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Abstract

Rising atmospheric carbon dioxide (CO2) levels, from fossil fuel combustion
and deforestation, along with agriculture and land-use practices are caus-
ing wholesale increases in seawater CO2 and inorganic carbon levels; re-
ductions in pH; and alterations in acid-base chemistry of estuarine, coastal,
and surface open-ocean waters. On the basis of laboratory experiments and
field studies of naturally elevated CO2 marine environments, widespread
biological impacts of human-driven ocean acidification have been posited,
ranging from changes in organism physiology and population dynamics
to altered communities and ecosystems. Acidification, in conjunction with
other climate change–related environmental stresses, particularly under fu-
ture climate change and further elevated atmospheric CO2 levels, poten-
tially puts at risk many of the valuable ecosystem services that the ocean pro-
vides to society, such as fisheries, aquaculture, and shoreline protection.This
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Carbon dioxide
(CO2): a gas
that is removed by
photosynthesis and
released by respiration
and fossil fuel
combustion

pH: a measure of the
acidity of water where
lower pH reflects more
acidic conditions;
reported on a log-scale
such that a 1-unit drop
in pH is equivalent to
a factor of 10 increase
in acidity

review emphasizes both current scientific understanding and knowledge gaps, highlighting direc-
tions for future research and recognizing the information needs of policymakers and stakeholders.
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1. INTRODUCTION

Present-day (2020) atmospheric carbon dioxide (CO2) levels of more than 410 ppm are nearly
50% higher than preindustrial concentrations, and the current elevated levels and rapid growth
rates are unprecedented in the past 55 million years of the geological record (1). The source for
this excess CO2 is clearly established as human driven, reflecting amix of anthropogenic fossil fuel,
industrial, and land-use/land-change emissions (2).The concept that the ocean acts as a major sink
for anthropogenic CO2 has been present in the scientific literature since at least the late 1950s,
and multiple lines of evidence, including direct observations of increasing dissolved inorganic
carbon (DIC) inventories (3), support the finding that the ocean takes up roughly a quarter of
total anthropogenic CO2 emissions. It is also well understood that the additional CO2 in the
ocean results in a wholesale shift in seawater acid-base chemistry toward more acidic, lower pH
conditions and lower saturation states for carbonate minerals used inmanymarine organism shells
and skeletons (4). Extensive observational systems are now in place or being built for monitoring
seawater CO2 chemistry and acidification for both the global open ocean and some coastal systems
(5, 6).

The potential for substantial biological responses to the excess CO2 and ocean acidification
has only started to be well appreciated in the past two decades, stimulated in part by a seminal
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Ocean acidification:
changes in seawater
chemistry including
increased acidity, lower
pH, and reduced
carbonate ion levels
caused by input of
excess carbon dioxide,
typically by human
activities over an
extended period of
decadal and longer
timescales

Carbonate ion
(CO2−

3 ): an inorganic
carbon molecule
formed when carbon
dioxide dissolves in
seawater and a key
building block for
carbonate minerals
used in organism
biomineralization

Royal Society meeting and report (7). Reported acidification effects span from changes in cellular
metabolism, organism physiology, and sensory perception to population and community, biogeo-
chemical, and ecosystem-level dynamics (8). Knowledge about organismal responses leverages a
wealth of data from laboratory manipulative experiments. More limited information is available
on community and ecosystem responses from mesocosm and field studies, natural high-CO2 en-
vironments, and modeling exercises.

The implications for human society—for fishery and resource management, marine conser-
vation, and impacts on communities reliant on the ocean—are just now coming into focus. At-
mospheric CO2 and the concurrent ocean acidification are projected to continue to rise through
mid-century, if not longer, without deliberate and decisive international action on climate mitiga-
tion and emissions reductions. Thus, improved understanding is urgently needed on ocean acidi-
fication impacts from scientific, management, policy, and socioeconomic perspectives to develop
adequate adaptation strategies.

This review focuses on the rapidly expanding body of knowledge on ocean acidification in
the scientific literature over the past decade since a previous Annual Reviews article on the topic
(9). It builds from numerous recent synthesis efforts in journal special issues (10) and national and
international scientific assessments (11–14). There are also numerous excellent reviews on various
topical aspects of ocean acidification, a selection including articles on physiological responses (15),
effects on invertebrate and fish larvae (16), animal behavior (17), nitrogen cycle (18), coral reefs
(19), ecological theory (20), and policy solutions (21).

The remainder of this review is partitioned into sections on acidification impacts on seawater
chemistry from rising atmospheric CO2 and coastal land use and pollution (Section 2); organis-
mal responses to acidification (Section 3); community and ecosystem impacts on key food-web
interactions such as competition and predator-prey interactions (Section 4); risks to human com-
munities that rely on the natural resources provided by the ocean via fisheries, aquaculture, and
cultural and social connections (Section 5); and a brief summary (Section 6).

2. SEAWATER CHEMISTRY

Aqueous carbon dioxide [CO2(aq)] and the inorganic carbon system play a central role in seawa-
ter acid-base chemistry, and the addition of CO2 from natural and anthropogenic sources causes
acidification and shifts in the speciation of dissolved ions (4, 22). At seawater pH levels (∼8), CO2

added to seawater reacts with water to form bicarbonate (HCO−
3 ) and hydrogen ions (H+):

CO2 + H2O → HCO−
3 + H+. 1.

The release of H+ acts to increase acidity and lower seawater pH, defined as

pH = −l og10[H+], 2.

and lower the concentration of carbonate ions (CO2−
3 ), via

CO2−
3 + H+ → HCO−

3 . 3.

Acidification impacts will depend on organism responses to multiple, simultaneous chemical
changes—increasing CO2(aq), HCO−

3 , and H+ and decreasing CO2−
3 (23).

Many types of marine organisms that form shells and skeletons from calcium carbonate
(CaCO3) minerals are sensitive to acidification. The solubility of carbonate minerals,

CaCO3(s) ↔ CO2−
3 + Ca2+, 4.
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Calcite: a less soluble
mineral form of
calcium carbonate
used by marine
organisms in shell and
skeleton formation via
biomineralization

Aragonite: a more
soluble mineral form
of calcium carbonate
used in marine
biomineralization

can be expressed as a carbonate saturation state,

� = [CO2−
3 ][Ca2+]
Ksp

, 5.

where Ksp is the apparent equilibrium solubility product at a given temperature, salinity, and pres-
sure for each particular CaCO3 mineral form. A value of � < 1 indicates undersaturation with re-
spect to thermodynamic equilibrium, and under those seawater conditions, unprotected carbonate
materials will dissolve. The multiple forms of carbonate minerals vary in Ksp and so have different
solubilities, with calcite being less soluble than aragonite and amorphous calcium carbonate. As
CO2 increases, the CO2−

3 concentration declines because of consumption with H+ (Equation 3)
causing a decline in � (Equation 5).

The inorganic carbon acid-base reactions and carbonate mineral solubility are controlled by
well-characterized, equilibrium thermodynamic relationships as a function of temperature, salin-
ity, and pressure. The system is characterized fully from the physical state and any two of four
chemical properties: pCO2, pH, DIC, and alkalinity. DIC is the total concentration of CO2 gas
and the inorganic carbon acid-base products resulting from hydration (Equations 1 and 3). Alka-
linity is the acid buffering capacity of seawater that reflects the speciation of the carbonate and
borate acid-base systems as well as minor trace species. The scientific community has developed
best practices for the measurement of seawater carbonate chemistry in field and lab samples (24)
as well as standardized approaches for mimicking acidification chemical changes in biological ma-
nipulation studies (25).

On a global scale, acidification of the surface ocean is occurring because of the rapid rise in
atmospheric CO2. Driven primarily by fossil fuel combustion, contemporary human CO2 emis-
sions to the atmosphere of approximately 10 billion metric tons of carbon per year result in an
increase in atmospheric CO2 of roughly 2 ppm/year or 0.5% per year (2). Present-day CO2 levels
(∼410 ppm) have not been experienced by life on Earth for several million years, and the human-
induced CO2 growth rate is nearly two orders of magnitude faster than what occurred during the
large glacial-interglacial transitions (11).

Ocean surface waters exchange CO2 with the overlying atmosphere via physical gas transfer,
and the surface seawater partial pressure, pCO2, tends to track the growth of atmospheric CO2 for
much of the global ocean, as illustrated by long-term time series records at numerous open-ocean
locations (26) and analysis of global surface ocean CO2 observational networks (27). As a result,
surface pH and CO2−

3 are declining (Figure 1), and surface ocean pH is estimated to have dropped
on average globally by approximately 0.1 units from the preindustrial era to present, which is an
∼30% increase in hydrogen ion concentration.

More acidified ocean conditions, found regionally due to natural processes and local human
impacts, are exacerbated by the global acidification signal driven by CO2 emissions. Coastal up-
welling systems typically have elevated CO2 and low O2 levels because of the marine biological
pump, the production of organic matter in the surface ocean via photosynthesis and subsequent
transport of organic material to the subsurface ocean via particle sinking, zooplankton migra-
tion and related physical and biological processes and subsequent respiration of sinking organic
matter at depth (28, 29). Similar high CO2–low O2 conditions are found in many coastal and es-
tuarine systems associated with excess nutrient and organic carbon inputs from land sources (29,
30). Coastal acidification can also occur because of low-alkalinity freshwater fluxes from rivers,
groundwater, and ice melt (31–33). Coastal systems tend to exhibit large amplitude variations of
seawater chemistry on smaller time and space scales (34).
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Figure 1

Trends in surface (<50 m) ocean carbonate chemistry calculated from observations obtained at the Hawai‘i
Ocean Time-series (HOT) Program in the North Pacific during 1988–2015. The upper panel shows the
linked increase in carbon dioxide (CO2) in the atmosphere (red points) and surface ocean (blue points), both
presented in terms of CO2 concentration in air (ppm). For seawater, the equivalent air concentration is
computed assuming solubility equilibrium with the aqueous carbon dioxide concentration [CO2(aq)]. Ocean
CO2 concentration is often also reported in terms of a carbon dioxide partial pressure pCO2 (μatm). The
bottom panel shows a decline in seawater pH (light blue points, primary y-axis) and carbonate ion (CO2−

3 )
concentration (green points, secondary y-axis). Ocean chemistry data were obtained from the Hawai‘i Ocean
Time-series Data Organization & Graphical System (HOT-DOGS; http://hahana.soest.hawaii.edu/hot/
hot-dogs/index.html). Figure adapted from Jewett & Romanou (13), originally created by Dwight Gledhill,
NOAA.

3. ORGANISMAL RESPONSES

The literature on organismal sensitivity to high-CO2 conditions has expanded rapidly (35), and,
in marine biology, ocean acidification has moved in a decade from being a frontier science to a
mature subdiscipline exploring species sensitivity in fine detail. Research on how high-CO2 con-
ditions influence fishes exemplifies this trend. Although some fish appear able to compensate for
disturbance to acid-base balance under high-CO2 conditions, they express unexpected sensitivity
to current and near future CO2 levels in the growth of otoliths—calcium carbonate structures in
fish ears that aid in balance—mitochondrial function, metabolic rate, larval yolk consumption, ac-
tivity, neurosensory processes, and behavior, including settlement into specific habitat at the end
of the early life stages (16, 36). Altered fish physiology in high-CO2 conditions may disrupt sys-
tems related to the neurotransmitter GABAA (37). GABAA is involved in a wide variety of sensory
and behavioral pathways in the nervous systems of animals; the consequences of GABAA signal-
ing disruption in fishes due to ocean acidification are still being determined. Substantial variation
in sensitivity exists within and between fish species (38, 39), and acidification effects on sensory
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perception should be considered in the context of a suite of other human alterations of the sensory
landscape for marine animals (40).

As more detailed information on species sensitivity to ocean acidification conditions becomes
available, generalizations about patterns in sensitivity are difficult to make. For example, copepod
sensitivity currently defies simple characterization, as it is higher in earlier life stages than in the
adult life stage, variable between species and within different populations of the same species, and
dependent on co-stressors and processes of acclimatization and adaptation (41). Variation also ex-
ists within and between phytoplankton groups: Diazotrophs (nitrogen fixers), diatoms, and other
large phytoplankton including dinoflagellates have higher growth rates in high-CO2 conditions,
whereas coccolithophores (calcium carbonate-plated phytoplankton), Synechococcus, and Prochloro-
coccus (both globally abundant picoplankton) do not, although there is wide variation in response
within groups (42). While species that calcify are generally more sensitive to high-CO2 condi-
tions than those that do not calcify, this generalization is not uniformly applicable, and the form
of CaCO3 that species produce (i.e., calcite, aragonite) is not strongly linked to species sensitivity
(43). In general, crustacea and echinoderms produce high-magnesium calcite structures and mol-
luscs produce aragonite structures, although marine species produce structures with a variety of
mineralogies, including amorphous CaCO3, low-magnesium calcite, or a mix of multiple CaCO3

forms (43).
Recent reviews emphasize how species sensitivity to various CO2 conditions is influenced by

exposure to other aspects of climate change.Negative additive effects typically occur with simulta-
neous exposure to high CO2 and low dissolved oxygen (44). A trend toward lower survival, slower
growth, and development is also evident with simultaneous exposure to high CO2 and elevated
temperature (45).

As Figure 2 shows, a variety of experimental strategies are being used to characterize the sen-
sitivity of species to acidification now and in the future (46, 47). Complementary approaches are
needed because any one technique is limited by issues related to drawing inferences from short-
term experiments or small-scale spatial range, choices about treatment conditions and study sub-
jects, logistics related to engineering and animal husbandry, and other factors (35). Below we dis-
cuss recent experimental and field breakthroughs through the lens of three challenges or tensions
in designing and interpreting organismal sensitivity studies.

3.1. Characterizing Present Versus Projected Future Sensitivity
to Ocean Acidification

Ocean acidification is a perturbation of marine environmental conditions, a sustained and growing
ecological press, with implications for marine ecosystems on the scale of decades, centuries, and
longer. Similar to the marine heat wave events that punctuate the warming trend induced by cli-
mate change, the impacts of acidification may first be witnessed in coastal ecosystems that express
more variability in carbonate chemistry and could episodically move across biological thresholds
of sensitivity. Early work characterizing the sensitivity of marine species to ocean acidification
focused on a stationary approach: the sensitivity of representative individuals of a species as they
exist in the present (48, 49). Although useful, this approach does not necessarily yield information
on how species in their future state will react to changes in seawater carbonate chemistry as acidi-
fication progresses in the environment. Predicting howmarine populations will evolve in response
to climate change and ocean acidification requires consideration of the flexibility of individuals in
each generation to adjust to new environmental conditions (i.e., phenotypic plasticity) and natural
selection across environments (50).

Discovery of individuals or populations more resilient to high-CO2 conditions has arisen by
testing the repeatability within and between identical sensitivity experiments (51, 52) and among
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Figure 2

Various types of studies generate information about how ocean global change will influence marine life. The cube, a visualization
developed by Riebesell & Gattuso (227), represents different scales of space and biological organization, time, and drivers of
environmental change. It depicts schematically where information on ecosystem services that could inform policy would emerge and
where currently pursued types of research are located in time/space dimensions: ●1 mesocosms, including free ocean carbon-dioxide
enrichment (FOCE) experiments; ●2 competition experiments; ●3 typical acclimated species under acidification; ●4 long-term (>400
generations) microevolution studies; ●5 multiple driver studies; and ●6 sites of CO2 natural enrichment such as CO2 seeps.
Figure adapted from Boyd et al. (47) with permission of John Wiley and Sons and originally developed by Riebesell & Gattuso (227).

populations of the same species. Some populations living in naturally high-CO2 environments ex-
press less sensitivity to high-CO2 experimental treatments (53–55).Others at the edge of a species’
range can bemore sensitive to high-CO2 exposure, suggesting the influence of biogeographic pro-
cesses beyond carbonate chemistry conditions (56).

Studying populations living in naturally high-CO2 environments is another way to explore
whether long-term exposure to high CO2 can confer resistance to ocean acidification. Laboratory
experiments on two zooplankton species collected from Puget Sound, an urbanized estuary in
the northeast Pacific with high-CO2 conditions due to both natural and human sources (30), find
that individuals express sensitivity to carbonate chemistry conditions already experienced by local
populations, suggesting a lack of resistance to the high-CO2 conditions within their current range
(57, 58). Field collections show that some species express sensitivity to the high-CO2 conditions
already observed along the western coast of the United States, whereas others express signs of
potential adaptation (59–62, 229).

Organismsmay evolvemuchmore quickly than we recently thought possible (63), especially via
epigenetics (64, 65). Groundbreaking work in the purple urchin Strongylocentrotus purpuratus has
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Hypoxia: low oxygen
conditions in the
coastal and open ocean
often associated with
respiration of organic
material that also
elevates carbon dioxide

shown transgenerational plasticity in response to high-CO2 exposure, with documented transgen-
erational impacts on the epigenome (chemical attachments to DNA, often heritable, that modify
its function) (66), gene expression (67), and phenotype (68). Other work in the purple urchin has
found evidence of response in larval size and genome-wide shifts to selection imposed by dif-
ferent CO2 conditions (53, 69). Multigenerational experimental evolution studies are feasible for
microbes and have indicated that adaption to high-CO2 conditions is possible (70–72).

3.2. Designing Tractable Experiments Versus Aiming for Ecological Relevance

The ecological relevance of aspects of present-day experimental capabilities can be debated, and
the resulting knowledge gaps limit our ability to project or model the potential direct and indi-
rect impacts of acidification at the ecosystem level (49). For example, results from experiments
that hold environmental conditions static may not be fully relevant to the dynamic conditions
that organisms experience in nature (73). Also, sensitivity research tends to cluster on a limited
group of taxa—driven by logistics, stakeholder concerns, and concentration of mechanistic studies
on a limited set of target organisms—thus failing to reflect the diversity of marine species (49).
Publication bias against sharing negative experimental results, that is cases with no or small CO2

effects, also may limit the representativeness of available data for synthesis and modeling (35).
Ocean acidification should not be considered an isolated phenomenon but is instead part of

a complex of changing ocean conditions that must be considered together if sensitivity studies
are to have ecological relevance. Designing research studies to tackle the complexity of multiple
changing parameters, while still being logistically feasible and interpretable, is a challenge. Boyd
et al. (47) describe two complementary paths: (a) a mechanistic, reductionist approach in which
the influence of each aspect of ocean change is considered alone and then in conjunction with
other aspects of ocean change; and (b) a scenario-based approach in which multiple variables are
altered together to match future projections of ocean conditions.

A well-recognized danger in the reductionist approach is that considering one factor alone
can yield incorrect information related to how a species might fare in a future ocean. The re-
sponse of species to various aspects of ocean change can be additive, synergistic, or antagonistic
(47, 74). For example, the sensitivity of reproduction in kelp to pH sensitivity can depend on tem-
perature conditions (55). Elevated CO2 in coastal regions and the deep ocean typically co-occurs
with low oxygen or hypoxia, both generated by respiration of organic matter (44). High CO2 and
reduced oxygen content can have opposite effects on otolith size in juvenile rockfish (75), while
metabolomic response of juvenile Dungeness crabs indicates that exposure to low oxygen may
drive the physiology of juvenile crabs more than CO2 (76).

3.3. Sensitivity to High-CO2 Conditions Versus Detecting Ocean
Acidification Impacts in the Environment

Most studies to date focused on organismal responses to different seawater inorganic carbon
chemistry conditions in either laboratory or field settings—valuable research, although not
actually demonstration of ocean acidification impacts on marine species (77). In contrast, more
limited research has attempted to detect change in marine species in the environment that can
be attributed to ocean acidification and its progression. Studies correlating ocean carbonate
chemistry to marine species abundance have mixed results, with some finding a signature of ocean
acidification impacts (78) and many failing to do so (79–81). Historical records of pteropods
and foraminifera show correlations of shell conditions with reconstructed carbonate chemistry
conditions (82–85), although such correlations do not yet exist for coral reefs and are contra-
dictory for coccolithophores (86, 87). Work from the western coast of the United States links
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pteropod shell condition with anthropogenic CO2 increase and reveals how acidification likely
impacts pteropod shell condition, survival, and distribution (229–231).

Because ocean acidification co-occurs with other aspects of climate change and human impacts
on ocean systems, disentangling ocean acidification impacts from those of other stressors is a chal-
lenge (88). It is also likely that the thresholds at which carbonate chemistry conditions will impact
many species have not yet been crossed and that the signature of ocean acidification impacts may
be weaker than those of other phenomena, and thus, harder to detect. For example, although the
general expectation is that ocean acidification should have already negatively influenced shallow
coral reefs and many reef properties vary with natural gradients in aragonite saturation state, the
effects of anthropogenic ocean acidification on coral reefs have not yet been confidently isolated
(89). Natural variation in carbonate chemistry in modern systems has been used to gain insight
into the current and projected future effects of ocean acidification on marine species (60, 90). As
understanding of the sublethal signatures of exposure to high-CO2 conditions increases, such as
alterations in molecular markers of stress (62), the immune system (91), or shell state (60), ro-
bust methods for detecting and monitoring the impacts of ocean acidification on marine species
will emerge. The probability of detecting and attributing change to ocean acidification will likely
increase as the chemical signature of ocean acidification emerges from the natural variation of
carbonate chemistry in the coastal oceans (92).

4. COMMUNITY AND ECOSYSTEM EFFECTS

4.1. Introduction: Overall Patterns of Community Change

Studies examining how individual organismal effects of ocean acidification will affect commu-
nities and functioning ecosystems have received increasing recent attention (20). Results from
both experiments and studies using natural gradients in carbonate chemistry strongly suggest
that ocean acidification increases primary producer biomass and decreases taxonomic diversity
(93–95), although many species are able to survive (or even thrive) in high-CO2 conditions. The
decreases in taxonomic diversity are likely to have functional consequences (96), although the
effects on ecosystem function are just beginning to be explored. In general, there is a trend to-
ward the homogenization of community structure in space and time, which has been attributed
to altered competitive interactions (e.g., for food or space) (97, 98). Although functional redun-
dancy, the number of species that provide a particular ecosystem function such as habitat forma-
tion or reef bioerosion and material recycling, is generally considered to be quite low in marine
ecosystems (99), redundancy within trophic groups can limit community shifts associated with
acidification if resilient species are able to compensate functionally for more vulnerable species
(100).

Increased primary production associated with high pCO2 can boost production across multi-
ple trophic levels (101), if consumers are able to increase their consumption rates. However, it is
unclear what controls the ability of a consumer to increase their consumption rate in high-CO2

conditions. For example, in laboratory experiments consumers have been shown to compensate
for increased primary producer biomass associated with acidification, thereby limiting the pre-
dicted shifts in community structure associated with the increased growth and competitive dom-
inance of macroalgae (102, 103). However, in an observational study at natural high-CO2 seeps,
the increase in consumer consumption rates was insufficient to keep pace with increased algal pro-
ductivity, and thus community structure associated with high-CO2 conditions was dominated by
fleshy macroalgae (101).Moreover, there are numerous examples of consumers demonstrating lit-
tle to no change in their consumption rates in high-CO2 conditions, including when decreases in
prey quality caused by acidification require altered consumption rates for predator survival (104).
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Figure 3

General trends in key community and ecosystem properties and processes in response to ocean acidification in seagrass meadows, coral
reefs, other carbonate reef ecosystems, and pelagic food webs. Trends are primarily derived from studies of multiple-species
experiments or observational studies in naturally acidified ecosystems. That is, these are not direct observations of anthropogenically
driven change in nature. The literature cited for each system (see below) is not exhaustive but represents key studies highlighting the
community and ecosystem effects in the critical habitats featured in this review. Recruitment is defined as the net outcome of the
various processes needed to add new individuals to a population. Seagrass meadows: increase or no change in primary productivity (135,
136), grazing by herbivores (102, 141–143), competition between seagrass and macroalgae (93, 137, 140). Coral reefs: bioerosion (118),
macroalgal overgrowth (94, 95, 120, 123), community structure (94, 95, 119, 125), overall, net ecosystem calcification (115, 116, 118),
habitat-forming calcifier recruitment (122–124), structural complexity (127, 128), taxonomic diversity (94, 95, 128). Other carbonate
reefs: carbonate dissolution (131), macroalgal overgrowth (134), overall, net ecosystem calcification (133, 134), habitat-forming calcifier
recruitment (132, 133). Pelagic food webs: harmful algal blooms (112, 113), productivity of primary producers (109), productivity of
secondary producers (107, 109, 110), community structure (106–108).

Altered behavior in marine consumers (e.g., predator avoidance) caused by exposure to conditions
of ocean acidification can also weaken predator-prey links in marine food webs, causing cascading
effects on community structure and function (105).

Below, we review the expanding literature on community and ecosystem effects of acidification
on four critical habitats especially relevant for resource managers: pelagic food webs; coral reefs;
oyster and other biogenic, carbonate reefs; and seagrass beds (Figure 3).

4.2. Pelagic Food Webs

The community structure of planktonic communities is very likely to change with acidification
(106, 107), with cascading impacts on the productivity of the entire food web. An important caveat

92 Doney et al.



Carbonate saturation
state: a comparison of
seawater carbonate
and calcium ion
concentrations relative
to thermodynamic
equilibrium, where
saturation states below
1 reflect
undersaturation and
carbonate mineral
dissolution

to consider, however, is that the responses of phytoplankton will likely depend on other environ-
mental conditions and factors, such as the nutrient availability, salinity, and the temperature regime
(108), and these interactions have yet to be fully incorporated into whole-community mesocosm
studies. Modeling work suggests that ocean acidification, warming, and increased stratification
will drive changes in marine microbial community makeup (42), but it is not yet known whether
microbial changes will alter global ecosystem functions such as net primary production and export
or air-sea gas exchange.

Whole-community mesocosm studies have demonstrated increased productivity at the base of
pelagic (water-column) food webs (106), leading to increased productivity of higher trophic levels
(109), including enhanced survival and biomass of larval fish that are directly negatively impacted
by acidification (110). However, not all zooplankton are expected to benefit from increased pri-
mary productivity. For example, some zooplankton taxa appear to be vulnerable directly to ocean
acidification, regardless of the resources available (60). Field studies across upwelling gradients
indicate that pteropods may already be experiencing shell dissolution in low-pH waters along
the California Current (60). In addition, the nutritional quality of some zooplankton may suffer
with ocean acidification, despite increased production or abundance (111). As such, models of
pelagic food webs with ocean acidification have indicated that the effects on upper trophic–level
species are likely to be complex and species specific, based on the specific food-web linkages in
the ecosystem.

Ocean acidification could also disrupt pelagic food webs via the proliferation of toxic algal
blooms (112). Ocean acidification can either increase the toxicity of the harmful algae (113) or
increase the abundance of toxic bloom-forming species through altered competitive interactions
(112). Again, it is less well understood how ocean acidification may interact with other factors, in-
cluding changing ocean temperatures and nutrient concentrations to affect harmful algal blooms,
but it is clear that increases in the toxicity or abundance of bloom-forming species could severely
disrupt food webs.

4.3. Coral Reefs

The persistence of coral reefs depends on the balance of net accretion (carbonate production mi-
nus dissolution) and bioerosion by boring and scraping organisms at each reef. Numerous studies
document declines in net calcification of different coral species and coral reef assemblages with
lower carbonate saturation states. Moreover, retrospective studies from the Great Barrier Reef
have highlighted large declines in the net calcification of corals over time (114). However, it has
been difficult to attribute the declines in net accretion to ocean acidification due to the concur-
rent trends in ocean warming and coral bleaching. Using manipulative alkalinity enrichment at
the scale of a reef flat, Albright et al. (115) recently demonstrated that net community calcifica-
tion increases when the seawater carbonate saturation states are raised to preindustrial levels. This
suggests that coral reefs have already suffered declines in net calcification associated with ocean
acidification (115).

There is growing evidence that bioerosion may be more sensitive to changes in carbonate
chemistry than carbonate production (116). This is potentially due to changes in the density or
structural integrity of the coral skeletons produced in lower carbonate saturation states (117).
Indeed, increased bioerosion has been demonstrated in naturally more acidic locations (95, 118,
119), which suggests minor shifts in biological species interactions may further tip the balance
from net accretion to net erosion of coral reefs in future conditions.

As with other habitats, most observational studies of naturally acidified coral reefs indi-
cate that diversity is depressed and macroalgal abundance is elevated in carbonate chemistry
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conditions comparable to those projected for the end of the century (94, 95). Potential shifts in the
competitive balance between corals and macroalgae are especially important given the numerous
studies documenting the detrimental effects of algal overgrowth of corals. Turf algal communities,
in particular, are expected to increase in biomass and diversity in high-CO2 conditions (120, 121),
which could further impact community structure by limiting the recruitment of juvenile corals.
Declines in the percent cover of crustose coralline algae, which are often used as recruitment sub-
strates by corals, may also contribute to reduced coral settlement in high-CO2 conditions (122).
High-CO2 effects on early succession dynamics lead to higher abundance of micro- and macroal-
gae and lower coral recruitment, although the mechanisms attributed to these shifts differ among
studies: altered competitive interactions (123) versus chemical control (124).

Despite these observed shifts in coral reef community structure, corals do not disappear in
naturally more acidic conditions. In several studies, the coral community shifts from relatively
faster-growing, structurally complex corals to slower-growing, mounding corals (94, 95) or even
soft corals (125) in conditions comparable to end of the century projections. Studies of coral reefs
growing in the rock islands of Palau, however, documented slightly different shifts in coral com-
munity structure than other naturally acidified ecosystems (119). In this system, community com-
position of the coral species varies with carbonate chemistry, as in other systems, but the shifts
in community composition are not associated with decreased diversity, structural complexity, or
increased macroalgal abundance. Instead, distinct coral reef communities, with high coral cover,
exist in the naturally more acidic bays. Lab studies of the corals growing in these environments
suggest there may be some level of adaptation to lower saturation states or other co-occurring
environmental covariates (126). Thus, the potential adaptive capacity of corals to projected fu-
ture warming and acidification remains an important frontier that needs to be resolved better for
understanding emergent community shifts.

Shifts in coral community structure associated with acidification can have indirect effects on
reef-associated invertebrate and fish communities (127). For example, shifts from structurally
complex corals to massive, mounding corals, as witnessed near natural CO2 seeps, can reduce
the structural complexity of the habitat and the associated invertebrate communities (94, 128). Al-
ternatively, increased macroalgal abundance that provides shelter or habitat structure for prey can
benefit fish populations, despite negative direct effects on fish behavior and predator avoidance
(129). Although there have been several studies of fish behavior and population dynamics in nat-
urally acidified conditions, the spatial scale of the affected areas in these studies is usually much
smaller than the range of many fish species (130). Thus, our inference regarding the emergent
effects on fish populations is generally limited to those with very small home ranges.

4.4. Oyster and Other Biogenic, Carbonate Reefs

Similar to coral reefs, ocean acidification is expected to increase dissolution rates of oyster shells
that make up the structure of oyster reefs (131), and high-CO2 impacts on oyster larvae may neg-
atively influence oyster recruitment (132). Ocean acidification threatens the structure and ecosys-
tem services provided by vermetid reefs, which are built in warm, subtropical waters by vermetid
gastropods and cemented together by crustose coralline algae, because of reduced gastropod re-
cruitment and enhanced shell dissolution (133). Maerl beds (also called rhodolith beds), a habitat
formed by unattached, branching crustose coralline algae in the Mediterranean and along the
Atlantic coast of Europe to the North Sea, are also threatened by acidification. Laboratory ex-
posure of the community to more acidic conditions led to decreased calcification and increased
dissolution of the habitat-forming species as well as to an increase in the biomass of competitive
epiphytic algae. The dominant grazers in this ecosystem were not able to keep pace with the

94 Doney et al.



increased biomass of epiphytic algae, potentially contributing to overgrowth of the habitat-
forming species and the further deterioration of these ecosystems (134).

4.5. Seagrass Beds

Seagrasses may benefit from acidification based on the argument that elevated CO2 will reduce
energetic costs of carbon uptake for photosynthesis (135), but there is limited and sometimes
contradictory evidence of CO2 enrichment of seagrass productivity from field studies (136). The
effects of acidification on associated species also could mediate the community and ecosystem ef-
fects for seagrass beds. Of concern is the response of marine epiphytes, organisms that grow on
the surface of submerged aquatic vegetation, and macroalgae that compete with seagrasses (137).
Additionally, seagrasses are sensitive to water quality and benthic light levels, so acidification ef-
fects on plankton dynamics may also play a role (138). While epiphytes that produce calcium
carbonate structures are expected to decrease with acidification (93, 137), enhanced seagrass pro-
duction may protect some calcareous species very close to the seagrass tissues in low flow envi-
ronments (139). In contrast, fleshy epiphytic algae are largely expected to benefit from high pCO2

(140). Experimental studies of temperate seagrass communities, dominated by fleshy epiphytes
and macroalgae, suggest that grazers can keep epiphytic algae in check (102), and in some cases,
acidification may actually increase top-down control (141). Despite having calcareous skeletons,
many of the invertebrate grazers in seagrass ecosystems have high tolerance to acidification (142,
143).

5. RISKS TO HUMAN COMMUNITIES

The emergence of ocean acidification impacts on the Pacific oyster industry in the Pacific North-
west United States in the mid-2000s (144) immediately framed ocean acidification as a present-
day concern with direct implications for small and large businesses and coastal communities. Since
then, much ocean acidification research has focused on economically, culturally, and ecologically
important species. Other studies have focused on how ocean acidification will ultimately alter the
benefits that marine systems provide to human communities (also called ecosystem services, or
nature’s contributions to people).

Detecting changes in ecosystem services can be challenging, and attributing those changes to
one long-term driver, such as ocean acidification, is even more difficult. Moreover, human and
natural systems are constantly adapting and responding to ocean acidification in a multi-stressor
context, while the risk of harmful changes to ecosystem services from climate change is increas-
ing (145, 146).Multidisciplinary studies focused on social-ecological risks from ocean acidification
are exploring economics, ecosystem services, and cultural and societal institutions. Researchers are
also studying interventions that decrease vulnerability by either decreasing social-ecological sys-
tems’ exposure to ocean acidification or increasing their adaptive capacity. In addition to strength-
ening fisheries and aquaculture, or improving the resilience of coastal environments, these actions
have the cobenefit of improving management of marine systems and resources (Figure 4).

5.1. Fisheries and Food Webs

Both real-world and laboratory evidence suggest that ocean acidification is very likely to de-
crease harvests of several bivalve shellfish species, with lost revenue and cultural disruption to
follow. During the mid-2000s, the Pacific oyster aquaculture industry in the Pacific North-
west, which is increasingly at risk from acute ocean acidification worsened by enhanced coastal
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Figure 4

Impact pathway from increased atmospheric carbon dioxide (CO2) to changes in social-ecological systems.
Gray band indicates level of scientific certainty. Teal green blocks show the groups of interventions discussed
in the text that are frequently proposed to directly decrease harm from ocean acidification on social-
ecological systems. Figure adapted from Gattuso et al. (228) with permission of the Intergovernmental Panel
on Climate Change (IPCC).

upwelling, supported more than 3,000 jobs and $270 million in economic activity per year (144).
Because marine mollusks comprise 9% of the total world fishery production by value (147), ocean
acidification’s potential effects on shellfish harvests and provisioning ecosystem services became a
research theme (148).

Ocean acidification causes decreases in bivalve reproduction, survival of juvenile bivalves, or
delayedmaturation of adults and can alter recruitment, harvestable biomass,maximum sustainable
yield, and economic value of shellfish fisheries (149). Other impacts such as alterations in the taste
or other food qualities of shellfish (150, 151), or behavioral changes in finfish species (17, 152), have
not yet been detected in nature or incorporated into models, so their socioeconomic implications
have not been projected yet.

Studies with varying degrees of complexity have examined potential economic losses from as-
sociated shellfish harvest decreases.Models with simple CO2-damage relationships for all bivalves
and time discounting have projected losses of approximately 10–28% losses for both US and UK
mollusk harvests annually (148, 153). Model estimates of welfare losses from ocean acidification
impacts on shellfish range widely depending on estimates of per capita income and mollusk de-
mand growth: US losses toward 2100 are estimated at $400 million USD and global losses, dom-
inated by China, from $6 billion to $100 billion USD annually (147), with an annual projected
impact of more than $1 billion USD for Europe by 2100 (154). For UK fisheries, ocean acidifi-
cation and warming together are projected to decrease shellfish biomass by 30% by 2020, with
overall employment losses related to shellfish and finfish declines from 3% to 20% by 2050 (155).
United States economic damages by the end of the century for mollusk fishery losses are on the
same order as those for increased hurricane damages (156).
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Integrated assessment models (IAMs) are now being utilized to explore the possible combined
impacts of climate change, acidification, harvest, fishery management, and social-economic factors
on specific commercial fisheries. Cooley et al. (149) found a substantial decline in US northeast
sea scallop harvests by 2050 under high CO2 emission scenarios and contemporary harvest rules, if
ocean acidification decreases recruitment and slows growth, although adjustments to management
can help increase biomass somewhat (157). Another IAM projected a decrease in the Alaska-based
southern Tanner crab fishery catch and profits by more than 50% in the next 20 years (158). A dy-
namic bioclimate envelope model examining ocean acidification and temperature effects together
found that total fisheries revenue in the Arctic region may increase by 39% from 2000 to 2050
under SRES A2, because poleward movement of temperate fisheries will increase Arctic fishery
revenues more than calcifier mortality will drive losses (159).

Ecosystem models and vulnerability assessments have also evaluated the interaction of ocean
acidification with other drivers and fisheries. In the California Current, decreased pH is expected
to most impact crabs, shrimps, benthic grazers, and bivalves, with indirect effects on specific dem-
ersal species that prey on these groups (160) and different consequences for port-based economies
in the region (161).Using a suite of regional ecosystemmodels from around the world,Olsen et al.
(162) explored the interaction of ocean acidification,marine protection, and fishing pressure, find-
ing that marine protection and ocean acidification have greater overall effects on the ecosystem
than adjusting fishing pressure. Seijo et al. (163) recommend considering possible ocean acidifi-
cation effects when defining fisheries management strategies, and Olsen et al. (162) and Talloni-
Álvarez et al. (164) suggest that ocean acidification should also be considered when developing
protection strategies and ecosystem-based management. Regional vulnerability to potential losses
in shellfish harvests from ocean acidification is greater for indigenous groups and rural commu-
nities in the United States (165, 166) and developing nations with artisanal fishing fleets in the
Mediterranean (167). Minimizing overall community vulnerability to losses from ocean acidifi-
cation requires addressing community and environmental factors such as overall economic well-
being, access to job alternatives, coastal hypoxic events, and more as well as ocean acidification
impacts on marine species.

5.2. Coral Reefs

Potential economic and cultural losses of coral reef–provided ecosystem services—coastal protec-
tion, habitat and biodiversity, fisheries, recreational and tourism opportunities, and existence and
amenity values—have been considered since the earliest days of ocean acidification research. Ap-
proximately 500 million people derive food, income, coastal protection, and other services from
coral reefs (168). The worldwide value of coral reefs, however, is difficult to pin down; published
estimates range from $29.8 billion/year (169) to $376 billion/year (170), although Pendleton et al.
(171) find that data are insufficient to allow rigorous evaluation. Ocean acidification combined
with erosion and other disturbances have lowered the seafloor around carbonate platform en-
vironments in the Florida Keys, Caribbean, and near Hawai‘i, accelerating the rate of relative
sea-level rise (172) and endangering human safety and property (173).Without coastal protection
from reefs, specifically, flood damages from 100-year storm events would nearly double, rising to
$272 billion (173). Brander et al. (174) examined the economic impact of ocean acidification on
coral reefs, concluding that economic effects of reef scarcity and increasing global wealth would
keep tourism and economic value of reefs strong, despite net loss of coral reefs from acidification.

Other analyses use noneconomic methods to evaluate risks posed by changes in coral reef
health or coverage. Pendleton et al. (171) showed that overlapping risk of reef loss from warming
and acidification and social and economic vulnerability puts Southeast Asia at particular combined
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risk, yet most places there have minimal data on ocean acidification exposure. A similar approach
around the Great Barrier Reef concluded that a suite of ecological and social measures is needed
to decrease risk of harm from climate-associated reef loss (175).

Vermetid and shellfish reefs suffer from ocean acidification as well as coastal disturbances such
as trampling, sedimentation, dredging, and pollutants or poisons (133, 176, 177). Both types of
reefs are “ecosystem engineers” that stabilize sediments, provide habitat for benthic ecosystems,
and store organic carbon (133, 176). Oyster reefs provide an estimated value of $5,500–$99,000
per hectare per year via shoreline stabilization, habitat creation, and water filtration (178). Ocean
acidification’s economic ramifications for vermetid and shellfish reefs have not been explored, but
the reefs’ important noneconomic environmental roles have made them focal areas for preserva-
tion and restoration.

5.3. Coastal Systems and Submerged Aquatic Vegetation

Many near-shore, coastal systems contain submerged aquatic vegetation, such as seagrass beds or
kelp forests, that are increasingly mentioned as a solution to address ocean acidification (21, 179).
Submerged aquatic vegetation’s ability to create habitat and slow water flow in coastal regions is
better established (180–182) than its ability to consistently capture and sequester CO2 or modu-
late local pH swings, where evidence is mixed (183–185). Nevertheless, restoring and preserving
submerged aquatic vegetation is increasingly seen as a widely useful marine conservation step that
will help sustain marine provisioning and regulating services (186) and may help mitigate ocean
acidification in localized areas (21). This overall approach is frequently termed phytoremediation
(Figure 4).

Similar to submerged aquatic vegetation, coastal systems including wetlands, mangroves, and
nearshore sediments are thought to help mitigate ocean acidification by sustaining regulating ser-
vices and capturing carbon or releasing alkalinity (187–189). However, local details strongly in-
fluence the amount and duration of carbon captured (188, 190). Estimates of the economic value
of this blue carbon (carbon sequestered in wetlands, mangroves, sediments, macroalgae, and sub-
merged aquatic vegetation) are functions of these environments’ carbon drawdown, their spatial
coverage, and the social cost of carbon (191, 192). Conservation and restoration of coastal systems
to sequester carbon are being evaluated and promoted as part of overall carbon mitigation efforts
(193, 194), which may indirectly benefit ocean acidification.

5.4. Biodiversity and Environmental Health

All healthy ocean and coastal systems, including the environments mentioned above, sustain bio-
diversity. The reduced biodiversity associated with acidified conditions observed in many coastal
systems (195) decreases ecosystem resilience and compromises regulating services, including habi-
tat provision, nutrient cycling, and carbon storage (196). For example, slower growth and survival
of a widespread mussel species (Mytilus edulis) under ocean acidification could substantially de-
crease its ability to regulate coastal water quality by filtering water (197). Ocean acidification
could strongly affect critical or unique environments such as coral reefs, deep-sea systems, and
high-latitude systems, which depend on highly endemic species and may not have much func-
tional redundancy within species groups (196). Outcomes for pelagic food webs are harder to
anticipate, because ocean acidification and other drivers reshuffle species composition (196), and
it is difficult to determine how ecosystem function will change. Gascuel & Cheung (198) caution
that loss of ocean biodiversity that decreases regulating functions and functional redundancy can
decrease not only system productivity, but also stability and resiliency; additionally, it can raise the
risk of large-scale ecosystem shifts in ecosystem structure and decrease resilience.
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Losses of marine biodiversity from ocean acidification impacts on marine systems can also
affect cultural services (199–202). Cultural services comprise activities from supporting individ-
ual recreational activities to sustaining multi-generational, community-wide religious and cul-
tural identities. There is broad agreement that the actual effects and modes of action of ocean
acidification and other ocean changes on cultural services are insufficiently understood (203–
206). Encouragingly, however, Koenigstein et al. (199) report that human communities recognize
the potential implications of lost marine biodiversity, especially regarding extinctions and losses
in ecosystem function, and this can spark meaningful, conservation-oriented multi-stakeholder
discussions.

5.5. Interventions and Adaptations

Nearly every study that identifies potential harm from ocean acidification to ecosystem services
also identifies possible interventions (Figure 4). There is consensus across the scientific commu-
nity that the foremost solution to ocean acidification is to cut atmospheric CO2 emissions (14,
207–211). At present, the international body of climate policy [within the United Nations Frame-
work Convention onClimate Change (UNFCCC)] does not explicitly address ocean acidification,
although numerous analyses agree that ocean acidification falls within UNFCCC-relevant con-
cerns (210, 212, 213).

Adaptive management of marine systems, where management interventions are implemented
to achieve particular ecosystem function goals, evaluated, and adjusted in response to new infor-
mation or cumulative effects of change, is often cited as a possible intervention.Multi-stakeholder
ocean planning, where shared objectives are set and ocean uses are coordinated among interest
groups, shows promise for allowing many ocean uses to continue in a sustainable way. But acidi-
fication, oxygen loss, and the gradual redistribution of species across management boundaries to
higher latitudes from ocean warming already confound current and future management decisions
(168) and make projecting future conditions even more difficult. A critical challenge is maintain-
ing an ongoing balance of protection versus sustainable human resource use for impacted systems
(214). In coastal zones, ocean acidification interacts with other anthropogenic and natural drivers
such as pollution, freshwater runoff, and coastal plankton blooms (215), but many existing water
quality regulatory policies can start to help address coastal acidification locally (216).

Husbandry of captive or wild species also offers intervention opportunities. Encouraging shell-
fish aquaculture industry growth, despite the trade-offs associated with aquaculture, has been
proposed as an adaptation to ocean acidification and warming (217). Shellfish hatcheries have
enhanced water quality monitoring, improved water quality, and expanded selective breeding and
strategic feeding to adapt to acidification, and this has stabilized or improved yields and eco-
nomic revenues (144). Amending tidal flats where shellfish grow to maturity with ground CaCO3

shell material provides substrate for larval settlement andmaymodulate ocean acidification locally
(218–220). Submerged aquatic vegetation may also capture CO2 locally through photosynthesis
while providing habitat (185). Active interventions are being piloted to support coral species and
restore coral reef environments, including selective breeding and carefully protected outplanting,
as a key conservation tactic to maintain biodiversity (221). As with water quality, existing manage-
ment levers might also improve resilience to ocean acidification and hypoxia (222).

The least well-developed group of interventions involves increasing the adaptive capacity
of human communities that depend on marine resources. Just-in-time adaptations do work, as
demonstrated by industry-science partnerships undertaken by the US Pacific oyster shellfish
fishery. Personal networks were leveraged to identify and address ocean acidification through
ocean monitoring and active water quality management by shellfish hatcheries adding calcium
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carbonate to culture tanks (6, 144). An alternative adaptation approach that also shows promise is
planned, end-to-end structures that support communities that may experience future losses from
ocean change (6). This must reach beyond ocean acidification, as extreme ocean events including
harmful algal blooms, hypoxia, and marine heat waves have recently tested management systems
and stressed marine-dependent socioeconomic systems (223). Emphasizing disaster risk reduction
(224) and rigorously incorporating uncertainty (225) in marine policy and governance can greatly
improve outcomes for both social and ecological systems affected by ocean change (226).

6. SUMMARY

The scientific study of seawater chemistry changes due to rising atmospheric CO2 and the sensi-
tivity of marine life to elevated CO2 have advanced dramatically in the past two decades. Major
challenges remain, however, in understanding the implications of the ongoing long-term, press
perturbation of ocean acidification for marine species, ocean biological communities and ecosys-
tems, and the risks to human communities that depend on marine resources and ecosystem ser-
vices. Efforts to understand the sensitivity of marine species to projected future ocean acidification
are delving into detailed characterization and mechanisms of species sensitivity, consideration of
acclimation and adaptation, greater ecological relevance including consideration of multiple stres-
sors, and detection and attribution of the impacts for ocean ecosystems. Front-line risks to human
communities have been identified, including loss of shellfish harvests and decline in coastal pro-
tection by coral reefs, and more risks are being investigated. Several existing policies used to reg-
ulate water quality and marine species conservation can also help address acidification, with no
or minimal amendments. Likewise, many adaptive actions used to address other issues, such as
strengthening the shellfish aquaculture industry overall, can have cobenefits in addressing acidifi-
cation. Current management practices must be adjusted, however, to allow marine governance to
remain nimble in the face of both global-scale changes such as acidification and climate change
and local-scale concerns.

SUMMARY POINTS

1. Human CO2 emissions alter surface seawater acid-base chemistry globally, with addi-
tional coastal acidification from nutrient pollution and other factors.

2. Biological impacts reflect multiple, simultaneous chemical changes—increasing
CO2(aq), HCO−

3 , and H+ and decreasing CO2−
3 and carbonate saturation state.

3. Laboratory and field studies indicate a wide range of biological responses to highCO2 on
organism-level physiology, biomineralization, growth, reproduction, sensory perception,
and behavior.

4. New research fronts involve characterization and mechanisms of species sensitivity, ac-
climation and adaptation, ecological relevance, multiple stressors, and detection and at-
tribution of the ocean ecosystem impacts.

5. Propagation of organism-level effects into community and ecosystem responses is being
elucidated through mesocosm and field manipulation experiments and studies of natu-
rally acidified marine environments.

6. A suite of multiple stressors including acidification, climate change, and other environ-
mental alterations must be considered when determining the emergent ecological effects
and any adaptation-focused intervention.
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7. Acidification likely will impact aquaculture, fisheries, shoreline protection, and other
valuable marine ecosystem services, resulting in vulnerabilities and risks to human com-
munities, but interventions designed to address other issues (e.g., biodiversity loss, water
quality, governance) may also help address harm from ocean acidification.

8. The ultimate solution to ocean acidification involves global-scale reductions in human
CO2 emissions, with local adaptation strategies also needed to minimize harm from the
impacts that are inevitable.

FUTURE ISSUES

1. Enhanced monitoring of ocean acidification is possible by leveraging improved au-
tonomous ocean platform and sensor, remote sensing, data analysis, and modeling
technologies.

2. Targeted observing systems, process studies, and modeling efforts are needed to evaluate
acidification impacts in the marine environment across biological scales from popula-
tions to ecosystems.

3. Experimental studies of ecological effects of ocean acidification that explicitly incorpo-
rate environmental context (e.g., temporal variability in pCO2/pH and concurrent expo-
sure tomultiple, relevant drivers) are needed to improve forecasts of emergent ecological
effects.

4. Increased monitoring and data synthesis efforts aimed at detecting species and ecosys-
tem change and understanding what portion of the change can be attributed to ocean
acidification will help guide livingmarine resourcemanagement and the scientific efforts
that support it.

5. Development and evaluation of adaptation solutions for ocean acidification are key pri-
orities that will likely require coproduction of knowledge and close cooperation by sci-
entists, resource managers, and stakeholders.

6. Marine management strategies need updating to balance protection and sustainable hu-
man uses in the face of overlapping global-scale changes like acidification, warming, and
oxygen loss.

7. Adaptive management systems must be developed to move beyond the assumption of
steady-state environmental conditions, to accommodate geographic and temporal shifts
in living marine resources, and to nimbly address extreme events in ways that minimize
harm to both marine systems and ocean-dependent human communities.
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