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Abstract

David J. Benney (1930–2015) was an applied mathematician and fluid dy-
namicist whose highly original work has shaped our understanding of non-
linear wave and instability processes in fluid flows. This article discusses the
new paradigm he pioneered in the study of nonlinear phenomena, which
transcends fluid mechanics, and it highlights the common threads of his
research contributions, namely, resonant nonlinear wave interactions; the
derivation of nonlinear evolution equations, including the celebrated non-
linear Schrödinger equation for modulated wave trains; and the significance
of three-dimensional disturbances in shear flow instability and transition.
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1. INTRODUCTION

1.1. From New Zealand to MIT

David John Benney (April 8, 1930–October 9, 2015) was an applied mathematician and fluid dy-
namicist. He was born in Wellington, New Zealand, and started his education in a one-room
schoolhouse near the town of TeAwamutu.Hewent on toVictoriaUniversity College (a branch of
what was then the New Zealand University), where he was originally going to study either French
and German or geology, but he was soon turned on to mathematics, receiving his Bachelor of Sci-
ence (B.Sc.) with first-class honors in 1950 and a Masters of Science (M.Sc.) in 1951 (Figure 1).
He continued his education at Emmanuel College, University of Cambridge, in England on a
New Zealand postgraduate scholarship. Benney excelled in Parts II and III of the Mathematical
Tripos, receiving a B.A. in mathematics with first-class honors in 1954, but he did not stay for
a PhD in Cambridge. Instead, following a three-year (1954–57) stint as Lecturer at Canterbury
University College back in New Zealand, he entered the applied mathematics doctoral program
at MIT (Massachusetts Institute of Technology) in Cambridge,Massachusetts, and completed his
PhD in 1959 in record time. Just two days after graduation, he married Elizabeth (Liz) Benney
(née Matthews), a fellow New Zealander he had met on a ski trip a few years earlier. They had

Figure 1

David J. Benney circa 1950 when he was a student at Victoria University College. Image courtesy of
Elizabeth Benney.
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three children: Richard, Paul, and Antonia. David Benney spent his entire career on the faculty in
the mathematics department at MIT, rising from Instructor in 1959 to Full Professor in 1966 and
Department Head (1989–99), until his retirement in 2010.

In the 1950s, applied mathematics at MIT was led by Chia-Chiao (C.C.) Lin, a former stu-
dent of Theodore von Kármán at Caltech and recognized leader in theoretical fluid dynamics,
particularly hydrodynamic stability, and by Eric Reissner, a renowned expert in elasticity theory.
Reissner was also the managing editor of the Journal of Mathematics and Physics, one of the oldest
journals in the United States that specialized in the interplay between mathematics and physical
applications, founded by Clarence Moore at MIT in 1921. Although he came to MIT to work on
hydrodynamic stability on the recommendation of George Batchelor at Cambridge University,
who knew C.C. Lin, Benney toyed with the idea of working on elasticity after attending an excel-
lent course on partial differential equations taught by Reissner, but he finally decided to stay with
the original plan. His doctoral thesis, under the supervision of C.C. Lin, drew attention to the
role of nonlinear interactions between two- and three-dimensional (3D) disturbances in initiating
transition in parallel shear flows, as observed in experiments for a boundary layer at the National
Bureau of Standards. This approach was a clear departure from the classical, linear theory of shear
flow instability based on the Orr–Sommerfeld equation, and it also set the stage for Benney’s later
seminal contributions on resonant nonlinear wave interactions. Furthermore, the use of pertur-
bation expansions for analyzing interacting shear flow instability modes in his PhD thesis was a
precursor of the multiple-scale asymptotic techniques pioneered by Benney in later studies.

The late 1950s through 1960s were a period of expansion and reorganization of applied math-
ematics at MIT. In the area of fluid mechanics, in particular, apart from Benney, several new ap-
pointments were made, including Louis N. Howard, Harvey P. Greenspan, Steven A. Orszag, and
Willem V.R. Malkus. This increased interest in fluid mechanics with an applied mathematics fla-
vor was spurred in part by the parallel development of geophysical fluid dynamics (GFD), which
brought to center stage the need for theoretical models of fluid phenomena controlled by the ef-
fects of stratification, rotation, and shear. Several advances in this new field were initiated at the
GFD Program held every summer since 1959 at Woods Hole, Massachusetts, with strong MIT
participation. Although Benney was not directly involved in this program, starting in the mid-
1960s, his research interests in nonlinear internal gravity waves and stratified shear flows were
clearly influenced by GFD applications. In 1968 David Benney became Managing Editor of the
Journal of Mathematics and Physics, which was renamed Studies in Applied Mathematics, and its scope
was focused on publishing articles originating from or invited by the MIT applied mathematics
group. Under his stewardship for the next 46 years, Studies was established as one of the leading
journals in physical applied mathematics.

1.2. Research Paradigm

Overall, Benney’s theoretical approach is typical of the British school of applied mathematics in so
far as physical motivation plays an important part in the choice and solution of problems; rather
than detailed studies of very specific flows, however, Benney’s focus was on developing generic
theoretical models that capture the underlying physics of nonlinear phenomena in a variety of
physical contexts. This research paradigm has proved particularly fruitful, and the impact of his
work transcends fluid mechanics. For example, Benney and his first PhD student, Alan Newell,
derived in a systematic way the celebrated nonlinear Schrödinger (NLS) equation (Benney &
Newell 1967b) as the canonical evolution equation of the envelope of a weakly nonlinear modu-
lated wave packet. Like many canonical equations, theNLS equation was also discovered at almost
the same time in the USSR, by Vladimir E. Zakharov and coworkers (e.g., Zakharov 1968). This
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is a fundamental result in fluid mechanics that also finds applications in far-removed areas such as
nonlinear optics, plasma physics, and Bose–Einstein condensates. Furthermore, Benney (1966a)
pointed out that the Korteweg–de Vries (KdV) equation, previously familiar in the context of
shallow-water waves, governs weakly nonlinear long-crested waves in a fluid layer under general
flow conditions—with or without a free surface or in the presence of density stratification, shear,
and rotation—a contribution that in addition to fluid mechanics has had lasting impact in mete-
orology and oceanography.

Being a physical applied mathematician, Benney appreciated pure mathematics but had little
interest in pursuing abstract mathematical analysis. Nonetheless, some of the model equations
he derived in the context of fluid mechanics have attracted considerable attention from the pure
mathematics community. An example is the so-called Benney System (Benney 1973), which gen-
eralizes the classical shallow-water equations to flows with nonzero vorticity and turns out to have
interesting mathematical properties, including an infinite number of conservation laws.

1.3. Style and Idiosyncrasies

Benney’s papers are typically short and to the point: Following a brief introduction that touches
on the motivation for the paper and its relation to earlier work, the main results are presented with
only a few key steps of the usually extensive algebraic manipulations.While this minimalistic style
does not make for easy reading, it reflects David Benney’s emphasis on truly new ideas devoid of
embellishment: “Dave can never be accused of writing two words where one will do,” noted Peter
J. Bryant (Bryant 1990, p. 2), who was a student at Canterbury University College when David
taught there. However, economy of presentation did not seem to deter readers, as his two most
cited papers (Benney 1966b, Benney&Newell 1967b) are only six pages long and the introduction
is limited to a single paragraph; the novelty of the ideas put forward in these relatively short papers
greatly outweighed the brevity of the discussion.

David Benney had a generally understated presence and was very much at ease with himself.
His quick wit and subtle sense of humor (which sometimes was only appreciated after one had left
his office) were most characteristic of his personality. While occasionally he may have appeared
brusque to some, his overall fairness, consideration, and respect for colleagues and students were
undeniable.These attributes along with a straightforward, no-nonsense leadership style weremost
appreciated during his ten-year tenure as Department Head (1989–99).

As an educator, Benney took classroom teaching very seriously both at the undergraduate level
(he coauthored with H.P. Greenspan the text Calculus: An Introduction to Applied Mathematics) and
the graduate level, where he developed advanced subjects on perturbation asymptotics and non-
linear wave motion. He was also a dedicated mentor of graduate students and continued to be
supportive of them even after graduation. He supervised 18 PhD students, several of whom went
on to have distinguished careers in academia.

Throughout his career,David Benney cultivated a low profile, not seeking recognition and even
refusing to accept well-deserved honors or awards. His aversion to self-promotion dates back to
the time he was a student, as illustrated by the following story told by his wife, Liz.While at Victo-
ria University College, David was recommended to apply for a Rhodes Scholarship for postgrad-
uate studies at the University of Oxford, and as part of the application, he had to be interviewed by
the Governor General of New Zealand. At that time, it so happened that David had a summer job
helping in the gardens of the Government House, so he saw the Governor General almost daily
when they discussed the growing vegetables and fruit. On the day of the interview, after finishing
his job,David went home to change clothes and returned to the Government House for the inter-
view. The Governor General at first did not recognize his young gardener dressed in a jacket and
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tie, but as the interview progressed he said to David, “Somehow I think I know you.” However,
David, not wanting to push himself, did not reveal that he worked in the Governor’s gardens!

About 50 years later, in 2000, to celebrate David’s 70th birthday, his former PhD students de-
cided to organize in his honor a conference at MIT with invited speakers and a banquet.However,
in view of his allergy to any sort of recognition, they faced a major challenge: How to convince
the honoree to attend? To overcome this obstacle, they sought the help of Liz. She agreed to keep
the celebration secret from Dave, and on the day of the banquet, which preceded the conference,
she managed to bring him to the banquet venue with the excuse that they were going to attend
the presentation of a new book by a friend. The plot worked perfectly: Although it took several
minutes for Dave to get over the initial shock, the banquet was a big success and it was clear that
he was extremely happy and grateful for this honor. The conference presentations along with a
brief summary of Dave’s research contributions (Ablowitz et al. 2002) were published in a special
issue of Studies in Applied Mathematics.

1.4. Farmer Benney

David Benney had an interest in the outdoors and sports since his childhood in New Zealand. He
was an avid skier and hiker and an excellent tennis player. In the last twenty years of his life, how-
ever, he devoted most of his free time to farming. This new hobby/occupation came about as the
Benneys made a decision to leaveWayland,Massachusetts, where their children grew up, and buy
a farm. Liz had been passionate about horses since she was a small child in New Zealand and she
became a top rider at a young age. In the United States, she participated as both a competitor and
a judge at equestrian events, winning many awards, but her dream was to own and run a real work-
ing farm. This lifelong vision was realized in 1989 when the Benneys bought seventy-plus acres
of land with an old farmhouse and two antique barns in the town of Upton, Massachusetts, about
40 miles from Cambridge. The challenges of turning this long-abandoned land into a real horse
farm, including the restoration of the farmhouse and the barns as well as building a new house,
are described in detail by Liz in the highly entertaining book Seventy-Something Acres (published
by Cape Catley Ltd in 2006). Although Dave’s skills in farming were not at the level of those in
fluid mechanics, according to Liz, he enjoyed the day-to-day running of the farm (Figure 2).

1.5. Overview

The rest of this article focuses onDavid Benney’s research in fluidmechanics. Benneymade highly
original, transformative contributions to a wide range of classical problems of nonlinear wave
propagation and instability phenomena. In some instances, such as 3D shear flow instability first
studied in his PhD thesis, his approach was way ahead of its time, and he later revisited the problem
when his ideas and those of the fluids community had further matured. For this reason, rather
than following a chronological order, we shall highlight the common threads of his work; namely,
resonant nonlinear wave interactions, the use of multiple-scale asymptotic techniques to derive
generic evolution equations for nonlinear wave dynamics, and the significance of 3D disturbances
in nonlinear wave processes.

2. RESONANT NONLINEAR WAVE INTERACTIONS

In the 1950s, the state of the art in nonlinear water wave theory was limited to Stokes’ (1847)
solution for weakly nonlinear periodic waves on deep water and the classical works of Boussinesq
(1871), Rayleigh (1876), and Korteweg & de Vries (1895) for nonlinear shallow-water waves. The
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Figure 2

(Left) David and Elizabeth Benney’s farmhouse built in the 1990s on their seventy-plus-acre farm in Upton, Massachusetts. (Right)
Farmer Benney moves equipment.

next significant advance in the theoretical understanding of nonlinear effects in water waves, and
nonlinear wave processes in general, was realized in the 1960s with the discovery of resonant
nonlinear wave interactions. The idea has its origin in the attempts of Phillips (1960), Longuet-
Higgins (1962), andHasselmann (1962) to shed light on how nonlinear interactions among surface
gravity wave modes on deep water may redistribute the initial energy in these modes. These early
studies were based on straightforward perturbation expansions in wave steepness. After lengthy
algebra, it became apparent that energy transfer is generally weak at second order, and the same
is true at third order unless four modes, with wave vectors ki and frequencies ωi (i = 1, . . . , 4)
consistent with the dispersion relation ω2 = g|k|, happen to satisfy the resonance conditions

k1 + k2 + k3 + k4 = 0, ω1 + ω2 + ω3 + ω4 = 0. 1.

Furthermore, the analysis suggested that three modes belonging to such a quartet may excite the
fourth member resonantly; that is, the newly generated wave amplitude would grow linearly in
time. As recounted by Phillips (1981), back then, the physical significance of these resonances was
a matter of vigorous debate as, based on energy conservation, the linear amplitude growth cannot
persist after long enough time; thus, it was not clear how much energy ultimately gets transferred
to the newly generated wave.

The missing link was provided by Benney (1962), who recognized that resonantly interacting
dispersive wavemodes behave like weakly nonlinear oscillators with natural frequencies in internal
resonance. For the latter case, it was already known that the resonance can cause significant energy
transfer among the oscillators over a timescale of many periods, and the long-time dynamics of
this energy-sharing process is described asymptotically by nonlinear amplitude equations that can
be obtained by the newly developed technique of two-timing (Bogoliubov & Mitropolsky 1961).
Adapting this approach to surface gravity wave interactions, Benney (1962) derived four coupled
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evolution equations for the complex amplitudes—an eighth-order system for the real amplitudes
and phases—of four modes that satisfy the resonance conditions in Equation 1. In spite of the
tedious algebra involved in the derivation (some of the analytic expressions in the paper are pages
long) and the fact that the evolution equations could not be solved in closed form, the essential
physics of a resonant interaction became clear by noting three simple integrals. These revealed
that significant energy transfer does occur amongmodes forming a resonant quartet, in a way such
that the growth of onemember of the group is compensated by the decay of another. Furthermore,
if only three members of a quartet are present initially, their interaction can generate the fourth
member to the same level as the initial condition. However, this process takes a long time, namely
O(1/ε2) wave periods, where ε � 1 is the wave steepness.

The analysis of resonant quartets by Benney (1962) was pivotal to the ensuing rapid devel-
opments in the theory of nonlinear dispersive waves, and David Benney was a major contributor
to this remarkable progress. Specifically, resonant triads, which are the lowest-order resonant in-
teractions possible, can be treated in a similar fashion and amount to energy sharing on a faster,
O(1/ε )–wave periods timescale. In water waves, resonant triads are not allowed by the dispersion
relation when only gravity is present. However, resonant triads can arise in internal gravity waves
and also play an important part in interactions between gravity and capillary wave modes on the
surface of water. Furthermore, various instabilities of periodic waves to infinitesimal perturbations,
such as the Benjamin–Feir modulational instability of surface waves and the parametric subhar-
monic instability of internal gravity waves, can be understood in terms of resonant interactions.

In addition, from a theoretical standpoint, Benney (1962) clarified how the linear-in-time (sec-
ular) growth predicted by straightforward (naive) perturbation expansions can be interpreted in
terms of uniformly valid expansions involving a second (slow) timescale; this opened the way for
the now prevalent use of multiple-scale techniques in nonlinear wave problems. Finally, the same
theoretical approach using uniformly valid expansions with multiple timescales was applied by
Benney and coworkers to weakly interacting random waves, where again resonant interactions are
the dominant mechanism of energy transfer (Benney & Saffman 1966; Benney & Newell 1967a).
These ideas laid the foundations for later studies of wave turbulence (e.g., Newell et al. 2001).

3. MODULATED WAVE TRAINS

3.1. The Nonlinear Schrödinger Equation

The prominent role of resonant wave groups (triads, quartets, etc.) in redistributing energy within
a discrete spectrum of wave modes prompted Benney and his PhD student Alan Newell to in-
quire into how resonant nonlinear interactions may affect a continuous wave spectrum. Benney
& Newell (1967b) addressed this question in the simplest case of a narrow-band spectrum, cor-
responding to wave packets that comprise a monochromatic carrier modulated by a slowly vary-
ing envelope in both space and time, and obtained equations for the propagation of the wave
packet envelopes using a multiple-scale procedure. Among many novel aspects, this landmark pa-
per demonstrated that such envelope evolution equations take a generic form that only depends
on the dispersion relation,ω = ω(k), and the coefficients of the nonlinear interaction terms in the
amplitude equations for resonant triads, quartets, etc. Of particular significance is the equation
governing the complex envelope A(X ,T ) of a single wave packet,

iμ(AT + cgAX) = μ2βAXX + ε2δA2A∗. 2.

Here, (X ,T ) = μ(x, t ) are the scaled (slow) envelope variables, whereμ � 1measures the spectral
spread about the carrier, cg = ω′(k) denotes the group velocity, and β = −ω′′(k)/2 is evaluated at
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the carrier wave number. The nonlinear coefficient δ derives from the self-interaction of the en-
velope, a degenerate form of a quartet interaction that causes anO(ε2) correction to the frequency
of a uniform periodic wave of steepness ε � 1, similar to the Stokes (1847) solution for surface
gravity waves. The envelope Equation 2 accounts for the leading-order nonlinear and dispersive
effects, and a balance is reached at ε = μ. Then, in a frame moving with cg,X ′ = X − cgT , both of
these effects come into play on the same slow time, T ′ = ε2t, and Equation 2 reduces to the NLS
equation in standard form.

Benney & Newell (1967b) found exact solutions of the NLS equation in the form of periodic
and solitary waves, as well as a similarity solution. Furthermore, they used theNLS equation to ex-
amine the stability of a uniform wave train (in which case, the envelope does not vary in X and is a
special solution of theNLS equation) to sideband perturbations.Their analysis revealed instability
for βδ > 0 and stability for βδ < 0.This criterion was consistent with that obtained independently
by Benjamin (1967) based on discrete resonant quartet interactions, and byWhitham (1967) using
a different approach. However, according to the NLS equation (and the discrete quartet stability
analysis), the instability is confined to a finite range of sideband wave numbers,whereasWhitham’s
theory predicts an unbounded range of unstable sidebands. The reason for this discrepancy is that
Whitham’s stability analysis was based on modulation equations for slowly varying wave trains of
finite amplitude; however, as noted by Chu & Mei (1970) and also discussed in section 15.5 of
Whitham (1974), these finite-amplitude modulation equations do not recover the NLS equation
in the small-amplitude limit owing to a missing dispersive term that, while formally negligible in
the finite-amplitude theory, contributes at leading order in the weakly nonlinear–weakly disper-
sive regime. This underscores the fundamental significance of the NLS equation as the canonical
envelope equation in the distinguished limit where dispersive and nonlinear effects are equally
important.

3.2. Three-Dimensional Water Wave Packets and the Benney–Roskes System

The envelope of a gravity wave packet on water of finite depth h satisfies the NLS equation when
modulations are restricted to the carrier propagation direction (e.g., Hasimoto & Ono 1972).
For such 1D modulations, the criterion based on the sign of βδ mentioned above implies that
Stokes periodic waves on relatively shallow water (kh < 1.363) are stable, while those on relatively
deep water (kh > 1.363) are unstable, which is commonly termed the Benjamin–Feir instability
(Benjamin & Feir 1967, Feir 1967). In the general case of oblique modulations, however, the NLS
equation is replaced by a more complicated equation system that couples the propagation of the
envelope to a long-wave component induced by the Reynolds stresses due to the presence of 2D
envelope variations. Benney and his PhD student Gerald Roskes were the first to derive this equa-
tion system, which they also used to show that a uniform wave train is always unstable to oblique
modulations except for the special case of kh = 0.38 (Benney&Roskes 1969). Apparently unaware
of this earlier work, Davey & Stewartson (1974) derived a reduced version of the Benney–Roskes
system, sometimes termed theDavey–Stewartson equations.TheDavey–Stewartson equation sys-
tem has received considerable attention by the mathematics community as a prototype model of
nonlinear interactions between short and long waves.

3.3. Resonant Long–Short Wave Interactions

The coupled propagation of a 3D gravity wave packet with its induced mean flow, governed by the
Benney–Roskes system, is an interaction of two disturbances with disparate length- and timescales.
Other common examples of such long–short wave interactions are those between gravity waves
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and capillary ripples on the surface of water and between short-scale surface and long-scale inter-
nal gravity waves. Apart from their fundamental significance, long–short wave interactions play
an important part in interpreting Synthetic Aperture Radar (SAR) images of the ocean surface—
the return SAR signals are most sensitive to surface waves with wavelengths around 30 cm, and it
is essential to know how such relatively short waves are modified by surface and internal gravity
waves of longer scales (e.g., Beal et al. 1981).

Benney (1976, 1977) developed a simple, general condition for resonant energy transfer be-
tween long and short waves. He considered wave triads comprising two short waves, k1 = k +
�k/2 and k2 = k − �k/2, and a long wave, k3 = �k, with |�k| � |k|, which automatically sat-
isfy k1 − k2 = k3. Then, from the frequency resonance condition,ω(k1) − ω(k2) = ω(k3), to lead-
ing order in �k, it follows that short waves interact resonantly with long waves if the condition
cl · cgs = |cl|2 is satisfied, that is, when the projection of the group velocity cgs of the short wave
in the direction of the long-wave phase velocity cl is equal to |cl|. In the case of 1D wave propa-
gation, this condition reduces to cgs = cl, which makes sense on physical grounds, given that the
envelope of a short wave behaves as a long wave that moves with cgs so that resonance would be
expected if there are natural long-wave modes with the same speed. Apart from this intuitive phys-
ical appeal, the fact that the long–short wave resonance condition is a limiting form of a resonant
triad plays an important part in the stability analysis of a short wave to large-scale modulations,
as the modulations consistent with this resonance are preferentially amplified. This interesting
nonlinear energy-transfer mechanism, first discussed by Benney (1976) for gravity–capillary sur-
face waves, also finds applications in atmospheric internal gravity waves (Tabaei & Akylas 2007,
Wilhelm et al. 2018).

4. NONLINEAR LONG WAVES

The first theoretical investigations of solitary waves go back to the nineteenth century. Follow-
ing the now-famous observations by Scott Russell (1844) of a single hump of water propagating
without change of shape along a Scottish canal, Boussinesq (1871) and Rayleigh (1876) found ap-
proximate expressions for solitary surface gravity waves. These were later confirmed by Korteweg
& deVries (1895) via the so-called KdV equation, an approximation to the full water wave problem
that accepts traveling wave solutions in the form of solitary waves. Apart from the classical case of
shallow-water waves, however, the wide applicability of the KdV equation was not fully recognized
in the early 1960s, although KdV-type solitary waves had been known to arise in specific physical
settings (e.g., Long 1956, Peters & Stoker 1960, Benjamin 1962).

Benney, by contrast, took a general approach to nonlinear long-wavemotion, utilizing the pres-
ence of two disparate length scales in the problem, namely the fluid depth, h, and the typical wave-
length, l . Thus, the long-wave parameter, μ = h/l � 1, and the nonlinearity parameter, ε = a/h,
where a is the typical wave amplitude, are the main controlling parameters. Using perturbation
techniques under various balances of μ and ε, he derived evolution equations for long-crested
waves in a variety of flow configurations, ranging from inviscid waveguides to viscous film flow.

4.1. Unidirectional Propagation in an Inviscid Fluid Layer

Benney (1966a) studied weakly nonlinear long waves in an inviscid fluid layer of depth h in the
presence of stratification, shear, and a free surface. This flow configuration is of fundamental
interest in GFD and includes the classical shallow-water problem as a special case. The linear
problem supports a countable infinity of wave modes, each of which satisfies its own dispersion
relation determined from solving an eigenvalue problem. Furthermore, according to these
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dispersion relations, the long-wave limit (μ → 0) is nondispersive, so infinitesimal (ε → 0)
disturbances of a certain mode propagate along the layer with the corresponding long-wave
speed c regardless of the wavelength. Thus, assuming unidirectional propagation, to zeroth order
in μ and ε, the mode amplitude profile A(x, t ) travels with c as a wave of permanent form in
keeping with the 1D wave equation At + cAx = 0, and it is natural to ask how weak nonlinear and
dispersive effects influence the long-time dynamics of such a disturbance. To address this issue,
Benney (1966a) expands the time-evolution of A(x, t ) in powers of μ and ε as

At =− cAx + εr(A2)x + μ2sAxxx + ε2λ1(A3)x

+εμ2(λ2AAxxx + λ3AxAxx ) + μ4λ4Axxxxx + . . . , 3.

where r, s, and λ1, . . . , λ4 are constants to be computed by suppressing secular terms at each
order in the expansion. This novel perturbation procedure demonstrates that, under the balance
ε = O(μ2) where nonlinear and dispersive effects are equally important, the leading-order
propagation of a weakly nonlinear long-wave mode is governed by the KdV equation. Thus,
solitary waves with a sech2 profile are to be expected in this general setting, and the expansion
in Equation 3 makes it possible to compute higher-order effects beyond the KdV approximation
(e.g., Skopovi & Akylas 2004). Furthermore, the same approach is applicable to weakly nonlinear–
weakly dispersive wave propagation of a single mode, as well as interacting modes, in other flow
configurations that act as waveguides (e.g., waves in a rotating fluid).

4.2. Thin-Film Flow Down an Inclined Plane

In a follow-up paper, Benney (1966b) applied a long-wave methodology to viscous flow of a thin
film down an inclined plane. This study in fact arose out of consulting work for Polaroid, to which
David Benney was a regular consultant for many years. Here, the basic state is the steady, parallel
flow with uniform film thickness and parabolic velocity profile along the incline, driven by gravity.
The onset of linear instability for this basic flow occurs at a critical Reynolds number (based on the
undisturbed film thickness), R = Rc = O(1), for long-wave disturbances (μ → 0) that travel with
constant speed regardless of wavelength (Benjamin 1957, Yih 1963). This suggests a long-wave
weakly nonlinear (μ, ε � 1) stability analysis for R ≈ Rc. Benney (1966b), however, takes a more
general approach where the time-evolution of the film thickness h(x, t ) is expanded in powers of
μ, keeping ε = O(1) and R = O(1). To leading order, this long-wave expansion yields a nonlinear,
kinematic wave equation, ht + c(h)hx = 0, which predicts wave breaking similar to shallow-water
theory, and higher-order terms are computed by suppressing secular behavior in the expansion
(although details are not given in the paper!). As these terms are generally nonlinear and involve
higher-order spatial derivatives, they are expected to play a decisive role in wave breaking. In the
weakly nonlinear regime, the finite-amplitude evolution equation for h(x, t ) reduces to a Burgers-
type equation, which can be used to study nonlinear effects near the neutral stability curve.While
rather brief (and somewhat cryptic), Benney’s (1966b) was the first study of film flows that derived
evolution equations (reduced model equations) from the full Navier–Stokes equations and free-
surface conditions. This novel approach inspired many subsequent developments in modeling
these fundamentally interesting and technologically important flows [e.g., see the review articles
by Chang (1994) and Oron et al. (1997)].

4.3. Three-Dimensional Shallow-Water Waves and the Benney–Luke Equation

Following his analysis of resonant gravity wave quartets on deep water (Benney 1962), Benney
with his Masters student Jon C. Luke (who later received his PhD at Caltech under Gerald B.
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Whitham) set out to examine possible resonant interactions of gravity waves of permanent form,
namely cnoidal and solitary waves, on shallow water. While such waves can be approximated by
the KdV equation and higher-order extensions that follow from the expansion in Equation 3, these
evolution equations are limited to unidirectional wave propagation and cannot be used to study
interactions of waves propagating in arbitrary directions. To tackle this issue, using a systematic
perturbation procedure in terms of the long-wave parameter μ and the nonlinearity parameter
ε, Benney & Luke (1964) derived an evolution equation for 3D gravity waves on water of finite
depth, commonly termed the Benney–Luke (BL) equation. The BL equation to leading order re-
duces to the classical wave equation for 3D linear, shallow-water waves but also accounts for weak
nonlinear and dispersive effects in a consistent manner. Thus, for 1D waves, the BL equation re-
covers the KdV equation and also includes as a special case, the so-called KP equation (Kadomtsev
& Petviashvili 1970), which assumes unidirectional propagation with weak transverse variations
(e.g., Akylas 1994). Based on the BL equation, Benney & Luke (1964) found that interactions of
waves of permanent form are generally weak unless these waves propagate in quasi-parallel direc-
tions, a conclusion that was confirmed in later detailed studies of oblique solitary wave interactions
(Miles 1977a,b). Furthermore, the BL equation and its extensions that include surface tension and
variable topography have been used to study various 3D wave phenomena in shallow water, in-
cluding the reflection of obliquely incident solitary waves from a wall (Funakoshi 1980), solitary
wave interactions on beaches (Ablowitz & Baldwin 2012), and forced generation of 3D (lump)
solitary waves by flow over an obstacle (Berger & Milewski 2000).

5. SHEAR FLOW INSTABILITY

5.1. Three-Dimensional Effects Are Essential to Nonlinear Instability

As mentioned earlier, David Benney’s PhD thesis, under the supervision of C.C. Lin, was in the
area of hydrodynamic stability and was motivated by experiments on the instability and transi-
tion of the Blasius boundary layer, carried out at the US National Bureau of Standards (Klebanoff
et al. 1962). These experiments emphasized the 3D nature of instability and transition. This un-
derscored the limitations of linear stability theory based on the Orr–Sommerfeld equation, which
naturally focuses on 2D disturbances (Tollmien–Schlichting waves), as the onset of linear instabil-
ity is realized for 2D waves according to Squire’s theorem. Specifically, Klebanoff et al. (1962) re-
ported that an essentially 2DTollmien–Schlichting wave, excited by a vibrating ribbon at a certain
frequency, developed periodic spanwise (transverse) variations that became more pronounced as
the wave traveled downstream and grew in amplitude. Furthermore, the spanwise variations in the
primary wave were accompanied by a secondary, spanwise-periodic mean flow in the form of lon-
gitudinal (streamwise) vortices. To explain these observations, Benney & Lin (1960) and Benney
(1961) proposed a simple theoretical model using for convenience a hyperbolic-tangent basic flow
profile, and Benney (1964) extended this to a broken-line boundary layer profile. The model con-
siders a three-wave system that comprises a 2D nearly neutral wave and two oblique waves with
the same frequency and streamwise wave number as the 2D wave, but with opposite spanwise
wave numbers, forming a standing wave in the transverse direction. The main result was that
the induced mean flow due to quadratic nonlinear interactions of these three wave components
features spanwise-periodic streamwise rolls akin to those observed experimentally by Klebanoff
et al. (1962). In spite of this agreement, the Benney–Lin theory also received criticism (e.g., Stuart
1962), since their assumption that 2D and 3D wave components have the same streamwise wave
number and frequency is not justified for the Blasius boundary layer, and accounting for the pres-
ence of a frequency mismatch introduces a temporal modulation effect (Antar & Collins 1975)
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that is not supported by the experiments. However, according to Maslowe (1981, p. 220), “This
theory reproduces so many features of the experiments that it seems highly likely that the basic
idea is correct.”

Maslowe’s conjecture has been confirmed thanks to various contributions by Benney and oth-
ers in the last four decades. First and foremost, Benney (1984) derived a closed nonlinear equation
system that governs the coupled evolution of an O(1) 3D mean shear flow, whose dominant com-
ponent is in the streamwise (x-) direction but where all three components vary in the transverse
(z-) direction, and an O(ε ) 3D disturbance with harmonic [∝ exp iα(x− ct )] streamwise depen-
dence. This strong mean flow–first harmonic (MFFH) coupling arises because (in the inviscid
limit) the mean flow is a degenerate zero-frequency mode and forms essentially a resonant triad
with the first harmonic. Benney (1984) assumed inviscid flow conditions, but this MFFH coupling
mechanism applies generally at high Reynolds numbers,R = O(1/ε ), as shown later by Benney &
Chow (1989). Thus, the MFFH evolution equations afford a generic, uniformly valid description
of the 3D nonlinear shear flow instability processes suggested by the Benney–Lin theory, without
the severe limitations of the earlier work. More importantly, however, the MFFH theory estab-
lishes thatO(ε ) 3D disturbances can have anO(1) effect on the underlying shear flow, which from
2D quickly becomes 3D.

Early studies based on the MFFH evolution equations (Benney 1984; Benney & Chow 1985,
1989) focused on the linearized stability to 3D perturbations of a 2D state comprising the basic
shear flow and a 2D neutral mode.These analyses parallel Navier–Stokes numerical investigations
of 3D instabilities of 2D finite-amplitude periodic states in wall-bounded shear flows (e.g., Orszag
& Patera 1983).However, as noted by Benney (1984, p. 14), the MFFH equations “are of far more
fundamental importance than any linear stability problem they may contain.”

The precise role of the MFFH interaction mechanism in shear flow instability and transition
was elucidated inmore recent work by FabianWaleffe and coworkers.Motivated by Benney (1984)
and numerical simulations of near-wall turbulence structures (Hamilton et al. 1995), Waleffe
(1995a,b; 1997) proposed a self-sustaining 3D nonlinear instability process in shear flows, which
has also been tied to the existence of exact 3D coherent structures in the form of steady and
traveling wave states in plane Couette and Poiseuille flow (e.g., Waleffe 1998). At high Reynolds
numbers, this process involves (a) O(1) streaks, that is, spanwise variations of the mean stream-
wise velocity; (b)O(1/R) mean flow components in the vertical and transverse directions, forming
streamwise rolls; and (c) anO(1/R) 3Dmode with harmonic variation in the streamwise direction.
These three elements are also the key ingredients of the MFFH interaction mechanism. Further-
more, numerical computations based on the Navier–Stokes equations for plane Couette flow at
high Reynolds number (Waleffe & Wang 2005) find a lower branch of exact coherent structures
that comprise streaks, streamwise rolls, and a 3D eigenmode, consistent with the MFFH theory;
these coherent states are inherently nonlinear (do not bifurcate from the laminar flow) and provide
an O(1/R) threshold for transition.

5.2. Nonlinear Critical Layer

Another far-reaching contribution of David Benney to shear flow instability is the theory of the
nonlinear critical layer. In the linear stability analysis of parallel shear flows, critical layers arise
where the phase speed of a neutral sinusoidal disturbance happens to match the basic flow speed.
These are special points of the Rayleigh equation (the inviscid limit of the Orr–Sommerfeld equa-
tion), as the solution features a logarithmic branch point there, and some additional physics is
needed to heal this singular behavior. Furthermore, how the singularity is resolved determines
whether the Reynolds stress associated with the disturbance suffers a jump at the critical level,
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which in turn bears on the flow stability characteristics. The traditional way to proceed is by view-
ing neutral modes of the Rayleigh equation as limits of Orr–Sommerfeld modes at high Reynolds
numbers, αR → ∞, where α is the disturbance wave number (e.g., Drazin & Reid 1982). In this
linear, viscous approach, the singularity is thus handled by inserting around the critical level a layer
of thickness O(γ ) [γ = (αR)−1/3 � 1], where viscous effects are important, and it turns out that
the logarithm in the Rayleigh solution experiences a phase change of −π from above to below the
critical level.

The possibility of an alternative approach,where nonlinearity rather than viscosity is employed
to resolve the flow near a critical level, was first mentioned by Lin & Benney (1964), and a detailed
study was presented five years later by Benney and his PhD student Robert Bergeron (Benney &
Bergeron 1969). A nonlinear critical layer has O(ε1/2) thickness, where ε � 1 is the disturbance
amplitude parameter, and to leading order features the characteristic cat’s eye flow pattern also
present in the viscous solution. However, higher harmonics are no longer ordered, implying a
strong nonlinear balance, andmore importantly, the phase change of the solution across the critical
level vanishes. This leads to a different eigenvalue problem and a new class of neutral modes from
the classical viscous theory.Later,RichardHaberman, another PhD student of Benney, studied the
more general situation where nonlinear and viscous effects are equally important inside the critical
layer (γ ∼ ε1/2), and he showed that the phase change varies monotonically from−π in the viscous
regime (γ 
 ε1/2) to zero in the nonlinear regime (ε1/2 
 γ ) (Haberman 1972). Furthermore,
Benney (1983) pointed out that wave packet effects, too, can be a significant factor in a critical layer,
and Maslowe et al. (1994) explored the situation where these effects dominate over nonlinearity
and viscosity, in which case the phase change turns out to be −π .

Apart from their theoretical significance, nonlinear critical layers are also of physical interest,
particularly in GFD applications where Reynolds numbers are typically high due to the stabilizing
effects of stratification and rotation [e.g., see the reviews by Maslowe (1986, 2014)].While critical
layer theories assume steady or nearly steady flow conditions, more recent numerical studies
show how neutral modes with nonlinear critical layers can be generated in a geophysical setting
(e.g., Maslowe & Clarke 2002). Nonlinear critical layers are also important in the propagation
of solitary Rossby waves in a horizontally sheared zonal flow (e.g., Redekopp 1977, Caillol &
Grimshaw 2007).

6. CONCLUDING REMARKS

David Benney was a truly original thinker who made transformative contributions to our under-
standing of nonlinear wave and instability processes in fluid flows.Most notably, (a) he introduced
a new, powerful paradigm of theoretical modeling based on asymptotic evolution equations (re-
duced models) that capture the essential physics and are widely applicable under various flow con-
ditions. (b) His work is characterized by remarkable breadth. Particularly in the field of nonlinear
wave motion, he was at the forefront in all major advances since the 1960s (resonant wave interac-
tions, modulated wave trains, long-crested waves, 3D effects, etc.), except for the development of
inverse scattering, an ingenious technique for solving certain nonlinear evolution equations; how-
ever, two of his PhD students (Alan Newell and Mark Ablowitz) have made seminal contributions
to this more mathematical aspect. (c) His work has also had a lasting impact in various fields other
than fluid mechanics, including meteorology, oceanography, optics, and plasma physics.

Perhaps more importantly, however, Benney was a creative scientist of the utmost integrity.He
led by example, adhering to the highest scientific standards and without seeking personal recog-
nition. As Alan Newell noted in the obituary for Benney published by the MIT mathematics
department (MITMath. Dep. 2015), “Dave was a modest man who had little to be modest about.
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With his gentle, self-effacing manner and humor, he tended to deflect any superlatives and ac-
colades aimed in his direction. But in truth, he was a first rate leader: generous to all, regardless
of rank, he had a strong moral compass, a principled view of life and a backbone of steel when it
came to doing the right thing.”
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