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Abstract

Soft porous solids can change their shapes by absorbing liquids via capillarity.
Such poro-elasto-capillary interactions can be seen in the wrinkling of paper,
swelling of cellulose sponges, and morphing of resurrection plants. Here, we
introduce physical principles relevant to the phenomena and survey recent
advances in the understanding of swelling and shrinkage of bulk soft porous
media due to wetting and drying. We then consider various morphing modes
of porous sheets, which are induced by localized wetting and swelling of soft
porous materials. We focus on physical insights with the aim of triggering
novel experimental findings and promoting practical applications.
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1. INTRODUCTION

Capillarity broadly refers to the interfacial interaction between liquid and fluid (gas or immiscible
liquid) arising from cohesion within the liquid (de Gennes et al. 2004). When another phase (solid)
is additionally involved, the question is how the liquid—-fluid interface will be shaped and move on
the solid surface, leading to the study of wetting (de Gennes 1985). A canonical problem of wetting
deals with the liquid rise into a vertical capillary, as shown in Figure la. Its statics were first
quantitatively studied by Boyle (1662), followed by Jurin (1718), who determined the functional
dependence of the rise height on the geometric parameters. Bell & Cameron (1906), Lucas (1918),
and Washburn (1921) studied the dynamics of liquid imbibition in capillaries. More recently, the
rise of a liquid between flexible lamellae, as shown in Figure 15, was analyzed (Bico et al. 2004,
Kim & Mahadevan 2006), which provoked the study of capillarity coupled with flexible solids
like rods (Duprat et al. 2012, Sojoudi et al. 2017), plates (Py et al. 2007, Paulsen et al. 2015), and
tubes (Hoberg et al. 2014). Recent developments in this field, termed elasto-capillarity, have been
reviewed by Bico et al. (2018).

In contrast, for a cracker dipped into coffee (Figure 1¢) (Fisher 1999), we need to go beyond
classical elasto-capillarity to understand the dynamics of wetting, swelling, and softening of this
mundane piece of food. The wetting of soft porous solids (e.g., foods, paper, sponges, hydrogels)
gives rise to strain, stress, and changes in the properties of the solid structure that surrounds the
voids being filled with liquid. Therefore, the theory of poroelasticity (Wang 2000) needs to be cou-
pled with capillarity in the context of poro-elasto-capillarity (Ha et al. 2018, Nasouri et al. 2019).

Figure 1

(@) The rise of water in a rigid glass capillary. (b)) The rise of water between flexible coverslips of glass. (c) A
cracker dipped into coffee. Panel  adapted from Kim & Mahadevan (2006).
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The study of the elastic deformation of poroelastic materials due to fluid pressure change or
fluid injection in their pores began almost a century ago by Terzaghi (1925) and then was later
continued by Biot (1941). Since Tanaka & Fillmore (1979) theoretically investigated the coupling
between swelling and spontaneous fluid infiltration of poroelastic media, significant advances have
been made in the understanding of absorption and expansion of dense porous media, such as
gels (Doi 2009, Yoon et al. 2010, Bertrand et al. 2016) and matrices of dense absorbent materials
(Sweijen et al. 2017). In addition to wetting and swelling, the drying of initially wet poroelastic
media has been studied to understand their shrinkage and cracking behavior (Wittmann 1976,
Scherer 1989). Interest in the capillary interaction of liquids with a variety of soft porous materials
is ever growing, driven by its relevance to geophysics (Style et al. 2011, Laloui et al. 2016), biology
(Dawson et al. 1997, Skotheim & Mahadevan 2005, Dumais & Forterre 2012), and biologically
inspired engineering (Chen et al. 2014) and by its novel applications to soft actuation and robotics
(Hines et al. 2017, Hu et al. 2018).

Here, we review fundamental physical principles and recent advances associated with defor-
mations of soft porous solids induced by capillarity. Our review aims to serve as a quick guide to
the discipline, which has been investigated almost independently in each of the diverse fields of
materials science, geophysics, nanotechnology, biology, and rheology. We start from the physical
principles of classical imbibition dynamics and then move on to introduce the theoretical frame-
work of the general responses of soft porous solids to liquid invasion. Next, we categorize recent
advances in the understanding of poro-elasto-capillary phenomena according to the geometrical
characteristics of the systems. We begin with the swelling and shrinkage of bulk soft porous solids
under the effects of capillarity. Then we consider various morphing modes of porous sheets, which
are induced by localized swelling of soft porous materials due to wetting. We focus on physical
insights, rather than focusing on mathematical details or providing an exhaustive literature sur-
vey, with the aim of triggering advances from experimentalists and promoting further practical
applications.

2. PHYSICAL PRINCIPLES OF CAPILLARITY IN RIGID POROUS SOLIDS
2.1. Classical Models of Imbibition in Capillaries

Porous solids with voids filled with a gas are impregnated by a liquid when the void surfaces prefer
contact to the liquid over the gas. The affinity of a solid surface to a liquid surrounded by a gas is
often measured by the equilibrium contact angle, which obeys Young’s (1805) equation when the
solid is sufficiently rigid (Adam 1930, Park et al. 2014). The dynamic process of reducing the free
energy (Adamson & Gast 1997) of the gas-liquid—porous solid system is classically understood
using the so-called Washburn equation (Bell & Cameron 1906, Lucas 1918, Washburn 1921).
Modeling porous networks as an assemblage of narrow capillaries, we consider the velocity of the
liquid front in a wettable capillary of radius R, as shown in Figure 24, where a liquid reservoir
contacts one end of the capillary. If y is the liquid-gas surface tension coefficient and L is the
wetted length, the wall shear stress 7 is estimated as 7 ~ nL/R, where 7 is the liquid viscosity and
the overdot denotes the time derivative. When inertia is negligible relative to viscous forces, the
driving capillary force, Fy ~ ¥ R, is balanced by the resisting viscous force, F, ~ tRL. Here, we have
assumed that the viscous dissipation in the bulk of length L is much larger than the dissipation
in the wedge near the advancing contact line (de Gennes 1985, Kim 2007). The result yields the
classical diffusive behavior of the wetted length with time ¢, L ~ (yRt/n)"/? = (Dyt)!/?, where
D,, = yR/n is the dynamic coefficient for capillary wicking.

An important aspect of this seemingly simple rule is that a single geometric scale, R, determines
the wicking velocity. This implies that the variation of the radius of a capillary may cause L(z) to
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Figure 2

(@) A schematic of liquid imbibition into a horizontal capillary with a contact angle of zero. (b) A schematic of liquid imbibition into a
porous medium with a sharp liquid-gas interface. (Inset) A liquid meniscus with the characteristic radius of curvature. (¢) A schematic of
the partially saturated transition zone between the fully saturated and dry zones. (d) A diffusive transition region exhibiting a smooth
change of molecular concentration. (¢) A porous medium consisting of hygroscopically active skeletons that swell upon wetting. (Inset)
A hygroscopically active skeleton that absorbs the surrounding liquid. Abbreviations: ¢, molecular concentration; L, wetted length; L,
partially saturated zone length; p, pressure; R, capillary radius; y, liquid-gas surface tension coefficient; A, characteristic radius of

curvature.
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deviate from the classical rule, in particular by changing the exponent of time, as has been explored
in diverse settings (Reyssat et al. 2008, Gorce et al. 2016, Liu et al. 2018). The diffusive rule also
holds for hemiwicking, the wetting of porous surfaces by a liquid film (Bico et al. 2001), although it
is more complicated owing to multiple, rather than single, geometric factors, including the height
and spacing of protrusions and the surface roughness (Kim et al. 2011, 2016). In the following,
we consider liquid flows in porous media that cannot simply be assumed to be an assemblage of
capillaries.

2.2. Darcy’s Law and Unsaturated Media
Fluid flows in porous media with negligible inertia are described by Darcy’s law (Darcy 1856,
Adler & Brenner 1988),

k
q=—-VVY, 1.
n

where q is the volume flux and W is the potential for liquid flow, corresponding to the pressure
p in pressure-driven flows. The permeability # roughly corresponds to the cross-sectional area of
the fluid conduit that generates viscous dissipation in a porous medium (Childs & Collis-George
1950, Kim et al. 2017), although it also depends on the configuration of the fluid paths (Bear 1972,
Xu & Yu 2008).

We first apply Darcy’s law to the capillary imbibition with a sharp liquid—gas interface, corre-
sponding to Figure 2b. The pressure difference established between the reservoir and just inside
the advancing meniscus is equal to the Laplace pressure, Apr, = po — p1 ~ y /A, where A is the ra-
dius of curvature of the front meniscus. Here, the hydrostatic pressure is assumed to be negligible
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compared with the Laplace pressure. Then the wetting velocity, or the average flow velocity, v, is
scaled as v ~ yk/(nAL). If k and A are constant along the fluid path and with time, the diffusive
rule for L still holds by taking v = I,

L~ (Dwt)l/z’ 2.

where D, = yk/(n)) is the dynamic coefficient for wicking. Assuming & ~ R? and A ~ R for a
straight tube, one recovers the scaling of Washburn’s equation. The diffusive rule for the propa-
gation of the wetting front is invalid when the pore size distribution or the liquid content in pores
varies spatially, causing changes in % or A along the fluid path and time (Reyssat et al. 2009, Bal
etal. 2011, Ponomarenko et al. 2011, Obara & Okumura 2012, Kim et al. 2017).

In a partially saturated zone of length L, as shown in Figure 2¢, where pores contain gas as
well as liquid, the mass conservation equation is written as

a0 v 3
G =V a .
Here, the moisture content § denotes the volume fraction of liquid in a representative volume ele-
ment scale, which is much greater than individual microscopic pores (Cuerto-Felgueroso & Juanes
2008). The quantity 6 can be measured by gravimetric sampling (Hall & Tse 1986), the method
of gamma ray attenuation (Nielsen 1972), or nuclear magnetic resonance imaging (Gummerson
etal. 1979, Song et al. 2011). Combining Equations 1 and 3 gives (Richards 1931)

a6

i V- (D,V0), 4.
where the diffusivity, D, = (k/1)d, ¥, like ¥, depends on 0, y, &, n, and the meniscus curvature
in individual pores. In addition to capillarity, ¥ may involve the effects of liquid adsorption to
solid surfaces caused by electrostatic and van der Waals forces in partially saturated zones (Philip
1970, Or et al. 2005). Therefore, the moisture content in the partially saturated region follows the
diffusion equation, with the diffusivity dependent on the properties of the liquid and the porous
network.

The diffusion of the moisture in the unsaturated zone should be distinguished from the molec-
ular diffusion of vapor, as depicted in Figure 2d. The spontaneous transport of vapor in porous
media occurs near the wetting front of liquids with high vapor pressure or when the media are
surrounded by humid air. Additionally, a medium with very fine pores (e.g., nanometric pores) of
poor connectivity may allow only vapor transport because a continuous stream of internal liquid
is unlikely. The molecular concentration ¢ of vapor follows the diffusion equation

a
l = Dmvzfy 5.
ot

owing to Fick’s law. Here, Dy, is the effective diffusivity, a function of the porosity (¢) and the
vapor diffusivities in the air and in the solid (Kalnin & Kotomin 1998, Shin et al. 2018).

3. PHYSICAL PRINCIPLES OF POROELASTIC RESPONSES
TO LIQUID INVASION

3.1. Classical Poroelasticity of Saturated Media

We introduce governing equations to find the fields of displacement, stress, pressure, and amount
of fluid in a fully saturated poroelastic medium. In saturated poroelastic media, a change in ap-
plied stress causes a change in fluid pressure or fluid mass, and a change in fluid pressure or fluid
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mass causes a change in the volume of the porous material (Wang 2000). These couplings lead
to the constitutive equations of linear poroelasticity, which relate the stress o;; and the incre-
ment of fluid content ¢ to the pressure p and the strain ¢;; = %(aui /dx; 4+ 0u;/dx;), where u; is the
displacement,

1 v o
€ = ﬁ Oij — makkaij -+ 37Kp6,'j, 6.
o Opp o
¢=%3 TrB" &

Here, G and K are respectively the shear and the bulk modulus, v is Poisson’s ratio, §;; is the
Kronecker delta, o is the Biot—-Willis coefficient, and B is Skempton’s coefficient. For an in-
compressible solid and fluid, we have @« = B = 1. The increment of fluid content ¢ is defined
as { = dmy/ ps, where 8mi is the change in fluid mass content per unit reference volume and py is
the fluid density in the reference state. The force equilibrium dictates

80’,‘j

4 =0, 8.
where f; is the body force per unit bulk volume. Lastly, the continuity equation, 3, = -V - q,
combined with Darcy’s law (Equation 1) gives

ac  k_,
— = —-Vp. 9.
dt n P

These governing equations allow us to obtain the deformation, stress, fluid pressure, and amount
of fluid in isotropic linear poroelastic materials responding to pertinent boundary and initial con-
ditions. For a formal introduction to the basic theory of poroelasticity, readers are referred to the
pioneering paper of Biot (1941) and relevant books (Wang 2000, Cheng 2016).

Itis interesting to see that substituting Equation 7 in Equation 9 leads to the diffusion equation
for p for oy = 0 or 64 = 0,

% =D,V?p, 10.
where D, = (k/n)(KB/) is the poroelastic diffusivity. Additionally, ¢ satisfies the diffusion equa-
tion 0,¢ = Dpvzg for o = 0 or VZ2oy;, = 0. For a system of characteristic length L, the time for
the diffusive equilibration of pressure via fluid transport in soft wet media, or the poroelastic time,
is given by t, = L?/D,, ~ nL?/(kK) (Skotheim & Mahadevan 2005). If the timescale of interest
to describe a system’s dynamic behavior is 7, poroelasticity will govern the dynamics for t ~ z,.
Classical Hookean elasticity suffices for both © « 7, and 7 >> 7, with the elastic modulus hardly
changed in the former case but reduced to a softened state in the latter (Skotheim & Mahadevan
2004).

3.2. Poroelasticity of Gels

Gels are cross-linked networks of polymers or colloids within a liquid (solvent). They can al-
low the liquid to move within the network while behaving like a soft solid (Flory 1953). Un-
like the classical porous flows considered above, fluid transport in gels is driven by the differ-
ence of chemical potential rather than pressure. The flux J of the solvent driven by the gradient
of the chemical potential p is described by Darcy’s law of the form (Wijmans & Baker 1995,
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Hu et al. 2010) J = —k/(nQ2*)Vu, where  is the volume per solvent molecule. The solvent flux
gives rise to a change of concentration C of the solvent in the gel, satisfying the continuity equation

9,C = —V -J. Combining the continuity equation and Darcy’s law, we get
w_ kg, 11.
ot nQ?

The constitutive equation that relates the stress to the strain and chemical potential is written
as (Doi 2009, Yoon et al. 2010)

v n—
Uij =2G (6,‘j + m6kk51j> - TO(S,']', 12.

where (g is the chemical potential in the reference state. The quantity (u — o)/ corresponds
to the pore pressure in Equation 6, in which we took « = 1 for incompressible network polymers
and solvent molecules. The increase of the gel volume is related to the concentration as

€rp = Q(C — Co), 13.

where Cy is the concentration in the reference state. Equations 11-13, combined with the force
equilibrium Equation 8, allow us to find the displacement, stress, chemical potential, and solvent
concentration under pertinent boundary and initial conditions.

It can be shown that the concentration profile obeys the diffusion equation, 3,C = D, V2C.
Here, the poroelastic diffusivity D,, of a gel is given by D, ~ Gk/n (Johnson 1982, Hu et al. 2010),
consistent with the abovementioned D, of classical poroelasticity. For the diffusive nature of the
solvent transport, the thickness of a rectangular slab, as shown in Figure 34, initially grows as
(Dpt)"%. The characteristic time for a slab of thickness L to grow to a new equilibrium since the
change of the surrounding solvent concentration is given by 7, = L?/D,,.

3.3. Classification of Soft Porous Solids for Wetting Analysis

While Sections 3.1 and 3.2 have dealt with poroelastic media whose pores are fully saturated with
liquid, our major interest in this review is capillary invasion of liquid into gas-filled pore spaces.
In addition, the response of a soft porous solid is drastically different depending on the ability of
the solid skeleton to swell by absorbing surrounding liquid. The skeleton materials that expand by
absorbing water are called hygroscopically active. In this section, we first consider hygroscopically
inactive skeletons like soils, rocks, building materials, and glass beads. Then we move on to more
complicated cases of hygroscopically active skeletons like beads and scaffolds of hydrogel and
cellulose fibers.

Figure 25 depicts the spontaneous liquid infiltration of soft porous media consisting of hygro-
scopically inactive skeletons. If the wetting front is well defined to be at x = L, the wetted region,
0 < x < L, is fully saturated with liquid while the pores are filled with gas for x > L. The poroelas-
tic behavior of fully saturated media, as formulated in Section 2.1, arises in the wetted region. The
pressure decreases from the atmospheric pressure in the reservoir, o, to a lower pressure due to
capillarity, p; = po — ApL, where the Laplace pressure Apy, scales as y /1. Then the wetted region
should shrink for its negative gauge pressure inside, unless it is fixed to its sides. The shrinkage
of pores leads to changes in permeability £ and the radius of curvature of front meniscus A, which
should modify D,, in Equation 2. The shrinkage of porous hygroscopically inactive solids with
capillary infiltration has mainly been studied in the context of soil aggregation (Ghezzehei & Or
2000). In contrast, shrinkage of soft porous solids due to drying has been the subject of intense
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Figure 3

(@) A hydrogel slab swelling with the invasion of water. (b)) A hydrogel sphere swelling with water, exhibiting temporal growth and decay
of circumferential lobes. (¢) A swelling hydrogel ring that wrinkles due to the invasion of water from the outer periphery. (4) Vertical
expansion of a bed of spherical hydrogels due to contact with water at the bottom. (e) Temporal evolution of the height of a bed of
superabsorbent polymer particles immersed in water. Panels 4, ¢, and e adapted from Bertrand et al. (2016), Dervaux et al. (2011), and
Sweijen et al. (2017), respectively.

study in diverse fields (Bacchin et al. 2018). As the meniscus of the receding liquid develops a large
curvature, the force due to negative gauge pressure compresses the solids, which is treated below
in a separate section.

Figure 2¢ shows a porous medium of a hygroscopically inactive skeleton, where the liquid
meniscus is distributed over a partially saturated, or unsaturated, zone of length L, between fully
saturated and dry regions. The unsaturated zone manifests in the wetting process when the pore
structure is heterogeneous or when the driving force for liquid flow is weak (Song et al. 2011). The
importance of partial saturation is greater in the drying process, where pinning of gas-liquid-
solid contact lines promotes the development of the unsaturated zone (Singh et al. 2019). The
widely distributed menisci producing negative gauge pressure tend to strengthen the compressive
effect, but this is counteracted by the dry pores in the unsaturated region. One challenge for
computational models of unsaturated poroelastic media is to accurately account for capillary forces
in individual pores (Coussy 2007, Uzuoka & Borja 2012).

A porous medium of hygroscopically active skeletons is shown in Figure 2e. While wicking into
hydrophilic macropores, which are distinct from the nanopores within the skeletons, the liquid
is simultaneously absorbed into the skeletons. As the skeletons swell, the entire medium and the
macropores expand when subject to no external constraints. The poroelastic responses of the fully
saturated zone and of hygroscopically inactive skeletons differ in the following ways. First, liquid
sinks are present in the fully saturated zone. If the representative volume element scale is much
greater than the macropore scale, the continuity equation reads as 9, + V - q = —Q, where Q is
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the volume of liquid entering the skeleton per bulk volume per time. Second, the pore size changes,
which makes the effects of solid displacement velocity, 9,u, on the flux important and significantly
modifies the permeability, . If a partially saturated zone exists between the fully saturated and dry
zones, the physics becomes further involved, as discussed above.

4. CAPILLARY MORPHING OF POROELASTIC BULKS

Capillary imbibition of liquids into initially dry, macroscopic poroelastic media, such as particle
beds (Peev & Tzibranska 1997), fiber networks (Karlsson et al. 1998), plant tissues (Rafsanjani
et al. 2015b), food (Saguy et al. 2005), paper (Masoodi & Pillai 2010), and cellulose sponges (Ha
et al. 2018), can induce volume changes of voids and (hygroscopically active) skeletons, whose
combinations morph poroelastic bulks. We first consider the capillary morphing of porous matri-
ces comprising hygroscopically inactive skeletons, which has been primarily studied in the context
of drying rather than wetting. We then move on to porous media with hygroscopically active skele-
tons like gels. Next, we treat hygroscopically active cellulosic materials separately for their peculiar
properties.

4.1. Drying, Shrinkage, and Cracking

Drying or dewetting occurs when initially wet porous media are exposed to the surrounding gas. In
the ideal linear theory of poroelasticity without considering capillarity, fluid extraction and shrink-
age are reverse processes to fluid injection and swelling. This is not the case when considering the
effects of capillarity because wetting shrinks the medium of hygroscopically inactive skeletons just
as drying does. The nonlinearity introduced by large deformations exhibits significant differences
between wetting and drying in the temporal evolutions of size, stress, and pressure. Furthermore,
interfacial flows in porous solids can be strongly irreversible because of the pinning of the contact
line, contact angle hysteresis (the difference between the advancing and receding contact angles),
and the trapping of the retracting liquid within relatively smaller pores, leading to wet islands (Rey
& Vandamme 2013, Singh et al. 2019).

Wet porous media shrink with drying as the liquid—gas menisci in the voids generate strong
negative gauge pressure (due to loss of liquid). In principle, we can start from the evaporation rate
of the wet media, which allows us to find the amount and distribution of remaining liquid through
Darcy’s law. The pressure, which depends on the curvature of the meniscus in the voids, can be
given as p = po — Y km, where ky, is the meniscus curvature. We can then find strains using the
poroelastic constitutive relation of the stress—strain and force equilibrium, which finally gives the
temporal evolution of the shape and size.

Smith et al. (1995) proposed a simple model to obtain the density of shrinking porous media
by considering the stress on the solid skeleton, o, that evolves from zero as the bulk density p
changes from the initial value py, doy = —Kdp/p. Here, the dependence of the bulk modulus K
on the density can be obtained empirically (Woignier et al. 1989). In the relaxed state, we write
o, = (1 — p/ps)(p — po), where ps is the density of the solid phase. This gives p as a function of k5,

p
/ @dp—yxm(l—ﬁ)zo. 14.
P Ps

Since ky, is related to the pore size, which in turn can be modeled as a function of the density,
we can close Equation 14 to find p. It is physically inferred that the density after drying increases
with a higher surface tension coefficient (stronger compaction) and a lower bulk modulus (softer
skeleton).
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Figure 4

(@) Cracks propagating from the drying left side of a silica nanoparticle suspension. () Cracks at the surface of a drying droplet of a
silica nanoparticle suspension. (¢) Columnar joints arising from the drying of cornstarch. (d) The fracture spacing of columnar joints of
drying cornstarch plotted against the average fracture advance speed. Circular symbols correspond to experimental measurements, and
lines indicate curves of constant Péclet number (Pe). (¢) Cracking and exfoliation of a drying cross-linked PDMS (polydimethylsiloxane)
network in hexanes. Panels adapted from (#) Dufresne et al. (2006), (b)) Giorgiutti-Dauphiné & Pauchard (2014), (c,d) Goehring et al.
(2009), and (¢) Chung et al. (2016).

Surfaces of soft porous media may develop instabilities as their volume changes. Porous media
swelling due to liquid invasion develop compression on the fast-swelling outer region, leading
to surface corrugations on plates (Tanaka et al. 1992), spheres (Bertrand et al. 2016), and rings
(Dervaux et al. 2011), as shown in Figure 3b,c. During drying, the liquid loss through the surface
tends to shrink the superficial region, which is prevented by the inner core (for thick media) or an
adhesive substrate (for a thin film). When the developed tensile stress on the outer layer exceeds
a critical value, cracks are generated at the surface, as shown in Figure 44 for drying deep sus-
pensions (Allain & Limat 1995, Dufresne et al. 2006) and in Figure 45 for a thin film of a drying
colloidal droplet (Giorgiutti-Dauphiné & Pauchard 2014). Such cracks are also found in drying
gels (Scherer 1990), paints (Keck 1969), bloodstains (Bou Zeid et al. 2013), and muds (Kindle
1917).

The spacing between cracks, A, can be regarded as a characteristic horizontal distance over
which the pressure near the outer surface reaches the critical value, p., and then relaxes. Darcy’s
law gives a scaling for A as A ~ (k/n)Apc/vy, with Ap. = po — p. and vy, the horizontal flow ve-
locity. Considering continuity of fluid flow, we write v,/A ~ v./H, where v, is the rate of volume
evaporation per unit area and H is the depth scale over which the vertical velocity gradient is
established. For a film of particle suspension with particle radius R,,, H corresponds to the film
thickness and we estimate Ap. ~ y/R,and k = f (¢)Rf, (Kozeny 1927, Carman 1937), which gives
A~ [f(@)(y/n)R,H/v.]'? (Lee & Routh 2004).

A different scaling applies to a thick poroelastic medium with a pore size large enough to
ensure fast advective liquid transport under a constant evaporation rate. The shrinkage and crack
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fronts propagate through the medium, leading to the formation of columnar joints (Goehring
2009, Goehring et al. 2009) as shown in Figure 4¢. The ratio of the time for poroelastic diffusion
(A?/D,) to the time for advective liquid transport (A /vf) corresponds to the Péclet number, Pe =
vfA /D, where v¢ corresponds to the drying front velocity. For a constant Pe, we find A to be
inversely proportional to vf (or the moisture flux), A ~ v¢~!, as shown in Figure 4d. When the
crack front cannot propagate into the bulk due to a great toughness of the inner layer while the
drying still accumulates strain, the drying outer layer can peel off, as shown in Figure 4e. Such
drying-induced delamination has been observed in gels (Chung et al. 2016) and muds (Allen 1986,
Style et al. 2011).

4.2. Swelling of Porous Matrices of Hygroscopically Active Skeletons

We now consider porous media comprising matrices of hygroscopically active materials, e.g., net-
works of hydrogels and cellulose and beds of granules, such as soils, hydrogel beads, and wood
particles. The voids of the matrix can range from tens of micrometers to millimeters in size. When
the porous matrix is brought into contact with a favorable solvent, the liquid wicks into the voids,
which deform by poroelastic deformation of the hyroscopically active skeletons. The rearrange-
ment of the matrix in turn affects the wicking flow of liquid. As an exemplary system, Figure 3d
shows the growth in height of a bed of hydrogel beads in contact with water at its bottom while
confined at its sides.

A macroscopic description of the flow wicking into the swelling matrix (Masoodi & Pillai
2010) as shown in Figure 2d starts from Darcy’s law, ¢, = —(k/n) dp/dx for 0 < x < L, where
¢» is the one-dimensional flux in the x-direction. The mass conservation of the liquid that can
be absorbed by the solid matrix is written as dg,/dx = —S — ¢, where S is the absorption rate
per unit volume. Here we consider a negative rate of change of the porosity, ¢ < 0, which is
the case when the matrix is entirely or partially confined, as shown in Figure 3d. Assuming
S = —be, with b the absorption coefficient, we get d’p/dx? = (1 — b)(n/k)¢, which gives p(x,?)
satisfying such boundary conditions as p(x = 0,#) = py and p(x = L,t) = po — ykm. The veloc-
ity of the wet front, I = G/ Ple=r, With @], equal to the original porosity ¢y, is then given by
L=~ =b)¢/Qepo)L + kykmL/(pon). Integrating with the initial condition of L(z = 0) = 0, we
get (Masoodi & Pillai 2010)

t , 12
L:{Z”"m exp[(z]—n@]fo k(t’)exp[(b—l)%]dt’} . 15.

don bo

When the swelling rate of matrix matches the volumetric absorption rate, # = 1, Equation 15
simplifies to L = 2y« f(; k(') dt' /(on)]/?. Here we have assumed that the porosity ¢ and per-
meability  are functions of time only, independent of spatial coordinates.

To predict the wetting front velocity via Equation 15, one needs to know the temporal evolu-
tions of ¢ and k. To this end, we need to consider the dynamic interactions of neighboring solid
elements in addition to the swelling kinetics of the individual solid skeletons. For a bed of gel
beads, the particles are rearranged by volume expansion, shear, and sliding (Sweijen et al. 2017),
while satisfying the boundary conditions of the overall macroscopic structure. Numerical sim-
ulations can be used to fully account for the grain-scale interactions to the macroscale swelling
(Kimber et al. 2012, Sweijen et al. 2016). A representative result of the height evolution of a bed
of superabsorbent polymer particles is shown in Figure 3e.

Alternatively, pore structures and their temporal evolutions were simplified to model the
permeability and match the analytical results with experiments (Wilinder & Gardner 1999,
Shi & Gardner 2000, Markl et al. 2017). Schuchardt & Berg (1991) suggested a notably simple
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model for the effective capillary radius, 7, of a porous structure that decreases with time due
to swelling of surrounding hygroscopic skeletons, » = 7y — at, where 7, is the original radius
when dry and # is the rate of constriction. Then the Poiseuille solution for such a capillary flow

gives
1/2 2 1/2
L= (2 PR 16.
2n 70 373

where # can be adjusted to match the result with the experimental measurements that show
gradual deviation from the classical t!/? rule of Washburn.

4.3. Swelling of Cellulosic Media

Poroelastic materials made of hygroscopically active skeletons of cellulose, such as paper and cel-
lulose sponges, deserve separate treatment for their complicated porous network structures (Rey
& Vandamme 2013, Chang et al. 2018) and transient pore coalescence behavior (Ha et al. 2018).
Paper, a sheet of several cellulose fiber layers compressed in the thickness direction and stretched
along a length, is a highly anisotropic material (Alava & Niskanen 2006). The wicking and swelling
of paper follow Washburn-like diffusive dynamics, although the rates differ in each direction (Lee
et al. 2016). Cellulose sponges exhibit isotropic swelling behavior, unlike paper, but the dynamics
are quite different from those of other soft porous materials for the unique pore structure and
properties. We note that bread and the cracker in Figure 1c, which are made from starch, also
behave similarly to cellulose sponges when wet (Ha et al. 2018).

Cellulose sponges consist of numerous microporous sheets with nanoscale thickness sur-
rounding millimetric voids (Figure 54—c), and thus have a pseudo-bimodal pore size distribution

(Kim et al. 2017). When the sheet becomes wet by water, growing micropores coalesce with

2
™
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Figure 5

(@) Scanning electron microscopy images of a millimetric large void of the cellulose sponge. () Micropores of the sheet surrounding
macro voids. (¢) A cross section of microporous sheets. (d) The merging of micropores with hygroscopic expansion, imaged by
environmental scanning electron microscopy. (¢) Experimentally measured rise height of turpentine (red squares) and water (blue circles),

which grows like #1/2

in the early stages (filled symbols) but in the late stages behaves like #1/# for turpentine and '/ for water (empty

symbols). (f) Capillary rise of silicone oil with a viscosity of n = 0.01 Pa-s in a cellulose sponge. (g) Wetting and swelling of a cellulose
sponge with capillary rise of water. Abbreviation: L, rise height; RH, relative humidity. Panels 4— and g adapted from Ha et al. (2018);
panel fadapted from Kim et al. (2017).
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their neighbors, as shown in Figure 5d. Capillary imbibition in cellulose sponges situated
horizontally follows the classical Washburn dynamics, so that the wet length grows like /2. In
contrast, capillary rise against gravity in cellulose sponges exhibits two distinct regimes (Siddique
et al. 2009): The rise height L grows like #!/? initially but the power law changes later, as shown
in Figure 5e. For nonaqueous liquids (e.g., turpentine, silicone oils) that cause no swelling in
the sponges (Figure 5f), L grows like #!/* in the late stages (Kim et al. 2017). Aqueous liquids
(e.g., water, water—glycerine mixtures, water—ethylene glycol mixtures) swell the sponges during
ascent (Figure 5g) to yield L ~ !/ in the late stages. If the sponge is preswollen by water vapor
without its micro and macro voids filled with liquid water, the water rise height grows like ¢!/
in the late stages, just like with nonaqueous liquids, indicating the critical role of the hygroscopic
swelling in the capillary rise dynamics (Ha et al. 2018).

The abovementioned change in the power law of the capillary rise height arises when the wet
frontreaches Jurin’s height, L, or the equilibrium rise height of macroscale pores. The macro voids
are completely filled with infiltrating liquid for L < Lj, so that # and A can be respectively scaled
as R? and R in the definition of D,, used in Equation 2, where R is the average radius of the macro
voids. The sponge that swells upon contacting an aqueous liquid stretches by Lej,, where €, is the
hygroscopic strain of the saturated sponge, giving the total wet distance as 4, = L(1 + €,). The
liquid flux into the unit cross-sectional area of a dry sponge v is balanced by the rate of expanding a
wet volume, v ~ [,(1 + €,)2. Then L. ~ v/¢ follows, where ¢ is approximately 1 + 3¢, for e, < 1,
which eventually leads to L ~ [yRt/(¢n)]/?. This scaling law explains the rise dynamics in the
early stages for both nonaqueous (¢ = 1) and aqueous (¢ > 1) liquids.

Beyond Jurin’s height, macro voids are only wet in their walls and corners for gravitational
effects. The liquid rise is now driven by the capillary pressure of the micropores of average radius
r, which still dominates over gravitational effects. Thus, we take A ~ 7 in the definition of D,, used
in Equation 2. The primary flow path from the reservoir to the micropores is provided by the
liquid hanging in corners of the macro voids, leading us to ¥ ~ 8%, where B is the radius of corner
meniscus given by the balance between capillary and hydrostatic pressure, y /8 ~ pgL. Darcy’s
law then gives v ~ y?/(np>g>rL?). This allows us to obtain the scaling law for L of nonaqueous
liquids in the late stages,

3 1/4
L~ [ Y ] £, 17.
n(og)*r

The late stages of the rise of aqueous liquids behave differently from Equation 17, which
has been attributed to the merging of micropores upon wetting (Figure 54) and swelling (Ha
et al. 2018). The theoretical model, L ~ (Bt)'/*, where the coefficient B involves the physical
properties of the liquid and poroelastic characteristics of the sponge, was found to be consis-
tent with experimental measurement results using various aqueous liquids. An alternative expla-
nation of the wetting dynamics in late stages, which involves modeling based on the water diffusion
(Mirzajanzadeh et al. 2019), awaits refinement to account for the effects of swelling, the rise dy-

1/4

namics following the #'/* rule in the preswollen sponges, and the empirically observed dependence

of the rise speed on the liquid properties.

5. PORO-ELASTO-CAPILLARY MORPHING OF SHEETS

We now consider global deflections of solids induced by localized swelling of soft porous mate-
rials upon wetting. Such an efficient scheme of morphing has been explored predominantly for
thin sheets, whose global shapes can change easily compared to bulks through diverse modes of
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b Porous sheet

C

Figure 6

(a) A tracing paper (8 x 8 cm?) that curls and rolls up when floating on water. (5) Schematic cross section of the porous sheet with
differential swelling due to varying moisture content. () A suspended paper strip that is wetted by water from a capillary in the middle.
(d) Comparison of experimental and theoretical results for the shape evolution of a paper strip imbibing water from a capillary tube on
the left. (¢) Wrinkling of the wet end of a copy paper. (f) Silicone rubber beams undergoing inward bending due to capillary rise and
then outward bending due to swelling with the imbibition of silicone oil. Abbreviations: 4, initial gap; €}, hygroscopic strain; 4, initial
thickness; Ly, length of the dry region (Ly = Ly — L). Panels adapted from (4) Reyssat & Mahadevan (2011), (¢,) Lee et al. (2016), and
(f) Holmes et al. (2016).

buckling, bending, wrinkling, folding, and twisting. Because the elastic response of an entire solid
body as triggered by localized swelling is of primary interest, the relative scales of characteristic
times for local and global deflections play an important role in the analysis.

5.1. Curling and Rolling

Differential swelling or shrinkage of sheets can shift their global shapes. Capillary imbibition
occurs always from the boundary of a solid and a liquid, which inevitably gives rise to differential
strains due to wetting. We first consider porous sheets that experience differential swelling by
liquid absorption in thickness direction. A tracing paper floating on water, as shown in Figure 64,
curls and eventually rolls up into a cylinder (Douezan et al. 2011, Reyssat & Mahadevan 2011,
Perez-Cruz et al. 2017). Here, the paper swells in the wet bottom while the upper part remains
dry, thus curling the porous sheet.

For dense porous media like tracing paper, the absorption of water by fibers appears to dom-
inate over the thicknesswise wicking of water into pores surrounded by fibers. Therefore, the
change in thickness with fiber expansion immediately brings about global curling of the paper.
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We first assume that the tracing paper is a bilayer with a sharp interface, composed of a dry and
a wet layer of thicknesses b4 and b, and Young’s moduli E4 and E,,, respectively. The curvature
of the partially wet paper can be predicted using the classical theory of Timoshenko (1925). The
curvature « of the bilayer is given by

K= %f(m,n), 18.

where € is the thicknesswise strain in the wet layer, 4 is the entire thickness of the bilayer, and
we have m = by/by,n = Eq/Ey,and f = 6(1 +m)*/{3(1 + m)* + (1 + mn)[m?* + (mn)~'1}. If the
wet thickness grows diffusively with time, following Washburn’s equation, b, () = (Dy1)!/?, we
can predict the curvature evolution with time until the sheet is entirely soaked.

For dense media like tracing paper, the diffusion model given by Equation 4 has been shown
to provide a theoretical prediction of sheet curvature that is closer to experimental measure-
ments than the foregoing classical imbibition model (Reyssat & Mahadevan 2011, Perez-Cruz
etal. 2017). In the diffusion model, the moisture content 6(z, ¢) is of interest rather than the posi-
tion of wet front, by, (). The hygroscopic strain €, now assumes a smooth gradient over the entire
thickness as given by €, = o,0(z, 1), where o, is the hygroscopic expansion coefficient (Figure 6b).
The equilibrium condition in the absence of external loads gives the force, F = foh odz =0, and
the moment, M = fob ozdz = 0, where € = —k(z — 2,,) — €, is the total strain, z, is the reference
plane, and o = Ee is the local stress. Knowledge of the dependence of D, and E on 6 allows us to
compute the curvature evolution with time.

The curling of plates, which swell differentially in the thickness direction in response to var-
ious external stimuli such as vapor, heat, light, and electromagnetic field, can be understood in
the same theoretical framework as above. In particular, the curling of liquid-absorbing sheets was
investigated in the contexts of a flower-mimicking paper—plastic bilayer dipped in water (Reyssat
& Mahadevan 2009), the deployment of rolled paper architecture on water (Mulakkal et al. 2016),
and the deformation of elastomer sheets contacting a favorable solvent (Holmes et al. 2011,
Lucantonio & Nardinocchi 2012, Pandey & Holmes 2013). Biological tissues that change shape
with moisture variation were also explained along the same lines, with examples taken from curling
seed capsule layers (Witztum & Schulgasser 1995), resurrection plants (Rafsanjani et al. 2015a),
and coiling seed awns of Pelargonium species (Jung et al. 2014).

5.2. Bending, Buckling, and Wrinkling

When a liquid wets a poroelastic hygroexpansive sheet, the stretched sheet tends to buckle under
compression when confined at both ends, as shown in Figure 6c. When a sheet is confined on
one side and free to swell isotropically on the other side by wetting, wrinkles are formed, as in
Figure 6e, which shows a simplified picture of damage left on a book after spilling water on it.
As the wetting front propagates with time, the bending of the buckled sheet evolves temporally,
which requires us to simultaneously consider the rates of lengthwise capillary imbibition and elas-
tic response.

For the porous sheet in Figure 6¢, a filter paper, we assume the capillary imbibition governs the
water transport. The thicknesswise swelling and the consequent softening (reduction of Young’s
modulus) of the wet portion occur much faster than the lengthwise imbibition. Thus, the global
deflection of the sheet can be obtained by assuming the wet portion to have a fixed thickness
(maximum swelling thickness) and Young’s modulus. As the bending process is decoupled from the
hygroexpansive swelling dynamics, we can set up geometrically nonlinear postbuckling equations
of force and moment equilibrium and geometric compatibility for wet and dry domains, whose
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boundary moves with a prescribed imbibition velocity. The equations can be solved numerically
with pertinent conditions at the boundaries and the interfaces of wet and dry domains to give the
temporal evolution of the shape of the sheet in the course of capillary imbibition (Figure 6d) (Lee
etal. 2016).

The magnitude of deflection & and curvature « of the sheet can be estimated using scal-
ing analysis as functions of the hygroexpansive strain €, the initial length L, and the wetted
length, L = /(¢)Lo. The sheet s stretched by I' ~ €,/L, in the wet domain, which is accommodated
by deflection due to buckling. With y' = dy/dx, we write T" ~ fOLO [(A+y?)2 —1]dx ~ y?Lo for
|¥'] < 1.Because of y' ~ & /Lg, we get & ~ (ep/)V/? and k ~ y'/L ~ (end)? /L = (en/1)'? /L.

This lengthwise imbibition is an easy way to propagate the mechanical response of a sheet to
an external stimulus from one end to the other, which was used to control the morphology of long
actuators (Lee et al. 2010) and to change the shape of a sagged fabric from that of the Bernoulli
catenary (Monaenkova et al. 2012). It was found that poroelastic sheets of gel surrounded by a
solvent wrinkle rather than buckle under compression, with the wavelength dependent on the per-
meability, the flexural modulus of the gel, and the viscosity of the solvent (Leocmach et al. 2015).

5.3. Morphing of Capillary Channels

When a liquid wicks between wettable elastic sheets, the capillary force acting along the three-
phase contact line and the force due to negative gauge pressure on the wetted area deflect the
sheets to reduce the gap, as shown in Figure 15 (Bico et al. 2004, Kim & Mahadevan 2006). When
the sheets are wettable and poroelastic, they change their volume and stiffness when absorbing the
liquid flowing between them, thereby further altering the morphology of the capillary channels.
Figure 6f shows that such sheets initially bend inward as dominated by elasto-capillarity and later
curl outward as they become swollen with diffused solvent (Holmes et al. 2016).

For the materials system employed in the experiments shown in Figure 6f; the capillary rise
between the elastomer plates, of the initial thickness » and gap d, occurs much faster than the
thicknesswise swelling owing to solvent diffusion. The initial inward bending of plates and their
consequent adhesion follows the classical elasto-capillary theory. The length of a dry region, L,,
can be obtained by minimizing the sum of the elastic energy of the deformed plates and the inter-
facial energy, L, ~ (dl.)"/?, where /. is the elasto-capillary length defined as /. = (B/y)"/* (Cohen
& Mahadevan 2003). Here, B = EF*/[12(1 — v?)] is the bending stiffness per unit width of the
plates.

The effects of (slow) solvent diffusion and consequent swelling manifest after (fast) elasto-
capillary rise of the solvent. The gradient of swelling established in the thickness direction causes
the plates to curl apart while maintaining their capillary adhesion in the middle (the right subpanel
in Figure 6f). As the curling is resisted by the surface tension of the solvent, the critical curvature
of the plates at the instant of peeling is scaled as /.~' (Holmes et al. 2016), where /. should account
for the change of B due to solvent absorption.

Nasouri etal. (2019) considered theoretically the rise of water between poroelastic paper sheets,
where the thicknesswise swelling by solvent imbibition is much faster than the elasto-capillary
rise, while the lengthwise imbibition within the sheet is much slower than the elasto-capillary
rise. Then the dynamics are governed by the capillary flows between the Hookean sheets (Duprat
et al. 2011), whose bending stiffness immediately changes when wet because of softening (re-
duction of E) and swelling (increase of »). Wong et al. (2016) showed that the elasto-capillary
wrapping of a water droplet by thin wettable films (Py et al. 2007) was promoted by using a super-
hydrophilic poroelastic nanofibrous layer backed by a sealing layer. This wrapping response was
made to propagate along a predetermined direction to guide the liquid flow.

Ha « Kim



6. SUMMARY

We have reviewed the recent advances in understanding and exploring deformations of soft porous
solids due to capillary imbibition of liquids. After introducing fundamental physical principles as-
sociated with poro-elasto-capillarity, we have treated the swelling and shrinkage of bulk poroelastic
media. Then we have considered various morphing modes of porous sheets, which are induced by
localized wetting and swelling of soft porous materials.

In reviewing the physical principles, we have encountered various diffusion or diffusion-like
equations, and the corresponding diffusivities. We summarize the diffusivities in order to help
readers clearly distinguish their physical significances and use them discerningly. The term D,,
in Equation 2 is for the capillary wicking through porous media with constant permeability and
meniscus curvature. In Equation 4, D, designates the diffusivity of moisture content in a partially
saturated zone. In Equation 5, Dy, is the diffusivity of fluid molecules through porous media. In
Equation 10, D, corresponds to the diffusivity for pressure equilibration via fluid transport in fully
saturated poroelastic media. Although D,, and D, directly involve the liquid-gas surface tension
coefficient, Dy, and D, can also play a role in poro-elasto-capillarity when the skeletons of the
poroelastic matrices, like gels and cellulose fibers, swell by absorbing liquid.

Recent growing interest in soft robotics and bio-inspired engineering of poroelastic materials
and tissues are anticipated to lead innovations in the understanding, exploration, and control of
the morphing of soft porous solids. The interactions of soft materials with wet environments will
play essential roles in future applications in health, water, energy, and food.

1. The transport of liquids in partially saturated zones deserves further quantitative inves-
tigation into the role of capillarity, surface adsorption, and local condensation.

2. Prediction and control of the morphing of poroelastic matrices of hygroscopically active
skeletons remain rich problems that require us to consider porous flows and poroelastic
and tribological responses of skeletons on multiple scales.

3. We need to continuously learn from biological creatures’ ingenious tactics to actuate in
an optimal manner their poroelastic tissues in response to external stimuli.

4. Efficient schemes to trigger drastic shape changes of three-dimensional soft porous
bulks with localized poro-elasto-capillary responses will have a significant impact on
soft robotics and biomimetics.
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