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Abstract

In recent years, analytical tools and approaches to model the costs and ben-
efits of energy storage have proliferated in parallel with the rapid growth
in the energy storage market. Some analytical tools focus on the technolo-
gies themselves, with methods for projecting future energy storage technol-
ogy costs and different cost metrics used to compare storage system designs.
Other tools focus on the integration of storage into larger energy systems,
including how to economically operate energy storage, estimate the air pol-
lution and greenhouse gas emissions effects of storage, or understand how
policy and market rules influence storage deployment and operation. Given
the confluence of evolving technologies, policies, and systems, we highlight
some key challenges for future energy storage models, including the use of
imperfect information tomake dispatch decisions for energy-limited storage
technologies and estimating how different market structures will impact the
deployment of additional energy storage.
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Frequency
regulation:
an electricity system
service that involves
high-frequency
(second-to-second)
adjustment of power
output, used to balance
supply and demand on
short time scales
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INTRODUCTION

Energy storage is a broad term that describes various technologies designed to store energy for
later useful application. Storage is often associated with either generation or consumption of en-
ergy, but storage is not a net producer of energy and is only a net consumer of energy due to system
inefficiency. Although some forms of energy storage are historically quite common (gasoline, for
example), in this review we limit the discussion to electricity energy storage1—technologies that
consume electricity at one point in time in order to deliver electricity (or reduce its consumption)
at a later point in time. For electricity, energy storage technologies take many forms. Electricity
can be stored directly as a charge in a capacitor, in the form of mechanical potential or thermal
energy, or electrochemically, with energy stored and released in chemical bonds. Energy can also
be stored in the form of produced gases [e.g., hydrogen (1, 2)], but here we focus on closed-loop
systems where electricity is both consumed and returned.

Electricity energy storage is not a new technology, but interest in energy storage has increased
significantly in the past 15 years, driven by two factors that are somewhat interdependent: (a) an
increased need for energy storage to complement deployed and projected variable wind and solar
generation and (b) rapidly decreasing costs for various storage technologies, most prominently
lithium-ion batteries. As a result of these two forces, the storage industry has experienced rapid
growth in the past decade, with projections for the trend to continue for decades to come.

The nature of these new storage technologies, when combined with modern grid communi-
cation (smart grids), has also enabled a new set of applications for energy storage. Historically,
energy storage in the form of pumped hydropower was used as a form of generation reserve, with
the possibility of providing some frequency regulation or related balancing services. But the new
generation of storage technologies, when embedded into a modernized grid, can provide a wide

1We continue to use the terms energy storage or storage, even though the topic is specifically electricity energy
storage.
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Spinning reserve:
an electricity system
service where a
generator or other
facility commits to
supplying additional
power output within
5–20 minutes if
requested by the
system operator

set of services for various customers.On the generation side, storage can provide peaking capacity,
time-shifting of generation (energy arbitrage), and ancillary services such as frequency regulation
or spinning reserve. For distribution companies, storage can help manage peak electricity demand
or integrate distributed solar, and provide voltage or frequency support for weak parts of the sys-
tem. For customers, storage can help improve reliability, increase self-consumption of solar or
other local generation, and provide the ability to shift consumption to respond to electricity rate
structures.

Attempts to understand the net benefits of energy storage technologies—the topic of this re-
view article—have also been growing quickly in sophistication. Increased efforts toward quantify-
ing the economic costs and benefits of energy storage in electricity systems, including emissions
effects, have been driven by both the growing relevance of these analyses as well as the fundamen-
tal challenges involved in studying the topic, attracting and allowing for a broad set of research
approaches to address different facets of the general question. There is a range of interesting eco-
nomic questions relating to energy storage discussed below, including variations on “What are
the current and future costs of energy storage technologies?”, “What is the optimal way to oper-
ate energy storage (under a variety of assumptions and scenarios)?”, “What is the optimal design
of an energy storage device?”, “What effect does revenue-maximizing storage have on electricity
system emissions and how can that be reduced?”, and “How do market rules or policy affect the
operation or economics of energy storage?”.

COSTS OF ENERGY STORAGE TECHNOLOGIES

When evaluating the costs of energy storage technologies, there are a few key parameters to
consider. Unlike electricity generation technologies, where capital costs are normally rated based
on the maximum power output (i.e., $/W) with fuel costs contributing to the cost of energy
produced ($/Wh), in energy storage systems these costs both contribute to the installed capital
cost of the system.

Beyond the capital costs of the technology, it is also important to consider the system lifetime
(which is dictated by the irreversibilities and losses inherent in the system that accumulate over
time, especially for electrochemical systems), the response time of the system, the rated power of
the system, and the duration that a system can deliver the rated power. Efficiency is also a concern,
particularly if electricity prices or air pollutant and greenhouse gas emissions from the electricity
system are high, but as both cost and emissions associated with electricity generation decrease,
efficiency plays a smaller role in the overall cost of delivering stored energy. Finally, operation
and maintenance expenses also contribute to the overall cost of using storage technologies. Each
of these factors contributes to the total cost of delivering electricity with storage, and we discuss
several metrics commonly used to evaluate the costs of storage systems.

Technology Description

Of the mechanical energy storage technologies, pumped hydro has been the most widely adopted.
Hydropower dams have acted as a form of electricity storage for a century, and pumped hy-
dro has been used to balance large nuclear power plants, which operate best at constant power
output levels (3). Using geographically favorable sites, water is pumped into an upper reservoir,
and the potential energy of the pumped water can then be used to spin a turbine and generate
electricity.

Other large-scale mechanical storage options include compressed air storage and thermal stor-
age.Early compressed air systems rely on a natural gas turbine in conjunction with the compressed
air. The efficiency of these turbines is then higher than conventional turbines because they do not
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Compressed air
energy storage
(CAES): an energy
storage technology
that stores energy by
compressing air into a
chamber and recovers
the energy by running
the air through a
turbine, normally in
conjunction with
natural gas combustion

have to generate compressed air for the combustion process, but these systems still rely on the
combustion of fossil fuels (4). More recent research efforts and pilot projects have attempted to
use the expansion of the compressed air alone to generate electricity, with successful pilot projects
in Texas and Switzerland (5, 6). Thermal energy storage is most frequently paired with concen-
trated solar power systems, which heat a molten salt that is then stored and used to generate steam
overnight (7). Concentrated solar systems are generally located in extremely sunny locations, but
other methods, such as resistive heating, could be implemented to heat the energy storagemedium
independent of the concentrated solar array. Heat exchangers pass the thermal energy from the
storage medium to boil water, which is then used to spin a turbine to generate electricity.

Electrochemical energy storage technologies include batteries and fuel cells, and there are
many varieties of both technologies. Unlike mechanical storage technologies, which all rely on
turbines to spin magnetic generators, electrochemical storage technologies use chemical bonds as
the storage mechanism (8).The positive and negative electrodes of batteries can be both solids and
liquids. If electrodes are solids, a liquid electrolyte is necessary to facilitate ion transfer, as is the
case in lead-acid batteries, which have been available for more than 150 years, and intercalation
batteries such as lithium and sodium-ion cells, which are much newer. When both electrodes are
liquids, there are typically membrane separators to prevent crossover between the reactants, as is
the case in most flow battery configurations (9).

Drivers of Technology Costs

For large-scale mechanical storage systems, cost is influenced by geography. Pumped hydro sys-
tems require sites suitable for both a storage reservoir and sufficient elevation change to provide
potential energy. As with pumped hydro, compressed air energy storage (CAES) has also been
limited by the availability of natural resources to provide low-cost air storage. Common forma-
tions for underground storage include mined salt caverns and other porous rock formations (4).
Above-ground storage options have been explored but are much more expensive than using ex-
isting underground storage facilities, and they have struggled to become commercially viable (10,
11). The size of the geographic resources, in conjunction with the size of the turbines installed,
impacts the overall power:energy ratio of the system, but approximations of the system costs are
listed in Table 1.

Unlike pumped hydro and compressed air systems, where the storage medium is effectively
free, finding low-cost materials that retain heat is critical for thermal storage systems. Although
heat can be stored directly as steam, the most common choice is molten salts, which can achieve
higher temperatures (7, 19). Other sensible heat storage materials, such as concrete and sand,
are extremely low cost and have been proposed but not widely implemented (7, 43–45). Metal
hydrides, which have an exothermic reaction when hydrogen is added, have the potential to reach
temperatures higher than existing salts but remain under research development (46).

Flywheel energy storage has been used in different forms for thousands of years, but most
of their more recent applications have been high-speed flywheels, often paired with renewable
electricity projects.The round-trip efficiency of these systems can be high, although self-discharge
rates are also high enough to discourage long-duration storage of energy, as friction and other
losses accumulate over time if the device is left with stored energy. Because of these losses, the
cost per kWh of energy stored is high, and power-specific costs are relatively low. Although the
technology saw early success as renewable electricity installations increased in the mid- to late
2000s, the industry has faced challenges from other technologies in recent years (9, 23, 47).

Traditionally, capacitors relied on dielectric materials to store a charge directly, but today elec-
trochemical double-layer capacitors and pseudocapacitors are far more common. They rely on
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charged electrodes, typically made of carbon, to separate the ions within an electrolyte (48, 49).
Because this separation happens at the surface of the electrodes (whether in contact with the elec-
trolyte or with the other electrode), capacitors are excellent at providing high power density, but
their energy storage capacity is limited. Increasing electrode thickness does not result in a higher
amount of energy stored; thus, reducing the costs of both the electrolyte and the excess electrode
material is important for minimizing system costs.

Although some battery technologies have been in use for more than 150 years, recent inno-
vations have led to drastic improvements in technology and cost. Until recent technological im-
provements, lead-acid batteries were the most commonly adopted electrochemical storage tech-
nology, with relatively low capital cost, but they suffer from relatively low efficiency and useful life,
retiring when they reach 80% of their initial storage capacity. The low cost and availability made
them a common choice for off-grid microgrids and solar + storage systems, and backup power
systems for applications such as cell phone towers, but they were too expensive to be broadly im-
plemented at grid-scale (https://www.sandia.gov/ess-ssl/global-energy-storage-database/).

In contrast, lithium-ion battery costs have fallen dramatically since their commercial intro-
duction in 1991 (50). Today’s lithium-ion batteries offer higher energy density and specific energy
than lead-acid batteries. Current areas of research focus on improving the storage capacity of the
positive electrode materials (51, 52) and removing the carbon material from the negative elec-
trode to have a lithium-metal battery, which would reduce the balance of cell hardware (53, 54).
Improvements in electrolyte materials and battery management systems have extended the useful
life of lithium-ion batteries, and it is possible to design systems that cycle the batteries until they
are at 60% of their storage capacity. Lithium-ion batteries are nearly perfectly responsive, which
is partially driven by the electric vehicle market, where power density is a highly valued attribute.
Because power and energy density are coupled in battery cells, this means that commercially
available lithium-ion batteries are expensive for longer-duration applications. Sodium-ion batter-
ies rely on the same charging and discharging mechanisms as lithium-ion batteries and make use
of materials that are even more abundant. However, negative electrode materials are somewhat
limited because sodium ions are larger than lithium ions, which also increases the expansion and
contraction of the electrode materials as the cell is charged and discharged repeatedly (55, 56).
Estimating the balance of system costs for storage systems is an important but understudied area
of research, with relatively few estimates of system hardware costs available (24, 57).

A challenge for both lead-acid and intercalation batteries is the coupling of energy and power
within the battery system.Most designs have been adaptations of automotive batteries, which de-
mand a higher power density than a long-duration storage application requires. Flow batteries,
which have storage tanks for reactants and membrane separators, offer a pathway to decouple the
power conversion and energy storage battery components. In practice, flow battery systems are
typically targeted for 4–6-hour (or longer) applications, because the pumping or other circulatory
systems limit their responsiveness and ability to provide high-value grid services (58, 59). Because
the redox reactants are a substantial portion of the cost of flow batteries, many different combi-
nations/reactions have been used as reactants in flow batteries, including zinc-bromine, iron (fer-
ric/ferrous couples), chromium (chromic/chromous couple), and vanadium (vanadium/vanadium
oxide) (60). Newer configurations make use of gravity and eliminate some or all of the pumps that
force convection between the reactants to reduce balance of system costs, but they have not yet
been widely commercialized (61, 62).

How Do We Estimate Future Costs?

Given the rapid change in energy storage technology costs and the role that energy storage
may play in the future electricity grid, there is interest in predicting the future cost of these
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technologies, especially for batteries. Multiple methods have been applied to make these predic-
tions, including using statistical analyses to identify learning rates over time, expert elicitations of
future technology costs, and technical cost models of the technology inputs and manufacturing
processes. The methods often vary by storage technology, with the most recent research focus on
battery technologies that have seen rapid cost declines.

For many mature technologies, such as pumped hydro, both system costs and installations
have been relatively stable in recent years, and studies examining costs over time have found that
there is not a significant impact from learning-by-doing to further reduce costs (63). Costs are
also highly site specific, with many of the most advantageous sites already selected. This is partic-
ularly true for countries such as the United States and Japan, which already have large pumped
hydro facilities (https://www.sandia.gov/ess-ssl/global-energy-storage-database/).Many re-
cent projects have been upgrades to pre-existing hydropower and pumped hydro facilities (3).
Given the limited number of facilities, modeling of compressed air and thermal storage systems
has been limited, and primarily consists of technical cost models using sensitivity analyses of capi-
tal costs, or substitutions of high-value materials to assess potential for future cost reductions (15,
20, 64, 65).

Much of the recent research into future energy storage technology costs has focused on the
cost of lithium-ion batteries. Several models have made use of historical price and production data
to try to extrapolate future cost reductions (50, 66, 67) or have conducted expert elicitations to
identify future technology costs and potential drivers of future costs (68, 69).

Bottom-up technical cost models, which analyze a sample cell design to account for parameters
such as cell dimensions, electrode thicknesses, and battery chemistry, have also been developed.
For the sample cell design, these models then estimate the costs of manufacturing, including in-
put material costs, equipment, labor, energy, and other expenses. Argonne National Lab’s BatPaC
model constructs numerous different pouch cells with different storage capacities and chemistries.
The cost model relies on a cost estimate for a representative plant and scales manufacturing costs
relative to this representative production volume depending on the desired production rate. It-
erations of this model have been used to examine how reducing time-intensive manufacturing
steps such as electrode wetting and cell formation can reduce overall cost (70). Other engineering
models use discrete estimates of the cost of equipment, labor, and energy necessary tomanufacture
a specified annual production volume (71, 72). Beyond models, a common industry practice for
estimating the cost floor for lithium-ion batteries is to consider the raw material costs—lithium
carbonate, cobalt, nickel, manganese, etc.—for the electrodes and electrolyte materials compared
to the specific capacity of the storage materials.

Studies for other battery chemistries are less prolific. Sodium-ion batteries are occasionally in-
cluded inmarket-based learning ratemodels (63) or borrow from technical cost models of lithium-
ion batteries, with substitutions for input material costs and electrode capacities (28). Similarly,
some flow battery chemistries have been included in broader storage market analyses of learning
rate (63). Others have conducted technical cost models of different flow battery chemistries, and
numerous studies (73, 74), including a study by Darling et al. (24), have attempted to model the
future cost of flow batteries by disaggregating and estimating the costs of system components and
comparing them to lithium-ion battery system costs.

Each of these types ofmodel has strengths andweaknesses: Learning ratemodels can effectively
capture market trends but do not provide much information about the drivers of those costs.
Expert elicitation studies can identify research trends and policy trends, but experts are not always
consistent when estimating the costs of components and systems for storage technologies, and
identification of research areas is dependent on the selected experts. Technical cost models can
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effectively model existing manufacturing processes, cell designs, and battery chemistries but will
not be able to predict changes to new cell chemistries that are discovered in future research.

SYSTEM COST METRICS

With the many different performance parameters/technology characteristics and associated costs
for different storage technologies, modeling storage costs often necessitates the use of a common
cost metric that can be applied for the analysis. Although most studies make use of such a metric,
there is no universally agreed upon standard or formula used to calculate the costs of electricity
storage, given that different metrics highlight different features of storage cost and operation.

Metrics from engineering economics are often employed, including the net present value of a
storage system, the internal rate of return of storage systems, and the breakeven period. Breakeven
calculations are especially common when considering distributed systems such as microgrids or
behind-the-meter storage, where there is a clear alternative to the storage technology (e.g., diesel
generators for microgrids, purchasing grid electricity for behind-the-meter systems).

Frequently, analyses will make use of a levelized cost metric, although there are many dif-
ferent variations of this metric (75, 76). The most encompassing metric is the levelized cost of
electricity (LCOE). In this calculation, the cost of electricity includes any capital expenses asso-
ciated with electricity generation for direct consumption (ccap, gen), capital expenses for electric-
ity generation that goes to storage (ccap, gen2stor), capital expenses for storage technologies (ccap, stor),
fuel (pfuel) or purchased electricity (pelec) costs (accounting for efficiency losses of the genera-
tor, ηgen, and round-trip efficiency losses of storage charge and discharge, ηRTE), and operating
expenses (cO+M, gen, cO+M, gen2stor, cO+M, stor). Costs can be discounted (using discount rate r) to de-
termine the net present value and then divided by the discounted amount of electricity deliv-
ered over the system lifetime (edelivered in Equation 2) to calculate LCOE (Equation 4). An al-
ternative method that produces the same result is to annualize all costs based on their useful
lifetime (T ) with the capital recovery factor (Equation 1) and then divide by annual energy deliv-
ered (Equation 5). The energy delivered for the LCOE includes energy that is generated or pur-
chased from the grid and consumed directly (egen , consumed, egrid , consumed) or that is stored and used later
(egen, stor, egrid, stor). Because the LCOE metric includes the costs of fuel and electricity purchased to
meet all of the system demand and to charge storage devices, the LCOE is highly variable in re-
sponse to local electricity or fuel prices. For this reason, some analysts prefer to use the levelized
cost of storage (LCOS), which explicitly focuses on the costs associated with the electricity stored
(edelievered, stor in Equation 3).When calculating the LCOS (Equations 6 and 7), the expenses include
the capital costs of storage (ccap, stor) and additional generation capacity necessary to account for the
electricity lost during the storage cycle (ccap, gen2stor), operation and maintenance expenses (cO+M , stor,
cO+M,gen2stor), and the fuel and electricity necessary to account for the electricity lost during the
storage cycle. Because the LCOS accounts for only the additional electricity necessary to cover
efficiency losses, the LCOS is less sensitive to local electricity or fuel prices. Although these are
broad formulas for calculating levelized costs, they are by nomeans universally applied using these
exact formulas. Some calculations omit operation and maintenance expenses, and others include
salvage rates or decommissioning costs.

Regardless of the exact formula used, a key distinction to draw when calculating the LCOE or
LCOS is that the cost is also determined by demand for the electricity or stored energy. Although
a storage system might be technically able to cycle continuously for all hours of the year, demand
is driven by consumption patterns. For storage technologies, this means that even if a system
is sized to provide longer-duration storage, actual cycling behavior can mean that the charging
and discharging cycles often use just a fraction of the installed capacity, limiting the electricity
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delivered by the system and increasing levelized cost:

CRF = r(1 + r)T−1

(1 + r)T − 1
, 1.

edel ivered = egen, consumed + egen, stor + egrid, consumed + egrid, stor , 2.

edel ivered, stor = egen, stor + egrid, stor , 3.

LCOENPV =

∑T

t = 0

(
ccap, stor (t ) + ccap, gen(t ) + ccap, gen2 stor (t ) + cO+M, stor (t ) + cO+M, gen(t ) + cO+M, gen2 stor (t )

+ p f uel
ηgen

(
egen, consumed (t ) + 1

ηRTE
egen, stor (t )

)
+ pelec

(
egrid consumed (t ) + 1

ηRTE
egrid, stor (t )

))/
(1 + r)t

∑T
t = 0 edel ivered (t )/(1 + r)t

, 4.

LCOEANNUALIZED =

(ccap, stor + ccap, gen + ccap, gen2stor )CRF + (cO+M, stor + cO+M, gen + cO+M, gen2stor )
+ p f uel

ηgen

(
egen, consumed + 1

ηRTE
egen, stor

)
+ pelec

(
egrid consumed + 1

ηRTE
egrid, stor

)

edel ivered
, 5.

LCOSNPV =

∑T
t = 0

(
ccap, stor (t ) + ccap, gen2 stor (t ) + cO+M, stor (t ) + cO+M, gen2 stor (t )

+
(

1
ηRTE

− 1
) (

p f uel
ηgen

egen, stor (t ) + pelecegrid, stor (t )
))/

(1 + r)t

∑T
t = 0 edel ivered, stor (t )/(1 + r)t

, 6.

LCOSANNUALIZED =
(ccap, stor + ccap, gen2stor )CRF + (cO+M, stor + cO+M, gen2stor ) +

(
1

ηRTE
− 1

) (
p f uel
ηgen

egen, stor + pelecegrid, stor
)

edel ivered, stor
. 7.

Some have attempted to clarify this point by distinguishing between the LCOE and levelized cost
of shaped energy (77). One limitation of current levelized system cost metrics is the uncertainty
around system retirement costs, which are usually not included.Whereas some storage technolo-
gies, such as lead-acid batteries, can be decommissioned and recycled profitably or refurbished to
extend their lifetime (pumped hydro systems), disposal options for newer technologies are not yet
defined. For lithium-ion systems, decommissioning system components could prove to be expen-
sive, although recycling of both battery materials and other hardware components could provide
some value (78, 79).

MODELING APPROACHES FOR ENERGY STORAGE ECONOMICS

Questions about the economics of energy storage often rely on determining how that storage
would or should operate. Although true for other technologies, analysis of optimal storage op-
eration often reaches levels of complexity beyond that required for wind turbines or natural gas
power plants. Much of the cutting edge research into energy storage economics is focused on de-
termining the operation of storage: how storage should make decisions under uncertainty, how
storage should divide efforts between different services, or how storage should strategically bid
into markets in locations where it has sufficient scale to affect prices. The importance of storage
operation is also evident in the growing number of private companies created to sell proprietary
storage dispatch software to storage owners (80). The reader should know that, in parallel with
the publicly available research described in this review, private entities are developing their own
intellectual property in the form of algorithms intended to maximize the value of storage for their
customers. For both the public and private spheres, the frontier of storage economics research
is intently focused on understanding optimal storage operation under different scenarios and
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conditions. For this reason, we dedicate an entire section to methods for the modeling of stor-
age operation.

The operation of energy storage has a fundamental difference from other electricity tech-
nologies that makes the modeling of storage both more challenging and more interesting. This
difference is that energy storage is an energy-limited technology, meaning that it cannot operate
continuously in any mode or service unless that mode or service happens to be energy neutral.
Although that distinction may seem minor, it means that the decision of what to do with a stor-
age device right now depends on what it has done in the past and what you plan to do with it in
the future, adding a temporal dependence to any reasonably sophisticated storage analysis. This
concept is not strictly new to electricity modeling—operational and economic implications of
ramping limitations and start-up constraints of power plants is a topic of current investigation in
electricity system dispatch modeling (81). However, the intertemporal dependence that is central
to good energy storage models is often neglected or treated in simplified ways for most electric-
ity system modeling because those dynamics are of lesser importance for traditional generation
technologies, whereas they are central to the operation of storage.

Hypothetically, the issue of intertemporal reliance could be overcome with sufficiently large
storage so that energy constraints were not important. But that strategy runs contrary to the con-
cepts of storage economics: Normally, the economic questions that we ask of storage are either
“What is the minimum amount of storage I need for some purpose?” or “What is the maximum
amount of value or service that I can extract from a given storage device?”, and the question
of constraints cannot be avoided in either case. Moreover, despite the complication of tempo-
ral interaction, storage modeling does enjoy the benefit of simple operation in other ways. Most
storage technologies are, effectively, perfectly responsive—able to meet rapidly changing control
signals for charging and discharging (9). Electrochemical technologies and flywheels are the most
straightforward, with charge and discharge limits as the primary constraint. Pumped hydropower
is similar, although hydrological constraints may dictate when and how the storage can operate,
depending on the dam location. Standard CAES designs use combustion of natural gas as a heat
source to heat the expanding air and thus have some economic and operational dependence on
natural gas availability.

In addition to the constraints described above, all energy storage technologies have losses,
which can be divided into two primary categories: cycling losses and self-discharge. Cycling losses
are an unavoidable consequence of the second law of thermodynamics, when combined with prac-
tical storage designs. In short, storage will never be able to deliver the same amount of energy that
was used to charge it.These losses are usually described using a round-trip efficiency figure for the
technology, which may be set as a constant for modeling purposes or vary as a function of other
parameters in more sophisticated analyses. Likewise, the attribution of the losses to charging or
discharging (or both) can have minor effects on storage modeling. Self-discharge occurs whether
or not the storage is being cycled. Although all forms of storage experience some self-discharge,
it is often small enough to be trivial for modeling purposes. However, in some technologies, such
as friction losses in flywheels or heat dissipation in thermal energy storage, self-discharge can be
of similar scale or larger than cycling losses.

Models of energy storage operation are designed to determine or approximate the optimal stor-
age operation under a given scenario. Although there are analyses of storage operation that do not
explicitly state this goal, the advancement of a specific algorithm implicitly suggests that the out-
put of that algorithm is optimal (or at least good) under some scenario or set of constraints. The
decision criteria for energy storage is also relatively simple: At each point in time, how much en-
ergy should go into or out from the storage device? However, answering this question can require
sophisticated models that account for the intertemporal nature of storage operation, uncertainty
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Perfect information
model: a storage
model that uses or
assumes perfect
information about
future conditions,
allowing a sufficiently
complex model to
identify the
indisputably optimal
operational pattern

Linear programming
(LP): a broad category
of optimization
algorithms often used
in energy systems
analysis; LP models
can efficiently identify
a globally optimal
solution to problems
when correctly
formulated within
methodological
constraints

about the future, and even strategic action in the game-theoretic sense. In this work, we divide
storage operation models into four approximate categories of increasing sophistication: atempo-
ral models, perfect information models, imperfect information models, and strategic operation
models.

Atemporal Models

The simplest form of storage model is one that neglects the temporal aspect of energy storage,
which is justified in cases where the storage operation is predictable enough that it does not need
to be calculated. In these cases, some typical operational pattern is assumed, and the system ef-
fects or economics are calculated directly. For example, Poullikkas (82) examines the economics of
different solar thermal systems in Cyprus, including differing amounts of thermal storage. In this
case, the thermal storage is operationally modeled as variable hours of output from the solar plant,
from 5 hours (no storage) up to 24 hours. Atanacio et al. (83) provide another example, investi-
gating the effect that adding flywheel energy storage for frequency regulation would have on grid
emissions. Although the modeling effort for the generation fleet was sophisticated, the addition
of flywheel energy storage was modeled as a decrease in the frequency regulation requirement for
the system.This effectively assumed that the flywheels would operate continuously to provide this
service, a fair assumption given the performance characteristics of the technology. In both exam-
ples, the energy in and out of the storage device is not explicitly tracked, and there is no algorithm
used to decide when to operate storage.

Perfect Information Models

Most storage models track time series data about important storage operational parameters, such
as charge/discharge of the storage and state-of-charge, and use some form of algorithm to make
decisions about when to charge and discharge. The problem is easier when knowledge about fu-
ture conditions is known to the algorithm with certainty, and these models are often known as
perfect information models. The presence of perfect information is not trivial in the modeling
sense because it allows for algorithms that can find the indisputably optimal strategy. The obvi-
ous issue with perfect information assumptions is that reality rarely provides perfect information
about future events and instead forces electricity system participants to strategize under uncer-
tainty. However, results from perfect information models can be useful because they provide an
upper bound on the operational and economic capabilities of energy storage and, in some scenar-
ios, produce results that are not far from an imperfect information scenario (where actual revenue
may reach 85% or more of maximum theoretical revenue) (84, 85).

A common way to solve for optimal storage operation under perfect information is through
linear programming (LP), where a range of approaches with the same logical basis have been ap-
plied. As in other fields, the challenge of LP approaches is normally in formulating the problem
in a way that meets the constraints of the method. LP models of energy storage have achieved
increasing complexity as the field has progressed, integrating greater numbers of services, stor-
age parameters, or operational constraints. Drury et al. (16) provide a straightforward application
by creating and applying a model of CAES storage, co-optimizing its operation between energy
and reserve services using an LP approach. Moreno et al. (86) provide one of the more sophisti-
cated perfect information models, which determines the optimal operation of distributed storage
resources providing multiple services (arbitrage, frequency regulation, spinning reserve, and net-
work congestion reduction) while providing appropriate compensation. The mixed integer linear
programming (MILP) approach they develop even includes both active and reactive power needs
and delivery.
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Connolly et al. (87) describe an alternative algorithm utilizing perfect information to maximize
arbitrage revenue, wherein an iterative process finds high price/low price temporal pairs, checks
whether energy can be moved from one to the other, then commits to the transfer, and returns to
the start of the cycle by searching for another pair. The algorithm stops when it can no longer find
any transfer of energy that is both profitable and permitted by the storage constraints.When im-
plemented correctly, thismethod gives the same result as themore standard LPmethod butmay be
an easier basis for expanding the analysis into other services or uncertainties.As an example, Staffell
& Rustomji (88) extend the method to include reserve services by blocking out periods when stor-
age is offering reserve services from the energy arbitrage search. They also include uncertainty
about future prices by replacing all future energy prices with seasonally averaged prices from the
previous year. This effectively means that the algorithm perfectly solves the problem of storage
operation, but with price inputs that are generally (but not exactly) correct. Another algorithm
with the benefit of conceptual and algorithmic simplicity is “backwards induction,” as applied by
Cho&Kleit (89) to determining the operation of energy storage that can provide both energy and
spinning reserve services. In this method, calculations are performed backwards in time, starting
at the end of some period (a day, for example), and the value of having energy in the storage in one
hour is taken as the value of holding it in the prior hour. Working backwards, the value of using
the energy at any time step is compared with the value of holding it for a later time step.

Imperfect Information Models

In reality, most of the economic opportunities for energy storage involve uncertain knowledge
of future conditions, in the form of electricity prices, renewable energy generation, electricity
demand, or other factors. It then makes sense that we need to develop algorithms for storage op-
eration that respect this uncertainty about the future, both because they will give more realistic
results and because any algorithm that is used to control actual storage devices does not have ac-
cess to future information, except by proxy (i.e., day-ahead prices or forecasts). The approaches
used to operate storage under uncertain futures differ, but generally apply algorithms of vary-
ing sophistication to determine the optimal storage operation now, given some fixed expectation
about future states, with the calculations rerun at a predefined frequency. The characterization of
future states can take on many forms depending on the problem examined, and is generally less
standardized than perfect information approaches, but often takes the form of forecasting demand
patterns, price patterns, or renewable energy production based on prior data and applying a logical
(although not always strictly optimal) decision algorithm.

A simple imperfect information algorithm for storage operating in an energy market is to set a
buy price, below which storage will charge as much as possible, and sell price, above which storage
will sell as much as possible (neither charging or discharging when the price is between these
points) (90). The buy and sell prices are set on the basis of optimal values from historical price
data. Although the buy and sell price points may be fixed throughout the year, a more sophisticated
approach can vary them based on seasonal/weekly/daily cycles and/or current state of charge of
the storage. Zafirakis et al. (91) apply several different storage algorithms to energy arbitrage in
various European electricity markets. They borrow a moving average method from finance and
also use several different methods to generate price forecasts against which they optimize storage
operation, including (a) using historical data to find daily and weekly long-term price patterns, (b)
forecasting that the following day/week will match the same day/week from the prior year, and (c)
forecasting that the following day/week will match the prior day/week. An alternative strategy for
forecasting future electricity prices on a rolling basis is to use day-ahead or hour-ahead prices as
reasonable forecasts to determine storage operation in markets where these are available (85, 92).

www.annualreviews.org • Costs and Benefits of Energy Storage Systems 457



Strategic Operation Models

The most sophisticated storage models are those that consider the effect that storage operation
would have on the market itself, attempting to come up with an operational strategy that maxi-
mizes profits (or some other goal) after accounting for market effects and/or strategic action of
other participants. This type of price maker model may be required when the scale of storage con-
sidered is large relative to the electricity system or in cases where market participants have a direct
economic incentive to take strategic action. We divide this type of model into two categories: al-
gorithms that consider a single decision maker co-optimizing storage operation with that of other
resources and those that consider strategic action from competing decision makers in a market.

Goteti et al. (93) provide an example of the first category, by adding nonmarginal amounts
of energy storage to an electricity grid modeled with a traditional dispatch model. In order to
account for the effect that storage has on the dispatch of other resources, they use an iterative
method: They calculate hourly prices without storage, then determine the optimal storage
operation under those prices and add storage operation to the dispatch model, which is then
rerun, producing new time-varying prices. A new dispatch is calculated for storage based on these
new prices and averaged into storage operation from prior iterations, eventually converging to a
solution. Krishnan & Das (94) provide a more detailed model, including locational analysis (using
the IEEE 24-bus system) to determine both the optimal deployment of energy storage and its op-
eration. The strategy in this analysis starts with a relatively traditional unit commitment/dispatch
model that includes energy storage as a participant and then uses a higher-level search algorithm
to test the value of very large amounts of energy storage at each node. This allows the algorithm
to identify the highest-value locations, and the scale of storage is determined by examining the
amount that the storage device is actually used. Dvorkin et al. (95) have a similar goal, but use a
MILP formulation to determine the location, size, and profitability of energy storage. Lueken &
Apt (96) create a reduced form unit commitment model of the PJM Interconnect to investigate
the operation and profitability of price-making storage, and Sioshansi et al. (84) present a similar
analysis with a different approach. Chen et al. (97) develop a genetic algorithm search method to
simultaneously search for the optimal amount and operation of energy storage in a microgrid.

Modeling the strategic interaction between competitors using a game theoretical model that
also includes operation (and potentially investment decisions) is challenging and normally results
in models that are highly computationally intensive. Nasrolahpour et al. (98) use a Benders de-
composition method on a LP framework to examine a storage owner’s optimal strategy for storage
investment and operation. Sioshansi (99) uses a mathematical approach to study the economic be-
havior of generators and storage owners in a competitive market with and without market power.
He finds that new storage improves overall welfare in a competitive market but can decrease wel-
fare in some cases where firms have sufficient market power.

ECONOMIC ANALYSES OF ENERGY STORAGE

This section provides a review of the questions that have been asked about energy storage eco-
nomics. We attempt to provide a sense of the breadth of existing research, organizing the section
into different analytical themes, as well as provide relevant details on the approach and conclusions
from the literature.

The most common and straightforward category of storage economic analysis is work that
considers the revenue, benefits, net benefits, or cost-effectiveness of storage for a specific applica-
tion. Examples include Walawalkar et al. (100), who investigate the economics of sodium-sulfur
batteries and flywheels in New York State, finding that the electricity prices at the time would
render them profitable. Greenblatt et al. (18) compare the economics of CAES to gas turbines for
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managing wind power variability. Das et al. (101) investigate the benefits of a CAES plant from
both private and system perspectives, and include co-optimization between energy and ancillary
services on an IEEE 24-bus system. Braff et al. (102) consider the addition of storage to wind and
solar plants, comparing the cost of storage to the direct revenue benefits to the owner, identifying
the optimal amount of storage as storage cost changes. Similar applications (the value of adding
storage to wind) have been studied using different approaches (103–105). Cleary et al. (106) use
a PLEXOS-based model to examine the benefit that CAES would have for reduced curtailment
and generator cycling in Ireland under continued expansion of wind generation, concluding that
there are net system benefits in a scenario with significant expansion of wind.

An active and growing area of research for energy storage is investigation of the stacked ben-
efits that storage can provide and development of algorithms that allow storage to co-optimize
between different services. The general challenge in this space is that provision of one service (en-
ergy arbitrage, for example) cuts into the amount of other services that can be provided, because
of the limitation in energy capacity. This means that the total revenue that storage can achieve
from a group of services is less than the total if storage provides each service individually. Hence,
algorithm development must use some combination of advanced methods and defensible assump-
tions and heuristics to co-optimize across different services. Berrada et al. (107) provide a detailed
review of past efforts and develop a perfect information model that co-optimizes storage offers
into the day-ahead energy, real-time energy, and frequency regulation markets. Hu et al. (108) of-
fer an alternative approach for customer-sited storage that offers regulation and spinning reserve
services into the wholesale market while also managing local renewable energy self-consumption
and time-of-use prices. A Brattle analysis of storage in California concludes that the stacked bene-
fits of storage are about three times as large as the single largest value stream (generation capacity
savings) (109).

A focus on energy storage in capacity expansion models can provide insight into how storage
technologies contribute to long-term shifts in the design, operation, and economics of the electri-
cal grid. Go et al. (110) use a MILP capacity expansion model to deploy generation, transmission,
and storage to meet a renewable portfolio standard constraint, finding that co-optimizing all three
technologies can provide greater benefits than a focus on generation and transmission. Strbac et al.
(111) summarize a body of work investigating the value of energy storage in helping to achieveUK
decarbonization plans , and de Sisternes et al. (112) provide a similar analysis for the United States.

A separate thread of energy storage research involves understanding the value of storage for dis-
tributed applications (57), normally considering storage at commercial or residential sites (113).
Storage economics can be quite different in this application because of the gap between utility
rate structures and wholesale prices, and potential complementarities with local production (such
as rooftop solar) and demand (114, 115). Various analyses provide different perspectives on the
question of optimal storage size and operation for electricity customers, including responding
to demand response rate structures (116), as well as general formulations to the problem (117).
Luthander et al. (118) consider how residential storage can complement residential solar when
both resources can be shared among a cluster of neighboring houses. They find that PV self-
consumption of the cluster increases by 15% when operated as a group rather than individual
homes and that shared storage increases it by 5% more than individual storage. Hao et al. (119)
consider the economics of residential thermal loads (air conditioning, water heater, refrigerator)
that can act as energy storage and find that their economics compete favorably with existing dis-
tributed storage technologies. Weis & Ilinca (120) investigate the value of storage in improving
wind-diesel microgrids in remote Canadian areas.

Another stream of relevant research involves deeper investigation into the effects of more re-
alistic but more complex modeling of storage or other components.Wankmüller et al. (121) apply
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two different models of battery degradation to batteries performing energy arbitrage. They find
that this more realistic modeling of degradation reduces profits by 12–46%, but that this figure
can be improved by including a cycling cost function in the storage operational model. Hittinger
et al. (40) propose a more detailed microgrid battery model that includes efficiency that varies
with temperature and charge rate, and capacity fade that is integrated into the operational model.
Sarker et al. (122) develop a MILP framework for optimal storage dispatch that accounts for vari-
able charge rates, variable efficiency, and battery degradation to assess the degree to which these
real-life effects shift optimal storage operation.

ENVIRONMENTAL ANALYSES OF ENERGY STORAGE

The relationship between energy storage and electricity system emissions is complex and depends
on the features of the electricity system into which storage is embedded.As a result, a growing body
of literature has been focused on applying techno-economic models of energy storage to estimate
the emissions effects of storage operation and understand how it is affected by different factors.
Early research introduced the concepts that would be expanded later on, such as Denholm &
Holloway’s (123) 2005 analysis showing that storage charged with coal power has higher emissions
of SO2 andNOx than a newClean Air Act-compliant peaker plant. Arbabzadeh et al. (124) laid out
further conceptual grounding of the relationship between storage and emissions in their “Twelve
Principles for Green Energy Storage in Grid Applications,” which describes design, operation,
and system integration considerations.

Analyses estimating the effect of storage on emissions have been completed from various per-
spectives, including different storage applications (wholesale versus distributed), emissions model-
ing approaches (based onmeasured data versusmodeled data), and time frames (present-day versus
future effects). The general conclusion of this body of work is that present-day storage tends to
produce a small increase in electricity system emissions, but that effect will reverse in the future
as storage interacts positively with increased amounts of wind and solar. There are two primary
methods used for estimating the emissions effects of storage operation. In the first, historical emis-
sions data are used to estimate the time-varyingmarginal emissions rate of an electricity grid—this
is the emissions rate of the marginal generator and gives the expected change in emissions result-
ing from small changes in supply or demand of electricity.When coupled with an economic model
that gives the operation of storage, marginal emissions rates can be used to estimate the emissions
effect of that operation. The marginal emissions method can give accurate and highly resolved es-
timates of emissions effects but becomes less appropriate as storage is considered at large scale or
for future grids with a different generation mix. To understand these scenarios, electricity system
dispatch models of various types are employed, with emissions rates assigned to different genera-
tors. Although the level of sophistication varies—different treatment of transmission and ramping
limits, different treatment of emissions disaggregated at the plant level or varying as a function
of power output, different treatment of ancillary services or reserve margins—the basic concept
is to run the same electricity system model with and without energy storage and investigate the
differences in terms of total emissions, generator construction/operation, and economics.

In a 2013 analysis of wholesale storage in Texas, Carson & Novan (125) use a simple two-
period model of storage operation and historic emissions data to estimate marginal emissions
rates and find that storage is expected to increase CO2 and SO2 emissions while decreasing NOx.
Considering present-day wholesale markets, Hittinger & Azevedo (126) used historic electricity
prices and marginal emissions data to show that bulk energy storage would consistently increase
US electricity system CO2 emissions (with SO2 and NOx emissions generally increasing) if oper-
ated to maximize revenue. In follow-on works, alternative operational strategies for storage were
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identified that could reduce or eliminate storage-induced emissions at low cost (127), and the
storage-induced emissions were compared against the relatively small amount of wind and solar
required to offset them (128).

For distributed storage using a marginal emissions approach, Fares & Webber (129) used
household-level consumption and solar production data to determine that sending solar energy
back into the grid is more environmentally beneficial than storing the energy in household storage
devices,mainly due to efficiency losses. Babacan et al. (130) study the operation of distributed stor-
age in three different operational modes across 16 US utilities and conclude that storage can be
used for reducing CO2 emissions or reducing the customer’s bill, but rarely both at the same time.
Fisher & Apt (131) consider aggregator-controlled distributed storage and use a sophisticated bat-
tery model (including co-optimizing multiple revenue streams such as arbitrage, reduction of de-
mand charges, frequency regulation, and spinning reserve) to come to similar conclusions: Profit-
maximizing storage increases system emissions, but this effect can be reduced by thoughtful tariff
design.

Using electricity system models rather than historical data gives up some precision but allows
researchers to answer a broader set of questions, especially those relating to large-scale storage
deployments on future grids with significantly different generation mixes. Lueken & Apt (96) de-
veloped a model of the PJM network to study the nonmarginal effects of 20 GW of new storage
and found that adding storage modestly increased greenhouse gas emissions. Lin et al. (132) use
9-bus and 30-bus test systems to study the effect of new storage that offers power system reserves
with and without emission caps for coal generators.With the emissions cap, storage works exces-
sively and increases emissions from other fuels. Without the coal emissions cap, storage may still
increase emissions due to reserve capacity—storage space that is not filled by renewable energy.
Craig et al. (133) investigate the effect of adding storage to the Texas electricity grid as it pursues
decarbonization goals out to the year 2045, concluding that new storage does increase emissions
today but that this may reverse as soon as the year 2025. Goteti et al.’s (93) analysis pursues a
similar question for Midcontinent Independent System Operator (MISO) using different meth-
ods and comes to the conclusion that storage will begin to decrease emissions after an additional
20 GW of wind/solar is installed across MISO.

INTERACTION OF STORAGE ECONOMICS WITH MARKET
RULES AND POLICIES

A smaller but important field of research involves quantitative investigation of the relationship
between government policy or market rules and storage operation and economics. The energy
storage community has long-recognized policy and market barriers for energy storage (134, 135).
As an asset class, it does not fall cleanly into existing categories, awkwardly acting as both genera-
tion and consumption as well as bridging wholesale and distribution utility markets. Although the
qualitative importance of market rules for storage is understood, the necessary analytical support
has lagged.

Cleary et al. (136) use a PLEXOS-based model of the Irish electricity grid to study how chang-
ing market rules might affect the economics of CAES to complement wind generation. The
change to an Integrated Single Electricity Market in Ireland internalized the cost of wind forecast
uncertainty to wind generators where it was previously considered a system cost spread across all
participants.They find that the addition of storage under the newmarket conditions should benefit
consumers by lowering average electricity prices, but slightly increases the payback period of wind
generators. Byrne et al. (137) consider the revenue to a flywheel energy storage plant (modeled
after an existing plant) in PJM after implementation of Federal Energy Regulatory Commission
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Orders 755 and 784, which direct system operators to offer pay-for-performance and compensate
participants for speed and accuracy of response. Paine et al. (138) create a detailed pumped hydro
storage model and apply it to a revenue maximization problem under the market rules of MISO
and ISO New England. They find that the market rules from ISO New England reward storage
differently, resulting in almost twice the revenue and eliciting different operational patterns from
the same profit-maximizing storage.

CHALLENGES AND OUTSTANDING ISSUES IN STORAGE
ECONOMICS

Although the field of energy storage economics has grown quickly, there are promising avenues
for further development. We highlight several in this section, and we apologize to future readers
if there are important research directions that we did not foresee.

The most obvious outstanding issue to practitioners of storage economic analysis may be the
lack of standardization and challenge of general applicability of storage models. As the reader
has seen throughout this article, there are many methods that have been applied to questions of
storage economics, with each case study prompting a new analytical tool. Although this body of
literature demonstrates the breadth of insight in the field and provides many options for newwork,
it also demonstrates a lack of high-level organization and may suggest that storage economics is
still in a phase focused on methodological development rather than methodological refinement
or comparison. At the same time, users of storage models are currently at a disadvantage because
there are few “off the shelf” storage models available (outside of the world of dispatch software
purchased for an actual storage deployment). Two important exceptions are the Electric Power
Research Institute’s Storage Valuation Estimation Tool, a perfect information model that can an-
alyze the operation and economics of grid-scale energy storage (https://www.storagevet.com/),
and HOMER, a now-commercial microgrid design and optimization tool originally developed at
the National Renewable Energy Laboratory (https://www.homerenergy.com/). Although these
tools are a good start, they do not provide the broad selection of relatively straightforward tools
that are available for related systems, such as electricity dispatch models. Hence, comparing and
developing standardized methods that can be broadly applied is a valuable direction for new work.

Although the analytical space for development of perfect information models is well-
established, imperfect informationmodeling has a plethora of good ideas without a strong ground-
ing in theory or well-demonstrated superiority to other methods.Work in this field often develops
a new method and shows that it is superior to standard methods for some particular problem, but
we do not have any kind of universal theory to describe which methods are superior for particular
problems and why.We propose that there is opportunity for important contributions in this space,
potentially in conjunction with modern machine learning developments.

A third area where new research could contribute to practical questions is in analysis of the
interaction between market or policy design and storage valuation and operation. Although there
has been work on this general topic, there are important questions at the retail and wholesale
levels about how market rules affect storage economics and operation decisions and how new
storage will affect markets in response. For example, how should utilities design rate structures
in a way that motivates storage owners to generate system benefits without allowing those cus-
tomers to take unfair advantage? On the wholesale level, how do different market designs, such
as energy-only versus capacity markets, the allocation of responsibility for ancillary services, and
the design of those services affect the quantity of storage that can be expected and the way that it
will be operated? How, in response, will new storage affect prices in different energy services and
the addition or retirement of other generators? Analyses that answer these questions generally
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fall between the body of work that examines the economics of specific storage applications and
that which examines the value of storage in capacity expansion modeling.

SUMMARY POINTS

1. Storage modeling approaches have proliferated over the past 15 years, and there are now
a wide variety of identified models and concepts.

2. Storage operation models can be roughly grouped, in increasing complexity, into
four categories: atemporal, perfect information, imperfect information, and strategic
operation.

3. Economic analyses of storage most commonly test the costs, benefits, net benefits, or
cost-effectiveness of providing a specific service.

4. Estimating the emissions effects of storage adoption or operation uses two main meth-
ods: marginal emissions rates or electricity system models.

5. Progress in storage economics may rely on synthesis and evaluation of existing ideas and
methods to provide generally applicable tools.

FUTURE ISSUES

1. Decommissioning procedures and second life applications are still open questions for
electrochemical systems.

2. Storage modeling methods are limited to particular applications, making easily used and
broadly applicable tools of great value.

3. A deeper understanding of the relative merits of different imperfect information models
is needed, potentially with the help of modern machine learning approaches.

4. A greater understanding of how market design and policies impact storage investment
and operation is needed.
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