationship (smaller circles indicate less
representation), presence of deutonymphs (DN) [optional (orange +) or parasitic (red +)], primary carriers (up to four, from most to
least important), and natal habitats for free-living and phoretic taxa.

fig wasps (56), and the wind-dispersed phytophagous pest Polyphagotarsonemus latus is phoretic on
whiteflies (112) (Figure 1c).

2.1.3. The Astigmata. The Astigmata present at least three remarkable shifts: first, from a
probable edaphic free-living oribatid ancestor to a mite with a highly specialized deutonymph
specifically adapted for phoresy; second, to permanent parasites of vertebrates (Psoroptidia);
and third, from vertebrate parasites to nest inhabitants (Pyroglyphoidea, the house-dust mites)
(26, 65, 66). The phylogenetic relationships of lower Astigmata, which are primarily associ-
ated with insects, are poorly resolved. In this review, we use previous morphological hypotheses
(101) but acknowledge that more inclusive molecular studies will soon provide better resolution
(26, 66).

UnlikeHeterostigmatina,Astigmata have one primary attachmentmethod via a ventral plate of
suckers (Figure 1a,b), although some groups have furthermodifications for clasping ontomammal
hair (106). Purported early taxa (Schizoglyphoidea, Histiostomatoidea, Canestrinioidea, Hemis-
arcoptoidea) tend to be found on insects that utilize edaphic ephemeral habitats, but this pattern
is less striking than in the Heterostigmata and Mesostigmata. Nevertheless, mammal and bird as-
sociates, with the natal habitat of nests, are primarily found in the Glycyphagoidea, Acaroidea, and
Hypoderatoidea (Figure 3). In contrast to the Mesostigmata and Heterostigmata, beetle associ-
ations are less common than associations with bees and wasps, and few Astigmata are intimately
associated with ants.However, the most diverse families (Acaridae,Histiostomatidae) often attach,
probably in nonspecific relationships, to various insects as well as terrestrial vertebrates.

Some Astigmata show intraspecific life stage plasticity in the deutonymph, which is skipped
or takes a phoretic or sedentary form (71, 72, 104). Skipping the deutonymph allows for rapid
population growth and thus resource exploitation, while the sedentary and phoretic forms provide
security in time and space, respectively. Such plasticity is expectedmore often in cyclical or longer-
lasting habitats with harsh periods or irregular resource replenishment (4, 37), characteristic of
many habitats utilized by phoretic Astigmata.

2.1.4. Other independent derivations. Phoresy has evolved at least 10 times in the remain-
ing Acariformes. The Oribatida are infrequently phoretic, but several wood-inhabiting species
have adults that are phoretic on saproxylic beetles. Passalid beetles are the most common carriers,
particularly of the Mesoplophoridae, which clamp onto setae with their folding, jackknife bod-
ies (100). More passive phoresy occurs in other families, such as Oppiidae, Scheloribatidae, and
Haplozetidae (34, 70, 122). Curiously, several Oppiidae are phoretic on dung beetles, an atypical
habitat for oribatids (33), and myrmecophilous species must somehow move between ant nests
(54).

In the Trombidiformes, phoretic relationships occur in some Cheyletidae (17), Ereynetidae
(35) (Figure 1e), and Iolinidae (140). Furthermore, other taxa form loose or poorly studied re-
lationships with insects, such as Tydeidae on moths (140), Stigmaeidae on sandflies (149), and
Dasythyreidae on click beetles (142). The phytophagous Eriophyoidea are wind dispersed, al-
though pollinators may transport some species between host plants (41); more extraordinary are
phoretic Aceria pallida that accompany their psyllid carrier not directly between host plants but to
overwintering sites (87).
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2.2. Parasitiformes

In contrast to the Acariformes, the earliest parasitiform fossil is Cretaceous (57).An earlier origin is
expected, yet the lack of fossils, in tandem with a strong Gondwanan pattern for one of the earliest
branches—the Holothyrida + Ixodida—gives credence to a late Cretaceous or early Cenozoic
diversification (9). Whenever their origin, phoretic associations with insects are present within
the earliest branches of Mesostigmata: Trigynaspida, Microgynioidea, Sejoidea, and Uropodina
(Figure 4).

The Mesostigmata show three distinctive types of phoretic relationships (Figure 4). The first
and earliest type comprises theTrigynaspida,which are phoretic as adults on insects, especially ants
and wood-inhabiting beetles (62) (Figure 1f ). The exceptions are several free-living Cercomegis-
toidea that may represent prephoretic ancestors. Many trigynaspid mites live on their hosts even
while their hosts are not dispersing and are thus in another nonphoretic symbiosis. Where they
have been studied, the Celaenopsoidea, Cercomegistoidea, Fedrizzioidea, andMegisthanoidea are
predators and scavengers and are thus commensal (20, 63, 128, 139); the other superfamilies are
kleptoparasitic on carabid beetles or ants (40). Trigynaspids tend to live in long-lasting habitats,
probably due to their relatively long life cycles of at least one month (63, 128, 139). They usually
have no special adaptations for attachment and move freely over their hosts. Parasitic adults, such
as the Paramegistidae (27), have evolved multiple times.

The second type involves several seemingly independent derivations of phoretic deutonymphs.
The first of these are the Sejina and Uropodina, currently seen as two independent lineages that
independently developed deutonymphs that attach via an anal pedicel (69) (Figure 1g). As in
trigynaspids, wood-inhabiting beetles are common hosts (60), as are ants for Uropodina (120).
Both groups prefer long-lived habitats such as rotting wood and nests. The second group is a
radiation in the otherwise free-living Parasitidae, the Parasitinae, which are phoretic as relatively
unspecialized deutonymphs (Figure 1e,h). Due to the relatively fast life cycles of parasitines, their
natal habitats are often carrion, dung, and nests, and their carriers tend to be insects living in these
habitats (74, 126). The Rhodacaroidea continue the deutonymphal pattern into the Gamasina:
Some Ologamasidae are phoretic on mammals and inhabit their nests or are phoretic on carabid
beetles; Halolaelapidae are phoretic on amphipods, beetles, and flies in wet habitats; and a large
radiation of Digamasellidae are phoretic primarily on saproxylic beetles (85).

The third type encompasses four highly diverse groups ofMesostigmata: Ascoidea,Dermanys-
soidea, Eviphidoidea, and Phytoseioidea. These mites are phoretic as adults and tend to have
fast life cycles (approximately one week) (142). As such, these Mesostigmata are found primar-
ily in carrion, dung, flowers, or other resources that quickly degrade (75, 85). However, this
does not preclude them from exploiting longer-lasting habitats, especially the nests of insects
(31, 107).

3. ADAPTATIONS FOR PHORESY: INNOVATION AND CONVERGENCE

Phoresy evolved a surprising number of times and in relationships with almost all winged insect
orders, but primarily with beetles and nest-making Hymenoptera (Figures 2–4). The natal habi-
tats of phoretic species are diverse, but phoresy appears to have initially evolved when a free-living
edaphic species with a slow life cycle exploited the habitat of rotting logs. This habitat is among
the longest lasting of all patchy environments (91). We hypothesize that rotten logs present an
evolutionarily solvable problem: That is, dispersal between logs on foot could still be successful,
but phoresy is more successful and therefore selected for. The three major phoretic groups, as well
as Oribatida, share this ancestral habitat. The Parasitengona are an exception, rarely parasitizing
log-inhabiting or nesting insects (38).
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Haplodiploid:
a sex-determination
system in which
haploid males develop
from unfertilized eggs,
and diploid females
develop from fertilized
eggs

Phoretic parasite:
species that is parasitic
in one life stage while
also being dispersed by
its host

After rotting logs, phoretic species exploited all manner of habitats, including those that persist
only for a matter of days or weeks. The key innovation seems to be faster life cycles (104). A
mite’s life cycle must be shorter than the duration of the resource. Thus, mites with slow life
cycles, such as trigynaspids (128, 139) and oribatids (101), occupy long-lasting habitats. In contrast,
the faster life cycles of higher Mesostigmata, Heterostigmata, and Astigmata—as little as a week
(e.g., 78, 116, 126)—allow exploitation of short-lived resources such as dung, carrion, flowers, and
sporocarps (104). These higher taxa also utilize long-lasting habitats, such as tree holes (37) and
sap flows (44), although they tend to have slower life cycles.

The phoretic life stage is usually an adult or deutonymph. Phoretic adults are often females
(88, 141), but both sexes are phoretic in species that have nonphoretic periods on their host (e.g.,
Trigynaspida; 130) or where males seek additional mates in new habitats (e.g., 42, 119). Phoresy by
adults provides obvious advantages: Mated adult females or those with haplodiploid genetic sys-
tems (102) can establish colonies alone and exploit resources instantaneously. More significantly,
their progeny can feast on ephemeral prey that also exploit the resource (e.g., nematodes, eggs,
early-instar larvae).Thus, phoresy by adults dominates in species that exploit short-lived resources,
whether it be the resources that the habitat presents (e.g., small prey, nectar) or the host’s progeny
(i.e., host eggs or provisions). Why do some species disperse as deutonymphs? We think that it is
significant that the most morphologically specialized phoretic mites are deutonymphs. Immature
mites do not need to findmates and bear young, and the specialized deutonymphs of Astigmata and
Uropodina do not feed, allowing investment in adaptations for phoresy.The existence of a phoretic
morph resistant to adverse conditions also permits some environmental resilience and life-cycle
synchronization, which are ideal for life in a long-lived cyclic habitat. Furthermore, deutonymphs
are smaller than adults and, in bisexual species, must disperse in groups to increase mating oppor-
tunity. If carrying mites incurs a cost to the insect, then perhaps having smaller nymphs reduces
these impacts.

Unusually, protonymphs are never the phoretic stage, and phoretic larvae exist only as the
phoretic parasites of Parasitengona.We hypothesize that enough resources must be accumulated
to invest in a specialized and resilient life stage, as in the Astigmata, or the preadult stage, as in the
Sejina, Uropodina, Parasitidae, and basal Gamasina.

4. PHORESY AND THE DIVERSIFICATION OF MITES

Phoresy allows mites to exploit a plethora of resources that are otherwise unobtainable, permit-
ting numerous radiations throughout the three major lineages that have evolved phoresy. Thus,
phoretic mites contribute significantly to the diversity of the Acari. However, free-living and par-
asitic mites outnumber phoretic mites significantly: Almost all Oribatida are free living (101), and
most Trombidiformes and Mesostigmata are free-living or permanent parasites (Figures 2–4).
Therefore, phoresy itself has not promoted unusual rates of speciation. Indeed, the greater dis-
persal ability may promote panmixis in populations, reducing fragmentation as experienced by
soil-dwelling free-living mites. In permanent parasites, host specificity and on-host microhabitat
specificity likely promote speciation. Phoretic mites could experience similar pressures, but prob-
ably only in nests and environments where the natal habitat requires species-specific adaptations
for tracking the life cycle of hosts, and where options for carriers are limited.

5. INTERACTIONS BETWEEN MITES AND THEIR CARRIERS

Phoresy is a temporary relationship that is frequently regarded as commensal. As mites rely on
their carrier for safe transit, the smooth, flattened bodies of many phoretic mites may have evolved
to minimize impact on their carrier. However, numerous phoretic mites have bodies with little
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modification, and those of Uropodina attach via stalks, thus nullifying aerodynamic benefits to
their carrier. Occasionally, mite loads hinder the movement of their carrier (e.g., 64, 89), and some
mites feed on host tissues in transit (e.g., 51, 115) or prey on phoretic nematodes (76). Despite
these few examples of negative impacts or feeding, the mite is still phoretic: It is a single life stage
moving between habitats on a carrier.

Phoretic mites rely on their carrier for transport, and in most cases, the natal habitat for mites
is the same as their carrier. Therefore, we expect insignificant or even beneficial symbioses (43,
107, 145), particularly cleaning and protective mutualisms (e.g., 13, 108), in the shared natal habi-
tat. However, numerous examples of negative symbioses exist. For instance, the heterostigmatic
families Pyemotidae and Acarophenacidae contain parasitoids of the eggs of their carriers (32, 98),
Chaetodactylus kills the young of mason bees (94),Trochometridium kills the larva of various bees and
then feeds on the resulting fungal growth (from spores carried by the mites) (24), andMacrocheles
muscaedomesticae eats the eggs and first-instar larvae of its muscid fly carrier (39). In this section,
we discuss four well-studied systems: the mite–fungus community of scolytine bark beetles, the
hummingbird–flower mites, Poecilochirus on carrion beetles, and mites in the acarinaria of bees.

The community of mites living with bark beetles is a complex system of several species of mites,
fungi, and beetles (47, 48, 113).Most work focuses on southern pine beetle (Dendroctonus frontalis)
and its phoretic mites, particularly Tarsonemus. Beetles and Tarsonemus both actively disperse
wood-pathogenic fungi upon which the beetle larvae and mites rely. However, mites also ac-
tively transport the beetle-antagonistic bluestain fungus,which can outcompete beetle-mutualistic
fungi. Thus, the Tarsonemus–beetle relationship has mutualistic benefits, by supplementing trans-
mission of beneficial fungi, that are weak at best; this relationship instead tends to be indirectly
antagonistic when Tarsonemus transmits bluestain fungi (45, 46). Indeed, evidence for mite–beetle
mutualisms is weak and is only inferred from the vast diversity of mites with bark beetles, some of
which presumably prey on Tarsonemus; however, others are predatory of their own carriers (96).

Several groups ofMesostigmata have colonized flower–pollinator systems,where they consume
nectar and pollen and are phoretic on floral visitors (19, 42, 95, 127). The best known of these
mites are the hummingbird–flower mites, which dash up the bills of hummingbirds and hide in
their nares until the hummingbird visits the next suitable flower (19, 22).Unlike the other systems,
the mites do not share the natal habitat directly; however, they compete with hummingbirds for
the same nectar, removing up to half of the resource (79) and potentially altering foraging behavior
(80).Thus, hummingbird–flowermites rob resources from their carrier while providing no benefit
in return.

The mites of both carrion beetles and eumenine wasps are examples of protective mutualisms,
where mites attack competing flies and parasitic wasps, respectively.However, this harmonious re-
lationship has a sinister side. In both cases, the relationship is context dependent, shifting between
mutualistic and antagonistic according to biotic and/or physical conditions.

Carrion beetles (Nicrophorus) compete with calliphorid flies for the corpses of small mammals,
but only carrion beetles regularly carry parasitid mites (Poecilochirus spp.; Figure 1h). These mites
feed on the eggs of calliphorid flies and are thus beneficial to beetles, but the mites also attack
the eggs of their hosts (12, 15) and compete for carrion (99, 124, 137). The mites are thus in a
conditional relationship with their hosts, being disadvantageous in the absence of blowflies but
often advantageous when blowflies are present (137, 145).

Several bees and wasps have pits or pockets (acarinaria) in which they carry mites. Given
that these structures seemingly encourage phoretic mites, surely these mites should be benefi-
cial. However, numerous mites riding in acarinaria feed on their carrier’s progeny or provisions
(23; http://idtools.org/id/mites/beemites/index.php). Thus, instead of transporting beneficial
mites, acarinaria could instead be a structure for skewingmite loads as social bees depart their natal
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nest (67). Unfortunately, we know little about the impact of most of these mites; one of the best-
studied relationships is that of the eumenine wasp Allodynerus delphinalis and its mite Ensliniella
parasitica (108–110).These mites feed on the hemolymph of juvenile wasps and, at high densities,
cause mortality of their carrier (110). However, at lower densities, the mites have little impact
and, when the parasitoid waspMelittobia acasta is present, defend juvenile wasps by attacking and
sometimes killing the parasitoid (108).

The above examples show how assumptions of relationships based on feeding or a limited
number of observations can be misleading. In each example, the multitrophic interactions are
more complex than was first thought: Few, if any, phoretic mites exist in a single phoretic-carrier
system, and some are extraordinarily complex. For example, beetles and sunbirds transport four
phoretic mite species, with the mites themselves transporting fungal spores, to protea flowers,
where only some mite species utilize the fungi for food (138). The interactions among play-
ers in these multipartite symbioses are difficult to disentangle, but phoretic mites tend to build
exploitative relationships with their carriers that are only mutualistic under certain conditions.
Nevertheless, stable commensal or mutualistic relationships may occur; however, these have been
little studied, and we encourage work on the impact of more mundane phoretics on their carriers.

6. EVOLUTIONARY TRANSITIONS FROM PHORESY

Phoresy is a logical intermediate life history because it requires elements of parasitism (host find-
ing and attachment) but no adaptations for feeding, breeding, and transfer between hosts (3, 5,
49, 132). Phylogenetic evidence generally supports this pivotal position, as lineages of permanent
symbionts arise consistently within or as sister to lineages exhibiting phoresy (Figures 2–4). Sig-
nificant exceptions are deep branches, most notably the ticks and Parasitengona, which have no
known phoretic intermediary (9, 146).

Two pathways to parasitism are possible: via the phoretic symbiosis itself or via the off-host
symbiosis. The former involves the phoretic stage first becoming a phoretic parasite, while the
latter involves other stages shifting to parasitism, or another permanent symbiosis, while main-
taining a phoretic stage. The relative importance of each pathway is difficult to disentangle, and
we suspect that both pathways have played a significant role.

Examples of phoretic mites sometimes feeding from their hosts, such as Macrocheles (90, 114,
115) and Hemisarcoptes cooremani (51), are purported transitional relationships leading to para-
sitism. However, we see these relationships as a step toward obligate phoretic parasitism; i.e.,
feeding on the carrier is required for further development. For the next step, phoretic parasites
must abandon their ancestral feeding habits and shift to living and breeding on their hosts. How-
ever, examples of this transition are elusive. Water mites with parasitic nymphs and adults do
not parasitize their chironomid carrier but instead shift to mollusks (30) or sponges (25). In the
Glycyphagoidea (Astigmata), the specialized deutonymphs were originally insect phoretics, but a
putative transformation series from vertebrate phoretics to endofollicular phoretics and finally to
endofollicular phoretic parasites occurred. None, however, have abandoned the natal habitat of
the nest. Similarly, the Hypoderatidae are regressive deutonymphal parasites within the tissues of
birds and rodents, but, where they are known, active stages develop in nests. Therefore, phoretic
parasites with highly modified life histories and morphologies may not transition easily to perma-
nent parasitism, but, as in the example of the Hypoderatidae, the probable sister to the Psoroptidia
(103), when they do so it may allow an extraordinary radiation.

A shift toward parasitism by nonphoretic stages first requires a more intimate off-host rela-
tionship, of which a nest is the most intimate of all. Significant lineages of bird and mammal
parasites may have followed this pathway, such as the Dermanyssoidea (117), Cheyletoidea (16),
and Psoroptidia (6). The same pathway seems likely for some permanent symbionts of insects
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found on nesting beetles (e.g., Diarthrophallidae on Passalidae) and social bees (e.g., Varroidae on
Apidae) and Uropodina with unmodified deutonymphs in ant colonies (77). However, some per-
manent symbionts of insects have no links with nests, such as the Otopheidomeninae (moths; 86)
and Podapolipidae (chrysomelid beetles; 129) or have ambiguous ancestral host relationships (e.g.,
Canestriniidae, possibly on carabids; 105). Thus, these lineages may have arisen through phoretic
parasitism by adults, coupled with selection to remain on hosts that did not utilize concentrated
resources, thus making new hosts difficult to locate.

Phoresy is readily reversible, with free-living taxa arising frequently within otherwise phoretic
lineages (Figures 2–4). In Heterostigmata, each family of Pygmephoroidea reverted to free living
(8), as have Tarsonemidae and possibly the Acarophenacidae. Surprisingly, several Astigmata and
Uropodina also reverted to free living, despite their heteromorphic phoretic deutonymphs. Most
Astigmata accomplished this reversion by skipping the deutonymph, which often shows plasticity
in its expression (71). Similarly, some Uropodina have phoretic and nonphoretic deutonymphs
(2), and adult phoretomorphs occur in some Heterostigmata (97) and Mesostigmata (10). The
optional expression of these stages suggests that they could be lost easily. Phoretic parasitism is
also lost frequently in the Parasitengona, primarily within water mites (135) but also in terrestrial
groups (147). Thus, phoresy has evolved frequently as a means of exploiting patchy resources,
but it seems to be just as easily lost, representing reversions to free-living lifestyles where food is
presumably harder to find but more evenly distributed.

SUMMARY POINTS

1. Phoresy is a temporary symbiosis where a larger animal transports a single life stage of
a smaller animal.

2. Feeding may occur on the carrier and is obligate in the larval parasites of Parasitengo-
nina, deutonymphal vertebrate parasites of the Astigmata, and some kleptoparasitic and
parasitic Mesostigmata.

3. Rotting logs are an ancestral habitat, with faster life cycles in derived taxa allowing
exploitation of shorter-lived resources.

4. Phoresy is usually part of another symbiosis with the carrier, which can be a complex,
context-dependent relationship that nevertheless tends to be exploitative of the carrier’s
progeny or its resources.

5. Phoresy has evolved multiple times—although just once in Astigmata and perhaps
Heterostigmata—but is also lost frequently.

6. Permanent parasitism has evolved from numerous phoretic lineages but rarely, if ever,
from lineages with parasitic phoretic stages.
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