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Abstract

The quantification of downside risk in terms of capital requirements is a
key issue for both regulators and the financial industry. This review presents
the axiomatic approach, which is based on monetary risk measures. These
provide a unifying mathematical framework for the determination of capital
requirements, for economic indices of riskiness, and for the analysis of pref-
erences in the face of risk and Knightian uncertainty. In the special case of
distribution-based risk measures, we review recent advances in characteriz-
ing their statistical properties such as elicitability and robustness.
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1. INTRODUCTION

The quantification of the downside risk of a financial position is a key issue for both regulators and
financial institutions. It is also a challenge from a theoretical point of view. The theory of monetary
risk measures, initiated by Artzner et al. (1999), provides an axiomatic framework that has helped
to clarify the issue. This framework’s structure has turned out to be surprisingly rich, with strong
connections to many other areas in economics, statistics, and mathematics, and in particular to
the theory of preferences in the face of risk and uncertainty. In this review, we describe some of
the major developments.

The basic idea is to quantify downside risk as a capital requirement. A financial position is
described by its uncertain monetary outcome, that is, as a real-valued function X on some set
of possible scenarios. Its risk ρ(X ) is defined as the monetary amount that needs to be added
to the position to make it acceptable. For a given notion of acceptability, the resulting func-
tional ρ on financial positions then has the properties of a monetary risk measure, described in
Section 2.

The standard example of a monetary risk measure is value at risk. In this case, a position is
considered to be acceptable if the probability of a loss is below a given threshold. In particular, it
is assumed that this probability exists, and that it is accessible through the use of historical data
or Monte Carlo simulation. Although it continues to be the industry standard, value at risk has
serious deficiencies. In particular, it may penalize diversification, and it does not capture the risk of
very large losses that may hide behind the threshold. Other drawbacks, such as procyclical effects
and excessive reliance on specific probabilistic assumptions, became apparent during the recent
financial crisis [see, for example, The Turner Review (FSA 2009)]. At a more fundamental level,
The Turner Review emphasizes the issue of Knightian uncertainty, referring to situations where
probabilities are not available, or do not even make sense.

The axiomatic approach to risk measures formulates potentially desirable properties of a mon-
etary risk measure, investigates their consequences, and designs and analyzes specific examples.
A key requirement is that diversification should not be penalized, in contrast to value at risk.
This means that a convex combination of acceptable positions should be acceptable. As a result,
the monetary risk measure has the properties of a convex risk measure, described in Section 2.2.
Coherence is a stronger property, but less compelling from a financial point of view: In addition
to convexity, it requires that any multiple of an acceptable position be acceptable.

This article focuses on monetary risk measures that are convex. A convex risk measure will
typically admit a dual representation. This involves a class Q of probability measures on the
underlying space of possible scenarios and a penalty function that assigns different weights to
these measures. The probability measures can be viewed as plausible probabilistic models, but
they are taken more or less seriously, as specified by the penalty function. For a given position X ,
the capital requirement ρ(X ) is then computed as the worst case of the penalized expected loss
over all probabilistic models in the class Q (see Section 3). At this general level, no probabilistic
model has to be fixed in advance. Thus, the general theory of monetary risk measures provides
a conceptual framework that admits Knightian uncertainty. However, probability measures do
enter the stage via convex duality, taking the role of stress tests.

The specific form of the dual representation depends on the space X of financial positions on
which the risk measure ρ is defined and on additional regularity properties of ρ. Section 3 describes
various standard settings. Some are probability-free and thus admit Knightian uncertainty; see
Sections 3.1, 3.2, and 6. Most are based on an underlying probability measure P , but they do not
necessarily depend on the specific structure of a probabilistic model; P may only be needed to
determine a class of null sets, as in Section 3.3, or to fix a degree of integrability, as in Sections 3.4
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and 3.5. The choice of the setting will play an important role in the discussion of m-convexity,
elicitability, and robustness in Sections 7, 8, and 9.

In Section 4, we review standard examples of risk measures, including average value at risk,
also called expected shortfall; divergence risk measures, where the penalty function quantifies the
divergence from some benchmark model; and utility-based shortfall risk, where acceptability is
defined in terms of expected utility. We describe their properties and provide their dual repre-
sentations. In Section 5, we use families of convex risk measures to construct a general class of
risk functionals that includes other indices of riskiness, such as the economic index of riskiness
proposed by Aumann & Serrano (2008). These functionals are quasiconvex, but they no longer
have the translation property of a monetary risk measure.

Section 6 describes the connection between convex risk measures and variational preferences in
the face of risk and uncertainty. If preferences satisfy the classical axioms of rationality formulated
by von Neumann & Morgenstern (1944) and Savage (1954), then they admit a numerical repre-
sentation in terms of the expected utility EP [u(X )]. If these axioms are relaxed, as proposed by
Gilboa & Schmeidler (1989) or, more generally, by Maccheroni, Marinacci & Rustichini (2006),
then their numerical representation is obtained by replacing the linear expectation EP [ · ] by the
nonlinear functional −ρ( · ), where ρ is either a coherent or a convex risk measure. While classical
risk aversion corresponds to the concavity of u, the convexity of the risk measure ρ captures a
different behavioral feature, described by an axiom of model risk aversion (Maccheroni, Marinacci
& Rustichini 2006; Föllmer, Schied & Weber 2009).

Most of the literature on risk measures assumes that the risk measure is law-invariant, or
distribution-based. This means that positions X are described as random variables on some prob-
ability space (�,F, P ) and that the capital requirement ρ(X ) only depends on the distribution
μX of X under P . As discussed in Section 7, the dual representation of a law-invariant convex
risk measure can be restated in a more specific form, whose building blocks are provided by av-
erage value at risk. As a special case, we obtain the class of spectral risk measures proposed by
Acerbi & Tasche (2002), defined as mixtures of average value at risk. These can be described as
Choquet integrals of the loss with respect to some concave distortion of the underlying probability
measure P .

Clearly, a distribution-based convex risk measure can be regarded as a statistical functional on
the class of distributions μX, also called lotteries. As such, it respects stochastic dominance of both
the first and the second kind. At the level of distributions, however, it is plausible to require an
additional type of convexity, namely convexity of the level sets of the functional ρ on lotteries.
Thus, the same capital is required for a compound lottery obtained by randomizing the choice
between two lotteriesμ and ν, if the capital requirement is the same forμ and ν. Distribution-based
risk measures with this convexity property are characterized in Section 7. As shown by Weber
(2006) and Delbaen et al. (2014), they are utility-based, and in the coherent case they reduce to
the class of expectiles.

From a statistical point of view, it is desirable to require additional properties of a distribution-
based risk measure that are useful for backtesting and estimation procedures. In Section 8, we
discuss distribution-based risk measures that are M-estimators in the sense of Huber (1981); these
risk measures are also called elicitable. Gneiting (2011) argues that this property is crucial for
the purposes of backtesting (for alternative points of view, see Acerbi & Szekely 2014, Davis
2013). Elicitable functionals also facilitate the application of regression techniques that generalize
quantile regression (see, e.g., Koenker 2005). As observed by Osband (1985), elicitable monetary
functionals have convex level sets on lotteries. Applying the results of Weber (2006) and Delbaen
et al. (2014) described in Section 7.5, one obtains a complete characterization of elicitable convex
risk measures.
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Another desirable property is robustness. In the classical formulation of Hampel (1971), ro-
bustness requires continuity of the functional with respect to the weak topology on lotteries, and
hence insensitivity with respect to tail behavior. In the context of robust statistics, it is well known
that the median, or any other quantile, is robust in this sense, whereas the mean is not robust.
Accordingly, value at risk is Hampel-robust, whereas convex distribution-based risk measures such
as average value at risk are not Hampel-robust; they are, and in fact are meant to be, sensitive with
respect to tail behavior.

The perspective changes if the concept of robustness is modified. In Section 9, we describe a new
approach to the robustness of risk measures developed by Krätschmer, Schied & Zähle (2014). It
involves a restriction of the class of admissible lotteries as in Cont, Deguest & Scandolo (2010) and a
refinement of the weak topology that takes into account the tail behavior, for example, by replacing
the usual Prohorov metric with a suitable Wasserstein metric. As a result, the simple dichotomy of
robust or not robust is replaced by a continuum of degrees of robustness. In particular, Krätschmer,
Schied & Zähle (2014) introduce an index of qualitative robustness that takes values in [0, 1] if
the distribution-based risk measure ρ is convex. We illustrate its computation for distortion risk
measures and for elicitable risk measures. Its maximal value of 1 is attained, for example, by average
value at risk and by expectiles.

The discussion in Sections 7, 8, and 9 shows that the structure of distribution-invariant risk
measures is by now well understood from various points of view. Obviously, there is no distribution-
based risk measure that satisfies all potentially desirable properties. In particular, there is a clear
trade-off between convexity and robustness under the assumption of elicitability. If one insists on
robustness in the classical sense of Hampel (1971), then the only choice is to give up convexity
and to go back to value at risk, as proposed by Kou & Peng (2014). If, however, one insists on
convexity, then one can attain the largest possible degree of qualitative robustness in the sense of
Krätschmer, Schied & Zähle (2014) by taking an expectile.

In any case, the scope of risk measures is not limited to distribution-invariance, as illustrated
by the role of risk measures in the representation of variational preferences in the face of model
uncertainty in Section 6. As suggested by the example of stressed value at risk in Section 2.3,
forward-looking methods such as stress testing should be combined with all available information
concerning the distributional properties of a financial position. To a large extent, this agenda is
still open from a mathematical point of view. Another issue concerns the systemic risk generated by
interacting financial institutions. Suitable quantitative measures of the downside risk should reflect
contagion and take an appropriate multidimensional perspective (see Föllmer & Klüppelberg 2014;
Biagini et al. 2015; Feinstein, Rudloff & Weber 2015).

Our presentation in the first sections closely follows Föllmer & Schied (2011), to which we
refer for proofs and further details, and the survey by Föllmer & Knispel (2013), which contains
additional material on the close connection between monetary risk measures and actuarial premium
principles.

2. RISK MEASURES AS CAPITAL REQUIREMENTS

A financial position is described by its monetary outcome. Because the outcome is typically un-
certain, it is modeled as a real-valued measurable function X on some measurable space (�,F )
of possible scenarios. The value X (ω) denotes the discounted net worth of the position at the end
of a given trading period if the scenario ω ∈ � is realized. The discounted net worth corresponds
to the profits and losses of the position and is also called the P&L. Our aim is to quantify the
downside risk of the position X as the additional capital ρ(X ) that is required to make the position
acceptable from the point of view of a supervising agency.
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2.1. Monetary Risk Measures

We fix a linear space X of financial positions and a subset A ⊆ X of positions that are defined to
be acceptable. Our focus is on the downside risk, and thus we require Y ∈ A whenever Y ≥ X
for some X ∈ A. We also assume that X contains the constant functions on �, and that such a
constant position is acceptable if and only if the constant is not smaller than some finite threshold.
Then the functional ρ on X defined by

ρ(X ) := inf{m ∈ R | X + m ∈ A} (1)

has the following properties of a monetary risk measure.

Definition 2.1. A functional ρ : X → (−∞,∞] with ρ(0) < ∞ is called a monetary risk measure
if it is

� monotone, i.e., ρ(X ) ≤ ρ(Y ) if X ≥ Y, and
� cash-invariant, i.e., ρ(X + m) = ρ(X ) − m for any constant m ∈ R.

A monetary risk measure is called normalized if ρ(0) = 0.

Any monetary risk measure ρ can be represented as in Equation 1, using the acceptance set

Aρ := {X ∈ X | ρ(X ) ≤ 0}. (2)

It can thus be viewed as a capital requirement: ρ(X ) is the minimal capital that has to be added
to the position X to make it acceptable. If ρ is defined by some acceptance set A via (1), then we
have A ⊆ Aρ , and equality holds if and only if A has the closure property

X + m ∈ A for all m > 0 =⇒ X ∈ A. (3)

Remark 2.2. We have assumed that all financial positions are already discounted by the risk-free
interest rate r . If the risk of the undiscounted position X̃ := (1 + r)X is defined as ρ̃(X̃ ) := ρ(X ),
then the resulting functional ρ̃ is still monotone. However, cash-invariance now takes the form

ρ̃(X̃ + (1 + r)m) = ρ̃(X̃ ) − m,

that is, adding m units of money to the portfolio at time 0 and investing it in a risk-free asset
reduces the capital requirement by m.

Remark 2.3. We could relax the restriction that the supporting capital can only be invested in a
risk-free asset. Suppose that we allow investment in some larger class V ⊆ X of admissible assets
that contains the constant 0. This means that the initial acceptance set A is enlarged to the set AV
of all positions X such that X + V ≥ A for some V ∈ V and some A ∈ A (Föllmer & Schied
2002, 2011, section 4.8; Artzner, Delbaen & Koch-Medina 2009). Clearly, this enlargement will
reduce the capital requirement; that is, the resulting risk measure ρV will satisfy ρV (X ) ≤ ρ(X )
for any position X .

2.2. Convex and Coherent Risk Measures

To capture the idea that diversification should not increase risk, it is natural to require quasicon-
vexity of the functional ρ, i.e.,

ρ(λX + (1 − λ)Y ) ≤ max{ρ(X ), ρ(Y )} (4)

for X,Y ∈ X and λ ∈ (0, 1). In that case, the acceptance set Aρ is convex, and this implies that ρ
is in fact a convex functional on X (see, e.g., Föllmer & Schied 2011, proposition 4.6).
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Definition 2.4. A monetary risk measure is called a convex risk measure if it satisfies Condition (4)
of quasiconvexity and is hence convex, i.e.,

ρ(λX + (1 − λ)Y ) ≤ λρ(X ) + (1 − λ)ρ(Y )

for X ,Y ∈X and λ ∈ (0, 1). A convex risk measure is called coherent if it is also positively
homogeneous, i.e.,

ρ(λX ) = λρ(X )

for X ∈X and λ ≥ 0.

Remark 2.5. In their seminal paper, Artzner et al. (1999) focus on the coherent case. The subsequent
extension to the convex case was proposed independently by Frittelli & Rosazza Gianin (2002),
Heath (2000), and Föllmer & Schied (2002).

Any coherent risk measure ρ is normalized and subadditive, i.e.,

ρ(X + Y ) ≤ ρ(X ) + ρ(Y )

for X,Y ∈X . More generally: If ρ is a monetary risk measure, then any two of the three properties
of convexity, positive homogeneity, and subadditivity imply the remaining third (see, e.g., Föllmer
& Schied 2011, exercise 4.1.3).

Note, however, that coherence of a monetary risk measure ρ is equivalent to the condition that
the acceptance set Aρ is not only convex but also a cone. In this case, an acceptable position X
remains acceptable if it is multiplied by an arbitrarily large factor λ > 0. Obviously, this property
of a coherent risk measure is questionable from a financial point of view.

In this article we focus on the general convex case. In addition to the preceding argument, this
is motivated by the following remark.

Remark 2.6. Consider the situation of Remark 2.3. Suppose that the initial risk measure ρ is
coherent. If the admissible assets are subject to convex trading constraints such that the class V
is convex but not a cone, then the resulting risk measure ρV will no longer be coherent, but it
will be convex. This was one of the reasons in Föllmer & Schied (2002) to go beyond coherence
and to introduce the general notion of a convex risk measure. A similar argument applies to
liquidity-adjusted valuation and risk measures (see Weber et al. 2013, remark 3.11).

Another reason is that we may want to define acceptability in terms of economic preferences,
for example in terms of expected utility. Suppose that a position is defined to be acceptable if its
expected utility does not fall below some given threshold. If the utility function is strictly concave,
then the corresponding risk measure will be convex but not coherent. Such utility-based risk
measures are discussed in Section 4.2.

2.3. Value at Risk

The risk measure used most commonly in practice is value at risk (VaR) at some level λ ∈ (0, 1). Its
definition requires a probability measure P on the underlying space of scenarios to which we have
sufficient access through past observations. A position X is now defined to be acceptable if the
probability P [X < 0] of a shortfall does not exceed the level λ. The resulting capital requirement
is given by

VaRλ(X ) = inf{m ∈ R | P [X + m < 0] ≤ λ}
= − sup{c ∈ R | P [X < c ] ≤ λ} = −q+

X (λ),
(5)

where q+
X (λ) is the upper λ-quantile of the random variable X on the probability space (�,F, P ).
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Clearly, VaRλ is a monetary risk measure on the space X = L0(�,F, P ) of all random variables
on (�,F, P ) that are P–almost surely finite. It is also positively homogeneous. If X is Gaussian
with variance σ 2

P (X ), then we have

VaRλ(X ) = EP [−X ] +�−1(1 − λ)σP (X ),

where�−1 denotes the inverse of the distribution function� of the standard normal distribution.
Because σP is a convex functional on L2(�,F, P ), we can view VaRλ as a convex risk measure on
any Gaussian subspace of L2(�,F, P ) if λ ≤ 0.5. This remark extends to elliptical distributions
(Embrechts, McNeil & Straumann 2002).

However, VaRλ is not convex on the full space L0(�,F, P ). Indeed, take two events Ai (i =
1, 2) such that P [Ai ] ≤ λ but P [A1 ∪ A2] > λ. Then the digital positions X i = −IAi are both
acceptable, but the sum X = X 1 + X 2 is not. This shows that VaRλ is not subadditive, and hence
not convex. Note also that VaRλ does not pay attention to extreme losses that occur with small
probability. As a result, considerable risks can be hidden behind the threshold defined by value at
risk.

These deficiencies were recognized early on, and they motivated the axiomatic approach to a
general theory of monetary risk measures, which was initiated by Artzner et al. (1999) and which
is the topic of this review. Other drawbacks became apparent during the recent financial crisis
[for an analysis of value at risk and its procyclical effects, see The Turner Review (FSA 2009)].
In particular, The Turner Review points to an excessive reliance on a single probabilistic model
P derived from past observations. This point is addressed in Revisions to the Basel II Market Risk
Framework (BCBS 2009) by considering stressed value at risk, which involves alternative models
P̃ derived from observations and simulations of periods of significant financial stress.

At a more fundamental level, The Turner Review raises the issue of model uncertainty or
model ambiguity, often called Knightian uncertainty. As illustrated in Sections 3.1 and 3.2, and
in particular by the discussion of preferences in the face of risk and uncertainty in Section 6,
the theory of risk measures provides a conceptual framework that does not require an underlying
probabilistic model, and thus allows one to deal with Knightian uncertainty in mathematical terms.

3. DUAL REPRESENTATION OF CONVEX RISK MEASURES

A convex risk measure ρ typically admits a dual representation of the form

ρ(X ) = sup
Q

{EQ[−X ] − α(Q)}, (6)

where the supremum is taken over probability measures Q on (�,F ), and where α is a penalty
function with values in [−ρ(0),∞] defined by

α(Q) := sup
X ∈Aρ

EQ[−X ]. (7)

The reason is as follows: The space X will usually be a Banach space, as in the standard set-
tings discussed below, and the risk measure ρ will have additional regularity properties, including
lower semicontinuity with respect to the weak topology on X . In such a situation, the Fenchel–
Moreau theorem implies that the convex functional ρ admits a dual representation in terms of
its Fenchel–Legendre transform, defined on the dual space X ′ of continuous linear functionals
on X . Moreover, the monetary properties of ρ imply that the relevant linear functionals can be
identified as expectations with respect to some probability measure Q, and this yields the specific
representation in Equation 6. This argument is exemplified below for some standard choices of
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the space X (for a systematic discussion in a general framework and further references, we refer
to Frittelli & Rosazza Gianin 2002, Biagini & Frittelli 2009).

Note that it is enough to take the supremum in Equation 6 over the class Qρ :=
{Q | α(Q) < ∞}. The probability measures in Qρ can be seen as plausible probabilistic models
that are taken more or less seriously, as specified by the penalty function α. The capital require-
ment ρ(X ) is thus computed as the worst case of the penalized expected loss EQ[−X ] over all
plausible models Q ∈ Qρ . Note that the general definition of a convex risk measure does not a
priori involve the choice of a probabilistic model. But probabilistic models Q come into play via
the dual representation in Equation 6.

In the coherent case, the acceptance set Aρ is a convex cone, and this implies α(Q) ∈ {0,∞}.
A coherent risk measure ρ with the dual representation in Equation 6 thus takes the form

ρ(X ) = sup
Q∈Qρ

EQ[−X ],

with Qρ = {Q | α(Q) = 0} (Artzner et al. 1999; Delbaen 2007; Föllmer & Schied 2011, corollaries
4.19 and 4.37).

We now illustrate our general setting by some standard choices of the space X . In the first two
cases, no probability measure is given in advance. In the remaining three cases, we fix a probability
measure P on the space (�,F ) of possible scenarios. In the third case, only the null sets of P matter;
in the last two cases, P also determines the notion of integrability required in the definition of X .

3.1. X = L ∞(�,F)

Let us denote by L ∞(�,F ) the Banach space of all bounded measurable functions on (�,F ), by
M1 the class of all probability measures on (�,F ), and by M1, f the class of all finitely additive set
functions Q : F → [0, 1] with Q[�] = 1. A convex risk measure ρ on X = L ∞(�,F ) is Lipschitz
continuous with respect to the supremum norm, and hence weakly lower-semicontinuous on the
Banach space X . Applying the Fenchel–Moreau theorem, combined with the monetary properties
of ρ and the weak*-compactness of M1, f , we obtain the representation

ρ(X ) = max
Q∈M1, f

{EQ[−X ] − α(Q)}, (8)

where α(Q) is defined as in Equation 7 for any Q ∈ M1, f (Föllmer & Schied 2011, theorem 4.16).
This representation reduces to the dual representation in Equation 6 in terms of σ -additive

probability measures, with max instead of sup, if α(Q) = ∞ for any Q ∈ M1, f that is not σ -
additive. This condition is satisfied if and only if ρ is continuous from below in the sense that

X n ↗ X pointwise on � =⇒ ρ(X n) ↘ ρ(X ).

Moreover, continuity from below is equivalent to the Lebesgue property, that is,

X n → X pointwise on � =⇒ ρ(X ) = lim
n
ρ(X n) (9)

whenever the sequence (X n) ⊆ X is uniformly bounded (see, e.g., Föllmer & Schied 2011, theorem
4.22 and exercise 4.2.2).

If the equality on the right-hand side of Equation 9 is replaced by the inequality ρ(X ) ≤
lim infn ρ(X n), then ρ is said to have the Fatou property, and this is equivalent to continuity from
above. The Fatou property is clearly necessary for the dual representation in Equation 6 in terms
of probability measures Q ∈ M1, but it is in general not sufficient.
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3.2. X = Cb(�)

Assume that � is a separable metric space and that F is the corresponding σ -field of Borel sets.
Consider a convex risk measure ρ on L ∞(�,F ), assuming that ρ is tight in the sense that there
exists an increasing sequence of compact sets Kn ⊆ � such that

lim
n↑∞

ρ(λ1Kn ) = ρ(λ) for any λ ≥ 1.

The restriction of the convex risk measure ρ to the space X = Cb (�) of bounded continuous
functions on � possesses a robust representation of the form

ρ(X ) = max
Q∈M1

{EQ[−X ] − α(Q)} for any X ∈ Cb (�),

where

α(Q) := inf{α(Q̃) | Q̃ ∈ M1, f , EQ̃[ · ] = EQ[ · ] on Cb (�)}.
Moreover, if � is a Polish space, then the level sets {Q ∈ M1 | α(Q) ≤ c } are relatively compact
for the weak topology on M1 (Föllmer & Schied 2011, propositions 4.27 and 4.30).

For the following cases, we fix a probability measure P on (�,F ) and denote by M1(P ) the
class of all probability measures Q ∈ M1 that are absolutely continuous with respect to P .

3.3. X = L∞(�,F, P)

Let ρ be a convex risk measure on L ∞(�,F ) that respects the null sets of P , i.e., ρ(X ) = ρ(Y ),
whenever X and Y satisfy the equivalence relation X = Y P-almost surely. Then ρ can be
regarded as a convex risk measure on the Banach space X = L∞(�,F, P ) of equivalence classes.
In this case, the dual representation

ρ(X ) = sup
Q∈M1(P )

{EQ[−X ] − α(Q)} (10)

holds if and only if ρ is continuous from above, i.e.,

ρ(X n) ↗ ρ(X ) whenever X n ↘ X P-almost surely,

or, equivalently, if and only if ρ has the Fatou property

ρ(X ) ≤ lim inf
n↑∞

ρ(X n)

for any bounded sequence (X n)n∈N in L∞(�,F, P ) that converges P-almost surely to X . More-
over, the supremum in Equation 10 is attained for each X ∈ L∞(�,F, P ) if and only if ρ is
continuous from below (Delbaen 2002; Föllmer & Schied 2011, theorem 4.33 and corollary 4.35).

3.4. X = L p(�,F, P)

In many applications, it is convenient to deal with unbounded instead of bounded random variables.
This requires an extension of the theory of risk measures to spaces larger than L∞(�,F, P ).
Canonical choices are the Banach spaces Lp (�,F, P ) with 1 ≤ p < ∞ (Scandolo 2003, Kaina
& Rüschendorf 2009). For a convex risk measure ρ on X = Lp (�,F, P ), the Fatou property
is equivalent to lower-semicontinuity of ρ with respect to the Lp -norm. In this case, the dual
representation takes the form

ρ(X ) = sup
Q∈Mq (P )

{EQ[−X ] − α(Q)}, X ∈ Lp (�,F, P ), (11)
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with dual exponent q := p
p-1 ∈ (1,∞]; here we use the notation

Mq (P ) :=
{

Q ∈ M1(P )
∣∣∣∣ dQ

dP
∈ Lq (�,F, P )

}
.

Moreover, if the convex risk measure ρ is finite on Lp (�,F, P ), then Equation 11 holds even
with max instead of sup. For a systematic discussion of risk measures on Lp (�,F, P ), we refer to
Kaina & Rüschendorf (2009).

3.5. Risk Measures on Orlicz Hearts

The Lp -spaces discussed in the previous section can be embedded into the general framework of
Orlicz spaces and Orlicz hearts. The study of convex risk measures on such spaces was initiated
by Cheridito & Li (2009). As shown by Krätschmer, Schied & Zähle (2014), this approach is
particularly useful if we want to study statistical properties of risk measures such as robustness.
We discuss this issue in Section 9.

Let 
 : [0,∞) → [0,∞] be a Young function, i.e., a left-continuous, nondecreasing convex
function such that limx↓0 
(x) = 0 and limx↑∞
(x) = ∞. The Orlicz space

L
 := L
 (�,F, P ) = {X ∈ L0 | E[
(c |X |)] < ∞ for some c > 0}
is a Banach space if endowed with the Luxemburg norm

‖X ‖
 := inf{a > 0 | E[
(|X | /a)] ≤ 1}.
The Orlicz heart

H 
 := H 
 (�,F, P ) = {X ∈ L0 | E[
(c |X |)] < ∞ for all c > 0}
is a linear subspace of L
 that reduces to the trivial space {0} if 
 attains the value ∞. From now
on, we assume that 
 is real-valued and hence continuous. In this case, we have

L∞ ⊆ H 
 ⊆ L
 ⊆ L1,

and the Orlicz heart H 
 is a Banach space, namely the closure of L∞ in L
 with respect to the
Luxemburg norm ‖ · ‖
 .

The equality H 
 = L
 holds if and only if the Young function 
 satisfies


(2x) ≤ C
(x) (12)

for some constant C and for large enough x. This condition, often called the �2-condition, plays
a crucial role in our discussion of robustness properties of a risk measure in Section 9. It is clearly
satisfied by the Young functions 
(x) = x p/p for p ∈ [1,∞), and so we have H 
 = L
 = Lp in
the classical situation of Lp -spaces.

In contrast, the exponential Young function 
(x) = e x − 1 does not satisfy the �2-condition.
Here the Orlicz heart

H 
 = {X ∈ L1|EP [e c |X |] < ∞ for all c > 0} (13)

is strictly contained in the Orlicz space

L
 = {X ∈ L1|EP [e c |X |] < ∞ for some c > 0}.
The Orlicz heart H 
 defined in Equation 13 is the natural domain of the entropic risk measures
discussed in Section 4.4 and Section 9: They are finite on the Orlicz heart but not on the Orlicz
space.
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For a finite Young function 
, its conjugate function 
∗(y) := supx≥0{xy −
(x)}, with y ≥ 0,
is again a Young function, and the conjugate of 
∗ is given by 
. We can now state the main
representation result for convex risk measures that are finite on the Orlicz heart H 
 (Cheridito
& Li 2009, theorem 4.3).

Proposition 3.1. Suppose that ρ is a finite convex risk measure on the Orlicz heart H 
 . Then ρ
admits the dual representation

ρ(X ) = max
Q∈M
∗ (P )

{EQ[−X ] − α(Q)}, X ∈ H 
, (14)

where

M
∗
(P ) :=

{
Q ∈ M1(P )

∣∣∣ dQ
dP

∈ L

∗
(P )

}
.

Clearly, this result contains the representation in Equation 14 of finite convex risk measures
on Lp -spaces as a special case.

4. EXAMPLES

In this section, we fix a probability measure P on (�,F ), and we assume that the probability space
(�,F, P ) is atomless. The following risk measures are all distribution-based in the sense that the
capital requirement ρ(X ) depends only on the distribution of X , viewed as a random variable on
(�,F, P ). They are first considered on the space X = L∞(�,F, P ), but they all admit a canonical
extension to the larger space L1(�,F, P ) (see Theorem 7.3).

4.1. Average Value at Risk

We have seen that value at risk at some fixed level α is positively homogeneous but not convex,
and thus it is not a coherent risk measure. However, if we take the average

AVaRλ(X ) := 1
λ

∫ λ

0
VaRα(X ) dα (15)

up to some level λ ∈ (0, 1], then we obtain the basic example of a coherent risk measure, known
as average value at risk (AVaR), conditional value at risk, tail value at risk, or expected shortfall.
Because VaRα is decreasing in α, we have

AVaRλ(X ) ≥ VaRλ(X ), (16)

that is, AVaRλ prescribes higher capital requirements than VaRλ. In fact, AVaRλ can be charac-
terized as the smallest distribution-based convex risk measure that dominates VaRλ.

For any λ ∈ (0, 1], AVaRλ is a coherent risk measure whose dual representation takes the form

AVaRλ(X ) = max
Q∈Qλ

EQ[−X ], (17)

with

Qλ :=
{

Q � P
∣∣∣∣ dQ

dP
≤ 1
λ

}
.

(see, e.g., Föllmer & Schied 2011, theorem 4.52). Average value at risk can also be written as

AVaRλ(X ) = 1
λ

EP [(qX (λ) − X )+] − qX (λ) = 1
λ

inf
z∈R

{EP [(z − X )+] − λz} (18)

for any λ-quantile qX (λ) of X (Föllmer & Schied 2011, lemma 4.51).
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All these representations yield a natural extension of average value at risk from L∞(�,F, P )
to the space L1(�,F, P ). If X has a continuous distribution, then we have qX (λ) = VaRλ(X ) and
λ = P [X ≤ qX (λ)]. In this case, the first equality in Equation 18 reduces to

AVaRλ(X ) = EP [−X | − X > VaRλ(X )], (19)

that is, AVaRλ(X ) can be described as the conditional expectation of the loss −X , given that the
loss exceeds the level VaRλ(X ). The second equality in Equation 18 is useful in the context of the
computation of efficient risk-return frontiers (Uryasev & Rockafellar 2001).

Average value at risk plays a prominent role in the Swiss Solvency Test (see, e.g., Filipović &
Vogelpoth 2008). From a theoretical point of view, it provides the main building block for general
distribution-based convex risk measures, as explained in Section 7.

4.2. Utility-Based Risk Measures

For a given convex and increasing loss function � : R → R, we define the shortfall risk of a position
X as

R(X ) = EP [�(−X )].

The functional R is convex and monotone on X , and it is thus a risk functional in the sense of
Section 5. However, R is not cash-invariant, and hence it is not a convex risk measure.

Remark 4.1. In the special case �(x) = x+, we have �(−X ) = X − = −min(X, 0), and so we recover
the classical actuarial definition

R(X ) = EP [X −] (20)

of mean risk (“mittleres Risiko”) as introduced by Hattendorff (1868). Interpreted as the price of
a put option, the same functional is proposed in Jarrow (2002), where it is called the put option
premium.

Let us fix a threshold l0 in the interior of the range of �, and let us define the acceptance set

A := {X ∈ X |R(X ) = EP [�(−X )] ≤ l0}.
Then A is convex, and the resulting capital requirement according to Equation 1 is a convex risk
measure that we denote by ρ�; it was introduced by Föllmer & Schied (2002). For a given position
X, the amount m = ρ�(X ) is a solution to the equation

R(X + m) = EP [�(−X − m)] = l0, (21)

and the solution is unique if � is strictly increasing. Hence, one can use stochastic root finding
techniques for its numerical computation (Dunkel & Weber 2010).

Note that the acceptance set can be rewritten as

A = {X ∈ X |EP [u(X )] ≥ u0}
in terms of the utility function u(x) := −�(−x), with u0 = −l0. For this reason, the convex risk
measure ρ� is called a utility-based risk measure, or utility-based shortfall risk.

Proposition 4.2. A utility-based risk measure ρ� admits the dual representation in Equation 10 with
minimal penalty function

α(Q) = inf
λ>0

1
λ

(
l0 + EP

[
�∗
(
λ

dQ
dP

)])
, (22)

where �∗ denotes the Fenchel–Legendre transform of �.
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For the proof, see Föllmer & Schied (2011), theorem 4.115. In the special case of a power loss
function �(x) = (1/p)x p 1(0,∞)(x) with p ≥ 1, the penalty function is given by

α(Q) = (p l0)1/p

∥∥∥∥∥dQ
dP

∥∥∥∥∥
q

in terms of the dual exponent q = p/(p − 1) (Föllmer & Schied 2011, example 4.118).
As we see in Section 8, utility-based risk measures play a key role as soon as we take a statistical

point of view and require a risk measure to be elicitable.

4.3. Divergence Risk Measures and Optimized Certainty Equivalents

For a lower semicontinuous convex function g : R+ → R ∪ {∞} with g(1) < ∞ and superlinear
growth g(x)/x → ∞ as x ↑ ∞, the corresponding g-divergence of a probability measure Q ∈ M1

with respect to P is defined by

Dg (Q | P ) := EP

[
g

(
dQ
dP

)]

if Q � P and by Dg (Q | P ) = ∞ otherwise. By Jensen’s inequality, we have Dg (Q | P ) ≥
Dg (P | P ) = g(1).

If P is viewed as a benchmark model, then one can choose as penalty function a g-divergence
with respect to P . The resulting convex risk measure ρg defined by

ρg (X ) = sup
Q∈M1(P )

{EQ[−X ] − Dg (Q | P )}

is called a divergence risk measure. Denoting by g∗(y) := supx>0{xy − g(x)} the convex conjugate
function of g, the risk measure ρg can also be represented by the variational identity

ρg (X ) = inf
y∈R

{EP [g∗(y − X )] − y} (23)

(see, e.g., Föllmer & Schied 2011, theorem 4.122).
Divergence risk measures arise naturally in a number of cases:

� For λ ∈ (0, 1] and the function g defined by g(x) = 0 for x ≤ λ−1 and by g(x) = ∞ otherwise,
the divergence risk measure ρg coincides with average value at risk at level λ. Here we have
g∗(y) = (1/λ)y 1(0,∞)(y), and hence the variational identity in Equation 23 coincides with
Equation 18.

� For g(x) = x log x, the g-divergence reduces to the relative entropy H (Q | P ) of Q with
respect to P , and ρg is also called an entropic risk measure (see Section 4.4).

� Inserting the penalty function in Equation 22 into Equation 10, the utility-based risk measure
ρ� with loss function � and threshold l0 can be rewritten as

ρ�(X ) = sup
Q∈M1(P )

{
EQ[−X ] − inf

λ>0

{
l0 + EP

[
�∗
(
λ

dQ
dP

)]}}

= sup
λ>0

sup
Q∈M1(P )

{
EQ[−X ] − EP

[
gλ
(dQ

dP

)]}
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in terms of the convex functions gλ(y) := (1/λ)(�∗(λy) + l0). It can thus be described as the
supremum of certain divergence risk measures, namely

ρ�(X ) = sup
λ>0

ρgλ (X ).

� For a utility function u : R → R ∪ {−∞} with u(0) = 0 and u(x) ≤ x for x ∈ R, Ben-Tal &
Teboulle (1987, 2007) introduced the optimized certainty equivalent of a financial position
X ∈ X , defined as

Su(X ) := sup
η∈R

{η + EP [u(X − η)]}.

This can be interpreted as the present value of an optimal split of the uncertain future
income X into a certain amount η that is made available right now and an uncertain future
amount X −η. Denote by g(z) := supx∈R

{xz−�(x)} the convex conjugate function of the loss
function � associated to u via �(x) = −u(−x). Then the variational identity in Equation 23
yields

Su(X ) = −ρg (X ).

Thus, the optimized certainty equivalent coincides, up to a change of sign, with the diver-
gence risk measure ρg .

Numerical procedures for the computation of divergence risk measures are discussed by Hamm,
Salfeld & Weber (2013) and Drapeau, Kupper & Papapantoleon (2014).

4.4. Entropic Risk Measures

For any probability measure Q on (�,F ), the relative entropy of Q with respect to P is defined as

H (Q | P ) :=

⎧⎪⎨
⎪⎩

EQ

[
log

dQ
dP

]
if Q � P ,

+∞ otherwise.

Note that the relative entropy can be interpreted as a g-divergence for the function g(x) = x log x.

Definition 4.3. For any constant γ > 0, the convex risk measure eγ defined by

eγ (X ) := sup
Q∈M1

{
EQ[−X ] − 1

γ
H (Q | P )

}

is called the entropic risk measure with parameter γ .

Using the well-known variational principle

H (Q | P ) = sup
X ∈L∞(�,F,P )

{EQ[−X ] − log EP [e−X ]}

for the relative entropy, it follows that eγ takes the explicit form

eγ (X ) = 1
γ

log EP [e−γ X ] (24)

(see, e.g., Föllmer & Schied 2011, example 4.34). Clearly, eγ is well defined as a finite convex risk
measure on the Orlicz heart in Equation 13 with respect to the function 
(x) = e x − 1. It is easy
to see that eγ (X ) is increasing in γ , with limits

e0(X ) := lim
γ↓0

eγ (X ) = EP [−X ] and e∞(X ) := lim
γ↑∞

eγ (X ) = ess sup(−X ). (25)
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Thus, the limit e0 is the risk-neutral capital requirement, and the risk measure e∞ is the worst case
risk measure, defined by zero tolerance for losses, that is, by the acceptance set A = {X ∈ X |
P [X < 0] = 0}.

In view of Equation 24, the acceptance set (Equation 2) of eγ for γ ∈ (0, 1) can be written as

A = {X |EP [�γ (−X )] ≤ 1} = {X |EP [uγ (X )] ≥ 0}
in terms of the loss function �γ (x) = eγ x or the utility function uγ (x) = 1 − e−γ x . This shows that
eγ is a utility-based risk measure with respect to exponential utility.

Equation 24 also shows that the functional −eγ is a certainty equivalent with respect to the
exponential utility function uγ , that is,

uγ (−eγ (X )) = EP [uγ (X )].

The entropic risk measures can actually be characterized by this property: If ρ is a monetary
risk measure and −ρ is a certainty equivalent with respect to some strictly increasing continuous
function u, then ρ must be an entropic risk measure eγ for some parameter γ ≥ 0, including the
linear case γ = 0. This follows from a classical result of de Finetti (1931) (see, e.g., Föllmer &
Schied 2011, example 4.13).

For any γ ∈ [0,∞], the risk measure eγ is additive on independent positions, i.e.,

eγ (X + Y ) = eγ (X ) + eγ (Y ) (26)

if X and Y are independent under P . Clearly, this additivity is preserved for any risk measure of
the form

ρ(X ) =
∫

[0,∞]
eγ (X )ν(dγ )

with some probability measure ν on [0,∞]. For an axiomatic characterization of such mixtures,
we refer to Goovaerts et al. (2004) and Goovaerts & Laeven (2008); see also Gerber & Goovaerts
(1981), where an analogous problem is discussed in the context of actuarial premium principles.

5. INDICES OF RISKINESS

In this review we focus on convex risk measures and on their interpretation as capital requirements.
Let us now show how they are connected to more general notions of the downside risk that are
obtained by dropping the monetary condition of cash-invariance in Definition 2.1.

Definition 5.1. A functional R : X → (−∞,∞] such that R �≡ ∞ and limm↓−∞ R(m) = ∞ is called a
quasiconvex risk functional if it is monotone as in Definition 2.1 and quasiconvex as in Equation 4.

Without the condition of cash-invariance, we can no longer conclude that the functional R
is convex. However, R can be identified with a family of convex risk measures in the following
manner. For each r > r := inf R, the level set

Ar := {X ∈ X | R(X ) ≤ r}
is a convex acceptance set, and thus it defines via Equation 1 a convex risk measure ρr given by

ρr (X ) = inf{m | X + m ∈ Ar }. (27)

The acceptance sets (Ar ) are clearly increasing in r , the risk measures (ρr ) are decreasing, and R
can be reconstructed from (Ar ) or from (ρr ) via

R(X ) = inf{r > r | X ∈ Ar } = inf{r > r | ρr (X ) ≤ 0}. (28)

Thus any quasiconvex risk functional R corresponds to a family (ρr ) of convex risk measures.
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Typically, each ρr will admit the dual representation in Equation 6 with minimal penalty
function α( · , r). In this case we have ρr (X ) ≤ 0 if and only if EQ[−X ] ≤ α(Q, r) for any Q ∈ M.
Thus Equation 28 yields the following representation of the risk functional R:

R(X ) = sup
Q∈M1

r(Q, EQ[−X ]), (29)

where

s �→ r(Q, s ) := inf{r ∈ R | s ≤ α(Q, r)}
denotes the left inverse of the increasing function α(Q, · ). We refer to Drapeau (2010), Brown,
De Giorgi & Sim (2012), and Drapeau & Kupper (2013) for a systematic discussion and a wide
variety of case studies.

Any convex risk measure is clearly a quasiconvex risk functional in the sense of Definition 5.1.
We have already seen one example of a risk functional that is not a monetary risk measure, namely
the shortfall risk R(X ) = EP [�(−X )] discussed in Section 4.2; in this case, the functional is actually
convex.

Remark 5.2. More generally, we could replace the expectation EP [ · ] in the definition of shortfall
risk by ρ(− · ), where ρ is a normalized convex risk measure. In terms of the utility function
u(x) = −�(−x), the resulting risk functionals take the form

R(X ) = ρ(u(X ));

the corresponding utility functionals U = −R are characterized in Section 6. Let us now apply
this extension to the loss function �(x) = x+ that appears in Hattendorff ’s classical definition of
mean risk (see Remark 4.1, above). The resulting risk functionals

R(X ) = ρ(min(X , 0))

are convex and monotone, they satisfy the condition ρ(−m) = m for m ≥ 0, and they only depend
on the loss min(X , 0). This class of loss-based risk measures was proposed and analyzed by Cont,
Deguest & He (2013).

Let us now introduce a different class of examples that includes the economic index of riskiness
RAS proposed by Aumann & Serrano (2008) and the operational measure of riskiness RFH proposed
by Foster & Hart (2009). We begin by fixing a convex acceptance set A ⊆ X in the general setting
of Section 2. We assume that A has the closure property (3) and contains 0. Instead of asking
how much capital is needed to make a given position X acceptable, we now focus on the maximal
acceptable exposure, defined as

λ(X ) := sup{λ ≥ 0 | λX ∈ A} ∈ [0,∞].

Definition 5.3. The functional R : X → [0,∞] defined by

R(X ) = λ(X )−1

is called the index of riskiness corresponding to the acceptance set A.

Proposition 5.4. The index of riskiness R is a quasiconvex risk functional in the sense of
Definition 5.1, and it is positively homogeneous.

Indeed, the functional R is clearly monotone and positively homogeneous, and it is easy to
check that its level sets {R( · ) ≤ r} are convex.
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Let us now focus on the case where the acceptance set is defined in terms of shortfall risk, that
is,

A := {X ∈ X |EP [�(−X )] ≤ l0}
for some convex loss function � and some threshold l0 as in Section 4.2. In this case, the index of
riskiness R(X ) is the inverse of the unique solution λ(X ) of

EP [�(−λX )] = l0

or, alternatively, of

EP [u(λX )] = u0,

where u(x) = −�(−x) and u0 = −l0. Clearly, the index R is now distribution-based, that is, R(X )
only depends on the distribution of X , viewed as a random variable on the probability space
(�,F, P ). Moreover, it is easy to see that R is monotone with respect to stochastic dominance of
both the first and second kinds (see Section 7.3).

Example 5.5. For exponential utility u(x) = 1− e−x with threshold u0 = 0, we obtain the economic
index of riskiness RAS(X ) proposed by Aumann & Serrano (2008). It is defined by the equation

EP [exp(−(RAS(X ))−1 X )] = 1,

and its inverse (RAS)−1 can be interpreted as the critical risk aversion level for the position X with
respect to exponential utility.

Example 5.6. For logarithmic utility u(x) = log(1 + x) with threshold u0 = 0, we obtain the
operational index of riskiness RFH introduced by Foster & Hart (2009). It is defined by the
equation

EP [log(X + RFH)] = log RFH.

Thus it can be viewed as the critical wealth level for the position X with respect to logarithmic
utility.

For both examples, Hart (2011) shows that the index of riskiness R can be characterized as the
numerical representation of a suitably defined preference order �U of uniform dominance, that
is,

R(X ) ≤ R(Y ) ⇐⇒ X �U Y . (30)

Take the class U of smooth utility functions u, with decreasing absolute risk aversion and
increasing relative risk aversion, such that a given position X is not accepted at every level of
wealth, that is, E[u(X + w)] ≤ u(w) for some w > 0. In order to characterize the index RAS of
Aumann & Serrano (2008), Hart (2011) defines wealth-uniform dominance X �WU Y by the
condition that, for any u ∈ U ,

EP [u(X + w)] ≤ u(w) for all w > 0 =⇒ EP [u(Y + w)] ≤ u(w) for all w > 0,

that is, rejection of X at every level of wealth implies rejection of Y at any level of wealth. In order
to characterize the index RFH of Foster & Hart (2009), utility-uniform dominance X �UU Y is
defined by the condition that, at any level of wealth w > 0,

EP [u(X + w)] ≤ u(w) for all u ∈ U =⇒ EP [u(Y + w)] ≤ u(w) for all u ∈ U,
that is, rejection of X + w by all u ∈ U implies rejection of Y + w by all u ∈ U .

The indices RAS and RFH both satisfy the equivalence (30) with the corresponding choice
of preference order. Moreover, any positively homogeneous risk functional that represents the
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preference order must be a positive multiple of the index (see Hart 2011, Aumann & Serrano
2008).

6. CONVEX RISK MEASURES AND VARIATIONAL PREFERENCES

In this section, we describe the connection between convex risk measures and the numerical
representation of preferences in the face of model uncertainty. Consider a preference order �
on the space X = L ∞(�,F ) of financial positions, and suppose that � admits a numerical
representation, that is,

X � Y ⇐⇒ U (X ) ≥ U (Y ),

where U is some functional on X with values in [−∞,∞). In the paradigm of expected utility,
the functional U takes the form

U (X ) = EP [u(X )] =
∫

u(x)μX (d x),

where P is a probability measure on (�,F ), u is continuous and strictly increasing, andμX denotes
the distribution of X under P , also called a lottery. The classical axioms of rationality as formulated
by von Neumann & Morgenstern (1944) characterize such preferences at the level of lotteriesμX ;
a corresponding characterization at the level of positions X is given by Savage (1954). Moreover,
risk aversion of the preference order in the sense that EP [X ] � X is characterized by concavity
of the function u.

Lotteries and positions can be seen as special cases of stochastic kernels X̃ from (�,F ) to R,
often called acts or horse race lotteries (see, e.g., Kreps 1988). Indeed, a lottery μ corresponds
to the kernel X̃ (ω, · ) ≡ μ, and a position X to the kernel X̃ (ω, · ) = δX (ω). Let us now fix
the class X̃ of all stochastic kernels X̃ (ω, d x) for which there exists some constant c such that
X̃ (ω, [−c , c ]) = 1 for all ω ∈ �. For preferences � on X̃ , Anscombe & Aumann (1963) formulate
a version of the rationality axioms that is equivalent to a numerical representation by an expected
utility functional of the form

Ũ (X̃ ) = EP

[∫
u(x)X̃ ( · , d x)

]
. (31)

Let nowρ be a convex risk measure onL∞(�,F ) with the dual representation in Equation 6, and
take some increasing continuous function u : R → R. Consider the utility functional Ũ : X̃ → R

defined by

Ũ (X̃ ) := −ρ
(∫

u(x)X̃ ( · , d x)
)

= inf
Q∈M1

{
EQ

[∫
u(x)X̃ ( · , d x)

]
+ α(Q)

}
, (32)

where the linear expectation functional EP in Equation 31 is replaced by the concave functional
−ρ. The variational preference order � on X̃ defined by

X̃ � Ỹ :⇐⇒ Ũ (X̃ ) ≥ Ũ (Ỹ )

satisfies the following properties:

� Monotonicity: The preference order � on X̃ is monotone with respect to the embedding
of the class M1,c (R) of lotteries with compact support in X̃ , i.e.,

X̃ (ω, · ) �(1) Ỹ (ω, · ) for all ω ∈ � =⇒ X̃ � Ỹ ,

where �(1) denotes first-order stochastic dominance (see Section 7.3).
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� Archimedian axiom: For X̃ , Ỹ , Z̃ ∈ X̃ with Z̃ � Ỹ � X̃, there exist α, β ∈ (0, 1) such that

α Z̃ + (1 − α)X̃ � Ỹ � β Z̃ + (1 − β)X̃ .

� Weak certainty independence: If for X̃ , Ỹ ∈ X̃ and for some ν ∈ M1,c (R) and α ∈ (0, 1]
we have α X̃ + (1 − α)ν � αỸ + (1 − α)ν, then

α X̃ + (1 − α)μ � αỸ + (1 − α)μ for all μ ∈ M1,c (R).

� Uncertainty aversion: If X̃ , Ỹ ∈ X̃ are equivalent under �, then

α X̃ + (1 − α)Ỹ � X̃ for all α ∈ [0, 1].

Conversely, Maccheroni, Marinacci & Rustichini (2006) show that the preceding four axioms
imply that preferences can be represented by a utility functional Ũ of the form in Equation 32,
where ρ is a convex risk measure on L∞(�,F ) (see also Föllmer, Schied & Weber 2009; Föllmer
& Schied 2011, theorem 2.88). Whereas risk aversion corresponds to concavity of the function
u, the convexity of the risk measure ρ captures a different behavioral feature, namely uncertainty
aversion.

To illustrate the axiom of uncertainty aversion, consider two acts X̃ and Ỹ on� := {0, 1} such
that X̃ (ω) = Ỹ (1 − ω). Under Knightian uncertainty, with no information about probabilities
for the two possible scenarios, it is natural to assume that the two acts X̃ and Ỹ are equivalent
with respect to the given preference order � on X̃ . In the case of uncertainty aversion, a mixture
Z̃ = α X̃ + (1 −α)Ỹ is preferred over both X̃ and Ỹ . To explain why, consider the simple special
case X̃ (ω) = δω. Then we have Z̃(1) = αδ1 + (1 − α)δ0 and Z̃(0) = (1 − α)δ1 + αδ0. Thus, model
uncertainty is reduced in favor of risk because the unknown probability of success is now known
to be bounded by α and 1 − α. For α = 1

2 , the resulting lottery Z̃(ω) = 1
2 (δ1 + δ0) is completely

independent of the scenario ω, i.e., Knightian uncertainty is completely replaced by the classical
risk of a simple coin toss.

Weak certainty independence can be strengthened to the following:

� Full certainty independence: For all X̃ , Ỹ ∈ X̃ and μ ∈ M1,c (R) and α ∈ (0, 1], we have

X̃ � Ỹ =⇒ α X̃ + (1 − α)μ � αỸ + (1 − α)μ.

In this case, the risk measure ρ in Equation 32 is actually coherent, and Equation 32 reduces to
the utility functional

Ũ (X̃ ) = inf
Q∈Qρ

EQ

[∫
u(x)X̃ ( · , d x)

]
[see Gilboa & Schmeidler (1989) and, e.g., Föllmer & Schied (2011), theorem 2.86]. Under the
additional assumptions of law-invariance and comonotonicity, the right-hand side can be described
as a Choquet integral with respect to a concave distortion of an underlying probability measure
P [see Section 7.2 and also Yaari’s (1987) dual theory of choice].

Thus, convex and coherent risk measures play a crucial role in recent advances in the theory of
preferences in the face of risk and uncertainty. For further extensions, where the cash-invariance
of ρ is replaced by the weaker condition of cash-subadditivity, we refer to Cerreia-Vioglio et al.
(2011) and Drapeau & Kupper (2013).

7. DISTRIBUTION-BASED RISK MEASURES

From now on we fix a probability measure P on (�,F ). As in Section 4, we assume that the
probability space (�,F, P ) is atomless. Hence, it supports a random variable U with uniform
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distribution on (0, 1). Thus, any probability distribution μ on the real line can be represented as
the distribution of a random variable X on (�,F, P ); for example, we can take X = q (U ), where
q denotes a quantile function of μ.

Definition 7.1. A monetary risk measure ρ on X ⊆ L0(�,F, P ) is called law-invariant or
distribution-based if ρ(X ) depends only on the distribution of X under P , i.e., if ρ(X ) = ρ(Y )
whenever X and Y have the same distribution under P .

Value at risk as defined in Equation 5 is clearly a distribution-based risk measure, and the
same is true for average value at risk, utility-based shortfall risk, and the divergence risk measures
discussed in Section 4.

7.1. The Kusuoka Representation

As shown by Jouini, Schachermayer & Touzi (2006), law-invariance of a convex risk measure ρ
on X = L∞(�,F, P ) implies continuity from above, and therefore ρ admits a dual representation
of the form (10). Moreover, the minimal penalty function α(Q) depends only on the law of the
density d Q/d P under P . It follows that the general dual representation can be restated in the
following more explicit form, often called the Kusuoka representation [for the coherent case, see
Kusuoka (2001); for the general convex case, see Kunze (2003), Dana (2005), Frittelli & Rosazza
Gianin (2005)].

Theorem 7.2. A convex risk measure ρ on X = L∞(�,F, P ) is distribution-based if and only if

ρ(X ) = sup
μ∈M1((0,1])

(∫
(0,1]

AVaRλ(X )μ(dλ) − β(μ)
)
, (33)

where β denotes the minimal penalty function given by

β(μ) = sup
X ∈Aρ

∫
(0,1]

AVaRλ(X )μ(dλ).

The Kusuoka representation shows that average value at risk provides the basic building blocks
for a distribution-based convex risk measure. We refer to Föllmer & Schied (2011), theorem 4.62,
for the proof, and also to Drapeau, Kupper & Reda (2011) for an extension of the representation
theorem to distribution-based risk functionals in the sense of Definition 5.1.

The Kusuoka representation also implies that a distribution-based convex risk measureρ admits
a canonical extension to a distribution-based convex risk measure ρ on L1 with values in R∪{+∞}.
It is given by Equation 33, or by the representation in Equation 11 with p = 1 and q = ∞.
Moreover, the continuity properties of the extended risk measure ρ can be described precisely
in terms of the Orlicz hearts H 
 ⊆ L1 on which ρ takes finite values. The following theorem
summarizes results of Filipović & Svindland (2012) and Cheridito & Li (2009).

Theorem 7.3. Let ρ be a distribution-based convex risk measure on L∞(�,F, P ). Then there exists
a unique extension of ρ to a distribution-based convex risk measure

ρ : L1(�,F, P ) → R ∪ {+∞}
that is lower-semicontinuous with respect to the L1-norm. Moreover, if the extension is finite on
some Orlicz heart H 
 with finite Young function 
, then it is continuous on H 
 with respect
to the Luxemburg norm ‖ · ‖
 .

From now on, any distribution-based convex risk measure ρ will be considered as a functional
on X = L1(�,F, P ) with values in (−∞,∞], if not stated otherwise.
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In the coherent case, the acceptance set Aρ is a cone, and hence the penalty function β can
only take the values 0 or ∞. Thus a coherent risk measure ρ is distribution-based if and only if

ρ(X ) = sup
μ∈M

∫
(0,1]

AVaRλ(X )μ(dλ) (34)

for some class M ⊆ M1((0, 1]), and the maximal representing class is given by M = {μ |
β(μ) = 0}. Note that ρ reduces to the linear case ρ(X ) = EP [−X ] if and only if the representing
set in Equation 34 reduces to M = {δ1}. In any other case, a coherent risk measure ρ will charge
a risk premium on top of the expected loss:

ρ(X ) > EP [−X ], (35)

for any nonconstant position X ∈ L1(�,F, P ). In particular, we have EP [X ] > 0 whenever
0 �= X ∈ Aρ .

7.2. Choquet Integrals and Concave Distortions

Let us now focus on the special class of distribution-based risk measures that can be represented
as mixtures of average value at risk, i.e.,

ρμ(X ) :=
∫

[0,1]
AVaRλ(X )μ(dλ) (36)

for some probability measure μ on the unit interval [0, 1]. Such a risk measure is coherent, and it
is also called a spectral risk measure (Acerbi & Tasche 2002).

Let g denote the increasing and concave function on the unit interval defined by g(0) = 0 and
the right-hand derivative

g ′
+(t) =

∫
(t,1]

s −1μ(ds ), 0 < t < 1, (37)

and note that g(1) = 1. Using Fubini’s theorem, we can rewrite the mixture in Equation 36 in
terms of the function g as

ρμ(X ) = ρg (X ) := g(0+) ess sup(−X ) +
∫ 1

0
VaRλ(X )g ′

+(λ)dλ. (38)

Alternatively, ρμ = ρg can be written as a Choquet integral (Föllmer & Schied 2011, theorem
4.70 and corollary 4.77).

Theorem 7.4. Any spectral risk measure ρμ = ρg can be written as the Choquet integral

∫
(−X )dc :=

∫ ∞

0
c [−X > x]d x +

∫ 0

−∞
(c [−X > x] − 1)d x (39)

of the loss −X with respect to the capacity c defined as the concave distortion c = g◦P of the
underlying probability measure P . For this reason, ρg is also called a distortion risk measure with
distortion function g.

Conversely, take any concave distortion function g on the unit interval, that is, an increasing
concave function g on [0, 1] with g(0) = 0 and g(1) = 1. Then there is a unique probability
measure μ on [0, 1] such that g is given by Equation 37 (see, e.g., Föllmer & Schied 2011, lemma
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4.69). Thus, any Choquet integral
∫

(−X )dc with respect to a concave distortion c = g◦P can be
represented in the form (36) as a mixture of average value at risk.

Example 7.5. Average value at risk at level λ ∈ (0, 1) can be viewed as a spectral risk measure ρμ
with μ = δλ. Thus it is a distortion risk measure with distortion function g(x) = (x/λ) ∧ 1.

Example 7.6. For a positive integer n, consider the concave distortion function g(x) = 1 − (1 − x)n.
The corresponding risk measure ρg was proposed in Cherny & Madan (2009) and is sometimes
called MINVAR. For independent copies X 1, . . . , X n of X , we get

ρ(X ) = EP [max{−X 1, . . . ,−X n}] = −EP [min{X 1, . . . , X n}],
i.e., ρ(X ) can be described as the expectation under P of the maximal loss occurring in the portfolio
X 1, . . . , X n. The risk measures MAXVAR, MAXMINVAR, and MINMAXVAR are defined in
the same manner by the distortion functions x1/n, (1 − (1 − x)n)1/n, and 1 − (1 − x1/n)n. We can
also replace the positive integer n by any real parameter β ≥ 1 (Cherny & Madan 2009, Madan
& Cherny 2010).

Any risk measure ρμ of the form (36) is comonotonic, i.e., ρμ satisfies

ρμ(X + Y ) = ρμ(X ) + ρμ(Y ) (40)

whenever two positions X and Y are comonotone in the sense that

(X (ω) − X (ω′))(Y (ω) − Y (ω′)) ≥ 0 for all (ω,ω′) ∈ �×�

(see, e.g., Föllmer & Schied 2011, theorem 4.88 combined with corollary 4.77). Conversely, any
distribution-based and comonotonic convex risk measure can be written as a spectral risk measure
(Equation 36) for some probability measure μ on [0, 1]. Equivalently, it can thus be viewed as the
Choquet integral (Equation 39) of the loss with respect to some concave distortion c = ψ◦P (see,
e.g., Föllmer & Schied 2011, theorem 4.93; Delbaen 2002, 2007).

Remark 7.7. Consider a general distortion function g on the unit interval, that is, g is increasing
with g(0) = 0 and g(1) = 1. Then the distortion risk measure ρg defined by the Choquet integral
ρg (X ) = ∫

(−X )dc in (39) with respect to the capacity c = g◦P is still a positively homogeneous
and comonotonic monetary risk measure. However, if g is not concave then ρg is no longer convex,
and hence not coherent. For example, VaRα can be viewed as the distortion risk measure with
nonconcave distortion function g(x) = I(α,1](x). For a characterization of this general class of
distortion risk measures, see Schmeidler (1986) or Kou & Peng (2014).

7.3. Law-Invariance and Stochastic Dominance

For random variables X and Y in X = L1(�,F, P ) with distributions μX and μY , distribution
functions FX and FY , and quantile functions qX and qY , consider the two partial orders

X �(1) Y :⇐⇒ FX (x) ≤ FY (x) for all x ∈ R

⇐⇒ qX (α) ≥ qY (α) for all α ∈ (0, 1)

and

X �(2) Y :⇐⇒
∫ x

−∞
FX (z)d z ≤

∫ x

−∞
FY (z)d z for all x ∈ R

⇐⇒
∫ λ

0
qX (α)dα ≥

∫ λ

0
qY (α)dα for all λ ∈ (0, 1),

(41)
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often called stochastic dominance of the first and second kinds. Equivalently, we can write

X �(i ) Y :⇐⇒
∫

udμX ≥
∫

udμY for all u ∈ U (i ),

where U (1) (respectively U (2)) denotes the class of all increasing (respectively all increasing and
concave) functions u : R → R.

Now let ρ be a monetary risk measure ρ on X . Then ρ is distribution-based if and only if it
respects stochastic dominance of the first kind, i.e.,

X �(1) Y =⇒ ρ(X ) ≤ ρ(Y ).

Indeed, because (�,F, P ) is assumed to be atomless, there exists a random variable U with
uniform distribution on (0, 1), and law-invariance together with monotonicity of the monetary
risk measure ρ implies

ρ(X ) = ρ(qX (U )) ≤ ρ(qY (U )) = ρ(Y ) (42)

because qX ≥ qY if X �(1) Y . Conversely, Equation 42 implies ρ(X ) = ρ(Y ) whenever X and
Y have the same distribution.

Proposition 7.8. If ρ is distribution-based and convex, then it respects stochastic dominance of both
the first and second kinds, that is,

X �(i ) Y =⇒ ρ(X ) ≤ ρ(Y ) (43)

for i = 1, 2.
As to stochastic dominance of the second kind, note first that the second part of (41) translates

into the equivalence

X �(2) Y ⇐⇒ AVaRλ(X ) ≤ AVaRλ(Y ) for all λ ∈ (0, 1) (44)

because VaRα(X ) = −qX (α) for almost all α ∈ (0, 1). The representation (33) of distribution-
based convex risk measures in terms of average value at risk shows that the inequality is preserved
for any convex and distribution-based risk measure ρ. Moreover, we obtain the equivalence

X �(2) Y ⇐⇒ ρ(X ) ≤ ρ(Y ) for any ρ ∈ R, (45)

where R can be an arbitrary class of distribution-based convex risk measures that contains AVaRλ

for any λ ∈ (0, 1). For example, we could take the class of comonotonic risk measures ρμ in
Section 7.2 (see, e.g., Dhaene, Kukush & Pupashenko 2006; Dhaene et al. 2006).

Conversely, convexity of ρ follows from Equation 43 combined with the following property of
comonotonic convexity: For X ,Y ∈ X and λ ∈ (0, 1),

ρ(λX + (1 − λ)Y ) ≤ λρ(X ) + (1 − λ)ρ(Y ) if X and Y are comonotonic; (46)

(see Proposition 7.10; Song & Yan 2009, theorem 3.6). This yields the following criterion for
convexity of a distribution-based monetary risk measure.

Proposition 7.9. A distribution-based monetary risk measure ρ onX = L∞(�,F, P ) is convex if and
only if it satisfies both Equations 43 and 46, that is, if and only if ρ respects stochastic dominance
of the second kind and has the property of comonotonic convexity.

In the same way, distribution-based coherent risk measures on X can be characterized as
positively homogeneous monetary risk measures on X that respect stochastic dominance of the
second kind and satisfy the following property of comonotonic subadditivity:

ρ(X + Y ) ≤ ρ(X ) + ρ(Y ) if X and Y are comonotone (47)

(Song & Yan 2009, theorem 3.2).
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7.4. Risk Measures on Lotteries

Let ρ be a distribution-based monetary risk measure on X . We denote by μX the distribution of
X ∈ X under P , and by

M(X ) = {μX | X ∈ X }
the resulting class of probability measures on R. For all our choices of X , the set M(X ) is convex,
due to our assumption that the underlying probability space is atomless. For X = Lp with p ∈
(0,∞), M(X ) is the class of all probability measures μ such that

∫ |x|pμ(d x) < ∞; for p = 0 we
get the class M1(R) of all probability measures on R, and for p = ∞ the class M1,c of probability
measures on R with compact support. The probability measures in M(X ) are also called lotteries.

Because ρ(X ) depends only on μX , the risk measure ρ can be identified with the functional R
on M(X ) defined by

R(μX ) = ρ(X ).

The monetary properties of ρ translate into the following properties of the functional R:
� R is monotone with respect to stochastic dominance of the first kind:

μ �(1) ν =⇒ R(μ) ≥ R(ν). (48)

� R has the translation property

R(Tmμ) = R(μ) − m, (49)

where Tmμ denotes the shifted measure Tmμ(A) := μ(A − m).

To characterize convexity of the monetary risk measure ρ on X in terms of the functional R
on M(X ), note first that the lotteries μX can be identified with their upper quantile functions
qX , defined as right-continuous inverses of their distribution functions. The following criterion
translates the criterion of Song & Yan (2009) in our Proposition 7.9 above into properties of the
functional R:

Proposition 7.10. The distribution-based monetary risk measure ρ is convex if and only if the
functional R has the following two properties:

(i) R respects second-order stochastic dominance, i.e.,

μ �(2) ν =⇒ R(μ) ≥ R(ν).

(ii) For two measuresμ0 andμ1 inM(X ) with quantile functions q0 and q1 and for any λ ∈ (0, 1),
we have

R(μλ) ≤ λR(μ1) + (1 − λ)R(μ0),

where μλ denotes the measure corresponding to the convex combination qλ = λq1 +
(1 − λ)q0 of the quantile functions, that is, μλ is the distribution of qλ(U ) ∈ X , where
U is uniformly distributed on (0, 1).

To check that properties (i) and (ii) of the functional R imply convexity of the risk measure ρ,
take X i ∈ X (i = 0, 1) and λ ∈ (0, 1). Define X̃ i := qi (U ), where qi is a quantile function for X i

and U is uniformly distributed on (0, 1), and denote by μλ and μ̃λ the distributions of the convex
combinations X λ := λX 1 + (1 − λ)X 0 and X̃ λ := λX̃ 1 + (1 − λ)X̃ 0. Then we have

AVaRα(X λ) ≤ AVaRα(λX 1) + AVaRα((1 − λ)X 0)

= AVaRα(λX̃ 1) + AVaRα((1 − λ)X̃ 0)

= AVaRα(X̃ λ)
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for any α ∈ (0.1); here we use subadditivity of AVaR in the first step, law-invariance in the second,
and comonotonicity in the third. This implies

μ̃λ �(2) μλ,

due to our characterization (44) of second-order stochastic dominance in terms of average value
at risk. Using first property (i) and then property (ii) of R, we obtain

ρ(X λ) = R(μλ) ≤R(μ̃λ)

≤ λR(μ̃1) + (1 − λ)R(μ̃0)

= λρ(X 1) + (1 − λ)ρ(X 0),

and thus ρ is indeed a convex risk measure.

7.5. Mixture Convexity

Let ρ be a distribution-based monetary risk measure on X , and let R denote the corresponding
functional on M(X ) defined in Section 7.4. In Proposition 7.10, we characterized convexity of the
risk measure ρ on X in terms of the functional R on M(X ). At the level of distributions, however,
we may also want to consider the following convexity properties, which are defined in terms of
mixtures of probability measures.

Definition 7.11. Let us say that the risk measure ρ is mixture convex, or simply m-convex, if the
functional R is convex on M(X ), that is,

R(αμ+ (1 − α)ν) ≤ αR(μ) + (1 − α)R(ν)

for all μ, ν ∈ M(X ) and any α ∈ (0, 1). More generally, we say that ρ is m-quasiconvex if R is
quasiconvex on M(X ), that is, R has convex lower level sets {R( · ) ≤ r}. In the same way, ρ is
called m-quasiconcave if R has convex upper level sets {R( · ) ≥ r}.

Due to the translation property (Equation 49), m-quasiconvexity of ρ is equivalent to the
condition that the acceptance set

AR := {μ ∈ M(X )|R(μ) ≤ 0},
now defined at the level of distributions, is a convex set of probability measures. In other words,
if two lotteries μ and ν are acceptable, then any compound lottery αμ + (1 − α)ν obtained by
randomizing the choice betweenμ and ν with some probabilityα ∈ (0, 1) should also be acceptable.
Similarly, ρ is m-quasiconcave if and only if the rejection set Ac

R is convex (Bellini & Bignozzi
2015, lemma 2.2).

Example 7.12. The risk measure AVaRλ is coherent, and in particular convex, at the level of random
variables. However, its acceptance set at the level of distributions is not convex. Thus AVaRλ is
not m-quasiconvex (Weber 2006).

Now consider any utility-based risk measure ρ� defined as in Section 4.2 for some increasing
loss function �, that is,

ρ�(X ) = inf{m|EP [�(−X − m)] ≤ l0}. (50)

At the level of distributions, the corresponding acceptance set{
μ ∈ M(X )|

∫
�(−x)μ(d x) ≤ l0

}
(51)
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is clearly convex, and so is its complement. Thus, utility-based shortfall risk ρ� is both m-
quasiconvex and m-quasiconcave. Moreover, convexity of the loss function � is equivalent to
the first kind of convexity of the risk measure, namely the convexity of the functional ρ� on X .

Conversely, as shown by Weber (2006) under some mild regularity conditions, a distribution-
based monetary risk measure ρ must be of the form in Equation 50 for some increasing loss
function � as soon as both the acceptance set AR at the level of distributions and its complement
Ac

R are convex. In particular, a distribution-based monetary risk measure ρ is utility-based as soon
as it is convex and also both m-quasiconvex and m-quasiconcave.

To state this characterization theorem more precisely, we describe the appropriate topological
setting; this is needed for our discussion of robustness properties in Section 9. Recall first that the
weak topology on M1(R) is generated by the maps μ → ∫

fdμ for all f ∈ Cb (R), and that it is
metrizable by the Prohorov metric

dProh(μ, ν) = inf{ε > 0|μ(A) ≤ ν(Aε) + ε for all Borel sets A ⊆ R}, (52)

where Aε := {x ∈ R| infa∈A |x − a| ≤ ε} denotes the ε-hull of A.
To increase sensitivity to the tails, we refine the weak topology as follows: Choose a continuous

gauge function ψ : R → [1,∞). We denote by Cψ the space of all continuous functions on the
real line such that | f | ≤ c |ψ | for some c > 1, and we define the class of probability measures

Mψ

1 :=
{
μ ∈ M1(R)

∣∣∣ ∫ ψ dμ < ∞
}
.

Definition 7.13. The ψ-weak topology is defined as the topology on Mψ

1 that is generated by the
maps μ → ∫

fdμ for f ∈ Cψ (R) or, equivalently, by the Prohorov ψ-metric

dψ (μ, ν) := dProh(μ, ν) +
∣∣∣∣
∫
ψdμ−

∫
ψdν

∣∣∣∣ . (53)

Example 7.14. For the polynomial gauge function ψp (x) = 1 + |x|p with p ∈ [1,∞), the ψp -weak
topology is also generated by the Wasserstein metric of order p , that is,

dW,p (μ, ν) := inf

{(∫
|x − y |pπ (d x, d y)

)1/p

: π ∈ M1(R × R) with marginals μ, ν

}

[see Krätschmer, Schied & Zähle (2014) and the references therein].
The following theorem and its corollary are due to Weber (2006).

Theorem 7.15. Let ρ be a distribution-based monetary risk measure on X = L∞(�,F, P ), and
let AR denote the corresponding acceptance set at the level of distributions. Assume there exists
x ∈ R with δx ∈ AR such that for any y ∈ R with δy ∈ Ac

R, we have

(1 − α)δx + αδy ∈ AR

for sufficiently small α > 0. Then the following statements are equivalent:

1. AR is ψ-weakly closed for some gauge function ψ , and the sets AR and Ac
R are both convex.

2. There exist a left-continuous loss function � : R → R and some scalar l0 in the interior of
the convex hull of the range of � such that

AR =
{
μ ∈ M1,c

∣∣∣ ∫ �(−x)μ(d x) ≤ l0

}
.
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The theorem shows that utility-based risk measures play a central role as soon as we insist on
law-invariance and on convexity of both the acceptance set AR and the rejection set Ac

R. More
precisely:

Corollary 7.16. Assume that the monetary distribution-based risk measure ρ on X = L∞(�,F, P )
satisfies the equivalent conditions of the preceding theorem.

(i) The risk measure ρ is convex if and only if the loss function � is convex, and in this case ρ
is a utility-based risk measure.

(ii) The risk measure ρ is coherent if and only if �(x) = l0 + αx+ − βx− with α ≥ β > 0.

Definition 7.17. The coherent risk measures in item (ii) of Corollary 7.16 are also called expectiles
(see Section 8, below; Newey & Powell 1987).

Remark 7.18. Theorem 7.15 does not require that the risk measure be convex. In particular, it
includes VaRα as a special case, with nonconvex loss function �(x) = I(0,∞)(x) and threshold
l0 = α. For a convex risk measure ρ, Delbaen et al. (2014) show that only the assumption of
convex level sets {R( · ) = r} is needed in order to conclude that ρ is utility-based. However, in
this general situation the loss function may become infinite.

8. ELICITABILITY

Capital regulation requires banks and insurance companies to project their balance sheets into
the future and to compute capital requirements from the distribution of balance sheet items. As
functionals of unknown future distributions, capital requirements prescribed by distribution-based
risk measures are predicted quantities, which are estimated within probabilistic models on the basis
of available data. Backtesting refers to a comparison of these predictions with past experience, with
the aim to validate the models and the forecast procedures that are used.

An approach that is commonly used in practice consists in computing the average score

Ŝ = 1
n

n∑
i=1

S(xi , yi ), (54)

given a history of observations yi with unknown distribution μ from some class of distributions
M and a history of predictions xi for the relevant statistical functional T (μ). Performance is
considered to be good if the average score Ŝ is small.

As argued by Gneiting (2011), such a performance criterion is meaningful only if the scoring
function S is consistent with the functional T in the following sense. For large n and for a constant
estimate x, the average score will typically be close to the expectation

∫
S(x, y)μ(d y) if the data

are ergodic and driven by the distribution μ. Therefore, for any μ ∈ M, the corresponding
value T (μ) of the functional should minimize the expected score

∫
S( · , y)μ(d y). In this case, the

scoring function S is called consistent for the functional T on M. The functional T is called
elicitable on M if it admits a consistent scoring function (Gneiting 2011). For example, the mean
T (μ) = ∫

yμ(d y) is elicitable with scoring function S(x, y) = (y − x)2.
Because elicitability might be desirable from a statistical point of view, it is important to know

which distribution-based risk measures ρ are elicitable in the sense that the associated functional
R admits a consistent scoring function. Value at risk at some level α is elicitable. More precisely,
the scoring function S(x, y) = α(y − x)+ + (1 −α)(y − x)− is consistent for the α-quantile, viewed
as a multivalued functional on distributions (Gneiting 2011). In contrast, average value at risk is
not elicitable (see Remark 8.5).
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For a general convex distribution-based risk measure ρ, the question of elicitability was studied
by, for example, Gneiting (2011); Ziegel (2014); Embrechts & Hofert (2014); Emmer, Kratz &
Tasche (2013); Kou & Peng (2014); Bellini & Bignozzi (2015); and Bellini et al. (2014). In this
section we describe the main results. The crucial observation is that elicitability of ρ implies that ρ
is both m-quasiconvex and m-quasiconcave, as defined in Section 7. But in view of Theorem 7.15
and Corollary 7.16, this means that ρ must be utility-based, and that it is an expectile if we also
require that ρ be coherent.

8.1. Elicitable Functionals

The following definition of a scoring function and the additional regularity requirements are due
to Bellini & Bignozzi (2015).

Definition 8.1. A function S : R
2 → [0,∞) is called a scoring function if it has the following

properties:

(i) S(x, y) = 0 if and only if x = y ;
(ii) for any y , x �→ S(x, y) is increasing for x > y and decreasing for x < y ;

(iii) for any y , S(x, y) is continuous in x.

Let us say that a scoring function S is regular if, in addition, it is continuous in y and satisfies, for
all x in some neighborhood of 0, the inequality S(x, y) ≤ ψ(y) with some gauge function ψ .

Now consider a real-valued functional T defined on some convex set of probability measures
M ⊆ M1.

Definition 8.2. The functional T is called elicitable on M if there exists a scoring function S such
that

T (μ) = arg minx∈R

∫
S(x, y)μ(d y) (55)

for any μ ∈ M, that is, if T (μ) is the unique minimizer of the function x �→ ∫
S(x, y)μ(d y). In

this case, we say that T is elicited by the scoring function S, and that S is strictly consistent for T
with respect to M.

In the context of robust statistics, an elicitable functional is also called an M-estimator (see
Huber 1964, 1981).

The following observation is due to Osband (1985).

Lemma 8.3. If T is elicitable on M then T has convex level sets, that is,

T (μ) = T (ν) =⇒ T (αμ+ (1 − α)ν) = T (μ) = T (ν)

for all μ, ν ∈ M and any α ∈ [0, 1].

Together with Theorem 7.15 and Corollary 7.16, this observation provides the key to the
characterization of elicitable convex risk measures described below.

8.2. Elicitable Risk Measures

Let ρ be a distribution-based monetary risk measure on L∞ and let R denote the corresponding
functional on M(L∞). Recall from Section 7.4 that the monetary properties of ρ translate into
monotonicity of R with respect to stochastic dominance of the first kind and the translation
property in Equation 49.
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Now assume that the functional R is elicitable on M(X ); in this case, the risk measure ρ will
also be called elicitable. Combining the monetary properties of R with Lemma 8.3, we easily
obtain the following convexity properties of R at the level of distributions (Bellini & Bignozzi
2015, lemma 2.2).

Corollary 8.4. If the functional R is elicitable, then it is both m-quasiconvex and m-quasiconcave,
that is, the acceptance set AR := {μ | R(μ) ≤ 0} and the rejection set Ac

R = {μ | R(μ) > 0} at the
level of distributions are both convex.

Remark 8.5. The corollary shows that average value at risk is not elicitable because it is not
m-quasiconvex (see Example 7.12; for a discussion of backtesting in this case, see Acerbi & Szekely
2014).

Combining Corollary 8.4 with Theorem 7.15 and Corollary 7.16, we see that elicitability of
ρ typically implies that ρ must be utility-based. More precisely, Bellini & Bignozzi (2015) show
that the regularity conditions of Theorem 7.15 are satisfied if ρ is elicited by a scoring function S
that is regular in the sense of Definition 8.1. In this way, they obtain the following classification of
distribution-based convex risk measures that are elicitable (Bellini & Bignozzi 2015, theorem 4.9).

Theorem 8.6. Let ρ be a distribution-based monetary risk measure on L∞, and assume that ρ is
elicitable with a regular scoring function S.

(i) If ρ is convex, then ρ is utility-based shortfall risk with some convex loss function �.
(ii) If ρ is coherent, then ρ is an expectile as described in item (ii) of Corollary 7.16.

(iii) Ifρ is coherent and comonotonic, thenρ reduces to the linear risk measureρ(X ) = EP [−X ].

Conversely, a utility-based risk measure ρ� with convex loss function � and threshold l0 in the
interior of the range of � is always elicitable (Bellini & Bignozzi 2015, theorem 4.6 and remark 4).
Assuming �(0) = 0 = l0 without loss of generality, ρ� can be elicited by the regular scoring function

S(x, y) =
∫ y−x

0
�(u)du. (56)

Remark 8.7. Instead of insisting on convexity, Kou & Peng (2014) focus on the class of distortion
risk measures ρg defined with respect to a general distortion function g, that is, ρg (X ) is the
Choquet integral

∫
(−X )dc with respect to the capacity c = g◦P (see Remark 7.7). They show

that, within this class, the only elicitible risk measures are the nonconvex risk measures VaRα with
some α ∈ (0, 1] or the risk-neutral risk measure EP [−X ].

Remark 8.8. We refer to Acerbi & Szekely (2014) and Davis (2013) for a discussion of the question
to which extent the concept of elicitability is relevant for backtesting in the financial context. For
multidimensional extensions of the concept of elicitability, see Fissler & Ziegel (2015) and Fissler,
Ziegel & Gneiting (2015).

9. ROBUSTNESS

For a financial position X , the capital requirement prescribed by a law-invariant convex risk
measure is obtained by applying the functional R to the distribution μX of X . Typically, this
distribution is estimated from historical data or from Monte Carlo simulation, that is, the empirical
distribution generated by the data is used as a proxy for μX . The capital requirement is then
estimated by applying the functional R to the empirical distribution.

The question is whether this plug-in method produces a good approximation of the capital
requirement. To begin with, the risk measurement procedure should be consistent in the usual
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statistical sense, that is, the risk estimates should converge to R(μX ). Moreover, the procedure
should be robust, that is, the distribution of the risk estimates should not be perturbed too much
by small changes of the underlying probability law that produces the data.

Robustness is usually defined in terms of the weak topology and the corresponding Prohorov
metric, following Hampel (1971). By Hampel’s famous theorem, this classical notion of robustness
can be characterized by continuity properties of the functionalRwith respect to the weak topology.
However, as first observed by Cont, Deguest & Scandolo (2010) and Kou, Peng & Heyde (2013),
distribution-based convex risk measures such as average value of risk typically are not continuous
in this sense, so they are not Hampel-robust. This has raised serious questions concerning the
practical relevance of risk measures other than value at risk, which clearly satisfies the robustness
requirement.

In their recent extensions of Hampel’s approach, Cont, Deguest & Scandolo (2010) and
Krätschmer, Schied & Zähle (2014) have raised the level at which these issues can be discussed.
Cont, Deguest & Scandolo (2010) discuss the robustness of risk measures with respect to restricted
classes of lotteries, and Krätschmer, Schied & Zähle (2014) use a refinement of the weak topology.
As a result, robustness is no longer a question of yes or no. Instead, there are degrees of robustness,
depending on the choice of admissible lotteries and on the choice of the topology.

In this section, we review the results of Krätschmer, Schied & Zähle (2014) on consistency and
robustness, and we illustrate them for different classes of distribution-based risk measures. For
additional results on sensitivity in terms of Hampel’s influence function we refer to Cont, Deguest
& Scandolo (2010).

9.1. Consistency and Continuity

Let ρ be a distribution-based convex risk measure on L1, and let R denote the corresponding
functional on M(L1). If we want to estimate the capital requirement ρ(X ) for a position X ∈ L1

from historical data or from Monte Carlo simulation, the question of consistency arises.
Let X 1, X 2, . . . denote a stationary and ergodic sequence of random variables having the

same law as X . Given the observations X 1(ω), . . . , X n(ω), it is natural to estimate the value
ρ(X ) = R(μX ) by

ρ̂n(ω) := R(μ̂n(ω)), (57)

where

μ̂n(ω) = 1
n

n∑
i=1

δX i (ω)

denotes the empirical distribution generated by the observations. The ergodic theorem guarantees
that, P-almost surely, the empirical distributions μ̂n converge weakly to the distribution μX of
X as n tends to ∞. Under additional integrability assumptions, the convergence may even hold
in a stronger sense.

The question is whether we have consistency of the risk estimates ρ̂n, that is, whether ρ̂n =
R(μ̂n) converges to the true value ρ(X ) = R(μX ). Clearly, this will require continuity properties
of the functional R that correspond to the convergence behavior of the empirical distributions.
For example, value at risk behaves well with respect to weak convergence because it is simply a
quantile, up to a change of sign, so we get consistency in this case. However, general distribution-
based convex risk measures, and in particular their building blocks AVaRλ, are not continuous with
respect to the weak topology. In order to obtain consistency, we therefore need a refined notion
of weak convergence, both for the convergence of empirical distributions and for the continuity
properties of the risk measure.
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To this end, let 
 : [0,∞) → [0,∞) denote a finite Young function. Recall from Section 3.5
that the corresponding Orlicz space L
 and the Orlicz heart H 
 satisfy L∞ ⊆ H 
 ⊆ L
 ⊆ L1.

We denote by

M(H 
 ) = {μX | X ∈ H 
}
the family of distributions generated by the Orlicz heart H 
 . If 
 satisfies the �2-condition
(12) then we have H 
 = L
 , and M(H 
 ) coincides with the class Mψ

1 defined by (51) for the
gauge function ψ(x) = 1 + 
(|x|). In particular, this holds in the classical case 
(x) = x p/p for
p ∈ [1,∞), where H 
 = L
 = Lp .

Now assume that the risk measure ρ is finite on the Orlicz heart H 
 . Then we know from
Theorem 7.3 that ρ is continuous on H 
 with respect to the Luxemburg norm ‖ · ‖
 . This is the
key to the following consistency result (Krätschmer, Schied & Zähle 2014, theorem 2.6).

Theorem 9.1. Suppose that ρ takes finite values on the Orlicz heart H 
 . Take X ∈ H 
 , and let
X 1, X 2, . . . be a stationary and ergodic sequence of random variables with the same law as X .
Then (57) defines a strongly consistent estimator for ρ(X ), that is,

lim
n→∞

ρ̂n = ρ(X ), P-almost surely.

If
 satisfies the�2-condition then the continuity properties of ρ and R can be described more
precisely as follows (Krätschmer, Schied & Zähle 2014, theorem 2.10).

Theorem 9.2. Suppose that 
 satisfies the �2-condition (12). Then the following conditions are
equivalent:

(i) ρ is finite on the Orlicz heart H 
 .
(ii) If (X n) ⊆ L∞ with ‖X n‖
 → 0 as n → ∞, then ρ(X n) → ρ(0).

(iii) The functional R is finite and continuous with respect to the ψ-weak topology on M(L∞).
(iv) The functional R is finite and continuous with respect to the ψ-weak topology on M1

ψ =
M(H 
 ).

Conversely, if every distribution-based convex risk measure ρ that is finite on the Orlicz heart
H 
 satisfies the continuity condition (iii), then 
 must satisfy the �2-condition (Krätschmer,
Schied & Zähle 2014, theorem 2.8).

Example 9.3. The entropic risk measure eγ discussed in Section 4.4 is finite on the Orlicz heart
H 
 of the Young function 
(x) = e x − 1. However, 
 does not satisfy the �2-condition.

9.2. Qualitative Robustness

We now turn to the issue of qualitative robustness, a notion that was introduced by Hampel (1971)
in terms of the weak topology. In this section, we describe the refined version of qualitative robust-
ness that was developed by Krätschmer, Schied & Zähle (2014), extending the analysis of Cont,
Deguest & Scandolo (2010). This refinement turns out to be crucial for a deeper understanding
of the robustness properties of risk measures.

Let ρ be a distribution-based convex risk measure on L1, and let R denote the corresponding
functional on M(L1). For a statistical functional such as R, qualitative robustness means that the
laws of the estimates ρ̂n = R(μ̂n) in Equation 57 do not change too much if there is a sufficiently
small change in the underlying probability law that drives the data. To formulate this idea precisely,
we need two metrics, a metric dA for the underlying probabilistic models and a second metric dB

for the laws of the estimates.
Suppose that the observations in Equation 57 are generated by a sequence of independent and

identically distributed random variables with a common distribution μ that belongs to some class
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M ⊆ M1. In this case, we can choose the classical model of an infinite product space. That is, we
take � = R

N, X i (ω) = ω(i ), F = σ (X 1, X 2, . . .), and the product measure

Pμ := μ⊗N

on (�,F ). Thus the underlying probabilistic models Pμ are parametrized by the probability
measures μ ∈ M, and hence they can be compared in terms of a metric dA on the set M ⊆ M1.
For a given μ, the law of the estimator in Equation 57 is given by the image Pμ◦ρ̂−1

n of Pμ under
the map ρ̂n : � → M1, and these laws are compared in terms of a metric dB on M1.

Definition 9.4. Let M ⊆ M1 be endowed with a metric dA, and let dB be a metric on M1. The
risk functional R is called robust on M with respect to dA and dB if for any μ ∈ M and any ε > 0
there exist δ > 0 and n0 ∈ N such that for all n ≥ n0,

ν ∈ M, dA(μ, ν) ≤ δ =⇒ dB (Pμ◦ρ̂−1
n , Pν◦ρ̂−1

n ) ≤ ε. (58)

In Hampel’s (1971) classical formulation of qualitative robustness, the focus is on the weak
topology on M = M1, and he uses the Prohorov metric (Equation 52) at both levels, that is, both
for the underlying probability measures μ and for the laws of the estimates. In other words, he
chooses

dA = dB = dProh.

In their extension of Hampel’s formulation, Krätschmer, Schied & Zähle (2014) use a more
flexible approach: They continue to use the Prohorov metric for the laws of the estimates, but at
the underlying level they take a Prohorov ψ-metric of the form in Equation 53. In other words,
they choose

dA = dψ, dB = dProh. (59)

As a result, the simple dichotomy of robust or not robust is replaced by a graded picture with
varying degrees of robustness.

From now on we fix a finite Young function 
 and use the corresponding gauge function
ψ defined by ψ(x) := 1 + 
(|x|). Because ψ is unbounded, the uniform continuity required in
Equation 58 cannot be expected without further restrictions on the set M ⊆ M∞. This is why
the following definition involves subsets N ⊆ M that are uniformly ψ-integrating, that is,

lim
c →∞

sup
ν∈N

∫
{ψ≥c }

ψdν = 0.

Definition 9.5. The functional R is called 
-robust on a set M ⊆ M1 if it is robust with respect
to dψ and dProh on every uniformly ψ-integrating subset N ⊆ M.

Remark 9.6. Because it is defined in terms of the Prohorov metric, classical Hampel-robustness
requires that only the bulk of the distributions μ and ν must be close in order to get close risk
estimates. In contrast to the Prohorov metric, the ψ-Prohorov metric also controls the distance
in the tails. For
-robustness, the risk estimates are thus required to be close only if both the bulk
and the tails of μ and ν are close.

As shown by Hampel (1971), classical robustness can be characterized by continuity properties
of the functional ρ with respect to the weak topology. The following result generalizes Hampel’s
theorem to 
-robustness (Krätschmer, Scheid & Zähle 2014, theorem 2.16).

Theorem 9.7. Suppose that 
 satisfies the�2-condition (Equation 12). Then the following condi-
tions are equivalent:

(i) R is 
-robust on M1
ψ = M(H 
 ).
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(ii) R is 
-robust on M(L∞).
(iii) ρ is finite on the Orlicz heart H 
 .

Combined with Theorem 9.2, this yields a characterization of 
-robustness in terms of conti-
nuity properties of the functional R with respect to the ψ-weak topology or, equivalently, of the
risk measure ρ with respect to the Luxemburg norm ‖ · ‖
 .

9.3. Degrees of Robustness

Let us now focus on the classical case 
p (x) = x p/p for 1 ≤ p < ∞. The �2-condition is clearly
satisfied, and so we can apply the preceding theorem. Thus the functional R is 
p -robust on
M(Lp ) if and only if the risk measure ρ is finite on Lp . Moreover, to verify 
p -robustness of R
on M(Lp ) it is enough to check it on M(L∞). The following index of qualitative robustness was
introduced by Krätschmer, Schied & Zähle (2014).

Definition 9.8. For a distribution-based convex risk measure ρ on L∞ with associated functional
R, the index of qualitative robustness (IQR) is defined as

IQR(ρ) = (inf{p ∈ [1,∞)|R is 
p robust on M(L∞)})−1. (60)

For a distribution-based convex risk measure ρ the index IQR(ρ) takes values in [0, 1]. In view
of Theorem 9.7, the index can also be written as

IQR(ρ) = (inf{p ∈ [1,∞)|ρ is finite on Lp })−1, (61)

and thus it attains its maximal value 1 if the risk measure ρ is finite on L1.

Remark 9.9. For p ∈ (0, 1), 
p is no longer a Young function, but the notion of 
p -robustness is
still well defined in terms of the Prohorov ψp -metric with ψp (x) = 1 + (1/p)|x|p . Thus we could
admit the values p ∈ (0, 1) in our definition (61) of the index IQR(ρ). For a distribution-based
convex risk measure ρ there is no difference, because ρ cannot be 
p -robust for p < 1, as shown
in proposition 2.14 of Krätschmer, Schied & Zähle (2014). For the nonconvex monetary risk
measure value at risk, however, the infimum in Equation 61 taken over all p ∈ (0,∞) becomes 0,
and so we get IQR(VaRα) = ∞ for any α ∈ (0, 1).

Let us now illustrate the computation of the index for two special classes of distribution-based
convex risk measures, the distortion risk measures in Section 7.2 and the elicitable risk measures
in Section 8.

9.3.1. Distortion risk measures. Recall from Section 7.2 the distortion risk measure

ρg (X ) = g(0+) ess sup(−X ) +
∫ 1

0
VaRλ(X ) g ′

+(λ)dλ, (62)

defined in terms of some concave distortion function g on the unit interval.
Let 
 be a finite Young function with conjugate Young function 
∗ (see Section 3.5). Then

the risk measure ρg is finite on the Orlicz heart H 
 if and only if the function g ′
+ belongs to the

Orlicz space L
∗ defined with respect to the Lebesgue measure on the unit interval. In the context
of Lp -spaces, it follows that the index of qualitative robustness of ρg is given by

IQR(ρg ) = q ∗ − 1
q ∗ , (63)

where

q ∗ = sup
{

q ≥ 1
∣∣∣ ∫ 1

0
(g ′

+(t))q d t < ∞
}

(see Krätschmer, Schied & Zähle 2014, proposition 2.22).
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Example 9.10. Average value at risk at level λ ∈ (0, 1) has index IQR(AVaRλ) = 1, as it is finite
on L1. Note that AVaRλ can be viewed as the distortion risk measure with distortion function
g(x) = (x/λ) ∧ 1 (see Example 7.5). Because the right-hand derivative of g is bounded, we have
q ∗ = ∞, and thus IQR(AVaRλ) = 1 also follows from Equation 63. More generally, a distortion
risk measure ρg with distortion function g(x) = (x/λ)β∧1 for some β ∈ (0, 1] has index IQR(ρg ) =
β (Krätschmer, Schied & Zähle 2014, example 2.23).

Example 9.11. Recall from Example 7.6 the special distortion risk measures proposed by Cherny
& Madan (2009). Here the index of qualitative robustness is easily computed via Equation 63:
For β > 1, the risk measure MINVAR with distortion function 1 − (1 − x)β has index 1, whereas
MAXVAR, MAXMINVAR and MINMAXVAR with distortion functions x1/β , (1 − (1 − x)β )1/β

and 1 − (1 − x1/β )β all have index 1/β (Krätschmer, Schied & Zähle 2014, example 2.24).

9.3.2. Elicitable risk measures. As we have seen in Section 8, a distribution-based convex risk
measure ρ is utility-based as soon as it is elicitable (see Theorem 8.6, above; Delbaen et al. 2014).
In other words, there are some convex, increasing loss function � and some threshold l0 in the
interior of the range of � such that

ρ(X ) = inf{m ∈ R|E[�(−X − m)] ≤ l0}.
Consider the Young function 
(x) = �(x) − �(0) and the gauge function ψ(x) = 1 + 
(|x|).
Suppose that 
 is finite and satisfies the �2-condition. Then the functional R corresponding to
ρ is continuous with respect to the ψ-weak topology, and it is 
-robust (Krätschmer, Schied &
Zähle 2014, example 2.5).

Example 9.12. In the case of a power loss function �(x) = x p 1{x≥0} with p ≥ 1 and threshold l0 > 0,
the associated risk measure ρ is finite on Lp , and R is continuous with respect to the ψp -weak
topology and 
p -robust. Moreover, the index of qualitative robustness is equal to 1/p .

Example 9.13. In the coherent case, elicitability implies that the risk measure ρ is an expectile. In
other words, the loss function is of the form �(x) = l0 + αx+ − βx− with parameters α ≥ β > 0
(see Section 7.5). An expectile is clearly finite on L1, and hence its index of qualitative robustness
is equal to 1, as in the case of average value at risk.

Example 9.14. An entropic risk measure eγ with γ > 0 is utility-based and hence elicitable. But it
does not stay finite on any Lp -space (see Section 4.4). Thus, its index of qualitative robustness is
equal to 0.
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Föllmer H, Klüppelberg C. 2014. Spatial risk measures: local specification and boundary risk. In Stochastic

Analysis and Applications 2014, ed. D Crisan, B Hambly, T Zariphopoulou, pp. 307–326. Springer Proc.
Math. Stat. 100. New York: Springer
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