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Abstract

Data from experiments and direct simulations of turbulence have histori-
cally been used to calibrate simple engineering models such as those based
on the Reynolds-averaged Navier–Stokes (RANS) equations. In the past few
years, with the availability of large and diverse data sets, researchers have
begun to explore methods to systematically inform turbulence models with
data, with the goal of quantifying and reducing model uncertainties. This re-
view surveys recent developments in bounding uncertainties in RANS mod-
els via physical constraints, in adopting statistical inference to characterize
model coefficients and estimate discrepancy, and in using machine learning
to improve turbulence models. Key principles, achievements, and challenges
are discussed. A central perspective advocated in this review is that by ex-
ploiting foundational knowledge in turbulence modeling and physical con-
straints, researchers can use data-driven approaches to yield useful predictive
models.
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1. INTRODUCTION

Turbulence is a common physical characteristic of fluid flows. In wind turbine design, knowledge of
the turbulence in the incoming flow and in the blade boundary layers is important for performance;
in internal combustion engines, vigorous turbulence increases fuel/air mixing, improving overall
efficiency and reducing emissions; and in airplane design, delaying the occurrence of turbulence
in boundary layers over the wing surfaces leads to reduced fuel consumption. These examples,
and a vast number of other applications, demonstrate the importance of determining the effect
of turbulence on the performance of engineering devices and justify the continuous interest in
developing techniques to simulate and predict turbulent flows.

The representation of turbulent motions is challenging because of the broad range of active
spatial and temporal scales involved and the strong chaotic nature of the phenomenon. Over the
past half-century, starting from the pioneering theoretical studies of Prandtl, Kolmogorov, and
von Kármán (Darrigol 2005), many theoretical and computational approaches have been intro-
duced to characterize turbulence. The continuous growth of computer power has enabled direct
numerical simulations (DNS) of a number of turbulent flows and processes involving the physics
of turbulence (Kim et al. 1987, Rastegari & Akhavan 2018). However, simplified engineering
approximations continue to remain popular and widespread across different industries. Among
these, Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) approaches
are the most common, although there are many alternatives (Girimaji 2006, Spalart 2009). RANS
techniques rely completely on modeling assumptions to represent turbulent characteristics and,
therefore, lead to considerably lower computational requirements than DNS. RANS models are
constructed using a formal averaging procedure applied to the exact governing equations of mo-
tion and require closures to represent the turbulent stresses and scalar fluxes emerging from the
averaging process. The discipline of turbulence modeling has evolved using a combination of
intuition, asymptotic theories, and empiricism, while being constrained by practical needs such
as numerical stability and computational efficiency. Single-point RANS models of turbulence,
which are the focus of this review, are by far the most popular methods. These models implic-
itly assume an equilibrium spectrum and locally defined constitutive relationships to close the
averaged governing equations and express unclosed terms as a function of averaged, local flow
quantities.

LES techniques, on the other hand, directly represent a portion of the active scales and only
require modeling to account for the unresolved turbulent motions. LES with wall modeling is gain-
ing in popularity in many industrial applications. Since LES also involves modeling assumptions,
some of the ideas outlined in this article regarding RANS are amenable for use in LES (Gamahara
& Hattori 2017, Jofre et al. 2018).

The inherent assumptions in the RANS approach and the process of formulating closure
models introduce potential accuracy limitations and, consequently, reduced credibility in the pre-
dictive power of the approach. Direct quantification of the errors introduced by closure models
is intractable in general, but formal uncertainty quantification techniques (see the sidebars titled
Lexicon of Data-Driven Modeling and Uncertainty Quantification) have recently enabled RANS
predictions to be interpreted in probabilistic terms, while characterizing the corresponding con-
fidence levels. Experimental observations have routinely been used to calibrate the closures and
improve the accuracy of the resulting computations. Statistical inference approaches enable a more
comprehensive fusion of data and models, resulting in improved predictions. Furthermore, the
introduction of modern machine learning (ML) strategies brings fresh perspectives to the classic
problem of turbulence modeling.
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LEXICON OF DATA-DRIVEN MODELING

The elements of a data-driven model are (a) the (computational) model M, which is typically a function of an array
of independent variables w, is based on a set of algebraic or differential operators P , and includes a set of parameters
c that are the primary target of the data modeling; (b) the data θ , which in general are accompanied by a quality
estimate or, in other words, the uncertainty εθ ; (c) the output o of the model corresponding to the data θ ; and
(d) the discrepancy δ, which describes the ability of the model to represent the data. In general, δ is a function of
the model and it is unknown; it is typically described in terms of θ and a set of features η that are derived from prior
knowledge or constraints or derived directly from data. A general data-driven model is written as

M̃ ≡ M[w;P(w); c; θ ; δ; εθ ],

and one is generally interested in predicting quantities of interest, q (M̃).

2. TURBULENCE CLOSURES AND UNCERTAINTIES

We introduce assumptions in several stages while constructing a Reynolds-averaged model. Al-
though fully justified under certain conditions, these hypotheses introduce potential inadequacies
that limit the credibility of the overall predictions if not properly quantified. In this section, we
illustrate the four levels of simplifications that are typically required to formulate a RANS closure.

Level 1 (L1): The application of time- or ensemble-averaging operators 〈·〉, combined with
the nonlinearity of the Navier–Stokes equations [indicated hereafter as N (·) = 0], leads to an
undetermined system of equations, which requires the introduction of modeling assumptions to
close the system:

〈N (·)〉 �= N (〈·〉). 1.

UNCERTAINTY QUANTIFICATION

In spite of the considerable popularity of simulations in science and engineering, the process of generating objective
confidence levels in numerical predictions remains a challenge. The complexity arises from (a) the imprecision
or natural variability in the inputs to any simulation of a real-world system (aleatory uncertainties), and (b) the
limitations intrinsic in the physics models (epistemic and model-form uncertainties). Uncertainty quantification
(UQ) aims to rigorously measure and rank the effect of these uncertainties on prediction outputs.

The first step in UQ is the identification of the sources of uncertainty and the introduction of an appropriate
description (typically in probabilistic terms) ε; this is then propagated through the modelM, resulting in predictions
of a quantity of interest q (M, ε). The propagation step is typically computationally intensive and has received
considerable attention in the last decade, leading to the development of extremely efficient UQ strategies. The
result is a prediction that explicitly represents the impact of the uncertainty; if ε is a stochastic quantity, the resulting
prediction is the probability distribution P(q ), and therefore, a rigorous measure of the confidence interval can be
extracted from the analysis. In some cases, only statistical moments of q are required, leading to more cost-effective
UQ propagation strategies. Alternative descriptions of the uncertainties are also possible. For instance, when very
limited observations are available to represent a specific uncertainty source, it is appropriate to introduce a range
(an interval [ε−; ε+]) and consequently seek an interval on the model predictions [q−; q+]. In general, for nonlinear
models, q± does not equal q (M, ε±). In such cases, optimization techniques and bounding strategies are used instead
of probabilistic approaches.
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L1: uncertainties
introduced by
ensemble averaging
that are fundamentally
irrecoverable

L2: uncertainties in
the functional and
operational
representation of
Reynolds stress

L3: uncertainties in
functional forms
within a model

L4: uncertainties in
the coefficients within
a model

At a given instant in time, there are infinitely many realizations of velocity fields (the microscopic
state) that are compatible with an averaged field (the macroscopic state); however, each of these
realizations might evolve dynamically in different ways, leading to hysteresis-like phenomena
and thus uncertainty. This inadequacy is unavoidable in RANS due to the loss of information in
the averaging process and is fundamentally irrecoverable regardless of the sophistication of the
turbulence model. This situation is not limited to turbulence modeling and, in general terms, is
termed upscaling or coarse graining (Rudd & Broughton 1998).

Level 2 (L2): In the process of developing closures, a model representation is invoked to relate
the macroscopic state to the microscopic state and formally remove the unknowns resulting from
the averaging process:

〈N (·)〉 = N (〈·〉) + M(·). 2.

For an incompressible fluid, the unclosed term is simply written as

M(·) = ∇ · τ, 3.

where τ is the Reynolds stress tensor.
M is written in terms of a set of independent, averaged variables w, defined either locally

or globally, leading to one-point or two-point closures. For instance, with the assumption that
the Reynolds stress tensor is only a function of the local, averaged velocity gradient tensor, the
Cayley–Hamilton theorem can be applied to derive an exact expansion basis (Gatski & Jongen
2000). Linear eddy viscosity models and algebraic stress models are examples of L2 assumptions.

Level 3 (L3): Once the independent variables are selected, a specific functional form is postu-
lated. Either algebraic or differential equations, denoted here asP(·), are typically used to represent
physical processes or specific assumptions. Schematically, the model is now

M(w;P(w)). 4.

One- and two-equation models are the most popular, although many different choices of the
independent variables exist in literature (Wilcox 2006). Often the equations P(·) mimic the terms
in the Navier–Stokes equations such as convection and diffusion; additional contributions and
source terms are often included to represent known sensitivities, such as near-wall dynamics,
rotational corrections, etc. (Durbin 2018). Although it is possible to derive differential models
formally through repeated applications of the Navier–Stokes operator [N (τ) = ·], this leads to
computationally intensive closures and numerically cumbersome and noninterpretable terms.

Level 4 (L4): Finally, given a complete model structure and functional form, a set of coefficients
c must be specified to calibrate the relative importance of the various contributions in the closure.
Formally the closure is then

M(w;P(w); c). 5.

It is common to use consistency between the closure and known asymptotic turbulence states
to define some of the coefficients, although in many cases empirical evidence is more effective in
producing realistic models (Durbin 2018). The choice of the Cμ coefficient in two-equation linear
eddy viscosity models is a classical L4 closure issue.

A RANS prediction of a quantity of interest q is then in general

q = q (N (〈·〉);M(w;P(w); c)). 6.

Together, these four modeling layers showcase the difficulty in assessing the true predictive
nature of a turbulence closure, the inconsistency inherent in comparing different strategies, and
the need for a careful and transparent process for quantifying model inadequacies and reducing
them.
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3. MODELS, DATA, AND CALIBRATION

The use of experimental observations to drive physical insight is a staple of the scientific method.
The understanding of turbulent flows has benefited considerably from detailed measurement
campaigns such as the famous isotropic turbulence experiments of Comte-Bellot & Corrsin (1966).
The measured turbulence decay rates have been used to constrain the value of the L4 constants c
defined above.

In the last four decades, in addition to experimental data sets, DNS of the Navier–Stokes
equations have provided a further, invaluable source of data to gather modeling insights. The
Summer Program of the Center for Turbulence Research at Stanford University was established
in 1987 with the goal of studying turbulence using numerical simulation databases. There has been
a concerted effort by the turbulence community to gather and archive data sets, including databases
in the United States (Li et al. 2008) and Europe (Coupland 1993), among others. Until the past
decade, however, experimental and simulation data have been used mostly to obtain modeling
insight and aid in validation. Recently, data have been used toward the end of systematically
informing turbulence models with the goal of quantifying and reducing model uncertainties. In
this section, we describe how data are used in building new, calibrated models M̃ �= M.

3.1. Naive Calibration

The simplest calibration process typically involves the selection of an experimental configuration
that is similar to that of the prediction target. Often, the measured data may be the same as the
quantity of interest, q , but available in different flow conditions or configurations. Uncertainties
in the measurements are typically ignored. Finally, it is assumed that the model coefficients c are
the dominant source of uncertainty in the model, and therefore, the calibrated model is

M̃ = M(w;P(w); c̃q ), 7.

and the prediction accuracy is judged by the difference in q obtained when using c or c̃q . This
process has led to the proliferation of turbulence model variants and the inherent difficulty in
assessing predictive capabilities.

3.2. Statistical Inference

Statistical inference (see the sidebar titled Statistical Inversion) is the generalization of the calibra-
tion process described above; specifically, uncertainty in the experiments can be directly accounted
for, and a potential discrepancy (misfit) between the model prediction δ and the data is also in-
cluded. Furthermore, the calibration data can include evidence from different sources, while the
objective is simply to represent the data. The inference is formulated in a probabilistic setting
inspired by the Bayes theorem, and the result is a calibrated, stochastic model:

M̃ = M(w;P(w); c̃θ ) + δ + εθ . 8.

Formally, stochasticity is a consequence of uncertainty in the measurements, the prior infor-
mation on the calibration parameters (for example, the range or the most likely values of c), and
the discrepancy function. A prior for the discrepancy function is typically left to the intuition of
the modeler and is typically represented in a simple mathematical form, for example, by using a
Gaussian random field with parameters that are also estimated through the calibration process,
i.e., δ(θ ). The inference problem is typically solved using Markov chain Monte Carlo strategies,
and the result is a stochastic description (the posterior probability) of the model M̃.
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STATISTICAL INVERSION

Statistical inversion aims to identify parameters c of a model M(c) given data θ with uncertainty εθ . Mathematically,
the solution is determined by minimizing the difference between θ and the corresponding model output, o (M(c)).
In a Bayesian framework, the result of the inversion, i.e., the posterior probability of c given θ , is given as

P[c|θ ] ∝ P[θ |c] × P[c],

where P[c] is the prior, i.e., the probability of the model before any data (evidence) is used, and P[θ |c] is the probability
of the model being consistent with the data, termed the likelihood.

The prior and the posterior represent the modeler’s belief in the probability of M before and after observing
the data, respectively. In the case that all underlying probability distributions are assumed to be Gaussian, it can
be shown (Aster et al. 2012) that the maximum a posteriori (MAP) estimate of c can be determined by solving a
deterministic optimization problem,

cMAP = arg min
1
2

[ (
θ − o (M(c))

)T Q−1
θ

(
θ − o (M(c))

) + (
c − cprior

)T Q−1
c

(
c − cprior

) ]
,

where Qθ and Qc are the observation and prior covariance matrices, respectively.
An alternative strategy to solve inverse problems is the Least Squares (LS) approach. The LS procedure involves

the minimization of the discrepancy between θ and the model output o (M(c)) by solving the optimization problem

cLS = arg min||θ − o (M(c))||22 + γ ||c||2,

where the second contribution scaled by γ is a regularization term included to improve well-posedness and condi-
tioning of the inversion process (γ is a user-specified parameter). Again, assuming that all distributions are Gaussian
(and γ ≡ Qθ Q−1

c ), cLS equals cMAP.

The resulting model prediction q (M̃) is a random quantity. This approach is termed a Bayesian
inversion strategy in the literature. In many cases, only the mode of the posterior probability is
used; this is termed the maximum a posteriori (MAP) estimate, and therefore, the corresponding
calibrated model is deterministic.

3.3. Data-Driven Modeling

In the last two decades, the introduction of computationally efficient statistical inference algo-
rithms has led to the possibility of assimilating large amounts of data (for example, those generated
by DNS simulations). This has spurred interest in approaches that rely more on the available data
than on traditional models; in other words, in Equation 8, the emphasis is on δ rather than on M.
Different choices for the functional representation of δ are available, with increasing focus on ML
strategies. In addition to the inference, further work has been devoted toward representing the
discrepancy δ in terms of features η selected from a potentially large set of candidates. This enables
representation of the resulting model in terms of quantities such as the mean velocity gradients,
which are likely to be descriptive in a more general context than the one characterized by the
available data. Furthermore, constraints such as symmetry properties or Galilean invariance can
be enforced in the definition of the candidate features.

In general, data-driven models can then be expressed as

M̃ = M(w;P(w); c(θ ); δ(θ , η); εθ ). 9.
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3.4. Calibration and Prediction

The objective of the calibration process is the definition of a model that incorporates evidence
from available data. In practical applications, the next step is to use the calibrated model to predict a
quantity of interest. In the seminal work of Kennedy & O’Hagan (2001), model-form uncertainty is
introduced to the prediction by adding a discrepancy term to the model output o (M(c)). Typically,
Gaussian process models are assumed for the model discrepancy δ, and Bayesian inversion is used
to derive a posterior distribution for the hyperparameters of the Gaussian process, as well as the
inferred model parameters. However, in this approach, the entire mapping between the input
and prediction is treated as a black box and thus as physics-agnostic. In the present review, we
focus on methods that embed the calibration inside the model. The propagation of the relevant
stochastic information that defines the calibrated model endows the prediction with uncertainty
that represents the ability of the calibrated model to represent the data.

4. QUANTIFYING UNCERTAINTIES IN RANS MODELS

Predictions based on RANS models are affected by the assumptions invoked in the construction of
the closure (L1–L4) and by the calibration process. A rigorous process is required to characterize
the potential impact of these sources of uncertainties and the resulting confidence in the predic-
tions. In this section, we review approaches that seek to derive M̃ = M+ εM, where εM either is
obtained from theoretical arguments or is equal to ε(θ ) from comparisons to existing data.

4.1. Uncertainties in the Reynolds Stress Tensor

We survey two strategies for characterizing the uncertainty in the Reynolds stresses based on an
interval and a probabilistic description of the uncertainty.

RANS modeling has traditionally aimed at approximating unclosed terms in the averaged equa-
tions with the goal of obtaining a closed, computable model. An alternative idea is to replace the
unclosed terms with bounds that are based on theoretical arguments, leading to predictions that
represent extreme but possible behaviors, rather than likely behaviors under specific assumptions.
In other words, bounding aims to construct prediction intervals that can be proven to contain the
true answers, as opposed to explicit estimates that might be inaccurate. Pioneering work in tur-
bulence analysis in the 1970s by Howard (1972), Busse (1970), and others, and more recent work
by Doering & Constantin (1994), explored this idea; these authors applied variational approaches
and formulated a generic framework for estimating bounds on physical quantities rigorously and
directly from the equations of motion. Following this approach, termed the background flow
method, one manipulates the equations of motion relative to a steady trial background state
and then decomposes the quantity of interest, for example, the energy dissipation rate, into a
background profile and a fluctuating component. If the fluctuation term satisfies a nonnegativity
condition, the background part admits an upper bound. A recent improvement of this approach
(Seis 2015) led to quantified bounds on the energy dissipation rate for shear flow, channel flow,
Rayleigh–Benard convection, and porous medium convection. In spite of these encouraging re-
sults, it is difficult to envision that formal bounds can be derived for flow problems of practical
engineering interest.

An alternative viewpoint on bounding is based on the concept of Reynolds stress realizability
(Schumann 1977, Lumley 1978, Pope 1985, Durbin & Speziale 1994). Emory et al. (2011, 2013)
proposed a scheme of introducing realizable, physics-constrained perturbations to the Reynolds
stress tensor as a way of quantifying L2 uncertainties in RANS models expressed as intervals. The
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Figure 1
Geometric representation of the realizability constraint on a single-point Reynolds stress tensor: (a) turbulence componentality in the
barycentric triangle and (b) realizability-constrained perturbations. Panels adapted with permission from (a) Jofre et al. (2018) and
(b) Xiao et al. (2017). Abbreviations: C, component; RANS, Reynolds-averaged Navier–Stokes; τ, Reynolds stress tensor; τ̃, perturbed
Reynolds stress tensor; TKE, turbulence kinetic energy.

starting point is the eigen-decomposition of the Reynolds stresses. Banerjee et al. (2007) defined
a mapping based on the eigenvalues λ1, λ2, and λ3 and corresponding barycentric coordinates
that enables a convenient visual representation of the realizability bounds in a two-dimensional
coordinate system, depicted in Figure 1.

Formally, a general expression for the Reynolds stresses can be written as:

τ̃ = τRANS + δτ = 2̃k
(

1
3

I + Ṽ�̃Ṽ	
)

, 10.

where k̃, �̃, and Ṽ are the perturbed counterparts to Reynolds stresses computed using a RANS
model. For example, for the eigenvalues are perturbed as follows: �̃ = �RANS + δλ.

With the objective of determining general bounds, the discrepancy δτ = (δλ, δk, δV) has to
be defined with appropriate physical constraints and without the use of calibration data. The
realizability condition of the Reynolds stress depicted in Figure 1 provides clear constraints on
the eigenvalues. In Emory et al.’s (2011, 2013) approaches, RANS-predicted Reynolds stresses
were perturbed toward three representative limiting states: one-component (1C), two-component
(2C), and three-component (3C) turbulence, indicated by the vertices of the barycentric triangle.
In contrast to the strong constraint imposed by the realizability on the eigenvalues, the constraint
on the turbulence kinetic energy (TKE) is rather weak—it only has to be pointwise nonnegative.
Furthermore, the realizability condition does not give clear bounds on the eigenvectors. Iaccarino
et al. (2017) used the two limiting states at which the TKE production, P = τij∂Ui/∂x j , achieves
maximum and minimum values. These states are identified by specific alignments (see Figure 1b)
between the Reynolds stress tensor τij and the mean velocity gradient tensor ∂Ui/∂x j . A prediction
with a resulting interval-based uncertainty is obtained by performing simulations corresponding to
the extreme componentality states and the two sets of eigenvectors, providing minimum and max-
imum kinetic energy production. The computed bounds [q−; q+] appear to provide a satisfactory
representation of the uncertainty in the model, as reported in Figure 2 for a simple turbulent jet.

As an alternative to the physical approach based on eigen-decomposition, Xiao et al. (2017)
pursued a probabilistic description of the Reynolds stress uncertainty. They modeled the true
stress as a random matrix T defined on the set of symmetric positive semidefinite 3 × 3 matrices.
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Figure 2
Prediction bounds for the velocity profiles in a turbulent jet computed using the eigenspace perturbations. The dark-blue lines
represent the prediction using an eddy viscosity model, the red symbols are the experimental measurements, and the light-blue areas
are the computed uncertainty bounds. Figure adapted with permission from Mishra & Iaccarino (2017).

The expectation of a random matrix T is specified to be the RANS-modeled Reynolds stress,
τRANS, i.e., E[T] equals τRANS. They further defined a maximum entropy distribution for the
Reynolds stress tensor, which is sampled to indicate the uncertainty of the Reynolds stresses.

The random matrix approach and the eigen-decomposition-based approach are similar in
the sense that they ensure realizability when perturbing the Reynolds stress tensor or sampling
from the distribution thereof. The random matrix approach explores the uncertainty space of
eigenvalues and eigenvectors simultaneously (Wang et al. 2016a), with the correlation among them
implicitly specified through the maximum entropy distribution defined on the random matrix T;
it lacks, however, the clear interpretations of the limiting states as in the physics-based, eigen-
decomposition approach.

Both approaches have focused on the error bound of the Reynolds stress at a single point.
A potentially important source of uncertainty comes from the spatial variation of the Reynolds
stress discrepancy as the divergence of the Reynolds stress field appears in the RANS equations;
in other words, it is likely that δ equals δ(x). Emory et al. (2013) and Gorlé et al. (2014) specified a
spatial field for the eigenvalue perturbations based on the assumed limitations of RANS models,
while Wang et al. (2016b) and Xiao et al. (2017) used a nonstationary Gaussian process to encode
the same empirical knowledge. Edeling et al. (2017) proposed a return-to-eddy-viscosity model,
which is a transport equation with a source term describing the departure of the turbulence state
from local equilibrium. Finally, J.L. Wu, C.M. Ströfer & H. Xiao (manuscript under review)
utilized the fundamental connection between the governing partial differential equations and the
covariance of a discrepancy field to derive a physically consistent covariance structure. Xiao &
Cinnella (2018) provided more detailed discussions on some of the approaches above.

4.2. Uncertainty in Model Parameters

The model parameters in turbulence models are often determined by enforcing consistency in the
prediction of fundamental flows (e.g., homogeneous isotropic turbulence, logarithmic layer). It is
well known that these parameters are not universal and might require flow-specific adjustments.
For example, Pope (2000) and Eisfeld (2017) listed optimal parameters for several typical free
shear flows (e.g., plane jet, round jet, wake). However, for the lack of better alternatives, the
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False negative
True negative

True positive
False positive

Figure 3
Random forest predicted markers (blue and maroon) showing regions where negative eddy viscosity is possibly emerging in several flows,
likely indicating a failure of linear eddy viscosity models in such regions. Figure adapted with permission from Ling & Templeton (2015).

default parameters determined from the fundamental flows are still used in the simulation of
complex turbulent flows: This leads to uncertainties (L4).

It is fairly straightforward to assess the impact of uncertainties in the choice of the coefficients
in the models by using classical uncertainty propagation techniques. However, this exercise is
fundamentally dependent on the choices made to describe the parameters, i.e., to define their
range or their probabilistic representation. A more effective approach is to use data to infer the
parameters and then propagate the resulting stochastic description through the simulations ob-
taining predictions with uncertainty intervals. This will be discussed in the next section because
it is akin to a data-informed approach in which we have M̃ = M(θ ) + εθ . Readers are referred
to Xiao & Cinnella (2018) for a more comprehensive review of the literature on quantifying and
reducing parametric uncertainties.

4.3. Identifying Regions of Uncertainty

While the above discussion is focused on quantifying uncertainties, techniques have been devel-
oped to identify regions of potentially high uncertainties in RANS predictions. Gorlé et al. (2014)
developed an analytical marker function to identify regions that deviate from parallel shear flow.
This marker was found to correlate well with regions where the prediction of the Reynolds stress
divergence was inaccurate. Ling & Templeton (2015) employed databases of DNS and RANS
solutions and formulated the evaluation of the potential adequacy of the RANS model as a classi-
fication problem in ML. The results included several fields of binary labels that indicate whether
the specified model assumption is violated, as shown in Figure 3. Although these studies are useful
to illustrate the failure of turbulence models, there is no straightforward way to use the results for
improving predictions.

5. PREDICTIVE MODELING USING DATA-DRIVEN TECHNIQUES

The efforts discussed in the previous section aim at providing confidence in the application of
RANS closures by identifying and quantifying uncertainties in the models at various levels. In
this section, we focus on approaches that attempt to improve the overall prediction accuracy by
using data, and we review strategies that seek to derive M̃ = M(θ ), while explicitly introducing a
discrepancy function δ.

5.1. Embedding Inference-Based Discrepancy

The use of rigorous statistical inference to determine model coefficients is only a relatively recent
development. Oliver & Moser (2011) and Cheung et al. (2011) were the first to leverage DNS
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data from plane channel flows and Bayesian inference to assign posterior probability distributions
to model parameters of several turbulence models. Edeling et al. (2014a,b) further introduced the
concept of Bayesian model scenario averaging in the calibration of model parameters to assess the
effectiveness of diverse sources of data in specific predictions. Their studies included data from a
number of wall-bounded flows. Lefantzi et al. (2015) and Ray et al. (2016) used a similar approach
to infer the RANS model coefficients and also investigated the likelihood of competing closures
while focusing on jet-in-cross-flow, which is a canonical flow in film cooling in turbo-machinery
applications. More recently, Ray et al. (2018) used experimental data and Bayesian inference to
calibrate the parameters in a nonlinear eddy viscosity model.

The approaches listed above use statistical inference to construct a posterior probability dis-
tribution of a quantity of interest based on data. Only calibration of the model coefficients is
considered (an L4 uncertainty); typically a simple discrepancy function is defined in the process
and often is not directly used to make predictions. In contrast, Oliver & Moser (2009) introduced
a Reynolds stress discrepancy tensor δτ to account for the uncertainty. The discrepancy δτ is a
random field described by stochastic differential equations that are structurally similar to, but sim-
pler than, the Reynolds stress transport equations (e.g., Launder et al. 1975). They demonstrated
preliminary successes of their approach in plane channel flows at various Reynolds numbers. Their
framework laid the foundation for many subsequent works in quantifying and reducing RANS
model form uncertainties.

Dow & Wang (2011) used full-field DNS velocity data to infer the turbulent viscosity field
in a plane channel, on which they built Gaussian process models for the discrepancy field. The
resulting stochastic turbulent viscosity field was then sampled to make predictions of the velocity
field. Duraisamy et al. (2015) and Singh & Duraisamy (2016) used limited measurements (such
as surface pressures and skin friction) to extract the discrepancy field and applied it to channel
flow, shock–boundary layer interactions, and flows with curvature and separation. Xiao et al.
(2016) and Wu et al. (2016) used sparse velocity field data to infer the structure of the Reynolds
stress magnitude and anisotropy. All these approaches involve large-scale statistical inference
using adjoint-based algorithms (Giles et al. 2003) or a derivative-free, iterative ensemble Kalman
method (Iglesias et al. 2013).

As a representative example of large-scale inversion, the methodology is illustrated for the
flow over a curved channel in Figure 4 (Singh & Duraisamy 2016). In this case, the discrepancy
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Skin friction Cf predictions (a) and correction terms δMAP (b) and δSARC (c) for a convex channel. Abbreviations: LES, large-eddy
simulation; MAP, maximum a posteriori; SA, Spalart–Allmaras; SARC, SA rotation and/or streamline curvature.
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Predicted streamwise velocity Uθ at various streamwise s locations for the convex channel. Abbreviations: LES, large-eddy simulation;
s⊥, perpendicular distance from the lower wall; SA, Spalart–Allmaras; SARC, SA rotation and/or streamline curvature.

function is defined as a multiplier to the production term of the Spalart–Allmaras (SA) turbulence
model (Spalart & Allmaras 1992) and extracted by applying statistical inversion using the skin fric-
tion Cf data obtained via LES on the lower (convex) wall. Figure 4 shows the baseline SA model
(prior) and posterior (MAP) outputs alongside LES. In addition, a model that includes an analyt-
ically defined correction to the production term of the SA model, namely, the SA rotation and/or
streamline curvature (SARC) model (Shur et al. 2000), is also reported. Also shown is the inferred
correction term, δMAP, and the analytically defined correction term from the corresponding SARC
model. The trend in δMAP is consistent with the expectation that the convex curvature reduces
the turbulence intensity. Figure 5 shows the variation of the streamwise velocity with respect to
the distance from the wall at various streamwise locations. The posterior velocity and Reynolds
stresses (not shown) were observed to compare well with the LES counterparts and considerably
improved compared to the SA and the SARC prediction, even though only the skin friction data
were used in the inference. The results suggest that the SARC model requires improvements in
the log layer; a modeler can use the result of the inference to further develop curvature corrections.
An alternative viewpoint is that this model aims at producing models in which the operators P(w)
used in the L3 modeling step, i.e., in Equation 4, are informed by data resulting in P(w; θ ).

5.2. Generalizing the Embedded Discrepancy

The studies reviewed above inferred the discrepancy as a spatially varying field using data that
are directly relevant to the specific geometry and flow conditions of interest and therefore are not
easily generalizable. Although efforts such as scenario averaging (Edeling et al. 2014b) provide
some relief by incorporating evidence from different data sets, it is much more desirable to con-
struct discrepancy functions that can be employed within a class of flows sharing similar features
(e.g., separation, shock–boundary layer interaction, jet–boundary layer interaction). Tracey et al.
(2013) used ML to reconstruct discrepancies in the anisotropy tensor. Starting with the eigen-
decomposition in Equation 10, perturbations δλ to the eigenvalues were derived at every spatial
location x using a DNS data set. At this point, δλ(x) is mapped into a feature space, η(x), com-
prising functions of relevant quantities such as mean velocity gradients and turbulent quantities.
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The mapping is learned via a Gaussian process regression based on the DNS data set, and the
resulting discrepancy δλ(η) was found to be relatively accurate. This work was followed by further
developments in the field of ML and led to a promising research avenue that combines turbulence
modeling, inference, uncertainty quantification, and learning strategies.

5.3. Modeling Using Machine Learning

ML provides effective strategies to construct mapping between large data sets and quantities of
interest (see the sidebar titled Machine Learning). ML can be applied directly as a black-box tool
or in combination with existing models to provide a posteriori corrections. Tracey et al. (2013)
used supervised learning to represent perturbations to barycentric coordinates. The perturbations
are then reconstructed using an ML algorithm as a function of local flow variables. While this is
an activity at the L3 level (specific to a baseline model), the methodology is generally applicable
to any turbulence model. In contrast, Wang et al. (2017) and Wu et al. (2018b) developed a more

MACHINE LEARNING

Machine learning (ML) is an umbrella term for a wide range of techniques within the broader field of artificial
intelligence, and it has been recently rejuvenated by algorithmic innovations, advances in computer hardware, and
the enormous growth in the availability of data.

ML can be broadly categorized into unsupervised and supervised learning. In unsupervised learning, there are
no specific targets to predict; the goal is to discover patterns and reduce the complexity of the data. Examples
include clustering (grouping data points based on their similarity) and dimension reduction (identifying a subset
of dependent variables that describe the data). This is in contrast to supervised learning, where the objective is to
construct a mapping of the inputs and the outputs. When the output is categorical, supervised ML strategies are
also called classification strategies; when the output is continuous, these methods are called regression approaches.
The latter is of particular interest in the context of turbulence modeling. Example techniques commonly used in
supervised learning (including both classification and regression) are random forests, support vector machines, and
neural networks.

Neural networks are receiving considerable attention because of their capability to approximate complex func-
tions in a flexible form. Typically, an extremely large number of calibration coefficients have to be determined to
train a neural network, but efficient algorithms are available for implementation on modern computer architectures.
From a mathematical perspective, neural networks involve the composition of nonlinear functions. Starting with
an example of a linear model, consider a data set θ and a vector of inputs, or features, ηηη. A linear model for the
output δ(ηηη) can be constructed considering δ(ηηη) = Wηηη + β, where the weight matrix W and the bias vector β are
obtained by solving an optimization problem that minimizes the overall difference between δ and θ . This process
is called model training or learning. However, such a simple model may lack the flexibility to represent a complex
functional mapping, and therefore intermediate variables (layers) h are introduced:

h = σ
(
W(1)ηηη + β(1)

)
and δ(ηηη) = W(2)h + β(2),

where σ is a user-specified activation function such as the hyperbolic tangent. The two-layer network written as a
composite function is

δ(ηηη) = W(2)σ
(
W(1)ηηη + β(1)

)
+ β(2).

The composition of several intermediate layers results in a deep neural network, which is capable of efficiently
representing arbitrarily complex functional forms.
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Anisotropy at locations (bottom row) in the flow over periodic hills, predicted by using a random forest model trained on several
separated flows in significantly different geometries and configurations (Wang et al. 2017). Abbreviations: C, component; LES,
large-eddy simulation; ML, machine learning; RANS, Reynolds-averaged Navier–Stokes.

comprehensive perturbation strategy to predict discrepancies in the magnitude, anisotropy, and
orientation of the Reynolds stress tensor. They demonstrated results for two sets of canonical flows:
separated flows over periodic hills and secondary flows in a square duct. Representative results are
presented in Figures 6 and 7, showing improved predictions of Reynolds stress anisotropy and
mean velocities, respectively.

An important aspect of applying ML techniques is to ensure the objectivity and the rotational
invariance of the learned Reynolds stress models. Tracey et al. (2013), Wang et al. (2017), and Wu
et al. (2018b) used tensor invariants based on the eigen-decomposition of the Reynolds stresses,
while for the representation of the stress orientation, both Euler angles and unit quaternions have
been considered (Wu et al. 2018a).

As discussed above, a strategy to develop closures for Reynolds stresses is based on the formu-
lation of a generalized expansion of the Reynolds stress tensor (Pope 1975). In the assumption
that the stresses only depend on the mean velocity gradient, one can write

τ =
10∑

n=1

c(n)T (n), 11.

where the coefficients c must be obtained from empirical information or further assumptions,
while T ’s are known functions of the symmetric and antisymmetric parts of the velocity gradient
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tensor. In an ML framework, one rewrites the expansion as

τ̃ =
10∑

n=1

c(n)(θ , η)T (n). 12.

Ling et al. (2016b) proposed a neural network architecture with embedded invariance prop-
erties to learn the coefficients c(θ , η) with good predictive capability but no explicit expression
for the resulting model (i.e., any stress evaluation requires the use of the original, calibrated neu-
ral network). In a related effort, Weatheritt & Sandberg (2016, 2017) used symbolic regression
and gene expression programming for defining the coefficients c(θ , η) in the context of algebraic
Reynolds stress models, resulting in an explicit model form that can be readily implemented in
RANS solvers. DNS data of flow over a backward-facing step at a low Reynolds number is used for
training, while the flow at a high Reynolds number is predicted. While the results are encouraging,
a high level of uncertainty is observed by applying the resulting model to the flow over periodic
hills.

The approaches discussed above use the same starting point, an L2-level assumption, and a
different set of features (η) and data (θ ). The work of Ling & Templeton (2015) illustrated a
scheme for crafting features based on flow physics and normalizing them using local quantities;
later work has expanded this approach by using invariants of a tensorial set (Ling et al. 2016a).
Wang et al. (2017) and Wu et al. (2018b) used such approaches to predict Reynolds stress dis-
crepancies with a large feature set. These approaches only use local quantities to construct the
set of features. In general, further work based on modeling nonlocal, nonequilibrium effects can
expand the predictive capabilities of these approaches. For example, in a traditional eddy viscosity
model, Hamlington & Dahm (2008) used variables that account for nonlocal behavior through
streamline integration, which provided an inspiring approach for choosing features in data-driven
modeling.

Tracey et al. (2015) performed a proof-of-concept study to learn known turbulence modeling
terms from data using neural networks. The neural network–based terms were then embedded
within an iterative RANS solver and used for predictions, demonstrating the viability of using ML
methods in a hybrid partial differential equations/neural networks setting.
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An example of applying statistical inference and ML to turbulent flows over airfoils. (a) Pressure over an airfoil surface. (b) Baseline flow
prediction ( pressure contours and streamlines). (c) Flow prediction using data-driven SA model. Figure adapted with permission from
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5.4. Combining Inference and Machine Learning

If machine learning is applied directly to high-fidelity data, inconsistencies may arise between
the training environment and the prediction environment. Since turbulence models are typically
formulated to accurately represent first and second moments, many latent variables assume an
operational rather than a physically precise role in the turbulence models. For instance, the role
of the dissipation rate ε in a model is only to provide scale information, and the model is typically
calibrated to provide accurate results for the moments, even if the values assumed by ε are different
from the true value.

Statistical inference provides a rigorous framework to calibrate models using data, while ML
offers a flexible setting to formulate discrepancy functions in terms of a vast number of general
features. The combination of these two strategies yields the promise of deriving effective data-
driven closures for turbulence models.

Duraisamy et al. (2015) and Parish & Duraisamy (2016) have explored this avenue. In the first
step, the spatial structure of the model discrepancy δ(x) is extracted using statistical inference from
data sets representative of the phenomena of interest. ML is then used to reconstruct the functional
form of the discrepancy in terms of the mean flow and turbulence variables, δ(η). The resulting
discrepancy is then embedded in RANS solvers as a correction to traditional turbulence model
results in convincing improvements of the predictions. Singh et al. (2017a,b) used this approach
to simulate turbulent flow over airfoils. Figure 8 shows results from a data-driven SA model. Of
particular interest is that the inversion process does not require extensive data sets, and even very
limited experimental measurements, such as the lift coefficient, provide useful information that
leads to considerable improvements in the predictions with respect to the baseline models.

6. CHALLENGES AND PERSPECTIVES

The concurrent enhancements in statistical inference algorithms, ML, and uncertainty quantifi-
cation approaches, combined with the growth in available data, are spurring renewed interest in
turbulence modeling. We have surveyed efforts in the context of RANS modeling; however, data-
driven approaches are being pursued in a variety of contexts in fluid dynamics and for increasingly
complex applications, such as multiphase flows. Promising activities in LES include the use on
neural networks to model subgrid-scale stress (Vollant et al. 2014, 2017; Gamahara & Hattori
2017) and to represent the deconvolution of flow quantities from filtered flow fields (Maulik &
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San 2017). Ma et al. (2015, 2016) used ML to model the interphase mass and momentum fluxes
in multiphase flow simulations. In spite of recent successes, several challenges remain.

What data should be used? Databases of experimental measurements and DNS are readily
available today, but they might have only limited relevance in specific problems of interest. The
quantification of the information content in the data is a critical aspect of data-driven models.
Ideally, the process of calibration should provide a direct indication of the need for additional
data or potential overfitting. This is a classic setting to introduce formal experimental design to
drive further data-collection activities. In addition, the uncertainty present in the data must be
accounted for during the inference and learning stages and eventually propagated to the final
prediction to set reasonable expectations of prediction accuracy.

How should data–model consistency be enforced? If ML is applied directly on a data set,
a compounding problem is the consistency between the data and the models, i.e., the difference
between the learning environment (DNS) and the injection environment (RANS). It is well known
that even if DNS-computed quantities are used to completely replace specific terms in the RANS
closure, the overall predictions will remain unsatisfactory (Poroseva et al. 2016, Thompson et al.
2016) due to the assumptions and approximations at various levels in models, compounded by
the potential ill-conditioning of the RANS equations (Wu et al. 2018c). Furthermore, scale-
providing variables such as the turbulent dissipation rate will be very different in the RANS and
DNS contexts. The addition of the inference step before the learning phase enforces consistency
between the learning and prediction environment.

What should be learned? The blind application of learning techniques to predict a quantity of
interest based on available data cannot be expected, in general, to produce credible results. A more
realistic goal is to focus on learning discrepancy functions and an appropriate set of features that
satisfy physical and mathematical constraints. But how many features are required? And what is
the optimal choice for broad application of the resulting calibrated model to different problems?
These remain open questions and the subject of ongoing investigations. An alternative, promising
approach is to focus on a specific component of a closure and introduce correction terms that can
be learned from data, as in the example reported earlier corresponding to the curvature correction
of the SA model (Singh & Duraisamy 2016). In this case, the learning strategy can provide direct
insights to modelers.

What is the confidence in the predictions? Calibrated models potentially have limited applica-
bility because of the unavoidable dependency on the data; furthermore, data-driven models might
suffer from a lack of interpretability, i.e., the difficulty of explaining causal relationships between
the data, the discrepancy, and the corresponding prediction. The use of deep learning strategies
and vast amounts of data in the inference process exacerbates this issue.

What is the right balance between data and models? Recent works (Schmidt & Lipson 2009,
Brunton et al. 2016, Raissi et al. 2017) have explored the possibility of extracting models purely
from data. It has been shown that the analytical form of simple dynamical systems can be extracted
from data, and solutions of the Navier–Stokes equations can be reconstructed on a given grid and
flow condition. While these methods have focused on rediscovering known governing equations
or reconstructing known solutions, the possibility of discovering unknown equations and deriving
accurate predictive models purely from data remains an open question, although unknown clo-
sure terms have been extracted for simple dynamical systems (Pan & Duraisamy 2018). Ultimately,
the decision to leverage existing model structures and incorporate/enforce prior knowledge and
physics constraints is a modeling choice. In the limit of infinite amounts of data, direct application
of ML on the data could potentially identify universal closure models only limited by L1 uncer-
tainty. On the other hand, relying on ML alone, when dealing with a large but finite amount of
data, problem-specific/spurious laws might be discovered, resulting in a very limited predictive
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value. Therefore, the modeler’s choice is dictated by the relative faith in the available data and
prior model structures, physical constraints, and the purpose of the model itself (e.g., whether the
model will be used in reconstruction, parametric prediction, or true prediction).

In general, a holistic approach that (a) leverages advances in statistical inference and learning,
(b) combines the data-driven process with the assessment of the information content, (c) complies
with physical and mathematical constraints, (d ) acknowledges the assumptions intrinsic in the
closures, and (e) rigorously quantifies uncertainties has the potential to lead to credible and useful
models.

In conclusion, we expect a pervasive growth of data-driven models fueled by advances in algo-
rithms and accelerated by novel computer architectures. Moreover, we expect data to profoundly
impact models in all aspects, i.e., through parameters c, algebraic or differential operators P , and
discrepancies δ; this will result in general models written as:

M̃ = M(w;P(w; θ ); c(θ ); δ(θ , η); εθ ). 13.

We recommend that the resulting predictions be accompanied by explicit uncertainty estimates,
q̃ = M̃ + εq .
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