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Abstract

"This review describes and classifies the trajectories of sports projectiles that
have spherical symmetry, cylindrical symmetry, or (almost) no symmetry.
This classification allows us to discuss the large diversity observed in the
paths of spherical balls, the flip properties of shuttlecocks, and the optimal
position and stability of ski jumpers.
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Figure 1

1. INTRODUCTION
In 1671, Isaac Newton published his new theory of light and wrote about refraction:

Then I began to suspect, whether the Rays, after their trajection through the Prisme, did not move
in curve lines. And it increased my suspicion when I remembred that I had often seen a Tennis ball,
struck with an oblique Racket, describe a curve line. (Newton 1671)

One might be surprised by the unexpected use of the word tennis ! more than two centuries before
the official creation of the sport in England (1874). In fact, we find traces of the term as soon as
1400 (Gillmeister 1998). We can imagine that Newton used the analogy with the sport to provide
a mental image of the phenomenon for his readers, who had probably spent more time watching
games than observing light.

Apart from analogies, sports also generate original questions in physics: Why is the flight of
a tennis ball irregular? Rayleigh (1877) addressed this problem using the Magnus force theory
to account for the aerodynamics of spinning spheres. What is the best way to run a race? This
question was tackled by Keller (1974) using the variational approach. How many passes before the
ball is lost in soccer? Reep & Benjamin (1968) treated this point using a statistical approach.

Here, following the advice of Frohlich (2011), we try to keep the tradition alive and address
some questions about the trajectories of sports projectiles (Figure 1): Apart from parabolas, what
trajectories can be observed with spherical balls (Section 2)? What determines the size of sports
fields (Section 2.4.3)? How does one throw a knuckleball (Section 2.4.6)? Why do shuttlecocks
flip (Section 3)? What is the optimal position for a ski jumper (Section 4)? What role does the
symmetry of the particle play in its trajectory (Sections 3 and 4)? To answer these questions, we
regularly make reference to the work of famous pioneers, Mehta (1985) and de Mestre (1990).

2. SPHERICAL BALLS

For a homogeneous spherical ball of mass M and velocity U, the whole problem of the ball’s
trajectory is to solve the equation of motion:

dU
M T Fe + F4U), @

Example of sports projectiles with different symmetries: (#) a soccer ball, which has spherical symmetry; (b) a shuttlecock, which has
cylindrical symmetry; and (c) a ski jumper, who has (almost) no symmetry. Photo of Gregor Schlierenzauer by A. Furtner.
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"The term tennis is from the French tenez, which can be translated as “take!”, a call from the server to the opponent, indicating
that he or she is about to serve.
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Phase diagram of the different trajectories observed with spheres: (#) a parabola, (b) straight path, (c) knuckleball, (¢) Tartaglia curve,
(e) spiral, and (f) pop-up.

where F; = Mg is the weight, and F 4(U) is the aerodynamic force. To illustrate the diversity
of the ballistic problem, I use the classical drag-lift decomposition of the aerodynamic force,
F, = Fp + F,. In this expression, Fj, stands for the drag (i.e., the part of the force aligned with
the velocity), and F;, stands for the lift (i.e., the part of the force perpendicular to the velocity).

2.1. The Phase Diagram for the Trajectories

The different trajectories of particles submitted to gravity and aerodynamic forces can be discussed
in the phase space (D, = Fp/M g, S, = F/Mg) presented in Figure 2: When gravity dominates
(D, < 1, S, « 1), the trajectories reduce to parabolas (trajectory a in the figure) (Galilei 1638). At
higher velocities and without rotation (D, > 1, S, « 1), three different kinds of trajectories exist:
straight lines (trajectory b), knuckleballs (trajectory c), and Tartaglia curves (trajectory d) (Tartaglia
1537, Cohen et al. 2014a). When the ball spins (D, > 1, S, > 1), spirals are observed (trajectory
e) (Dupeux et al. 2010). Finally, when the three forces are at play, loops (or pop-ups) appear
(trajectory f) (McBeath et al. 2008). This section is devoted to the study of these different paths.

2.2. Characteristics of Ball Games

In a more quantitative presentation, Table 1 lists the different sports considered in this section,
along with the size of the ball, 2R; its mass, M; and two characteristic velocities (the fastest recorded
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Table 1 Characteristics of various sports projectiles

Ul U. Re = RQ,
Sport 2R (cm) M (g) (m/s) (m/s) 2RU,. /v Cp (m/s) Fp/Mg Fr/Mg
Z-» Badminton 6.0 5.00 137 6.7 3x 104 0.64 0.019 420 0.1
(. Tennis 6.5 55.0 73.0 22 1x 105 0.56 10 11 3
.+ Ping-pong 4.0 2.50 32.0 10 3 x 104 0.36 17 10 18
® Squash 4.0 24.0 78.0 34 1x105 0.30 3.1 5.4 0.8
(©  Jaialai 6.5 120 83.0 41 2x 105 0.38 0.20 4.1 0.03
Golf 4.2 45.0 91.0 48 2 x 105 0.23 7.7 3.6 14
_ Volleyball 21 210 37.0 20 4x105 0.25 5.3 34 2.1
% Soccer 21 450 51.0 30 5x 105 0.24 9.1 2.9 23
€9 Softball 9.7 190 47.0 33 3x 105 0.38 6.1 2.0 0.7
Baseball 7.0 145 54.0 40 2x 105 0.38 6.6 1.8 0.6
@ Cricket 7.2 160 53.0 40 3x 105 0.40 34 1.8 0.3
@ Lacrosse 6.3 143 50.0 48 3x 105 0.35 0.20 1.1 0.01
) Handball 19 450 27.0 36 6x 105 0.20 0.60 0.56 0.07
@ Basketball 24 650 16.0 31 6x 105 0.24 0.75 0.27 0.06

The diameter 2R and mass M are extracted from the official rules of the different federations. The sources for the maximum recorded speed Uyyay are as
follows: badminton (RIA Novosti 2013; http://en.wikipedia.org/wiki/Tan_Boon_Heong), tennis (http://en.wikipedia.org/wiki/Fastest_recorded_
tennis_serves), ping-pong (Turberville 2003), squash (http://en.wikipedia.org/wiki/Cameron_Pilley), jai alai (http://en.wikipedia.org/wiki/Jai_
alai), golf (http://en.wikipedia.org/wiki/Golf_ball), volleyball (Volleywood 2012), soccer (http://www.guinnessworldrecords.com), softball (Nathan
2003, Russell 2008, Alam et al. 2012), baseball (eFastball.com 2011, Greenwald et al. 2001), lacrosse (http://www.guinnessworldrecords.com), handball
(Gorostiaga et al. 2005), and basketball (Huston & Cesar 2003). The terminal velocities, U , have been measured in a vertical wind tunnel (Cohen et al.

2014a). The Reynolds number Re is calculated with an air viscosity of v = 1.5 x 10~° m?/s. The drag coefficient Cp is linked to the mass and terminal
velocity via the relation Cp = 2M g/(pU 2,7 R*). The data for the spin velocity are mainly extracted from Cottey (2002).
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speed of the game, U,y,y, and the terminal velocity, U ). The table also includes badminton to
stress its difference in velocity with the other sports. The terminal velocity is defined as the
levitating speed, that is, the speed for which the drag exactly equals the weight, Fp(U ) = Mg.
The corresponding Reynolds number (Re) is also listed in the table and is found to be of the order
of 10° for all sports. In this limit, we can write the drag force Fp as

1
Fp(U) = —E,OUUSCD @

where p is the density of air, S = 7 R? is the cross-sectional area of the ball, and Cp is the drag
coefficient. For the different sports, Table 1 lists the drag coefficient at the terminal velocity and
presents the maximal recorded spinning velocity (R2), prior to the calculation of the reduced
drag, D, = Fp/Mg, and reduced lift, S, = F;/Mg. It is classical to use a formula similar to
Equation 2 to calculate the lift: I, = 1/2pU ?SC;.. However, this formulation does not allow one
to determine the direction of the force and the link with the rotation of the ball. We thus use a
different expression for the lift, based on the Blasius formula:

FL(U)ZpRBQ /\UCQ, (3)

where  is the spin vector and Cg, the spin coefficient. Using data from Nathan (2008), we evaluate
Cq ~ 1.7 in the range RQy/U < 0.5, which holds for all the sports listed in Table 1. Equation 3
can be used to compare the lift force to the weight in the table. A deeper discussion on the Magnus
effect in ball games can be found in the work of Bush (2013).
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2.3. Classification of Ball Games

With reduced drag and reduced lift, each sport listed in Table 1 is positioned in the phase
diagram (D, S,) in Figure 3. This presentation reveals several striking features: Basketball and
handball are two gravitational sports for which aerodynamics plays no role on the ball’s trajectory.
Only parabolas are expected to be observed. Spin is used, but only for bouncing purposes, not
for flight control. Another consequence is that these sports are not sensitive to wind and can be
practiced outdoors without perturbation. The conclusion is exactly the opposite for badminton, for
which the drag can be as large as 400 times the weight. In this classification, the more complete
aerodynamic sport appears to be ping-pong, in the sense that both the drag and lift are of the
order of 10 times the weight. Between these extremes, we observe a large concentration of sports
in the region (1, 1). This is probably not a coincidence as this is the region where all the effects
(drag, lift, gravity) can be used to increase the diversity (and perhaps the interest) of sport balls’
trajectories.

2.4. The Different Trajectories

The previous discussion shows that the equation of motion for balls (Equation 1) can be written
as
dU

This equation does not admit a general analytic solution, and it thus reduces the analysis to several
asymptotic regimes.

2.4.1. The parabola. The first regime concerns basketball and handball, for which gravity dom-
inates both the drag and lift (D, <« 1, S, < 1). Figure 44 presents an example of a basketball’s
trajectory. In this limit, Equation 4 reduces to JU/dt = g, which implies that the particle never
reaches a steady state (defined by a constant U). As first noticed by Galileo (Figure 4b), the particle
follows the parabolic path:
g 2
= By x — —==>—x", 5

y=tntox 2U5C05290x ©)
where 6 is the initial angle with the horizontal direction, and y is the vertical height. This path
presents a left-right symmetry with respect to the maximum location (yma = U ¢ sin? 6y/2g) and
returns to the ground at the range xy = U} sin 26, /g defined by y(xp) = 0.

2.4.2. Tartaglia curves. The next regime concerns sports located in the bottom right cor-
ner of the phase diagram in Figure 3 (D, » 1, S, <« 1) for which badminton is a paradigm.
Figure 5 presents an example of a shuttlecock path. Here, the left-right symmetry is broken, and
the particle seems to reach a steady state with a negative vertical velocity. Because S, « 1, the lift
can be neglected, and the equation of motion (Equation 4) reduces to

dU 1

M— = Mg — —pUUSCp. 6

dt g 2 1Y D ( )
This equation indeed allows a steady state (dU/dt = 0) when the two terms on the right-hand
side balance each other. In this steady state, the drag exactly balances the weight, and the velocity
is aligned with gravity, taking its levitating value: U = —U e,, with U, = /2Mg/pSCp. For

badminton, this terminal velocity is 6.7 m/s, a value close to the one that can be measured in
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Figure 54 when the shuttlecock returns to the ground. This terminal regime is illustrated with a
vertical asymptote in Figure 56 and is referred to as regime 3.

However, the velocity of the particle, Uy = 59 m/s, is initially much larger than U , and the
drag is thus initially much larger than the weight. This implies that the initial path of the particle
simply results from a balance between inertia and drag, MdU/ds = —1/2pUSCp, where the
relation U = ds/dt is used to switch from the time to space derivative (s is the curvilinear location
of the particle). Because the drag force is aligned with the velocity, there is no lateral deviation,
and the particle follows a straight line with an exponentially decreasing velocity: U(s) = Uy e /%,
with £ = 2M /pSCp = U2 /g. This characteristic length depends only on the ball properties
(M, S = n R?, Cp) and fluid density. For badminton, using the data presented in Table 1, we find
L = 4.6 m. A straight path with a velocity that decreases exponentially over a characteristic length
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Figure 4

(@) Chronophotography of a basketball’s path obtained with the values ) = 73° and U = 6.5 m/s and a time step between images of
At = 90 ms. Panel # adapted with permission from Darbois-Texier (2013). (b)) Drawing of the parabola discussed in theorem 1 of the
fourth day of Two New Sciences, reproduced from Galilei (1638). Complementary information can be found in Drake (1973).

scale of 4.6 m is compatible with what is observed in Figure 54. This initial regime is illustrated
with an inclined asymptote of slope 6, in Figure 56 and is referred to as regime 1. The inertia-
drag balance is thus replaced at long times by a gravitational-drag equilibrium. Between these two
asymptotic regimes, the three terms in Equation 6 connect these two straight line regimes and
account for the turn (regime 2 in Figure 54). Importantly, during the whole path of the particle,
drag is always involved, which means that the balance dU/dr = g is never achieved. Because this
balance is responsible for the parabola, we must conclude that the trajectory of a shuttlecock is
never a parabola. We call it a Tartaglia curve as this type of path was first reported by Tartaglia
(1537) in the context of artillery, one century before Galileo’s work (Figure 5c¢).

Here, we conclude that for a given particle, two characteristic velocities (Up and Uy,) are needed
to predict the shape of the trajectory. If Uy < U o, the drag is initially smaller than the weight,
and a parabola is observed. However, if Uy > U , the drag always matters, and one observes a
Tartaglia curve. Considering the data in Table 1, we notice that for all sports except basketball
and handball, a Tartaglia curve is observed at the highest speed.

Concerning the range of a particle released without spin, Cohen etal. (2014a) recently presented
a detailed calculation that extends previous theoretical discussions and numerical solutions (Lamb
1914, Erlichson 1983, de Mestre 1990, Chudinov 2010). It yields the following approximate
analytical expression:

— L rcosapmn | 1+4 (20 2'9 )
x0—2 cos by In T sin6y | .

e8]

At low velocities (U < U ), this expression reduces to the parabolic range, xy = U § sin(26)/g.
In the opposite limit (Uy > U ), we find a logarithmic saturation. Applying this formula to the
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(#) Chronophotography of a shuttlecock’s path obtained with the values 6y = 52° and Uy = 59 m/s and a time step between images of
At = 50 ms. With the first two tracks, the image shows 40 m/s, but the shuttlecock has already decelerated. Panel # adapted with
permission from Darbois-Texier et al. (2014). (b) Schematic illustration of the asymptotic regimes of a Tartaglia curve. (¢) Illustration of
a bullet path from the treatise Nova Scientia. Panel ¢ reproduced from Tartaglia (1537).

trajectory presented in Figure 54, we get vy ~ 8.5 m, which is compatible with the observed
range. For comparison, the parabolic range in this case is U ¢ sin(26p)/g ~ 244 m.

From Equation 7, the optimal angle, ,,,,, that maximizes the range and the corresponding
maximum range Ximax = X0(U max, Omax) can be calculated as

1 Umax : .
Xinax = Eﬁ €OS Omax In |:1 +4< Uoo > Slngmax:| s (8)
with
_ (UmaX/UOO)2
Omax = arctan\/[1 + (U max/ U )2 1I0[1 4+ (U pax/ U 0)?]° )

In the limit Uy /Us < 1, Equation 8 reduces to e = 2U 2, /g Sin Oay €OS Oinay, whereas
Equation 9 leads to 0y, = arctan(l). We thus recover the parabolic regime in which the range
is maximized with 6,,,x = /4 and takes the value xy,, = U2, /g. In the opposite limit in which
U nax/ U > 1, the maximal value of the range weakly increases with the velocity while the optimal
angle decreases, as studied by Cohen et al. (2014a). What is important to realize is that once the
velocities U, and U are known, the problem of the maximal range is solved, as Equation 9
provides the optimal angle and Equation 8 provides the maximal range (£ = U 2 /g). In sports,
U  is fixed by the choice of the ball (shape and mass), and U y, is fixed by the launch method

(e.g., throw, bat, racket, kick).
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Table 2 The size of the ball (D = 2R), the length of the sports field (Lg.1q), the density of the ball (p;), the wavelength A
calculated with Equation 17 using Cy,, = 0.2 (1), the length ratio (Lge1q/A), and the critical Reynolds number (Re,) for

various sports

Sport D =2R(m) | Lgeg (m) ps (kg/m®) A (m) Lgela/A Re, Remax/ Re,
Badminton 6.0 13.4 44.21 4.18 3.2 No No
Tennis 6.5 24.0 382.5 13.3 1.8 No No
Ping-pong | 4.0 2.70 74.60 3.62 0.75 40 x 100 | 0.21
Squash 4.0 9.75 716.2 11.2 0.87 4.0 x 10° 0.52
Jai alai 6.5 54.0 834.5 19.7 2.7 1.3 x 10° 0.28
Golf 4.2 225 1,160 15.0 15 4.0 x 10% 6.4
Volleyball 21 18.0 43.31 14.5 1.2 1.7 x 10° 3.0
Soccer 21 100 92.80 21.2 4.7 1.5 x 10° 4.8
Softball 9.7 76.0 397.6 20.3 3.8 1.3 x 10° 2.3
Baseball 7.0 110 807.4 20.8 5.3 1.3 x 10° 1.9
Cricket 7.2 160 818.7 21.6 7.4 1.3 x 10° 2.0
Lacrosse 6.3 100 1,067 21.7 4.6 4.0 x 10° 0.53
Handball 19 40.0 125.3 223 1.8 3.5 x 10° 0.98
Basketball 24 28.0 89.80 23.8 1.2 3.5 x 10° 0.73

For golf, volleyball, and baseball, the values have been extracted from the work of Mehta (2008). For soccer, data are from Asai et al. (2007). For
ping-pong, squash, and lacrosse, we take the values corresponding to a smooth sphere (Mehta & Pallis 2001). For badminton (Cooke 1999) and tennis
(Mehta et al. 2008), no drag crisis has been observed. Owing to ball similarity (and lack of available data on the drag crisis), we assume that softball and jai
alai have the same characteristics as baseball. For the same reason, the values for handball and basketball have been assumed to be close to that for a

smooth sphere. The ratio between the maximal value of the Reynolds number, Repay, and the critical Reynolds number, Re,, is shown in the last column.

2.4.3. The size of sports fields. Darbois-Texier et al. (2014) developed the following argument
to understand the link between the maximal range of the ball and the size of a sports field: If we
consider the example of two opponents playing with a soft balloon, the common experience is that
regardless of the strength of the hit, the range of the balloon never exceeds %, = 3 m. Now let
us imagine that the sports field is 100 m long with a net at the center: We expect the players to stay
close to the netin a region of the order of the range. We thus anticipate the useful sports field size
to be comparable to the range. More generally, it is natural to compare the maximum projectile
range deduced from Equations 8 and 9 with the corresponding field length, L4, given in Table 2.
Figure 6 plots the size of the field, Lgelq, for each sportas a function of the associated ball’s maximal
range, ¥may. 1'he equality Lield = ¥may is underlined with the solid line. Itis remarkable that, without
any free parameter to calculate xy,,x, we observe a strong correlation between the maximal range
and the field dimensions. This correlation implies that once a ball is chosen, one is able to calculate
Uy, and knowing Uy, (from the way the ball is launched), it is then possible via Equations 8 and 9
to predict the size of the field on which this game should be played. Despite the strong correlation
between Lelg and amay, we also observe some deviations in Figure 6 that are further discussed in
Darbois-Texier et al. (2014).

2.4.4. Roberto Carlos’s spiral. Roberto Carlos scored a wonder goal during the inaugural match
of the Tournoi de France, a friendly international soccer tournament held in France a year before
the 1998 World Cup. Figure 74 presents the free kick location and the ball’s path. Roberto Carlos
kicked the ball with the external side of his left foot, which led to an anticlockwise spin of the
ball of the order of Qy = 88 rad/s (Dupeux et al. 2011). The velocity is close to 40 m/s, well
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data are taken from Tables 1 and 2. The solid line represents the equality between the two distances. Red labels indicate games that are
played on a closed field or court. Figure adapted with permission from Darbois-Texier et al. (2014).
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above the levitating speed (U . = 30 m/s in Table 1). To analyze the path of the ball and stress
its specificity, we consider the limit in which both the drag and lift matter and gravity can be
neglected (D, > 1, S, » 1). Experimentally, this limit has been studied in water with isodensity
spinning spheres by Dupeux et al. (2010). Figure 7b presents one of their chronophotographs,
revealing a spiral path of the particle. To analyze the trajectory, we write the equation of motion
(Equation 4) in the zero-gravity limit and use the Frenet-Serret coordinate system (t,n,b = t A n)
presented in Figure 7b:

1
MU i£t+Msz[£n:_EIOUZSCDt‘FpRSQOUCQn‘ (10)
Ky S
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Figure 7

(@) Scheme of Roberto Carlos’s wonder goal scored against France on June 3, 1997. The initial ball velocity is Uy = 38 m/s, and the
rotation frequency is Qo = 88 rad/s (Dupeux et al. 2011). (b)) Multipose image showing the trajectory of an isodensity sphere (R =

3.5 mm) penetrating a bath of water at Uy = 35 m/s and spinning at 9 = 1,200 rad/s. The time step between successive ball locations
is At = 10 ms. This image reveals a spiral trajectory. Figure reproduced with permission from Dupeux et al. (2010).

This equation is derived assuming that @ = Q( b, which means that the spin vector is normal to the
plane containing the trajectory. In this limit, the projection of Equation 10 along the t direction
leads to MU dU/ds = —pU?2SCp/2, which implies U(s) = Uge/*. Along the n direction,
the equation reduces to MU 2d0/ds = pR*Q,UCq. Using the expression of the velocity U(s),
we get

o 1,

765

ds L

. 4m p, Uy
h Li=—°-"—"—. 11
Wit N 3CQ o 2 ( )

The curvature is initially 1/Lg (Truscott & Techet 2009) and then increases exponentially over
the characteristic length £, provided the rotation rate Q remains constant (Dupeux et al. 2010).

As far as sports are concerned, an important property of the spiral is the distance, Dg, between
the impactand the center of the spiral at which the ball is expected to finish its trajectory (Figure 8).
Numerically, we findDg = £ - In(1 4+ Lg/L). For soccer, the values in Table 1 lead to £ ~ 90 m.
Using the data corresponding to Roberto Carlos’s free kick (Uy = 38 m/s, Qo = 88 rad/s), we
find £s = 82 m so that Dg ~ 58 m. Roberto Carlos’s spiral is thus characterized by two length
scales: the initial radius of curvature, L, and the location of the whirling, Ds. For shot distances, 4,
smaller than these two sizes, one cannot distinguish the ball’s trajectory from a straight line. The
soccer players thus never use spin for penalty shots (¢ = 11 m; Figure 84). As the shot distance
increases, a larger portion of the spiral is revealed, which is close to a circle of radius L (Figure 8b).
At even larger shot distances, the increase of the curvature becomes sensitive and can surprise
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Three kinds of shots in soccer: (#) Zinedine Zidane’s Panenka shot in 2006 against Italy, () Michel Platini’s free kick during Euro 1984
against Spain, and (¢) Roberto Carlos’s free kick in 1997 against France. Panel # courtesy of Michael Bryan, panel 4 courtesy of
Panoramic, and panel ¢ courtesy of the Press Association.

goalkeepers (Figure 8¢). This spiral is obviously not specific to soccer, and the same path can be
observed in ping-pong during forehand smashes or in tennis during fast topspin.

2.4.5. The paradoxical pop-ups. A pop-up in baseball is a batted ball hit very high that stays
in the infield. Usually these balls are easy to catch, and thus the batter is out. However, with
large slice, these balls become very difficult to catch, even for major league infielders (Figure 94).
McBeath et al. (2008) have shown that in this case, the trajectory follows a nonparabolic flight
with unexpected behaviors around the apex, such as a cusp and loop. A simplified version of
their complete analysis is derived below to stress the conditions that are compulsory to enter this
paradoxical regime.

Even if the spin can alter a baseball’s trajectory, Table 1 clearly shows that gravity always
matters. The equation for the trajectory is thus described by the full equation

dU 1
M= = —Mge, - 5pU’SCot + pR'QU Can. (12)

Because pop-ups are quasi-vertical trajectories, this implies that the tangent t and normal n vectors
satisfy t- e, ~ 0 and n - e, ~ 0. Along the e, direction, Equation 12 thus reduces to M dU . /ds =
—pR¥*QyCqdy/ds. This equation can be integrated once as dx/dt = —pR*QCqy(t)/M . Now
along the e, direction, the two main forces are the weight and the drag. McBeath et al. (2008)
worked with the value D, = Fp/Mg ~ 0.3. We thus assume that gravity dominates the drag,
which reduces Equation 12 to dU, /dt = —g. The height of the ball thus follows the temporal
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Figure 9

(@) New York Yankees infielder Doug Bernier calls for an infield pop-up during a spring training game against the Atlanta Braves at
Champion Park in Orlando, Florida, on March 8, 2011. The Yankees edged out the Braves 5 to 4 in Grapefruit League action. Panel #
courtesy of Ed Wolfstein Photo. (5) Conventions used to describe the pop-up. (c) Parametric curves obtained using Equations 13 and
14 plotted with 6y = 85° and different values of the lift to weight ratio: S, = 0 (purple filled squares), S, = 0.176 (blue open squares), and
Sy = 0.22 (red diamonds).

evolution y () = Uy sin 6yt — g#*/2. From this equation, we integrate the equation for x and get
the parametric set of equations:

1 L 3 R*QU,C
gx(t):coséog—t—fsineosp (g—t) +-8 (gt> with §, = 22200202 g3y

U¢ Up 2 Uy) " 67"\U, Mg
2
g@ _ . gt 1 (gt
=singpo— — - (=) . 14
vz "%, T2 \u (19

With no spin (S, = 0), we recover the classical parabolic limit. As the spin increases, the second and
third terms on the right-hand side of Equation 13 increase, revealing the cubic evolution of x().
A cusp forms when the velocity close to the apex becomes vertical. The condition U (yma) = 0
leads to the following condition for cusp formation:

_ 2 cos 0y

2T §in2 6 (13)
A cusp is thus observed when the ratio of the Magnus force to the weight is equal to the critical
value S5, which depends on the initial angle. For a quasi-vertical shot (6 — /2), this value
vanishes, and the cusp is easily observed. In the opposite limit of a horizontal shot () — 0), the
value of the critical spin (Equation 15) diverges, and no cusp can be observed. When the spin
number S, overcomes the critical value S}, loops are expected. Figure 9c illustrates these different
regimes, with parametric curves obtained with Equations 13 and 14 using the value 6, = 85° and
for different values of S,. One indeed observes a cusp for S, = Sy = 2cos(85)/ sin’(85) = 0.176
and a loop for S, = 0.22.

2.4.6. Knuckleballs. A knuckleball is a baseball pitch thrown with the knuckles (Figure 10z)
that can produce erratic, unpredictable motion (Figure 105). Nathan (2012) has discussed what

we know about the necessary conditions for observing this erratic motion: “The knuckleball is
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Figure 10

(2) R.A. Dickey throwing a knuckleball. Panel # courtesy of AP Photo/Chris O’Meara. (b)) Tracking R.A. Dickey’s knuckleball with an
effect known as StroMotion from an at bat on June 18, 2013. Panel & courtesy of Sheppard (2013).
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perhaps the most mysterious of baseball pitches. It is thrown at a speed significantly lower than
that of other pitches and with very little spin.” There are very few players able to throw such balls.
At the moment, R.A. Dickey is the only active major league knuckleball pitcher, and he typically
throws balls in the range of 32-34 m/s. Tim Wakefield, who played in the major league from 1992
until 2012, threw knuckleballs at 30 m/s. These velocities are far from the fastest recorded pitch,
by Aroldis Chapman (nicknamed the Cuban Missile), 47 m/s (in 2010).

Zigzagging paths also exist in cricket, and the seams on the balls have long been suspected to
play a major role in knuckleballs (Mehta 1985, Higuchi & Kiura 2012). However, such erratic tra-
jectories are reported in soccer (Asai & Kamemoto 2011) and in volleyball (Cho 2004, MacKenzie
etal. 2012), sports for which balls no longer have seams. For all these sports, the stigmatas remain
the same: almost no rotation and a fixed velocity that depends on the sport. Above, we underline
that in baseball, the knuckleball velocity lies between 30 and 34 m/s. In volleyball, the velocity for
a float serve is between 16 and 18 m/s (Depri et al. 1998, Hiyrinen et al. 2007), and in soccer,
knuckleballs are reported in the range of 28 to 36 m/s (Barber et al. 2009, Asai & Kamemoto
2011).

Figure 115,d presents a typical knuckleball in soccer. In Figure 115, the ball moves from left to
right, and the use of titanium powder allows the visualization of both the trajectory and the vortex
structures in the wake. Usually, a soccer ball at high velocities goes straight, as in Figure 11a.
However, in some special cases, it deviates from a straight line and exhibits sidewise motion of
several ball diameters. The length scale of the zigzag is large compared to the distance between
two vortical structures. Qualitatively, those zigzags are not so different from the ones observed
during the free fall of glass spheres in water (Figure 11¢). Such path instability has been studied
experimentally and theoretically (Horowitz & Williamson 2010) and has been reviewed in Ern
etal. (2012). Such instabilities are, however, not supposed to persist for balls, which are typically
a hundred times denser than air and move at Reynolds numbers of 10°. This conclusion seems to
be correct as most of the time we observe that balls in sports move straight, as in Figure 114.

However, if any spherical ball falls from an important height, side deviations are always ob-
served. Darbois-Texier et al. (2013) have conducted such experiments, letting several sport balls
fall vertically from a 40-m-high bridge. Figure 124 presents three examples of recorded trajec-
tories obtained with a Jabulani soccer ball released vertically from rest. Even if the first 10 m are
quasi-straight, the end of the fall does exhibit lateral excursions of the order of one ball diameter.
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Figure 11

(@) Visualization of the straight path of a soccer ball. The white bar stands for 1 m. (9) Path of a soccer knuckleball visualized with
titanium powder. The velocity is 28 m/s with almost no spin. Panels # and 4 reproduced from Hong et al. (2010). (¢) Free fall of a glass
sphere in water (a diameter of 1 cm and a constant velocity of 30 cm/s). In this case, the white bar represents 2 cm, and the whole image
has been tilted by 90° for comparison with the soccer ball’s path. Panel ¢ reproduced with permission from Darbois-Texier (2013).

(d) A soccer kick taken 33 m from the goal, slightly to the right of center, launched at approximately 36 m/s with one-fourth revolution
per second of sidespin from an English Premier League game in 2006. Panel d reproduced from Barber et al. (2009).

Such results can be understood using the wind-tunnel measurements of fluctuating aerody-
namic forces on spheres reported by Norman & McKeon (2011). This study was performed with
a smooth sphere of diameter D = 15 cm placed in the 61 cm x 61 cm x 244 cm test section of
the temperature-controlled recirculating wind tunnel at the California Institute of Technology.
The mean velocity U varies from 5 m/s to 50 m/s with a very low free-stream turbulence intensity,
#'/U < 0.3%. The study is very detailed, and we report here only two results that are essential
to understand knuckleballs. Because the sphere is mounted on a force balance, the authors have
access to the mean drag coefficients along the direction of the flow (C,) and in the transverse
directions (C,, C). Figure 12 presents these coefficients as a function of the Reynolds number.
Unsurprisingly, the largest force is observed in the direction of the flow with a transition to the
supercritical regime at Re = 3 x 10°. The mean forces in the transverse directions are weak,
except in the transition region where they become of the same order as in the direction of the
flow. Beside these mean values, the authors also characterize the unsteady forces via the standard
deviations CP (1) = (C;(z) — C;)?, with the subscript i standing for the direction with respect to
the flow (i = « for the flow direction, i/ = y for horizontal perturbation, and i = z for vertical
ones). Figure 12¢ shows an example of the dimensionless spectral density of the lateral forces,
®(St). The area under the curve is the mean square force fluctuation, C/? = [ ®;(St)d St, where
St = fD/U is the Strouhal number based on the frequency of the perturbation f. The spectral
density is shown for two different Reynolds numbers, Re = 8 x 10* and Re = 2.3 x 10°. The
classical von Kdrmdn peak at St = 0.2 diminishes as the Reynolds number is increased while the
level of the low-frequency band increases. The study of Willmarth & Enlow (1969), performed
in the supercritical region, revealed that the 0.2 peak is no more visible after the drag crisis. If we
reduce the low-band frequency to white noise and study the lateral motion §(¢) of a ball, we get

d*s

1
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(@) Different trajectories of a Jabulani soccer ball released vertically with the same initial conditions (Uy = 0). Along the z direction, the
ball accelerates and reaches a Reynolds number of 2.3 x 10° after 25 m. Laterally, erratic excursions of the order of one diameter D are
observed. Panel # adapted with permission from Darbois-Texier (2013). (/) Mean drag coefficients measured on a smooth sphere by
Norman & McKeon (2011). (¢) Normalized power spectral density of the subcritical lateral forces measured on a 15-cm-diameter
smooth sphere by Norman & McKeon (2011). The lateral force spectra were averaged. Present results are Re = 8 x 10% and Re =

2.3 x 10°.
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Taking Cr.(f) = Cp,sin2Qnft) and § = §,, sin (27 f1), this equation reveals that the frequency

for which the amplitude of the deviation 8,, is D is f = U /(27w D)\/3pCLw/2p;. The associated
wavelength A = U /f is thus written

A 5 2p 1
— =27 |s— .
D 3 P CLm

The denser the sphere relative to the fluid, the longer is the zigzag. The larger the lift coefficient,
the smaller is the wavelength of the zigzag.

In conclusion, zigzags always exist, but they are only visible if we observe the path of the ball
over a distance that is larger than A. For shorter distances, the lateral deviation is small compared
to the diameter, and the zigzag cannot be observed.

A poor man’s approach of the knuckleball is as follows: Because Figure 125 reveals that the lift
coefficient is very small except in the transition, we imagine that Cy,, = 0 outside the transition
and Cp,, = Cp = 0.2 in the transition (values extracted from Figure 125). With such a simplified
model, Equation 17 predicts that the size of the zigzag is infinite outside the transition (and thus
not observed). In the transition, it can be observed if the distance of observation is larger than 4. In
sports, the largest value of the distance of observation is the size of the field, Lgeq. Table 2 presents
2 for different sports and compares it to Lgela. It also presents the critical Reynolds number, Re,, for
the different sports and compares it to the maximal value of the Reynolds number, Reyn,y, calculated
using U,y in Table 1. Figure 13 presents the ratio Reyn,,/Re, as a function of the length ratio
Lgeia/A. In this figure, the knuckleball domain is the upper right area. Indeed, from the argument
just developed, the ball must cross the drag crisis. Because the ball decelerates during flight, its
maximal Reynolds number must be larger than the critical Reynolds number (Re,c/Re. > 1).
Moreover, to be observed, the zigzag must be smaller than the sports field (Lgea/A > 1). Those
conditions are satisfied for volleyball, baseball, softball, cricket, soccer, and golf.

The surprise here is perhaps to find golf in this category. To our knowledge, knuckleballs have
not been reported in golf, but considering the efforts dedicated by companies such as Polara to
achieve straight paths, we believe that zigzags exist in golf and can be observed.

17)

Clanet



107

Golf

N
“2 ®, soccer
-

Volleyball ﬁ
- @ Softball
g Cricket

Baseball

i

Ffo
RemaxIRec 100 = /( j Handball

Basketball

Squash‘ . Lacrosse
U Jai alai
Ping-pong

X

10 | l

1071 100 10!
Lﬁeld/A

Figure 13

The ratio Remax/Re, as a function of the length ratio Lgeiq/A. The knuckleball zone exists in the upper right corner.

On the contrary, zigzags cannot be observed in ping-pong (the ball never crosses the transition),
squash, lacrosse, jai alai, basketball, and handball. With regard to badminton and tennis, no drag
crisis has been reported, and no zigzags have been observed.

Finally, because the drag crisis is sensitive to the roughness of the surface, it is expected that
seams will indeed affect the transition. Seams are not required to produce a knuckleball, but they
can affect the phenomenon through the velocity at which it is observed and through its amplitude.

3. SHUTTLECOCKS AS A PARADIGM FOR ANISOTROPIC BALLS

In the past decade, the trajectories of shuttlecocks have been studied extensively through exper-
imental, theoretical, and numerical approaches. Cooke (2002) recorded experimental trajecto-
ries of different shuttlecocks in the court and compared them with numerical simulations. The
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Figure 14
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(@) Snapshots of a shuttlecock after an impact with a racket. One observes the time evolution of the angle ¢ between the shuttlecock’s
orientation and its velocity U. White lines indicate 50 cm. The time interval between each position is 5 ms, the shuttlecock’s departure
velocity is Uy ~ 23 m/s, and its initial angular velocity is ¢ = 206 rad/s. (b)) Model of a shuttlecock comprising a sphere of large cross
section S and small mass Mp, which represents the skirt, and a sphere of small cross section s and large mass M, which represents the
cork. Figure reproduced with permission from Cohen et al. (2014b).
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aerodynamics of several shuttlecocks has also been inspected in a wind tunnel by Cooke (1999) and
Alam et al. (2010). They measured the air drag and showed that the drag coefficient Cp, is more
approximately constant for Reynolds number ranging from 10* to 2 x 10°. For commercial shut-
tlecocks, the drag coefficient varies between 0.6 and 0.7 depending on the model. Wind-tunnel
measurements also reveal that there is no lift force on a shuttlecock when its axis of symmetry is
aligned with its velocity direction. A synthesis of data collected in the court and in a wind tunnel
has been done by Chan & Rossmann (2012).

The cylindrical symmetry that characterizes a shuttlecock allows it to flip, that is, to change
direction after impact. Figure 144 illustrates this effect in which the flip lasts three time intervals,
which corresponds to 15 ms. The oscillating time of the shuttlecock direction is estimated to be
80 ms. After 130 ms, the shuttlecock axis of symmetry is aligned with its velocity direction.

To understand this complex dynamic, we must evaluate the forces applied to it, namely the
weight and aerodynamic forces. The latter reduces to a drag force, the application point of which
is the pressure center where aerodynamic torque vanishes (Etkin & du Reid 1982). Because the
mass repartition is nonhomogeneous in a shuttlecock, its center of gravity is closest to the cork
and differs from the center of pressure. Using numerical simulations, Cooke (2002) estimated that
the distance between the center of mass and center of pressure of a shuttlecock is approximately
3.0 cm. Figure 144 highlights the effect of the aerodynamic drag, Fp, on an inclined shuttlecock.
When the shuttlecock moves to the right, the aerodynamic drag Fp is oriented to the left and
exerts a torque counterclockwise, which brings the shuttlecock back on the axis (¢ = 0). However,
when the shuttlecock moves to the left, as is the case after impact, the aerodynamic drag F, is
oriented to the right, and the aerodynamic torque acts clockwise, stabilizing the shuttlecock in the
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(@) The Kongsberger technique, a style of ski jumping developed in the early 1920s by Jacob Tullin Thams and Sigmund Ruud.
(0) C. Duffner (Germany) on a ski flying hill in Planica, Slovenia, in 1994. Panel 4 courtesy of W. Miiller. () Conventions used to
describe ski-jump flight.

position ¢ = 7. Owing to this aerodynamic torque, each player is thus able to hit the cock and
not the skirt.

Because the versatile behavior of a shuttlecock originates from the distinction between its
center of mass and center of pressure, we model this object with two spheres, one for the skirt with
a small mass Mp and a large cross section S positioned in B and the second representing the cork
with a larger mass M and a small cross section s positioned in C (Figure 145). The shuttlecock
is thus reduced to a heavy small cork and a large light skirt. A torque balance around G provides
the following equation in the limit S- M¢ > s - M p:

,OSC D Uo . ,OSC D Ug
ML+ My/Mo)" ™ 20 + Mo
where Cp is the drag coefficient of a sphere, and /¢ is the distance between the points G and
C (lge = Mp/Mclpce). The calculation leading to Equation 18 has been detailed in Cohen
et al. (2014b). This second-order differential equation for ¢ corresponds to a damped oscillator.

¢+ sing =0, (18)

The square of pulsation, w} = pSCpU/2M I, is linked to the stabilizing torque generated
by the aerodynamic drag. The damping term, 1/t, = pSCpU/2M (1 4+ M p/M ), results from
the drag associated with the orthoradial movement of the shuttlecock as ¢ varies. Using the values
corresponding to Figure 14a with My =2 g, M¢ =3 g,lgc = 2 cm, Cp = 0.6, and S ~ 28 cm?,
we get 271 /wy ~ 90 ms for the period of oscillation and 7, ~ 140 ms for the damping time. Both
values are compatible with the observations.

4. THE SKI JUMP AND THE (ALMOST) NO-SYMMETRY LIMIT

The ski-jumping technique has changed several times over the years from an almost vertical
position (Figure 154) to a horizontal one (Figure 155) (Miiller 2008b). We discuss this evolution
using the conventions presented in Figure 15c¢.
Reducing the ski jumper to a flat plate (mass M, surface S) enables one to write the equation
of the jump flight as (Carmigniani et al. 2013)
aUu

1
M= =Mg+§pUZSCDsin(a—/3)n. 19)

This equation must be solved with the initial conditions U(z = 0) = U,. Compared to a sphere,
the direction of the aerodynamic force now depends on the geometry. For a flat plate, this force
is normal to the plate (Hoerner 1965). In the small-angle limit, « <« 1, the normal is almost
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Figure 16

aligned with the vertical (n- e, =~ 0), and Equation 19 reduces in the e, direction to dU . /dt = 0,
from which we obviously get x = U cos fyz. Along the e, direction, Equation 19 reduces to
dU,/dt = —g — pSCpcosalU U, /2M . Following the studies of Miiller et al. (1995) and Miiller
(2008a), it appears that the velocity U weakly changes between takeoff and landing, maintaining
a value close to 30 m/s. The condition U ~ U allows one to integrate the equation and get the
approximate trajectory:

. x Dy cosa
gy g 1 1+ D, cosa sin By |:1—e?gf5 <o fo :|7 20)

Uig N _Uié D, cosa cos By (D, cosa)?

where D, = pU2SCp/2M g is the drag to weight ratio. In the limit of small drag (D, < 1), the
trajectory in Equation 20 reduces to the parabolic flight in Equation 5. In the opposite limit of a
perfect flyer (D, > 1), the trajectory in Equation 20 allows one to predict the jump length at a
fixed locationy = —H:

x(y=—H)~ H - D, cosa - cos f. (21)

This expression reveals that the length of the jump is maximized for large values of D, and
for cosa = 1 and cos By = 1. For athletes, one way to increase D, is to decrease their mass
(limp;—0 D, = 00). This effect did have major consequences for ski jumpers in the sense that some
became anorexic (Schmélzer & Miiller 2002). The condition cosa = 1 allows us to understand
the horizontal position observed in Figure 155. Finally, the condition cos By = 1 also allows us to
understand the large effort by athletes to increase their vertical velocity at takeoff (Virmavirta et al.
2009). Indeed, the in-run track makes a —10° angle with the horizontal direction. To get close to
the condition By = 0, an athlete must reach a vertical velocity of U,y = Ugsin(10) ~ 5.2 m/s.
This value is compatible with measurements performed at takeoff by Virmavirta et al. (2009) and
Miiller (2013). The model just discussed is obviously too basic to account for the complexity of the
whole phenomenon, and more detailed approaches can be found in Schmélzer & Miiller (2005).

Above we discuss the trajectory of the center of mass assuming that the jumper is able to
keep a constant angle . Figure 164 presents what would happen after takeoff (top left corner)

Aerodynamic
—— Trajectory of initial front force
—— Trajectory of initial bottom

Force from
skis on legs

(@) A plate (metro ticket) taking off on a ramp with a final slope of —10° (top left corner). The plate is falling toward the bottom right
corner and tumbles while falling. The images are separated by 20 ms. The red line is the trajectory of the initial front part of the plate,
and the blue line follows the initial bottom part of it. (b) Ski-jumper stability. The gray arrow represents the gravity field force, the
purple arrow is the aerodynamic force described in Equation 19, and the green arrow is the force exerted by the skis on the jumper’s
legs. Figure adapted with permission from Carmigniani et al. (2013).
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if the jumper were really behaving as a flat plate. Because the aerodynamic force applies at the
aerodynamic center, which is close to the leading edge for a plate, the aerodynamic force exerts
a torque on the plate that makes it rotate counterclockwise. To avoid this tumbling instability
(Mahadevanand et al. 1996, Andersen et al. 2005), the ski jumper balances the aecrodynamic force
acting on his or her body by the aerodynamic force acting on the skis (Figure 165). Although
not presented in the figure, the arms also help the jumper to achieve stability (Marques-Bruna &
Grimshaw 2009a,b).

5. CONCLUSION

Aerodynamics plays a major role in the trajectory of sports projectiles, and above we have tried to
discuss some of its salient features. We do not pretend to be exhaustive, and this is perhaps a good
place, in the conclusion, to underline some questions that have not been addressed.

Among those sports absent, one could mention rugby or American football, which are played
with oval balls. With spin and gyroscopic stabilization, these balls should behave almost like a ski
jumper, in the sense of keeping a constant angle and feeling a force that depends on its orientation.
However, without spin, the complexity of the trajectory is increased (Seo et al. 2008) and probably
deserves some further study.

Apart from rugby and American football, the more noticeable sports missing from the review
are throwing sports, such as those involving the shot put, javelin, and discus. The shot put is
probably the easiest of the three in terms of its trajectory because it belongs to the gravitational
family in which parabolae are the rule. The javelin and discus are more subtle in the sense that
their positions during flight result from a fluid-structure interaction problem. In that sense, they
could be viewed as a prolongation of the ski-jumper problem in which the constraint of constant
angle has been relaxed. Focusing on the javelin, these particles represent a good challenge in the
sense that they incline and vibrate along their trajectory. Looking for the optimal design that
maximizes the range is a well-posed (complex) problem.
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