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Abstract

Depletion and pollution of groundwater, Earth’s largest and most accessi-
ble freshwater stock, is a global sustainability concern. A changing climate,
marked by more frequent and intense hydrologic extremes, poses threats to
groundwater recharge and amplifies groundwater use.However, widespread
human development and contamination of groundwater reservoirs pose an
immediate threat of resource extinction with impacts in many regions with
dense population or intensive agriculture. A rapid increase in global ground-
water studies has emerged, but this has also highlighted the extreme paucity
of data for substantive trend analyses and assessment of the state of the global
resource. Noting the difficulty in seeing and measuring this typically invis-
ible resource, we discuss factors that determine the current state of global
groundwater, including the uncertainties accompanying data and modeling,
with an eye to identifying emerging issues and the prospects for informing
local to global resource management in critical regions. We comment on
some prospective management strategies.
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Sustainability: ability
to maintain an activity
without adverse
impacts

Climate change:
long-term variations in
climate due to human
or natural causes
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1. INTRODUCTION

Groundwater accounts for 99% of the liquid freshwater stock on Earth and is the world’s most
accessed freshwater reservoir. In many regions, groundwater may be the only perennial water
source, and it typically becomes the primary source where energy and equipment are available for
pumping. It is also important as a buffer to seasonal and longer-term variations in surface water
availability due to climate variability. Groundwater now accounts for almost half of all drinking
water, approximately 40% of irrigation water, and a third of the water for industry (1).

Increasing withdrawals to meet growing human needs have led to significant groundwater
depletion in major agricultural and population centers. Many aquifers may be threatened with
extinction or are now seasonally exhausted. The expansion of intensive agriculture and associ-
ated irrigation is a primary driver. Urban and rural domestic groundwater consumption has also
seen a dramatic increase. Deeper, confined aquifers can be relatively unaffected by biological and
chemical contamination, and hence are prime targets for domestic water supply, especially where
geogenic contamination (e.g., arsenic) is not an issue.

Contamination of near surface and subsurface water sources has become endemic as human ac-
tivities intersect with water flow pathways. Fertilizers and pesticides used in agriculture, solvents,
chemicals used in manufacturing, mining, energy production and commercial applications, and
pharmaceuticals and pathogens introduced through human waste, are leading to chronic contam-
ination of shallow and deep groundwater worldwide.

Given their long residence times, groundwater reflects the cumulative effects of extraction,
recharge, and contamination. The resulting water depletion, pollution, and land subsidence may
become irreversible due to the prohibitive cost of remediation. The degradation of groundwater
quality due to a combination of geogenic and anthropogenic factors and large-scale depletion
poses a sustainability challenge for humanity.

However, groundwater problems are typically highlighted as a concern in only specific loca-
tions (e.g., Mexico City, North China, North India, Pakistan, California). By contrast, anthro-
pogenic climate change is seen as a pervasive global concern that emerges such that carbon emis-
sions at any location impact the global outcome. Extinction of local groundwater sources can have
broad impact through agricultural value chains and could stimulate mass migrations and economic
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Modeling:
the use of conceptual,
mathematical, or
statistical techniques
to analyze a system

failure in the same way that climate change may. Anthropogenic climate change may amplify this
situation through increasing aridity in some regions, but the threat to groundwater from endoge-
nous, regional human activity remains a primary challenge.

Monitoring and understanding the coupled human and natural dynamics (e.g., physics, biology,
chemistry, sociology and economics) of groundwater systems in response to climate variations and
regional human activity are essential for developing appropriate management strategies and pre-
dicting social outcomes. There have been significant advances in hydrogeology, geophysics, geo-
statistics, remote sensing and applied research in some of themore groundwater-stressed locations.
Similar advances in the social science literature have documented the role of different instruments
(e.g., allocation, regulation, enforcement, pricing, and markets). Yet, in many cases, at the space
and time scales of management interest, groundwater remains invisible. Aquifers, groundwater
users, and sources of contamination are heterogeneous. Data on water use and pollution at the
appropriate spatial and temporal resolution to attribute changes to human and natural forcing
are difficult to obtain. This common pool resource problem is consequently difficult to predict
and manage. In subsequent sections, we synthesize (a) groundwater quantity and quality condi-
tions and key challenges, (b) data limitations and the application of global groundwater models,
(c) characteristics of groundwater management and examples of promising strategies, (d) and crit-
ical future issues.

2. STATE OF THE GROUNDWATER RESOURCE

Over the past few decades, growing interest in monitoring and managing groundwater has led
to advances in research, technologies, policies, and practices for an improved understanding of
subsurface water dynamics and its links to climate dynamics and human activity. At a planetary
scale, remote sensing has enabled a mapping of large-scale changes in groundwater storage. The
GRACE satellites have shown that 21 of the 37 main aquifers on Earth are being depleted (2). On
a local scale, sensors are now cheaper, easier to deploy, and connected to the Internet to facilitate
data aggregation and interpretation. Geophysical instrumentation and techniques provide new
measurements leading to a better understanding of the subsurface properties. In this section, we
present a synthesis of key issues of Groundwater Quantity and Quality and discuss the nature of
the drivers (e.g., demographics, economics, climate) on groundwater conditions (Figure 1).

2.1. Groundwater Quantity

Groundwater can be found in layered sedimentary aquifers, in hard rock aquifers with complex
inter-connections, and in Karst aquifers with large inter-connected solution cavities. A general
mapping of the presence of each type of aquifer around the world, and estimates of groundwa-
ter stocks, is available from the World-Wide Hydrogeological Mapping and Assessment Pro-
gramme (WHYMAP; https://www.whymap.org/). The International Groundwater Resource
Assessment Center (IGRAC; https://www.un-igrac.org/) provides a platform for global infor-
mation on groundwater data, issues, modeling, and management information. Depending on the
location and the type of aquifer, a groundwater system can range from 10 to 105 km2 in size.
Irrigation accounts for an estimated 70% or more of the average withdrawals and is often mani-
fest through a large and increasing number of wells (e.g., millions of new wells added per year in
India) whose pumping is not explicitly measured or reported. Typically, water and energy balance
models are used for a global assessment; these models require significant assumptions as to water
use and use proxies for the key biophysical parameters that are inferred from satellite data or from
other sources.
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The characterization of groundwater resources requires a detailed comprehension of the static (e.g., geologic properties) and dynamic
(e.g., water fluxes) parameters to describe groundwater quantity, and the pollutants to describe the groundwater quality. The state of the
groundwater resources (right column) is determined by forcings such as demographics, land use and land cover change, economics,
climate variability and trends, irrigated agriculture, and access to energy (left column). Groundwater use can lead to aquifer depletion,
land subsidence, and contamination of aquifers. Groundwater management mitigates, amplifies, or regulates the impacts of the
overarching forcings on the groundwater resources, through subsidies and financial incentives, new technologies, infrastructure
provisions, or policies and regulations.

In the absence of global (or even regional) data on deep aquifers,much of the global groundwa-
ter assessment modeling has focused on shallow aquifers, agriculture, and climate dynamics.How-
ever, most municipal and large-scale agricultural or industrial groundwater extraction points lie
in deep aquifer layers. Deeper wells may be less susceptible to climate-driven changes in recharge,
making the water sources more reliable. They may also be less susceptible to contamination. The
deeper aquifers have been depleting across the world, with the trend accelerating in the twenty-
first century because extraction rates often outpace recharge rates, and residence times are over a
hundred years (3). The impacts of human use can manifest quickly (as in the hard rock aquifers of
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peninsular India that are emptied seasonally) or over decades (as seen in the progressive depletion
of the sedimentary aquifers in North India, California, and the Midwestern United States).

High rates of extraction around major cities in the Americas, Asia, Europe, and the Middle
East have led to localized depletion that in many cases (e.g., Bangkok, Beijing,Mexico City,Tokyo,
Jakarta, Ho Chi Minh City, Dhaka, Osaka,Manila, Houston, San Jose, Shanghai, Venice, Kolkata,
Madrid, and Granada) has translated into land subsidence (4–8). In these environments, ground-
water depletion is due to high pumping rates and also to the reduction of recharge as the impervi-
ous cover in the area increases. As urbanization continues, especially in coastal cities and cities in
deltas, we expect the trend of metro area groundwater depletion and land subsidence to continue
with potentially higher susceptibility to flooding and groundwater salinization.

Irrigated agriculture, especially in arid regions, where solar radiation and soil health are not
limiting factors, translates into a significant improvement in crop yields. Consequently, it is not
surprising that governments, corporations, and farmers have adopted groundwater-based irriga-
tion, with and without subsidies. More than 40% of irrigation water consumption comes from
groundwater. India, China, and the United States have the most land equipped for irrigation us-
ing groundwater (9). India, China, North Africa, the Middle East, Central Asia, North America,
and Australia are typically identified as places with large areas of groundwater depletion from fos-
sil aquifers (10). Several authors (11–13) have tried to estimate the spatially distributed rates of
groundwater depletion using satellite-derived gravity data (GRACE; see Section 3.1) and water
balance models.

Climate variability plays a significant role in the variations in groundwater storage. For shallow
aquifers, variations in recharge due to persistent drought or wet periods have a direct effect on the
water balance that is mediated by the degree and nature of exchanges between surface water and
shallow groundwater, and by vegetation dynamics. For deeper aquifers, complex recharge routes
and intermediate impermeable layers dampen climate-induced recharge variability.

Statistical investigations of linkages between climate variability and change and teleconnec-
tions with indices of interannual and decadal climate variability have been pursued in many places
(14–19). Although the studies showcase significant interannual to multidecadal correlations, all
highlight the difficulties in understanding the recharge mechanism and the consequent damping
of the climate signal.

The relationship between climate and groundwater is made more complex by the impact cli-
mate has on pumping. Drought induces higher demand while simultaneously reducing renewable
surface water, resulting in an increase in groundwater withdrawals and depletion.Correspondingly
wet periods are accompanied by reduced pumping. The combined effect is an asymmetric ampli-
fication of the climate signal by the regional human response. Surface-groundwater interactions
provide feedback loops (19–25) that can further amplify both surface and groundwater variations
(see the sidebar titled Groundwater and Climate Change).

2.2. Groundwater Quality

The chemical, physical (e.g., turbidity), and biological quality of groundwater varies by location
and depth. The presence of water contaminants may be controlled by geogenic factors, e.g., ad-
sorption/desorption kinetics associated with soil/rock minerals, or anthropogenic factors, e.g.,
agrochemicals from farms or heavy metals from industrial processes; or a combination thereof,
e.g., acid mine drainage from mining that mobilizes geogenic contaminants.

Processes that determine groundwater quality can be complex given that they reflect biogeo-
chemical interactions at scales that are not readily observed. Characterizing the exact mecha-
nisms requires an understanding of the pathways of water transport over a region. Water quality
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GROUNDWATER AND CLIMATE CHANGE

Climate change is an amplifying stress factor for areas already experiencing groundwater depletion or pollution,
implying significant changes in agricultural choices, urban water use efficiency, and water management (26–30).
Recharge is difficult to quantify for past, current, and future climate (27). If rainfall intermittency and intensity in-
crease, groundwater recharge rates may decrease.Changes in the spatial variability of vegetation and soils maymod-
ify recharge especially in arid regions. Groundwater depletion may lead to regional increases in induced recharge
(20), confounding predictions of future recharge. Greenhouse gas emissions associated to groundwater stem from
(a) the use of fossil fuels for the energy used in pumping (31–34), (b) bicarbonate or dissolved methane extraction
(31, 35), and (c) changes in wetlands and riparian buffers (36, 37). Mishra et al. (31) estimate the CO2 contribution
from groundwater pumping in India to be approximately 5% of total Indian emissions. Wood & Hyndman (34)
estimate the contribution for the United States is 1.7 million metric tons, which is insignificant compared to that
from fossil fuel combustion. Groundwater extraction is not a significant direct contributor to climate change.

will change as groundwater travels through pore spaces with complex mechanisms of connec-
tivity and exposure to chemicals and microbes embedded on aquifer material surfaces. Point
measurements of groundwater quality are typically integrated with additional data sets, includ-
ing lithology and land use, to map areas of concern and identify the sources. The IGRAC
(https://www.un-igrac.org/) platform includes global maps of salinity, arsenic, and fluoride,
which indicate high-risk areas. Regional- to country-level studies have been conducted for ad-
ditional analytes.

There is a large literature on geogenic groundwater contamination by arsenic and fluoride,
their mobilization, human exposure, and methods for treatment (38–47). While the quantitative
assessment of groundwater quantity variations is highly uncertain, a global assessment of ground-
water quality is not feasible (48). References 38, 39, 48–53 report on attempts tomap or predict the
locations of potential locations where geogenic contaminants may be a problem based on known
lithology and limited measurements.

At the regional scale, arsenic and fluoride are major concerns in Asia, where groundwater is
often the primary drinking water source. Countries with predicted and reported arsenic contam-
ination exceeding 10% of their land area include Bangladesh, Cambodia, and Vietnam (39). In
mainland China, 20 of 34 provinces have high arsenic concentrations in groundwater, potentially
exposing more than 19 million people (47). Arsenic-related issues continue to emerge in many
places and are endemic in the Indo-Gangetic plains, in parts of China, the United States,Western
Africa, and South America. On the basis of soil, lithology, climate, land use, and elevation, arsenic
contamination is predicted but is not yet confirmed by measurements in several Eastern European
countries, Russia, and the Democratic Republic of the Congo (39).

Anthropogenic contamination of groundwater has emerged as a significant concern in the past
several decades. Contaminant sources include agriculture (e.g., fertilizer, pesticides, hormones,
antibiotics, and steroids consumed by livestock), urban (e.g., treated and untreated wastewater,
septic systems, and other land treatment of solid and liquid wastes, golf course, and lawn appli-
cations), commercial/industrial (e.g., volatile hydrocarbons, wide range of chemicals that may be
improperly discharged or injected into groundwater), energy (e.g., byproducts of oil and gas ex-
traction, including from hydraulic fracturing, mobilization of natural methane, uranium, leaking
storage tanks for fuels), and mining (e.g., chemicals used in ore processing, acids leaching from
tailing ponds, heavy metals attached to sediments). Nitrates from agriculture, urban wastewater,
and other sources are perhaps the most prevalent globally and have seen considerable attention
as to their mobilization and control (54–61). The groundwater system functions as a receptor, a
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reactor, and an accumulator. Given the long residence times of groundwater, and the potential for
biogeochemical activity that could create novel byproducts of the original pollutants, remediation
or treatment of groundwater systems can be quite challenging.

Pharmaceuticals and personal care products fall into the class of Emerging Contaminants and
are a growing concern, given that they pass through wastewater treatment plants and potentially
through urban landfills (48, 62–67). Another class of man-made contaminants that are of signifi-
cant recent concern are per- and polyfluoroalkyl substances (PFAS) (68). As with other sources of
groundwater contamination, information on the prevalence and impact of these chemicals is poor
(69) even where some regional studies have been performed (70). The National Groundwater
Association provides an overview of the groundwater concerns with PFAS (71).

A special case of groundwater contamination relates to Karst aquifers (72–75). These aquifers
exist around the world including where there has been dissolution of subsurface limestone leading
to sinkholes and caves such that large amounts of water can be stored and conveyed.Karst aquifers
cover approximately 15% of the ice-free land area of the world, may supply approximately 10%
(72) to 25% (73) of the global population with drinking water, and in many of the regions are the
only water source available. Consequently, they have been important for the regional economic
development. The relatively rapid movement of water through high hydraulic conductivity pref-
erential flow pathways in these systems increases the potential for them to be rapidly contami-
nated by surface sources. Kalhor et al. (73) provide a review of the typical contaminants, sampling
methods, modeling, and remediation strategies peculiar to these systems, noting the complexity
of modeling and monitoring this environment.

Megacities are an example of the vulnerability of groundwater quality to development. For
example, isotopic studies indicate sewage-based contamination beneath several Southeast Asian
megacities (76). Industrial contamination of soils with heavy metals serves as a source for ground-
water contamination inMoscow (77). Groundwater extraction can induce transport of water from
regions of high to low contaminant concentration, as noted for arsenic in Dhaka, Bangladesh
(78, 79).

Andrade et al. (63) note that urban flooding can be a significant yet not well-monitored path-
way for enteric pathogens (implicated in gastrointestinal disease) in groundwater. This is poorly
understood and quantified given the belief that deep groundwater systems typically used for drink-
ing water supply are pristine and unaffected by the mobilization of pathogens by storm water. (See
the sidebars titled Mining and Groundwater Quality and Energy and Groundwater Quality.)

MINING AND GROUNDWATER QUALITY

Groundwater pollution due to mining is a global concern. Landscape disturbance can mobilize geogenic contami-
nants.Mining waste can be acidic and rich in metals, and through leakage and spills from tailing dams at the mines it
can be a chronic pollution source. According to the United States Environmental Protection Agency’s toxic release
inventory (https://enviro.epa.gov/triexplorer/tri_release.chemical), metals mining is the number one source of
water pollution in the United States, with more than 1.4 billion releases, whereas coal mining is #14, with more than
8 million toxic releases. These problems are also emerging in Central and South America, and in Africa, around
iron, copper, gold, and lithium mines (80–84). Acid mine drainage is a pervasive problem around coal mines and
metal mines (83). Legacy mining activities in North America, Europe, Australia, and Asia have left a significant,
unattended legacy of such sources. Furthermore, throughout the world mining activities are intensifying to meet
the demand related to electronics, batteries, and renewable energy. However, a synthesis of the global groundwater
impact of mining is lacking (85–87).
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ENERGY AND GROUNDWATER QUALITY

Energy production and storage, covering oil, gasoline, petroleum byproducts, volatile hydrocarbons, dense non-
aqueous phase fluids, solvents, and coal fly ash, lead to groundwater pollution (88, 89). Hydraulic fracturing of shale
gas bearing formations using horizontal wells has grown rapidly in the past two decades, leading to the following
concerns: (a) stray gas migration into shallow aquifers (90), (b) contamination by hydraulic fracturing fluids from
leaks and spills in wastewater handling (90), (c) increased seismicity due to the reinjection of residual wastewater in
deep geologic formations (91), and (d) development of biocide-resistantmicrobes that transform frack fluid additives
to compounds toxic to humans and ecology (90). A perceived risk, that fracking chemicals may migrate from the
0.5- to 3-km depth of injection to upper shallow aquifers used for water supply, is not considered to be significant
(90, 91). The lack of baseline data on aquifer conditions is cited as a major limitation to the detection and attribution
of the impacts (90–92).Wide variations in methane concentrations in groundwater are noted in areas with intensive
gas production as well as in areas with limited activity.

3. A HIDDEN RESOURCE

Groundwater and aquifers, due to their hidden nature, present a tremendous challenge to study
and manage. A confident assessment of the global state of groundwater with regard to availabil-
ity, quality, use, and recharge is difficult due to a paucity of spatially specific data. Consequently,
current global assessments made using a mix of available aggregated observations, proxy data, and
mass balance models tend to be skewed toward well-documented areas and are at best indicative of
the relative situation in a subset of regions. At a smaller scale, areas where a significant degradation
of the resource is evident tend to be better researched and documented in government reports and
the news. In many such locations, data sets exist, models are developed, and an extensive archival
literature provides a detailed analysis of the state and trends of the regional groundwater. Some
other regions may have monitoring institutions with sufficient resources to measure and share
data, although rarely with the sufficient levels of detail to understand the complex mechanisms
affecting groundwater flow. Although challenges exist for all scales of groundwater modeling, we
focus on uncertainties in global and regional groundwater assessments and the advances that have
been made to address them.

3.1. Groundwater Data Gaps and Challenges

All global assessments of groundwater acknowledge the need for better data to quantify ground-
water resource conditions (93). Large uncertainties in the volume, distribution, recharge, qual-
ity, and withdrawal of groundwater resources are noted across each segment of the literature we
reviewed.

Soil/rock properties, water levels, or composition are measured at the borehole scale when
directly measured, and at larger scales using indirect geophysical techniques, but rarely at scales
longer than 1 km. Global assessments are based on discrete measurements and extrapolated with
high uncertainty for all model parameters. For example, Jasechko et al. (94) base groundwater
age estimates in 2017 on “only” 6,455 wells or point measurements around the globe. Fan et al.
(12) base the global water table depth on more than 1.4 million points of measurements in North
America and fewer than 431 sites for the entire African continent, highlighting the extreme paucity
of information over a large area.Hora et al. (95) show that although publicly available groundwater
level measurements seem to indicate that the aquifers are replenishing in South India, this is an
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artifact due to survivor bias, as wells with depleting water levels have dried up and are no longer
part of the data set used for trend analysis. Thus, systematic bias in addition to uncertainty is a
concern.

Knowledge on the state of groundwater quality is even more limited by the uneven distribution
of measurements. Groundwater quality measurements are also point based but tend to be a mi-
nor subset of groundwater depth measurements due to relatively high analytical costs compared
to measuring water level. Some analytical methods cover a suite of analytes, e.g., elemental ana-
lyzer or inductively coupled plasma-atomic emission spectrometry. However, there is no method
for accurately measuring the range of possible water contaminants of interest. Certain types of
contaminants, such as pesticides and PFAS, each include classes that in turn include discrete com-
pounds, some of which can be binned andmeasured together, but others must be analyzed individ-
ually. In situ or real-time water quality monitoring is more expensive than a pressure transducer
for measuring water level and is not possible for most analytes. The U.S. National Groundwater
Monitoring Network includes more than 7,000 water level wells, but just under 2,000 water qual-
ity wells, and the temporal sampling is also sparser.These monitoring designs are at best indicative
of the current state but are inadequate for understanding the fate and transport of contaminants
or the human exposure pathways.

Technologies may play a role to fill this data gap. Remote sensing provides a global overview
originating from a single source that is not impaired by multiple data standards (93, 96). The
GRACE satellites, which allow for measurements over large regions that may be difficult or
expensive to monitor in situ (97), provide an interesting advance. However, the >100,000 km2

resolution GRACE data has limited utility for management decisions in most areas (98, 99).
Integrating a variety of mass and energy balance using satellite and local measurements with
GRACE data can provide higher resolution estimates of total water storage change, which is a
proxy for groundwater mass change (e.g., 98, 100, 101). Other satellites can provide groundwater-
relevant proxy data at a higher spatial resolution.For example, vegetation indices fromLandsat and
evapotranspiration fromModerate Resolution Imaging Spectroradiometer (MODIS) can be used
to classify the persistence of shallow groundwater for groundwater-dependent ecosystems (102).
Additional remotely sensed data, such as slope and drainage density, have been used to identify rel-
ative groundwater potential (103).Corresponding advances for deep aquifers and for water quality
are lacking.

Despite these areas of progress, a central weakness in all global assessments of groundwater
stress is obtaining groundwater extraction volumes that are accurate, concurrent, and at the ap-
propriate temporal and spatial scale. Estimates of groundwater use are rather crude given that
there is no organized monitoring or collection of data on pumping in most places. Most global
studies rely on AQUASTAT values that are aggregated at the country scale and come from many
different sources (93). The AQUASTAT estimates depend on when a study was conducted, which
may be 5 or 10 years earlier, and their utility is unclear (e.g., 104). At the continental or country
scale, the challenges are similar; e.g., in the United States, estimates of groundwater withdrawals
are published by the USGeological Survey only once every five years and at the yearly and county
level (105). Consequently, current global estimates of water stresses, their projections, and their
impact are plagued by considerable uncertainties, sometimes leading to the estimate of trends of
the opposite sign compared to remote sensing measurements (106).

There is a need for institutional action on collecting and making groundwater data more ac-
cessible. Definition of standards is crucial for initiatives at multiple levels from governments to
international organizations. Efforts have been made in that direction. IGRAC was founded by the
United Nations in 2003 to “facilitate and promote world-wide exchange of groundwater knowl-
edge and information to improve groundwater management,” and led to the creation of theGlobal
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Risk: the probability
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Groundwater Information System and the Global Groundwater Monitoring Network to central-
izemonitoring data from various programs (https://www.un-igrac.org).TheUnitedNations has
also launched a water accounting program to define coherent and standardized water data stan-
dards (https://wateraccounting.org/background.html), an essential piece component of data
to inform resource management. Nongovernmental organizations may help bridge the data gap.
Start-ups, nonprofits, and large corporations are getting involved (107). In addition, citizen sci-
entists and community-based monitoring have become more prevalent, but access to high-quality
existing data collected for projects by scientists and consultants continues to be elusive (108–110).
The data revolution is already transforming groundwater research, but the relevance of the data
and the analytical methods to inform or transform groundwater management is an open question
(111).

3.2. The Relevance of Groundwater Modeling

As direct measurements alone cannot quantify the state of the resource and risks associated with
future climate and use conditions, groundwater models become an important tool to understand
the dynamics and to inform risks and management. In the past, many estimates of aquifer safe
yield were based on the estimates of average annual renewable recharge. These have evolved to
consider spatial variability of aquifer properties, flow dynamics, and propagation of pollutants,
together with recharge mechanism and abstraction, thanks to advances in groundwater modeling
and computational power (e.g., 112). Detailed groundwater models at the local and regional scale
are now well established, covering both flow and contaminant transport, and they rely on detailed,
locally collected data on aquifer properties, recharge, point sources and sinks, and groundwater
abstraction. They are typically calibrated to water pumping, water level, and water quality data.
The application of such models is now quite routine by consultants, government agencies, and
companies, with each application tailored to a particular purpose.

Larger-scale models naturally require data representing the larger domain. However, aggre-
gation of data from small-scale studies can be difficult to obtain and compile. For example, as-
sembling a superset of studies done by the US Geological Survey over the past 4 decades is
challenging, despite publicly posted data sets and well-documented models. Combination of data
and model parameters from smaller studies typically leaves a majority of the land area unrepre-
sented; nonetheless, comprehensive models of the flow processes across large areas are regularly
produced. For example, high-resolution models have been produced for the United States (113)
and the world (12). In both cases, primarily the shallow aquifer is modeled, and the models can
help inform interactions between climate, surface water, and shallow groundwater processes. The
models lack an adequate representation of groundwater abstraction in part due to poor water use
data.

Global groundwater modelers do not focus on groundwater hydrodynamics, but rather per-
form mass balance-based sustainability studies to quantify water stresses and risks. Most of their
models focus on the interaction of precipitation with surface runoff generation, recharge estima-
tion, and a crude representation of shallow groundwater. Some represent interactions with surface
water bodies (98), but few actually encompass adequate groundwater abstraction (114) and sim-
ulation of deeper groundwater. Furthermore, subsurface lateral flows can be significant beyond
watersheds (115), posing further challenges to groundwater modelers in terms of scale and pro-
cesses tomodel.As a result, suchmodels have limited utility for prediction ormanagement.Rather,
they are a valuable complement to the larger-scale analyses done using GRACE data as a milky
lens on the global groundwater situation. The large uncertainties (2, 9, 93, 116) associated with
global analyses may lead to different conclusions as to which regions are stressed (117).
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To fully grasp the human impact on groundwater resources and the associated risk, it will
be necessary to go beyond groundwater quantity assessments and consider groundwater quality
challenges such as seawater intrusion and anthropogenic and geogenic contamination (118). This
poses new challenges to the global modeling community if they wish to look at global groundwater
sustainability from an actionable perspective.Well-constrained regional models are consequently
important to develop, accompanied by appropriate data. This could then be followed by a global
effort as a synthesis of the information that is generated. Support from national and international
organizations to develop such a synthesis would be necessary for more useful regional and global
analyses for all the areas of relevance to groundwater past, present, and future.

The United Nations Environment Programme (93) has argued that better data, ongoing mon-
itoring, and improved modeling of aquifers systems are needed for sustainable management. This
needs a proper quantification of bias, risk, and uncertainty in the data sets and the models that
propagate that information (117). The scientific tools to do this exist (119). Nonetheless, stochas-
tic hydrogeology is far from common practice due to institutional barriers and lack of incentives
from the public and private sectors (120). Rubin et al. (120) remark that the main challenge may
stem from the importance of “unknown unknowns,” which may be greater than the uncertainty in
subsurface flow parameters, in particular demographic trends and the drivers of human behavior
toward extraction, pollution, and regulation.

4. MANAGING GROUNDWATER

Groundwater quantity and quality management become increasingly important as resources be-
come stressed. Management decisions may be made at multiple levels, including the individual
landholder, community leader, regional, agency, or national level. Each of these stakeholder types
may have varying access to information with which to make their decisions, and differing motiva-
tions at the long-term and large spatial scales.

References 2, 121, and 122 provide some recent perspectives on groundwater management.
Major interrelated goals for the sustainable management of groundwater resources include

� Quantity: arresting and reversing groundwater mining or depletion, accounting for impacts
from climate variability and change;

� Quality: maintaining and improving the quality of groundwater through appropriate pollu-
tion control and aquifer remediation; and

� Equity: equitable and efficient allocation of the resource, recognizing value of use and the
human right to water, scarcity, ecosystem needs, and intergenerational access.

Strategies to address water quantitymanagement goals can be executed at local and government
scales (see sidebar titled Groundwater Use, Monitoring, and Regulation: A Tale of Two States).
Local practices include irrigation management by water use efficiency measures, crop selection
that balances crop water demand with renewable water availability, and local managed aquifer
recharge. Government-scale activities may include implementing permits to cap extraction based
on safe yield, the use of market instruments, such as pricing and trading to motivate sustainable
practices, and large-scale managed recharge or water banking. Groundwater quality management
practices include protecting source water resources by restricting development in certain areas,
limiting pollution loading by requiring discharge permits or best management practices, and re-
mediation of aquifers where pollution is already a problem. Equity-related management decisions
would be implemented at the government scale, to ensure equal access among present and future
users. Groundwater is notably susceptible to the Tragedy of the Commons, and users with greater
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GROUNDWATER USE, MONITORING, AND REGULATION: A TALE
OF TWO STATES

During the 1987–1991 drought, reservoirs were depleted, groundwater pumping and farmer investment in water
conservation increased, and California set up water banks and trading (123).During the 2015 drought, the governor
of California mandated a 25% reduction in water use, except for agriculture, although it accounts for 80% of total
water use. The lack of monitoring of agricultural well pumping meant the regulation would not have been enforce-
able. Consequently, significant increases in groundwater depletion were reported (124, 125). California introduced
the Sustainable Groundwater Management Act that requires governments and water agencies to halt overdraft by
the 2040s. Proposed reforms include data collection, modeling, and their Web access. Currently, groundwater use
and quality data reporting and recording lag behind other US states. In 2016, fewer than 50% of the irrigation
districts reported their water use as required (126). Kansas manages depletion in the High Plains aquifer (127, 128)
by requiring measurement and reporting pump withdrawals (127). Kansas’s Local Enhanced Management Area
program introduced irrigator-driven regulatory proposals with governmental oversight in 2012. Between 2013 and
2017, water use was reduced by 31%, effectively stabilizing groundwater levels while maintaining farmers profit.
This showcases the effectiveness of combining data collection, stakeholder engagement, and regulation (128).

capability to extract more water and from deeper wells typically do so without regard or regulation
that would protect other users.

In the remainder of this section, we provide an overview of the challenges to implementing any
type of management strategy given ubiquitous data gaps and system uncertainty, and challenges
inherent to government-led interventions.We then discuss conjunctive use and specifically man-
aged aquifer recharge, which are increasing in research popularity and potential impact.

4.1. All Management Strategies Rely on Understanding the System

The need to actively manage regional groundwater systems is now well recognized. However,
regulatory and management frameworks vary across the world, and in most places, there is very
limited or ineffective management of the resource, relative to the ideas andmethodologies that are
discussed for at least the past 40 years in the academic literature. The most pressing requirement
for properly managing groundwater is understanding the state and dynamics of the system.Given
the hidden nature of groundwater systems and typical lack of data, as discussed in this review,
implementing effectivemanagement strategies is a challenge.This is compounded by the generally
low economic value placed on groundwater, which leads to relatively few financial resources for
local stakeholders to monitor and manage their water resources.

Quantifying the amount of water returning to deep aquifers and measuring (and reporting)
groundwater extraction remain a practical challenge.Unfortunately, this uncertainty on both sides
of the water balance is common in many groundwater systems, as discussed in previous sections.
In most places in the world, data needed for model calibration are neither publicly archived, nor
readily available in a usable form, even though their collection may be required for every well
that is put in. Remote sensing and its integration with models, e.g., the GRACE type of analyses,
purportedly address these challenges, but are primarily a tool to assess impacts as to total water
storage change at large scales, and are not useful for effecting changes in groundwater quantity in
the absence of knowledge of the sources that could be regulated.

Similarly, for water quality management, data on pollutant loadings (especially for agricul-
tural and urban nonpoint sources that are a major source of nutrients, salinity, and pathogens)
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for shallow aquifers, and of the associated fate, flow, and transport, are rather limited. In all cases,
local management efforts may periodically collect and update these data sets, but analyses of such
processes at regional scales considering surface and groundwater dynamics continue to be rare.
Consequently, we consider the regional- to continental-scale groundwater management challenge
to be dominated by the need to collect, access, and analyze such data, irrespective of the underlying
regulatory or management framework.

4.2. Inherent Challenges for Government-Led Management

There are time and space challenges associated with establishing reasonable groundwater man-
agement practices. Because groundwater system responses to a new forcing may take hundreds of
years to reach a new equilibrium,management typically occurs during the transition period where
the impacts of the human action may be difficult to observe. Hydrologic models can be used to
project impacts into the future. However, developing and applying models, engaging decision
makers, and accounting for uncertainty are challenges for practical application. Even if sustain-
ability is a management consideration, the data and methods may not be available to assess the
extent and timing of implications of groundwater pumping or a contamination event.

Spatial scales relevant to management often correspond to political jurisdiction, rather than
groundwater basin or aquifer extents. Alley et al. (129) suggest the consideration of storage,
recharge, water use, and climate as better determinants of groundwater sustainability, while con-
sidering the relevant management scales, rather than a coarse global view. This is important for
resource allocation and for taking responsibility for actions impacting groundwater availability or
contamination. Groundwater pumping or a contaminant plume in one region may ultimately im-
pact groundwater or surface water resources in another management jurisdiction. Transboundary
aquifers are a major topic of hydrogeological and political studies, with no clear standard for legal
resolution (130, 131).

Another challenge inherent to government-led groundwatermanagement strategies is the need
to balance water security with other government objectives, such as economic and food security.
The variety of management efforts proposed typically must balance political, economic, and en-
vironmental concerns, and can therefore be difficult and slow to implement. In some low-income
regions, including parts of sub-Saharan Africa, research is promoting the potential sustainability
of increasing groundwater use (132, 133). However, several countries have recently focused on
expanding irrigated area by smallholder farmers (134); for example, the Agricultural Transfor-
mation Agency in Ethiopia is investigating small photovoltaic powered irrigation systems (135).
The competing government objectives often lead to food security or economic development goals
trumping groundwater sustainability, given that intergenerational activity is invariably harder to
sell politically.

Water and food security linkages are being looked at from a global perspective (136, 137)
through the lens of trade in virtual water, i.e., the water embedded in the grains or other crops
that are traded on the global market. These transactions are driven more by market supply and
demand for agricultural commodities and the associated government policies than by a direct
consideration of water sustainability (see sidebar Solving India’s Groundwater Challenge). One
viewpoint advanced is that groundwater depletion in arid regions that are net exporters of crops
could be relieved if agricultural intensity were reduced in these areas. Indeed, in many cases, e.g.,
Israel and California, a transition to higher value crops with higher efficiency irrigation has al-
ready begun. However, in many cases it is observed (143, 144) that the water saved by improving
irrigation efficiency may then be used to expand the irrigated area. Consequently, the beneficial
reduction in groundwater depletion may be dramatically reduced.
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SOLVING INDIA’S GROUNDWATER CHALLENGE

Over the past 50 years, India achieved food self-sufficiency in cereal production. A government procurement and
distribution system promoted rice and wheat cultivation.Much of the production takes place in arid regions, where
irrigation using groundwater contributed to higher crop yields.Government subsidies include a fixed annual charge
for electricity for pumping. The resulting proliferation of groundwater use led to groundwater depletion to depths
of 60 to 200 m below surface as compared to 5 to 10 m below in the late 1990s. Solutions include increasing
aquifer recharge through check dams, higher irrigation efficiency, pricing electricity consumption, and shifting
crops. Shifting where rice and wheat are procured could eliminate groundwater depletion in the stressed regions,
while increasing aggregate net farm income (138). Irrigation efficiency improvements at the farm level (139) and
switching to lower water-demand crops (140) can help, but their impact may be moderated by farmers choosing to
expand irrigated area (141). Experiments on electricity pricing reform (142) suggest that payments for conserving
electricity are a useful pathway for transition; increasing artificial recharge may have a modest impact.

Water quality is similarly balanced with these other objectives and is noted by variations in
regulations on industrial and agricultural pollutants. In areas with low fertility soils, or where yields
are limited by nutrient deficiencies and pests,management efforts are likely to promote application
of agrochemicals in the interest of food production and increasing farmer income, rather than
prioritizing protection of groundwater quality. There is in fact limited legislation that impacts
agricultural application or release of nutrients (145), leaving management decisions largely to
the individual land owner. Precision agriculture can help address both food production and water
sustainability; however, so far, the cost of these practices restricts adoption to high-income regions
and even further to high-value crops.

4.3. Managing Quantity and Quality Through Conjunctive Use

Management of groundwater in conjunction with surface water is known as conjunctive use man-
agement. Optimization of extraction rates and timing from multiple water resources provides a
model framework for water users and managers.Optimization objectives for conjunctive use plans
may be based on reliability (146), economics (147), environmental conditions (148), or their com-
bination (149).The data gaps discussed earlier are a notable challenge of conjunctive use planning,
because one must accurately simulate interactions between both the surface and groundwater sys-
tems. Because uncertainties exist in the physical systems, data-based statistical and machine learn-
ing computational approaches are becoming more common (150).

Conjunctive use can be applied in scenarios with contaminated water sources both to protect
users and to improve water quality within the reservoir. Solutions considered to minimize expo-
sure include (a) a judicious selection of the water sources to use, (b) monitoring to identify the
potential occurrence of the contaminants and their changes, and (c) treatment of water prior to
use. Conjunctive use including surface water, saline water, and even multiple groundwater sources
can be especially valuable in hydrologic systems with heterogeneous geogenic contaminants, such
as arsenic in the deltaic aquifers in Bangladesh. Extraction from safe well locations and depth
intervals must be optimized to meet demand while keeping flow rates below a threshold where
arsenic may be mobilized.

Although there have been significant advances in optimization models for groundwater man-
agement at the local to regional scale, most of these models are difficult to practically implement
given that they typically address a rather specific water quality or quantity management goal,
and do not directly connect to the institutional management structure or ability. Elwell & Lall
(151) and Lall & Lin (152) suggest modeling the groundwater bodies including water quality and
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pollution sources, as well as the regional institutional structure to devise optimization strategies
for determining safe and economical regional development of groundwater resources. References
153–155 provide reviews of related groundwater management models. Recent droughts in
Australia and California and prior efforts in Arizona are leading to discussions of market-based
regulatory structures for groundwater management. At the country scale, Australia is the closest
to adopting conjunctive use planning; however, political challenges continue to impede the
progress (156).

4.4. Managed Aquifer Recharge

Transfer and storage of water to aquifers is an attractive conjunctive use option given that aquifers
are not subject to as much evaporation as surface reservoirs and allow the land to be used for
other purposes.Where surface water or treated wastewater is available, managed aquifer recharge
(MAR) is being promoted as a component of conjunctive use water management (157, 158).

MAR implementation has increased at a rate of 5% per year; however, this is lower than the rate
of increase in groundwater extraction (158). Stefan & Ansems (159) provide a web-based updated
global inventory of MAR applications.Dillon et al. (158) provide a 60-year perspective onMAR at
the global scale, estimating that MAR has reached 10 km3/year, which is approximately 1% of the
global extraction rate or 2.4% of groundwater extraction in countries reporting MAR. Although
uptake is slow, the potential for MAR continues to be promoted in the literature at both large,
government scales and as small, distributed systems implemented at the household scale.

MAR can be done through riverbank filtration (practiced largely in Europe), through land
application or pumping below existing surface water reservoirs during surplus periods, or through
treatment of wastewater followed by injection through wells that are also used for pumping or
through check dams to infiltrate surplus monsoon rainfall (e.g., in South Asia). It is seen as an
integral piece of a strategy for conjunctively managing surface and groundwaters at a regional
scale. There is very little activity reported for MAR in Latin America, the Caribbean, China, and
South Africa.

MAR associated with urban centers, combined with wastewater treatment using membrane
bioreactors or other methods, emerged as a strategy in the United States, Europe, and Asia start-
ing in the 1990s and was sometimes coupled with aquifer thermal energy storage in Europe (158).
These developments aim tomanage both the quantity and quality of recharge with the opportunity
of subsequent water extraction and reuse in the urban setting. By contrast, the check dam–based
efforts in India since the 1970s recharge stormwater into shallow aquifers with no explicit attempt
at water quality management. However, their primary use is to provide water for supplemental
irrigation and only secondarily to support rural drinking water supplies. Although the total num-
ber of such dams in South Asia is not known, an analysis of the news media and of government
budgets for the purpose of constructing them indicates that they have had a high growth rate over
the past two decades. They may constitute a significant modification of the surface and subsurface
hydrological cycle in South Asia that is not well measured as to either quantity or quality of water
modified, or in terms of impact on vector-borne disease.

Regulatory policies for MAR have evolved in several US states (e.g., Arizona, California, and
Florida) and in Australia, while India has also developed a policy manual for check dams, but
no regulations. Typically, water quality for injection is regulated, and permits may be given out
for both recharge and recovery wells. Most recently, San Diego, California, has introduced an
interesting legislation that allows individual entities to bank treated stormwater or wastewater
and to also market the resulting credits. The past existing permits for wastewater treatment by
large businesses are included in this credit system. This suggests that decentralized wastewater
treatment and storage using modular or mobile membrane bioreactors could emerge with trading
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markets for wastewater treatment and reuse that use MAR as the storage strategy, and also offer
economic wastewater treatment and pollution control that avoid the need to replace aging sewer
infrastructure or malfunctioning septic tank systems used for land treatment of wastewater.

Although MAR has been increasing in the urban context in Europe, Australia, and North
America, and in the rural context in South Asia, several technical challenges remain. Clogging
and fouling of soils, river banks, and wells are an endemic problem. As recharge water interacts
with sediments and groundwater, geochemical reactions can occur that mobilize or transform con-
taminants in the shallow groundwater. Significant research has been ongoing on addressing these
aspects. Where active pumping is not used for recharge, the locations where rapid recharge and
filtration could occur using sandy soils are rather limited. Large land areas are also required for
land application of surplus waters, thus obviating the advantage over surface reservoirs.The ability
to recover the treated, recharged water by the same user when desired also requires strong local
oversight and enforcement of rights and permits.

5. CONCLUSION

The burgeoning volume of published research and media attention to groundwater depletion
worldwide underscores the critical sustainability challenge posed by changes in the state of our
groundwater resources. The GRACE analyses provide vivid visuals of the scale of depletion. Yet,
the impacts and management challenges of depletion are largely local and regional. Perhaps the
global attention to these regional challenges will stimulate a better understanding of the drivers,
as a prerequisite for the social and technical changes needed to reverse the trajectory. Even so,
given the cost associated with reversing chronic contamination that emerges as a cumulative ef-
fect in space and time, the challenge posed by the anthropogenic contamination of groundwater
and the mobilization of geogenic contaminants as water use increases may really emerge as the
bigger challenge. Climate variability and change amplify these adverse dynamics of groundwater
outcomes as access to surface water is limited and contaminants are mobilized. Several of the re-
source challenges can be solved, but require spatial specific data and analyses that connect drivers
to outcomes, and go beyond regulatorymonitoring to support causal analysis. As data science takes
a more prominent role in virtually all human functions, we hope that the importance of data and
model synthesis in this field will transcend from academic research to routine application. Much
of this has happened in the past several decades, but much needs to be done, and tough political
decisions for resource management and regulation may become more tenable as the data-induced
uncertainties are reduced. Using climate change adaptation as a driver to better understand and
act on groundwater issues would be opportune in this regard.

SUMMARY POINTS

1. The availability of high-quality groundwater is decreasing as abstraction continues to
increase globally, especially in arid agricultural regions, and in urban centers. However,
detailed data to quantify these trends remain sparse.

2. Pollutants from agriculture, industry,mining, energy production, and legacy landfills are
an increasing threat to groundwater. The mobilization of geogenic contaminants such
as arsenic or fluoride is an ever-growing menace for drinking water, notably in South
and East Asia. The extent and issues associated with emerging contaminants, including
pharmaceuticals, solvents, and glyphosate, remain largely unknown.
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3. Agriculture remains the dominant consumptive use of groundwater and a significant
source of nongeogenic contaminants. Following the limitations of irrigation efficiency
notions to reduce water use, managing crops and withdrawals is critical for groundwater
futures and for food security.

4. Significant scientific advances provide us with a window into some global groundwater
conditions, yet data inadequacies as to the coupled human-natural dynamics hamper the
rigorous assessment of regional and larger groundwater dynamics. Increased monitoring
of the coupled natural and human system improves modeling capabilities and enables
evaluation of sustainable groundwater management practices.

FUTURE ISSUES

1. Rising sea levels may increase saline water intrusion in groundwater systems, especially
as growing coastal cities pump more groundwater. This will be a significant threat for
coastal, urban populations who rely on groundwater, especially from Karst aquifers. Cli-
mate change may also induce additional groundwater pumping to support highly in-
tensive agriculture for a growing global population. The extinction and pollution of
groundwater in both settings may be the trigger for mass human migrations, and loss
of species as perennial groundwater-fed environments are starved.

2. Renewable energy may soon be very inexpensive, and this may either accelerate ground-
water use or make desalination and wastewater reuse more affordable, leading to two
very different directions for future groundwater.

3. The demand for better information on groundwater quantity and quality trends and how
best to equitably manage them is growing worldwide. This should drive improvements
in methods to collect data on such systems, especially on groundwater use and quality.
Monitoring millions of wells in a country, quantifying their collective impact over time
and space, and contextualizing that impact with aquifer properties and institutional ac-
tions will likely stay a challenge. Seeing a reversal of current trends of depletion and
quality degradation in the most challenged places is unlikely given the current political
and institutional factors and the limited ability to develop alternate solutions in these
regions.
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