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Abstract

Experiments and numerical simulations have shown that turbulence in tran-
sitional wall-bounded shear flows frequently takes the form of long oblique
bands if the domains are sufficiently large to accommodate them. These
turbulent bands have been observed in plane Couette flow, plane Poiseuille
flow, counter-rotating Taylor–Couette flow, torsional Couette flow, and an-
nular pipe flow. At their upper Reynolds number threshold, laminar regions
carve out gaps in otherwise uniform turbulence, ultimately forming regu-
lar turbulent–laminar patterns with a large spatial wavelength. At the lower
threshold, isolated turbulent bands sparsely populate otherwise laminar do-
mains, and complete laminarization takes place via their disappearance. We
review results for plane Couette flow, plane Poiseuille flow, and free-slip
Waleffe flow, focusing on thresholds, wavelengths, and mean flows, with
many of the results coming from numerical simulations in tilted rectangular
domains that form the minimal flow unit for the turbulent–laminar bands.
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1. INTRODUCTION

The transition to turbulence in wall-bounded shear flows is often said to be subcritical, which
calls to mind the famous quotation by Stanislaw Ulam (Campbell et al. 1985, p. 374), “Using a
term like nonlinear science is like referring to the bulk of zoology as the study of nonelephant
animals.” An essential feature of transitional turbulence is its spatial inhomogeneity, also called
spatial intermittency. Classical transitions in configurations such as corotating Taylor–Couette
flow or Rayleigh–Bénard convection occur uniformly. There exists a threshold Reynolds number
(Re) or Rayleigh number above which the laminar flow is linearly unstable and, after a relatively
short time, the entire flow is occupied by a new state. For the wall-bounded shear flows that we
describe, this is not true. All of these flows are linearly stable in the Reynolds number regime in
which transition to turbulence occurs. For transition to take place, the flows must be subjected to a
finite-amplitude perturbation. There are various critical Reynolds numbers, one below which the
asymptotic state is uniform laminar flow, and another above which it is uniform turbulence, sepa-
rated by an intermediate range in which the asymptotic state is a mixture, more or less organized,
of laminar and turbulent flow. The flows in this intermediate range are the subject of this review.

2. PLANE COUETTE FLOW: TURBULENT–LAMINAR
BANDED PATTERNS

Plane Couette flow is the flow between two parallel rigid plates that are separated by a fixed
distance and that move at equal and opposite velocities. A particularly striking manifestation of
spatial inhomogeneity in this system is a state consisting of persistent turbulent bands coexisting
with nearly laminar regions, as shown in Figure 1a.Supplemental Video 1 shows the emergence
of a banded-turbulent pattern from uniform turbulence as Re decreases.

Such states occur in other similar shear flows. In particular, they occur in counter-rotating
Taylor–Couette flow, the flow between concentric cylinders that rotate in opposite directions. In-
deed, it was in counter-rotating Taylor–Couette flow that an oblique turbulent band—or in this
geometry, a turbulent spiral—was first observed by Coles & van Atta (1966), as seen in Figure 1b.
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Figure 1

(a) Turbulent–laminar pattern in a plane Couette flow experiment at a Reynolds number (Re) of 358. All lengths are in units of the
half-gap, h. (b) Turbulent spiral in a Taylor–Couette flow experiment. Panels adapted with permission from (a) Prigent et al. (2003) and
(b) Coles & van Atta (1966).
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This state was famously mentioned by Feynman (1964), and another depiction of it is included in
the widely cited encyclopedic survey of Taylor–Couette flow by Andereck et al. (1986). (Because a
translating frame is equivalent to a stationary one, only the relative velocity is significant in plane
Couette flow. However, both relative and mean rotation are significant in Taylor–Couette flow.
Consequently, flows with corotating and counter-rotating cylinders have quite different proper-
ties. In particular, a classic supercritical bifurcation occurs in parts of the corotating parameter
space, while parts of the counter-rotating parameter space resemble plane Couette flow.)

Starting in the 1990s, it was shown that in a less confined geometry, the turbulent spiral is
part of a regular alternating pattern that, moreover, also occurs in plane Couette flow. Tillmark
& Alfredsson (1992) used a looped belt to conduct pioneering experiments on transition in plane
Couette flow. Using a similar device, Daviaud et al. (1992) showed that turbulent spots grew into
inclined patches and suggested that these might be related to the turbulent Taylor–Couette spi-
rals. Prigent et al. (2002) then carried out experiments with large aspect ratios, i.e., spanwise and
streamwise directions that were 338 and 770 times the half-gap between the plates for plane Cou-
ette flow and axial and azimuthal directions of 884 and 724 times the half-gap for counter-rotating
Taylor–Couette flow. These large aspect ratios are necessary because the pattern wavelength is on
the order of 40 times the half-gap. The bands are aligned obliquely (on the order of 24°) with
respect to the streamwise direction. Both the wavelength and the angle depend, weakly but re-
producibly, on the Reynolds numbers. This state can thus be called a turbulent–laminar banded
pattern, and it has been studied extensively since then.

Turbulent–laminar banded patterns were first simulated numerically by Barkley & Tuckerman
(2005a). A visualization of this pattern is shown in Figure 2a via the kinetic energy at mid-gap.
While the turbulent bands are oriented obliquely to the streamwise direction, within each tur-
bulent region are structures primarily aligned with the streamwise direction. These structures
correspond to the streamwise vortices and streaks known to be the essential building blocks of
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Figure 2

(a) A turbulent–laminar pattern for plane Couette flow at a Reynolds number of 350, calculated in a narrow rectangular tilted box.
Shown is an instantaneous snapshot of the kinetic energy at mid-gap. The laminar regions are uniformly black, while the turbulent
regions consist of narrow horizontal streaks and vortices. (b–d) The tilted box used for simulations. (e) The oblique unstable equilibrium
state computed in a tilted domain by Reetz et al. (2019). All lengths are in units of the half-gap, h. Abbreviation: MFU, minimal flow
unit. Panels a and e adapted with permission from Barkley & Tuckerman (2005a) and Reetz et al. (2019), respectively.
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transitional shear turbulence (Hamilton et al. 1995, Waleffe 1997). The spanwise width of these
structures is on the scale of the fluid gap. Streaks are clearly visible in Supplemental Video 1,
which shows the streamwise velocity at the midplane.

A key feature of these simulations is the use of a periodic rectangular tilted domain, whose
long direction is perpendicular to the bands, i.e., parallel to the wave vector of the pattern. Plates
situated at y = ±hmove at speedU in equal and opposite directions at an angle θ from the x axis.
The laminar flow and Reynolds numbers are

ulam
Cou =U

y
h
estrm ≡U

y
h
(cos θex + sin θez ), Re = ReCou ≡ Uh

ν
. 1.

For θ = 0, there is no tilt and Equation 1 reduces to the usual convention for plane Couette flow,
estrm = ex.We call y the vertical or wall-normal direction and (x, z) the horizontal directions. Co-
ordinates x and z here refer to the band-parallel and band-perpendicular directions; the streamwise
and spanwise directions are referred to as such. Velocity components u ≡ (u, v,w) are specified
where necessary. Where not otherwise specified, we use nondimensionalized variables such that
U = h = 1 and Re refers to ReCou.

Figure 2b–d shows the construction principle for this domain.The idealizedminimal flow unit
(Hamilton et al. 1995) of size [Lx,Ly,Lz] = [4, 2, 6] is shown in Figure 2b. There is no tilt and its
spanwise width, Lz = 4, is such as to contain just one pair of counter-rotating streamwise vortices.
(The nominal spanwise width of a single vortex is the size of the fluid gap,which in nondimensional
units is 2.) In order to sensibly impose periodicity in a tilted domain, streamwise vortices must
meet adjacent ones in crossing a boundary, as illustrated in Figure 2c. To maintain a vortex-pair
spacing of approximately 4, the short direction of the domain Lx must be related to the angle θ by
Lx ≈ 4/ sin θ . Figure 2c shows a typical value of 24° for which we take Lx = 10 � 4/ sin θ = 9.83.
Finally, the remaining horizontal dimension Lz of the domain is taken to be long so as to contain
one wavelength of the turbulent–laminar pattern, typically 40 half-gaps.This domain can be called
the minimal band unit (MBU). The domain can also be prolonged, as in Figure 2d, to contain
several repetitions of the pattern. The outlines of these domains, repeated periodically so as to tile
Figure 2a, are seen as faint white lines.

Simulating turbulent–laminar patterns in tilted computational domains with a single long di-
rection has two purposes. The first is the obvious reduction in the computational resources re-
quired compared to those for domains with two large directions. The second is that such simula-
tions capture the minimal, or near-minimal, conditions necessary for turbulent–laminar patterns
to form, and this allows more direct access to the mechanisms underlying these patterns.

Figure 2e shows an unstable equilibrium solution computed by Reetz et al. (2019) that greatly
resembles the instantaneous pattern in Figure 2a. Following the first calculation of a nontrivial
equilibrium by Nagata (1990), a large number of unstable equilibria (called exact coherent struc-
tures in the context of wall-bounded shear flows) have been computed (e.g., Gibson et al. 2009).
The scenario deduced by Reetz et al. (2019) shows that the equilibrium in Figure 2e is connected
to the Nagata solution via two successive bifurcations. Oblique equilibria have also been calcu-
lated by high-Re asymptotic methods by Deguchi & Hall (2015). Unstable equilibria are thought
to play an underlying role in organizing turbulence (Cvitanović & Eckhardt 1989, Kawahara &
Kida 2001). Schneider et al. (2010) have extended these ideas to compute edge states that are spa-
tially localized within large domains and mildly chaotic. We do not focus further on equilibria;
readers are referred to Kawahara et al. (2012).

Domains large in both the streamwise and spanwise directions, while less economical, can cap-
ture further features of the systems, such as competition between different angles and wavelengths.
Figure 3 shows turbulent–laminar banded patterns with competing angles in plane Couette flow
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Figure 3

Competition in plane Couette flow between turbulent–laminar bands with opposite angles. (a) Streamwise velocity in midplane
computed by Duguet et al. (2010) in a domain oriented along the streamwise and spanwise directions. (b,c) Plane Couette experiment of
Prigent et al. (2003). The wavelength increases as Reynolds number (Re) decreases. All lengths are in units of the half-gap, h. Panels
adapted with permission from (a) Duguet et al. (2010) and (b,c) Prigent et al. (2003).

from simulations by Duguet et al. (2010) and from experiments by Prigent et al. (2003). The com-
petition between bands at opposite angles was studied by these authors and byHegseth et al. (1989)
and Goharzadeh & Mutabazi (2001, 2008) in terms of diffusive phase dynamics and Ginzburg–
Landau equations.

Most of the simulations presented in this section were obtained using the spectral element/
Fourier code Prism (Henderson & Karniadakis 1995) to integrate the Navier–Stokes equations
on grids containing 6–12 points per unit length in the horizontal directions and 15–20 in the wall-
normal direction in a domain tilted at 24°. We also present some simulations in large domains
whose sides are aligned with the streamwise and spanwise directions.

Turbulent–laminar patterns are associated with large-scale and reproducible mean flows, as can
be expected since they break the spatial homogeneity in the streamwise and spanwise directions.
Entitling their article “Progress Report on a Digital Experiment in Spiral Turbulence” to high-
light their then-groundbreaking experimental techniques, Coles & van Atta (1966) sketched the
form of the mean flow at mid-gap between the two cylinders in their Taylor–Couette apparatus
(Figure 4a). Results in Figure 4b from our full numerical computations in plane Couette flow
show the mean flow to be somewhat different but also emphasize the importance of strong flow
parallel to the band boundaries. Duguet & Schlatter (2013) showed that this along-band flow is
a simple consequence of the incompressibility of the large-scale flow.

A more complete view of the mean structure of a turbulent–laminar pattern is presented in
Figure 5.We use 〈·〉 to denote averaging in time and along the band direction x, yielding functions
that depend on the wall-normal direction y and the band-perpendicular direction z. The deviation
from laminar Couette flow is plotted in a periodically prolonged domain. The centers of two
adjacent turbulent bands are located at z = −20 and z = 20, as seen in the turbulent kinetic energy,
Eturb. The intervening laminar region is centered on z = 0. The topmost plot shows the along-
band flow 〈u〉 (into and out of the plane shown), which is strong at the interfaces. The flow along
the bands is accompanied by a large-scale circulation around the turbulent bands, although we
emphasize that this streamfunction 〈ψ〉 corresponds to the deviation from laminar Couette flow.
For this periodic pattern, the mean flow can be approximated to high accuracy as the sum of only
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Horizontal views of flow accompanying the turbulent–laminar banded pattern. (a) Sketch from experimental data at midplane of
Taylor–Couette flow (Coles & van Atta 1966). (b) Computations of plane Couette flow, above and below midplane. Turbulent regions
are shown in blue and laminar regions are shown in white. Both show prominent band-parallel flow at the turbulent–laminar
boundaries. All lengths are in units of the half-gap, h. Panels adapted with permission from (a) Coles & van Atta (1966) and (b) Barkley
& Tuckerman (2007).

three trigonometric functions in the band-perpendicular direction z,

u(y, z) ≈ u0(y) + uc(y) cos(2πz/λ) + us(y) sin(2πz/λ), 2.

where λ is the wavelength, here 40 half-gaps, and u represents 〈u〉 or 〈ψ〉.
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Mean flow of a turbulent–laminar pattern at a Reynolds number of 350, with the average taken over time and the band-parallel
direction, and laminar plane Couette flow subtracted. The center of the turbulent bands is at z = ±20, the center of the laminar region
is at z = 0, and the boundaries are at z ≈ ±10. The band-parallel flow 〈u〉 is strongest at the boundaries. The flow in the (y, z) plane is
represented by a streamfunction 〈ψ〉, which shows circulation around the turbulent band, characterized by high turbulent kinetic
energy Eturb and low pressure 〈p〉. All lengths are in units of the half-gap, h. Figure adapted with permission from Barkley & Tuckerman
(2007).
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Different regimes of turbulent–laminar banded patterns in plane Couette flow. Spatiotemporal diagrams are constructed by sampling
the kinetic energy at 32 points along a line at the mid-gap y = 0 in the long direction, z, averaging over temporal windows of length
T = 500 and using colors varying from white (zero; laminar flow) to black (turbulent). For panels a and b, the domain length is
Lz = 120. In panel a, we start with uniform turbulence and lower the Reynolds number from Re = 500. Three lighter laminar patches
appear at Re = 350, leading to a wavelength of 40. Near Re = 310, one of the patches disappears, leading to a wavelength of 60, and
near Re = 300, another disappears, leading to a single patch, which disappears at Re = 290. Plots to the right in panel a show detailed
evolution of the kinetic energy within the temporal window in turbulent and laminar regions. In panel b, the initial condition is the
turbulent–laminar banded pattern at Re = 350, which evolves to uniform turbulence when the Reynolds number increases. In panels c
and d, the domain length increases in small discrete steps from Lz = 50 to Lz = 140. For Re = 350 (c), the turbulent region splits to
retain an approximate wavelength of 40, while for Re = 300 (d), its width remains constant, corresponding to a single localized band.
Plots above panels c and d of the final instantaneous turbulent kinetic energy show that for Re = 350, the turbulent kinetic energy
remains above zero throughout the domain, whereas for Re = 300, it is zero in the laminar region. In panel e, with Re fixed at the
intermediate value of 410 and Lz fixed at 40, the state remains poorly defined, with turbulent patches appearing and disappearing. Plots
to the left of panels a, b, and e show the variation in time of the one-dimensional spatial Fourier components of the spanwise velocity,
with the solid, dotted, and long-dashed curves corresponding to the λ = 40, λ = 60, and uniform components, respectively. All lengths
are in units of the half-gap, h; time, t, is in advective units, h/U , whereU is the velocity of the walls.

Figure 6 illustrates various regimes of turbulent–laminar patterns as a function of Reynolds
number. Spatiotemporal diagrams have been produced by sampling simulations in tilted domains
along a line in the (long) band-perpendicular direction, z. The Reynolds number or the domain
size is also changed over the course of some of the simulations. Figure 6a shows the evolution
to the patterned state as the Reynolds number decreases. Time evolves upward and as it does
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Re is decreased in steps, as shown at the right of the panel. At Re = 500 the flow is in a state of
uniform, or featureless, turbulence. Following a decrease to Re = 350, a distinct pattern forms
with three turbulent bands alternating with regions of quasi-laminar flow. As Re is further de-
creased, one turbulent band is lost at Re = 310 and a second is lost at Re = 300, leaving a single
band that subsequently fully relaminarizes at Re = 290. The general trend shown in Figure 6a
is robustly observed with decreasing Reynolds number, but the details vary with the realization.
This Reynolds number scan is coarse; more precise thresholds and means of determining them
are described below. In particular, patterned states that appear to be stable may ultimately revert
to laminar flow on very long timescales. Figure 6b shows the reverse transition from a turbulent–
laminar banded pattern to uniform turbulence as the Reynolds number is increased from 350 to
420. Figure 6c shows that if the Reynolds number is fixed at 350 and the domain size increases, a
turbulent band repeatedly splits in order to retain a wavelength of about 40. The same procedure
for Re = 300 in Figure 6d shows a single isolated band, independent of the domain size. This
localized band is expected to revert to laminar flow on some very long timescale. In Figure 6e,
Re is 410 and the domain size is fixed at 40. Laminar and turbulent patches repeatedly appear
and disappear. In all of the cases shown in Figure 6, when laminar patches appear, the intensity
of the turbulence within the bands increases, keeping the total turbulent intensity approximately
constant.

A quantitative characterization of the pattern is provided by the line graphs to the left of
panels a, b, and e in Figure 6. These show the time-dependent moduli |wλ| of the coefficients
of the one-dimensional spatial Fourier transform (in the band-perpendicular direction) of the
spanwise velocity at mid-gap averaged over intervals of �T = 500. These provide a good char-
acterization of the patterns, with significant λ = 40 and λ = 60 components at appropriate times,
and it is this information that has been used to determine a threshold. Figure 7a presents the
Reynolds number dependence of the spectral coefficient |ŵλ=40|, where averages have been taken
over long time series, such as Figure 6e. A clear transition is seen near Re = 430, which we take
to be the threshold between uniform turbulence and turbulent–laminar bands in plane Couette
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Modulus |ŵλ=40| of the λ = 40 Fourier component in the band-perpendicular direction of the spanwise velocity at mid-gap, such as
shown in Figure 6e. (a) Average over time series. A transition between uniform turbulence and a pattern is seen near Reynolds number
(Re) 430. (b) Logarithm of the probability distribution function for a uniformly turbulent flow at Re = 500, an intermittent flow at
Re = 410, and a turbulent–laminar pattern flow at Re = 350. The most probable value is zero for uniform turbulence but has a finite
value for a patterned flow. (c) Time-averaged band-perpendicular square Fourier component of the streamwise velocity, |ûλ|2, at
Re = 350. The dominant coefficient corresponding to bands has a wavelength of λ = 40, while coefficients corresponding to streamwise
vortices and streaks have 3.6 ≤ λ ≤ 5.7. Figure adapted with permission from Tuckerman & Barkley (2011).
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experiments of Prigent et al. (2003) at indicated values of θ and Re. Figure adapted with permission from Tuckerman & Barkley
(2011).

flow in our narrow tilted rectangular domain. (Much of Section 5 is devoted to characterizing
the lower threshold that separates laminar flow from the presence of turbulence.) Figure 7b con-
structs probability distribution functions from these long time series by averaging over intervals of
�T = 500. At Re = 500, when the turbulence is uniform, the most probable value of |ŵλ=40| is 0.
At Re = 410, the distribution undergoes an inflection and by Re = 350, when a turbulent–laminar
pattern with λ = 40 is robust, the most probable value is nonzero. Finally, Figure 7c presents
the entire Fourier spectrum at Re = 350, contrasting the coefficients corresponding to the bands,
with λ = 40, with those of the much smaller structures, with λ ≈ 4, twice the gap of size 2. These
smaller structures, as seen in Figure 2a, consist of streamwise vortices (wall-normal and span-
wise flow) and streaks (spanwise dependence of the streamwise velocity). At mid-gap, their mean
spanwise velocity is zero and hence we show the streamwise components, |ûλ|.

Finally, Figure 8 presents a survey of the regimes that are seen in MBUs as a function of im-
posed angle θ and Reynolds number. The experiments of Prigent et al. (2003) show wavelengths
(in the band-perpendicular direction) that increase from 46 to 60 half-gaps and angles that increase
from 25° to 37° as the Reynolds number decreases, as can also be seen in Figure 3b,c. Because the
angle is imposed in tilted MBU domains, simulations can compute patterns with a much wider
range of both angles and wavelengths. Most of these are presumably unstable when placed in a
larger, less constrained domain since they have not been observed. For 15°≤ θ ≤ 72°, we use a
tilted domain whose dimensions are [4/ sin θ , 2, 120] and find periodic or localized bands. Simu-
lations in a nontilted domain with a long streamwise length of 220 and a short spanwise direction
of length 4 (corresponding to 90°) show direct laminarization at Re ≈ 400 after a very short-lived
transient pattern. In contrast, simulations with a long spanwise length of 120 and a short stream-
wise length of 10 (corresponding to 0°) show repeated nucleation of turbulent regions, which
persists to Reynolds numbers as low as Re ≈ 200 (see Barkley & Tuckerman 2005b).
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Turbulent bands in plane Poiseuille flow. (a) Three-dimensional view of the deviation from laminar flow of streamwise velocity at
Reynolds number (RePoi) 1,140 in the lower half of a [51.2, 2, 22.5] domain from Tsukahara et al. (2006). (b) Wall-normal velocity
(colors) and horizontal mean flow (arrows) at RePoi = 700 in a [200, 2, 160] domain from Xiong et al. (2015). The inset is the initial
condition. All lengths are in units of the half-gap, h; time, t, is in advective units, h/U , whereU is 3/2 of the bulk velocity. Panels
adapted with permission from (a) Tsukahara et al. (2006) and (b) Xiong et al. (2015).

3. POISEUILLE FLOW: TWO SUPERPOSED SHEAR LAYERS

Turbulent–laminar banded patterns also exist in plane Poiseuille flow, sometimes called channel
flow, the flow between two parallel rigid plates maintained at a constant distance and driven by
an imposed streamwise pressure gradient or flux (see Figure 9). Banded patterns were observed
first numerically in plane Poiseuille flow by Tsukahara et al. (2005, 2006) and experimentally by
Hashimoto et al. (2009), with later simulations by Brethouwer et al. (2012), Fukudome & Iida
(2012), Tuckerman et al. (2014), Xiong et al. (2015), Kushwaha et al. (2017), and Tao et al. (2018).

The properties of transitional plane Poiseuille flow resemble those of planeCouette flow.How-
ever, the similarities are somewhat masked by the trivial fact that the two flows effectively use
different nondimensionalization. Plane Poiseuille flow can be viewed as the superposition of two
shear layers of opposite sign. Thus, the characteristic length scale in plane Poiseuille flow—the
half-channel height—is the full height of one of these shear layers. In contrast, the half-channel
height in the Couette flow convention is half its shear layer height. In addition, several different
conventions are used for the velocity scale in plane Poiseuille flow. Here we consider the system
driven by an imposed flux, rather than imposed pressure gradient. Hence, the mean streamwise
velocity Ubulk is known. We use as a velocity scale U ≡ 3Ubulk/2, which is the centerline velocity
of laminar flow with mean velocityUbulk. The velocity scale,U , is then the difference between the
maximum and minimum velocity of laminar Poiseuille flow. However, in Couette flow, the veloc-
ity scale used is half the difference between the velocities of the two walls. As a result, in terms
of the shear, both the length scale and the velocity scales used for nondimensionalization in plane
Poiseuille flow are twice those used in plane Couette flow. Thus, roughly speaking, one should
expect values of RePoi, as conventionally defined, to differ from values of ReCou by a factor of four,

ulam
Poi =U

(
1 − y2

h2

)
estrm, RePoi ≡ Uh

ν
= 4

(U
2

) ( h
2

)
ν

≈ 4ReCou, 3.

where ReCou uses plane Couette conventions based on each single-sign shear layer.
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Plane Poiseuille flow also differs from plane Couette flow in its symmetries. Plane Couette flow
possesses centro-symmetry, i.e., simultaneous reflection in the streamwise and wall-normal direc-
tions. In contrast, although plane Poiseuille flow has reflection symmetry in the wall-normal direc-
tion, it is not symmetric between the upstream and downstream directions. Therefore turbulent–
laminar bands in plane Couette flow are stationary, at least on short timescales, while in plane
Poiseuille flow, they generically travel in the streamwise direction since there is no symmetry to
keep them stationary.

Figure 10 shows results from simulations for plane Poiseuille flow in a tilted MBU do-
main with dimensions [10, 2, 40]. The simulations use the pseudospectral Chebyshev/Fourier
Channelflow 2.0 code ( J.F. Gibson, F. Reetz, S. Azimi, A. Ferraro, T. Kreilos, et al., manuscript
in preparation) with 12 points per unit horizontal length and 32 per unit wall-normal length. The
protocol is similar to that used in the previous plane Couette simulations: The Reynolds number
is decreased in discrete steps during the simulation. Results are shown in a frame of reference
moving at the mean velocity, U . Figure 10a shows that, starting from uniform turbulence and
decreasing the Reynolds number, the approximate threshold for the appearance of the bands is
RePoi ≈ 1,900 = 475 × 4; that for localized bands, the threshold is RePoi ≈ 1,300 = 325 × 4; and
that for relaminarization, the threshold is RePoi ≈ 800 = 4 × 200 in the MBU. Rather than a typ-
ical wavelength of 40 half-gaps, the wavelength at onset is 20 half-gaps, i.e., 40 quarter-gaps, the
natural comparison to use with plane Couette flow. The traveling character of the turbulent–
laminar patterns is evident. Patterns travel more quickly than the mean flow for RePoi � 1,100
and more slowly for RePoi � 1,100; the velocities range from approximately 0.03U to −0.03U .
Figure 10b–d also shows cross sections of time and band direction–averaged fields (see also
Tsukahara et al. 2006). The streamwise velocity alternates between a parabolic and flattened pro-
file, the streamfunction shows two superposed elongated recirculation cells, and the turbulent
kinetic energy is concentrated near the two bounding walls.

We now consider the various forces that must be in equilibrium to maintain a statistically per-
manent turbulent–laminar banded pattern and that dominate in the turbulent or laminar regions.
We write the averaged Navier–Stokes equation,

0 ≈ −〈(ũ · ∇ )ũ〉︸ ︷︷ ︸
Fturb

+ −〈ulam · ∇ (u − ulam)〉︸ ︷︷ ︸
Fadv

+ 1
Re

∇2〈u − ulam〉︸ ︷︷ ︸
Fvisc

. 4.

Equation 4 omits the largest forces, which balance to maintain the laminar flow, as well as some
of the negligibly smallest forces. We have projected onto the streamwise direction to define Fturb,
the turbulent or Reynolds stress force; Fadv, expressing the dominant advection by the laminar
flow; and Fvisc, the viscous force countering curvature. Figure 10 shows these forces at three wall-
normal locations as a function of z for a turbulent band for both Poiseuille and Couette flow. The
relation between the forces above and below mid-gap respect the symmetries of the Poiseuille
and Couette configurations, while the relation between the forces in the Poiseuille and Couette
flows confirms the interpretation of Poiseuille flow as two superposed Couette flows. Recalling
that z has a component in the streamwise direction and given the signs of Poiseuille and Couette
flow in the upper and lower halves of the channel, Fturb mostly acts to accelerate the fluid in the
streamwise direction and Fvisc acts to oppose it. The term Fadv changes sign as the band is traversed.
The Couette turbulent band is localized: In the laminar region with Fturb = 0, we also have Fadv =
Fvisc = 0. The Poiseuille turbulent band, however, is bordered by regions for which Fturb = 0 but
Fadv and Fvisc are equal and opposite, though small.

An interesting feature of plane Poiseuille flow is that a localized perturbation may evolve into
isolated oblique turbulent bands by extending from only one of its endpoints, as in Figure 9b,
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Figure 10

(a) Evolution of a simulation of plane Poiseuille flow in a long narrow tilted rectangular channel in the frame of the streamwise bulk
velocity. The simulation is initialized with uniform turbulence at Reynolds number (RePoi) 2,000, which is decreased in steps of 100.
Plotted are spanwise velocity time series at 32 points along a line at y = 0.8. Laminar bands with wavelength 20 emerge at around
RePoi ≈ 1,900, with the wavelength increasing to 40 at RePoi ≈ 1,200 and turbulence disappearing at RePoi ≈ 800. The pattern moves
more slowly than the bulk velocity for RePoi � 1,100 and more quickly for RePoi � 1,100. (b–d) Temporally and band-averaged fields for
Re = 1,100. (b) The streamwise velocity 〈u〉 (including laminar profile) alternates between a parabolic profile in y, in which the
maximum value of 〈u〉 is high, and a flattened profile, in which it is low. (c) The streamfunction 〈ψ〉 in the (y, z) plane shows two
superposed elongated recirculating cells. (d) Turbulent kinetic energy Eturb shows that the turbulence is localized near the walls, where
the shear is highest. (e, f ) The streamwise Reynolds stress (green), advective (blue), and viscous (red) forces as a function of z at three y
locations for the mean flow associated with turbulent–laminar band in Poiseuille flow (e) at RePoi = 1,100 and in Couette flow ( f ) at
ReCou = 300. For both flows, Fturb acts in the same direction as the laminar profile, while Fvisc is in the opposite direction. The balance
of forces is very similar for the y > 0 and y < 0 sections of Poiseuille flow and the y < 0 section of Couette flow. The force balance for
the y > 0 section of Couette flow is related by centro-symmetry to the force balance for the y < 0 section of Couette flow. All lengths
are in units of the half-gap, h; time, t, is in advective units, h/U , whereU is 3/2 of the bulk velocity. Figure adapted with permission
from Tuckerman et al. (2014).

adapted from Xiong et al. (2015). This is another manifestation of the asymmetry between the
upstream and downstream streamwise directions of plane Poiseuille flow: Unlike in plane Couette
flow, here the two ends of a single band experience a different relationship to the streamwise flow.
Spreading is observed to start at RePoi = 660. Above this Reynolds number, localized turbulent
bands increase steadily in length in sufficiently large domains or sustain themselves in a cycle of
band extension and breakup in periodic domains (Xiong et al. 2015, Kanazawa 2018, Tao et al.
2018).
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Figure 11

Correspondence between flows with rigid and with free-slip walls. (a) Plane Couette flow and Waleffe flow. The wall-normal bounds
±H of the Waleffe flow domain and its velocity extrema ±V are matched to those of the interior portion of the turbulent mean profile
of plane Couette flow with wall-normal bounds ±h and velocity extrema ±U . (b) Plane Poiseuille flow and its free-slip version as two
superposed Waleffe flows, each occupying a height 2H . Figure adapted with permission from Chantry et al. (2016).

4. WALEFFE FLOW: ROLE OF THE WALLS

An important question is the role of walls in wall-bounded shear flows, assumed in their very
name. The necessity for rigid walls was questioned byWaleffe (1997), who derived his classic self-
sustaining process not from wall-bounded plane Couette flow, but from a simplified version in
which the no-slip boundary conditions u = v = w = 0 at y = ±1 are replaced by free-slip condi-
tions ∂yu = v = ∂yw = 0. The flow is still confined between boundaries; however, it is not driven
by wall motion or by a pressure gradient, but instead by an imposed bulk force varying sinusoidally
in the wall-normal direction, y.

Figure 11a shows the correspondence between plane Couette flow andWaleffe flow. In plane
Couette flow, the laminar profile is straight, while the mean turbulent profile takes a sigmoidal
form with sharp changes near the boundaries and is nearly linear in the interior, corresponding to
constant mean shear. In contrast, in Waleffe flow, the laminar profile is sinusoidal while the mean
turbulent profile is roughly linear, corresponding to a constant shear. If the domain of Waleffe
flow is taken to be the interior of plane Couette flow, as in Figure 11a, then Waleffe flow can be
viewed as modeling only this region, without the near-wall regions (Chantry et al. 2016).

Figure 11a indicates a specific scaling based on this correspondence: The height H of the
Waleffe domain is 0.625 times the height h of the plane Couette domain, and the maximum speed
V of the Waleffe profile is correspondingly 0.625 times the speedU of the plane Couette profile.
This height, that of the inner near-linear portion of themean turbulent plane Couette flow profile,
is not universal but varies slowly with Re in the transition region. We define a Reynolds number
Re for Waleffe flow, based on the correspondence with plane Couette flow, i.e.,

ulam
Wal = V sin

(π
2
y
H

)
estrm, Re ≡ Uh

ν
= V/0.625 ×H/0.625

ν
, 5.

where the notation is defined in Figure 11. Simulations are carried out by adapting Channelflow
2.0 ( J.F. Gibson, F. Reetz, S. Azimi, A. Ferraro, T. Kreilos, et al., manuscript in preparation) for
the free-slip conditions, on a grid with 12 points per horizontal unit length and 15 per wall-normal
unit length.

Waleffe flow undergoes the same sequence of transitions as plane Couette flow as the Reynolds
number is decreased, from uniform turbulence through regular turbulent–laminar bands, then
isolated and fragmented bands, and finally to laminar flow. Turbulent–laminar patterns exist in
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(a) Banded turbulence visualized by instantaneous streamwise velocity at the midplane, with contours from negative (blue) to positive
(red) velocity in plane Couette flow (PCF), Waleffe flow (WF), and model Waleffe flow (MWF). (b) Mean flow for turbulent laminar
patterns in PCF,WF, and MWF and (c) their plane Poiseuille equivalents, PPF and WF. Flows are calculated in a tilted domain like that
of Figure 2b, and averages are taken in time and in the band-parallel direction. Planes shown are in the band-perpendicular direction,
z, and in the wall-normal direction, y. Arrows show the flow in these planes, while colors show the magnitude of the flow in the
band-parallel direction. The y-direction has been stretched by a factor of 3, and black horizontal tick marks in (b) PCF and (c) PPF
indicate the bounds of the interior region to which WF corresponds. Lengths are in units of the half-gap, h, for PCF and PPF. For WF
and MWF, h is the half-gap of the corresponding wall-bounded PCF and PPF flows. Figure adapted with permission from Chantry
et al. (2016).

Waleffe flow approximately for Re ∈ [250, 640], a wide range that encompasses the corresponding
range for plane Couette flow. Figure 12 compares the patterns for both flows. Horizontal views
of the instantaneous flows, as well as vertical views of the averaged flows computed in the MBU,
show the marked resemblance between the patterns. Model Waleffe flow (MWF), also shown in
this figure, is discussed below.

The free-slip version of plane Poiseuille flow is constructed explicitly as a superposition of
two free-slip Couette flows, or equivalently, as a free-slip channel driven by a body force with y
dependence, cos(πy/H ), as shown in Figure 11b. There are two provisos. First, rigid-wall plane
Poiseuille flow has two boundary layers that are to be clipped, rather than the four that would exist
in two superposed rigid-wall plane Couette flows, leading to slightly different scalings. (Compare
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the domain sizes in Figure 12c with those in Figure 12b.) Second, a Tollmien–Schlichting-like
eigenmode that would otherwise be unstable at transitional Reynolds numbers must be sup-
pressed. the appropriate scaling and Reynolds number definition, turbulent–laminar bands are
then present in free-slip plane Poiseuille flow for RePoi between 700 and 1,800, close to the range
found for the rigid case (see Figure 10a). The temporally and spatially band-parallel averaged
flows in Figure 12 highlight the resemblance between these flows in the rigid-wall and free-slip
versions, as well as the interpretation of plane Poiseuille flow as two superposed plane Couette
flows (see also Figures 5 and 10, in which the wall-normal direction is not stretched).

Other ideas for simulating fully turbulent channel flow at higher Reynolds numbers in the
interior region only have been proposed by Podvin & Fraigneau (2011) and Mizuno & Jiménez
(2013), who substituted for the no-slip boundary condition at the wall a synthetic velocity field
imposed at an interior, off-wall boundary.

5. MODEL WALEFFE FLOW: DIRECTED PERCOLATION

Wehave seen that rigid walls are not necessary to reproduce the basic phenomenology of transition
to turbulence in plane Couette and Poiseuille flows. This fact has not only important theoretical
consequences, but also practical ones, since this allows the high wall-normal resolution require-
ments of boundary layers to be avoided. We take a step further and seek a minimal model in the
wall-normal direction that reproduces the phenomenology of transitional plane Couette flow.We
expand (u, v,w) in low-order trigonometric functions as follows,

u(x, y, z)= u0(x, z) + u1(x, z) sin(βy) + u2(x, z) cos(2βy) + u3(x, z) sin(3βy),

v(x, y, z)= v1(x, z) cos(βy) + v2(x, z) sin(2βy) + v3(x, z) cos(3βy),

w(x, y, z)= w0(x, z) + w1(x, z) sin(βy) + w2(x, z) cos(2βy) + w3(x, z) sin(3βy), 6.

with β = π/(2H ). To ensure incompressibility, we use a poloidal–toroidal plus mean-mode
representation,

u = f (y)ex + g(y)ez + ∇ × ψ (x, y, z)ey + ∇ × ∇ × φ(x, y, z)ey, 7.

where f , g, and ψ match the y-formulation of u, and φ matches that of v. Because ψ and φ are
taken to be periodic in x and z, their derivatives cannot produce functions that are constant in
x and z, and so the mean modes f and g must be included explicitly to achieve a general, valid
representation of u (e.g., Marqués 1990). Substituting Equation 7 into the Navier–Stokes equa-
tions and applying Fourier orthogonality in y, we derive our governing equations, which are seven
partial differential equations in (x, z, t ) and six ordinary differential equations (ODEs) for the non-
constant components of f and g. The original eight-ODE model, derived by Waleffe (1997) to
illustrate the self-sustaining process, is contained within the system and can be recovered by re-
ducing the number of modes in y and imposing a single Fourier wave number in x and z. Our
model is inspired by a series of models (Manneville & Locher 2000, Moehlis et al. 2004, Lagha &
Manneville 2007, Seshasayanan & Manneville 2015) of plane Couette and Waleffe flow.

Not only can the degrees of freedom economized in the wall-normal direction be used to
increase the horizontal degrees of freedom, but since the length scales in the horizontal directions
tend to mimic those in the wall-normal direction, the elimination of the boundary layers leads
to economy of resolution in the horizontal directions as well. In particular, only four modes per
horizontal spatial unit are needed, compared with ten for plane Couette flow.
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Figure 13

Growth of a turbulent spot in model Waleffe flow. The flow is initialized with a poloidal vortex, and the subsequent evolution is
visualized by streamwise velocity at the midplane. At early times (t = 250), a large-scale quadrupolar flow dominates, as shown by
streamlines of the y-averaged flow (contour lines, only plotted away from the spot for visibility). By t = 1,250, bands begin to develop and
form a zigzag across the domain. The bands continue to grow, and by t = 3,000, a complex array of bands fills the domain. All lengths
are in units of h; time, t, is in advective units, h/U , where h andU are respectively the half-gap and velocity of the corresponding plane
Couette flow, as in Figure 11. Figure adapted with permission from Chantry et al. (2016).

In simulations performed in very large domains, a horizontal drag force, sometimes called
Rayleigh or Ekman friction,

FRayl ≡ −σ (uex + wez ), 8.

is added to the Navier–Stokes equations. This force damps all modes, but its effect is only signifi-
cant on modes with no vertical curvature and little horizontal curvature. These modes would oth-
erwise decay extremely slowly inWaleffe flow and are absent in Couette flow.The value σ = 10−2

reproduces the damping to which these modes would be subjected in the wall regions of the cor-
responding Couette flow.

MWF displays qualitatively the same transitional phenomena as Waleffe flow and plane Cou-
ette flow, but at lower Reynolds numbers. The turbulent–laminar bands shown for MWF in
Figure 12a,b occur in the approximate Reynolds number range of [125, 230], using the defi-
nitions given in Equation 5. Inclusion of the drag force of Equation 8 shifts upward the Reynolds
number necessary to produce the same phenomena, but these values still remain far below those
for plane Couette or Waleffe flow.

Figure 13 shows a simulation atRe = 160 starting from an initial vortex, following Schumacher
& Eckhardt (2001). A localized turbulent spot develops, with its corresponding large-scale
quadrupolar flow, followed by a spanwise elongated turbulent patch and finally a complex banded
form. This evolution matches that seen in simulations of plane Couette flow by Duguet et al.
(2010) and Duguet & Schlatter (2013). The turbulent spot in the early stage of development
was first studied in plane Couette flow by Lundbladh & Johansson (1991) and Tillmark &
Alfredsson (1992). More recently, the evolution of spots has been investigated as a means to un-
derstand the mechanisms of turbulent–laminar interface growth, as well as the development and
role of large-scale flows (see Duguet & Schlatter 2013; Lemoult et al. 2014; Couliou &Monchaux
2015, 2018).
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Figure 14

Instantaneous depiction of intermittent turbulence just above the onset of sustained turbulence. The streamwise velocity in the
midplane is shown for a simulation of model Waleffe flow in a domain with dimensions [2,560, 1.25, 2,560] at Re = 173.824 (reduced
Reynolds number ε = 1.4 × 10−4) with Rayleigh friction factor σ = 10−2 after 1.2 × 106 time units. Laminar flow is seen as white. The
turbulence fraction is Ft ≈ 0.1. Experimental and numerical domains of Bottin et al. (1998), Duguet et al. (2010), and Avila (2013) and
are overlaid in red, blue, and orange, respectively. Part of the quasi-one-dimensional domain of Lemoult et al. (2016) is shown in green,
and the spanwise width of the plane Poiseuille experiment of Sano & Tamai (2016) is indicated in purple on the right. All lengths are in
units of h; time, t, is in advective units, h/U , where h andU are respectively the half-gap and velocity of the corresponding plane
Couette flow. Figure adapted with permission from Chantry et al. (2017).

In the previous sections, we have mentioned lower bounds for the existence of isolated bands,
but these have been only approximate. A long-standing and fundamental question has been
whether the transition to turbulence is discontinuous or continuous. The CEA-Saclay group
(Daviaud et al. 1992, Bottin & Chaté 1998, Bottin et al. 1998) has extensively investigated this
question for plane Couette flow; Manneville & Dauchot (2001) and Manneville (2015) have
stressed that the question must be addressed in the spatiotemporal context.

We have used MWF to answer this question (Chantry et al. 2017) by carrying out simula-
tions in an extremely large domain of size [2,560, 1.25, 2,560].Figure 14 shows the instantaneous
streamwise velocity at the midplane for such a simulation, at Re = 173.824 with σ = 10−2, and
illustrates precisely why such large domains are necessary for this type of study. The smaller do-
mains used in past experiments and simulations, also shown in Figure 14, would be likely to detect
no turbulence under these conditions, and this is in fact the case.We define the turbulent fraction
Ft to be the fractional area of the horizontal domain for which the height-integrated energy of
the deviation from laminar flow is greater than a threshold value, 0.01, i.e., the colored areas of
Figure 14. For the large domain of Figure 14, a continuous dependence of Ft on Re is obtained,
with a threshold of Rec ≈ 173.80, as shown in Figure 15a. For simulations of MWF carried out in
a smaller domain of size [380, 1.25, 70],Figure 15b shows that Ft behaves discontinuously with Re.
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Bifurcation diagrams for the transition to turbulence. (a) Continuous transition in domain of size [2,560, 1.25, 2,560]. Equilibrium
turbulence fraction (Ft) is plotted as a function of Reynolds number (Re). (b) Discontinuous transition in a domain of size [380, 1.25, 70],
approximately that of the experiments by Bottin & Chaté (1998). Figure adapted with permission from Chantry et al. (2017).

Philip & Manneville (2011) computed a discontinuous transition to turbulence in plane Couette
flow whose Reynolds number threshold decreased with increasing domain size, but all of their
domains were considerably smaller than any of those depicted in Figure 14. The transition to tur-
bulence in MWF is continuous, but only in the limit of infinite domain size; even in Figure 15a,
there exists a minimum nonzero value of Ft based on the domain size. In the classic hydrodynamic
pattern-forming systems such as corotating Taylor–Couette flow or Rayleigh–Bénard convection,
the transition is to a new state that exists everywhere but has infinitesimally small amplitude. In
contrast, in MWF (and presumably also in plane Couette flow and Poiseuille flow), transition
to turbulence occurs via the increasing density occupied by the turbulent state in an otherwise
laminar background, not via its increasing amplitude in any given area or volume.

Our simulations of MWF demonstrate a more specific aspect of turbulent transition. Noting
that in subcritical shear flows, turbulence can spread into laminar regions but cannot arise spon-
taneously, Pomeau (1986) postulated that this transition might belong to the universality class
of directed percolation, an idea supported by Manneville & Dauchot (2001). This would imply
not only that Ft varies continuously with Reynolds number, but also that power laws with specific
predicted exponents would hold near onset. Figure 15a shows Ft ∼ εβ , where ε is defined to be
(Re− Rec )/Rec and β has the value 0.583 predicted for directed percolation with two extended
directions (Lübeck 2004). Figure 16 shows the temporal evolution of Ft for various Reynolds
numbers near Rec. Above Rec, Ft eventually saturates at the finite values plotted in Figure 15a,
while below Rec, Ft eventually decreases to zero. Supplemental Video 2 shows the evolution of
MWF in our large domain, for cases with Re ≈ Rec and Re > Rec. The theory of directed per-
colation makes quantitative predictions about this behavior (Lübeck 2004). When time and the
turbulent fraction are rescaled to t|ε|ν‖ and tαFt, as shown in Figure 16b, where the exponents
have the theoretical values of α � 0.4505 and ν‖ � 1.295, the data collapse on two curves, one for
above-critical evolution and the other for below-critical evolution.

Counter-rotating Taylor–Couette flow with a very narrow gap, and hence minimal curvature,
has been used as a way of approaching plane Couette flow. Shi et al. (2013) carried out simulations
of Taylor–Couette flow in a long tilted domain (MBU) like that of Figure 2 in order to deter-
mine the typical statistical lifetimes as a function of Reynolds number for decay and splitting, as
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(a) Turbulence fraction Ft as a function of time for a range of Reynolds numbers initialized with uniform turbulence. Above criticality,
the turbulence fraction saturates at a finite value, and below it falls to zero. At criticality, the turbulence fraction decays in time as a
power law, Ft ∼ t−α , with the directed percolation exponent α � 0.4505 (dashed line). Colored lines from highest to lowest Ft
correspond to evolution at reduced Reynolds numbers ranging from ε = 0.87 × 10−3 to ε = −1.33 × 10−3. (b) Data above and below
criticality collapse onto two scalings (black dashed curves) when the directed percolation exponents are used to rescale time and the
turbulence fraction. All lengths are in units of h; time, t, is in advective units, h/U , where h andU are respectively the half-gap and
velocity of the corresponding plane Couette flow. Figure adapted with permission from Chantry et al. (2017).

in Figure 6a,c. The two curves cross at Re = 325 (using the conventions of plane Couette flow),
which defines a critical point beyond which splitting dominates decay, as pioneered by Avila et al.
(2011) for pipe flow. This value should approximate the directed percolation threshold, were such
a calculation to be carried out for fully resolved wall-bounded plane Couette flow. Note that this
implies that the states with Re ≤ 325 seen in Figure 6 are probably long transients. The value
of Re = 323 was already mentioned by Bottin et al. (1998), although in reference to discontinu-
ous experimental results like those of Figure 15b. Lemoult et al. (2016) combined the narrow-
gap limit with a drastic reduction in the spanwise direction by reducing the axial height (see
Figure 14) so that turbulence would take the form of patches rather than bands. They showed
that the transition to turbulence for this case verified the scalings of one-dimensional directed
percolation.

An important open question is the nature of the transition in plane Poiseuille flow. Sano
& Tamai (2016) reported evidence for directed percolation with a critical Reynolds number of
RePoi = 830. However, as seen in Figure 9b, this transition is preceded by the formation of ro-
bust oblique turbulent bands at Reynolds numbers as low as RePoi = 660 (Xiong et al. 2015, Tao
et al. 2018). Thus, the transition in plane Poiseuille flow may be more complicated than standard
directed percolation.

6. OTHER FLOWS

Oblique turbulent bands formwhen there is one confined and two extended directions. In addition
to the previously mentioned study by Lemoult et al. (2016), several other scenarios have been ex-
plored in which the bands become patches or puffs when one of the extended directions is reduced.
Figure 17 shows pressure-driven flows in two parameterized geometries: axially driven flow be-
tween two concentric cylinders, called annular pipe flow (Ishida et al. 2016), and flow through
a rectangular duct (Takeishi et al. 2015). The analog of the spanwise direction (perpendicular to
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Turbulent–laminar patterns in annular pipe flow (a–c) and in duct flow (d–f ). The aspect ratio A is defined as A = (rout + rin )/(rout − rin )
for annular pipe flow and as A = Lspan/height for duct flow. For large A, there are two extended directions and turbulence takes the
form of oblique bands. For small A, only the streamwise direction is extended and turbulence takes the form of puffs. Lengths in panels
d–f are in units of the half-height, h. Panels adapted with permission from (a–c) Ishida et al. (2016) and (d–f ) Takeishi et al. (2015).

the gap and to the streamwise direction) is the circumference for the annular pipe and the larger
cross-sectional dimension for the duct. For both flows, a spanwise-to-gap aspect ratio A can be
defined; both approach plane Poiseuille flow in the limit of infinite aspect ratio and resemble pipe
flow in the limit of small aspect ratio. Figure 17 shows oblique bands for large A and localized
puffs for small A.

For counter-rotating Taylor–Couette flow, in which turbulent bands were first discovered, the
directions analogous to streamwise and spanwise are azimuthal and axial. An experimental realiza-
tion by Goharzadeh &Mutabazi (2001) is shown in Figure 18, along with a numerical realization
byMeseguer et al. (2009) (see also Dong 2009). Rotating plane Couette flow (where the axis of ro-
tation is oriented in the spanwise direction) is closely related to Taylor–Couette flow; this flow has
been surveyed, and turbulent bands have been observed by Tsukahara et al. (2010) and Brethouwer
et al. (2012). Torsional Couette flow, the flow between two differentially rotating closely spaced
disks, is another variant, in which the analog of the streamwise direction is azimuthal, as in Taylor–
Couette flow, but the analogs of the spanwise and gap directions are radial and axial. Figure 18c
shows an experimental realization of spiraling widely spaced turbulent bands in this flow by Cros
& Le Gal (2002). An oblique turbulent patch has also been seen in a Poiseuille–Couette experi-
ment with one moving wall and zero mean flux by Klotz et al. (2017), as shown in Figure 18d.

Turbulent bands have been sought in other flows, with a view to determining which features
favor or suppress them. Brethouwer et al. (2012) observed bands in Couette and Poiseuille
flows subjected to stabilizing influences such as stratification, cyclonic rotation, or a magnetic
field, but at higher and wider Reynolds number ranges. Spatially localized turbulence was also
studied by Zikanov et al. (2014) and Deusebio et al. (2015) in the presence of a magnetic field and
stratification, respectively.Wang et al. (2017) observed oblique bands in simulations of viscoelastic
turbulence in channel flow. Ishida et al. (2017) found that rough walls tend to suppress turbulent
bands in plane Poiseuille flow. Khapko et al. (2016) found that the asymptotic suction boundary
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a b c d

Figure 18

Turbulent bands in a counter-rotating Taylor–Couette experiment (a) and simulation (b). (c) Spiraling turbulent bands in an experiment
on torsional Couette flow between closely spaced differentially rotating disks. (d) Oblique turbulent patch in a Poiseuille–Couette
experiment. Panels adapted with permission from (a) Goharzadeh & Mutabazi (2001), (b) Meseguer et al. (2009), (c) Cros & Le Gal
(2002), and (d) Klotz et al. (2017).

layer does not support oblique turbulent bands.They provided evidence that this is due to the lack
of vertical confinement,more specifically the fact that a boundary layer, bordered by only one wall,
allows large-scale wall-normal flows. This is consistent with the analysis of Duguet & Schlatter
(2013) on the role of incompressibility of the large-scale flows in generating oblique structures.

7. CONCLUSION

In all of the transitional flows we have depicted, turbulence takes the form of long and well-
separated oblique bands. These bands exist whenever the domain is sufficiently large to accom-
modate them, and this is true even very close to the threshold for turbulence, e.g., in Figure 6d
or Figure 14. Their widths and angles remain comparable to those in a regularly spaced pattern,
even when the bands are isolated or sparsely scattered throughout the domain. They occur in
the hydrodynamic flows discussed in detail here, i.e., plane Couette flow and Poiseuille flow, and
also in many other flows such as Taylor–Couette flow, torsional Couette flow, and annular pipe
flow.

A tilted rectangular domain with periodic boundary conditions (MBU) provides the minimal
horizontal domain in which one or a few turbulent bands can be computed. By reproducing their
phenomenology with free-slip boundary conditions, we have shown that the boundary layers are
unimportant and the effect of the walls is only to produce shear and confinement. In order to carry
out simulations in domains containing a large number of bands, we have shown that a minimal
model of the vertical dependence retains the qualitative properties of transitional plane Couette
flow, and we have used this model to show that the transition to turbulence via band extinction is
in the universality class of directed percolation.

Turbulent bands assemble and organize the much smaller streamwise streaks and vortices of
which they are composed. First considered as an exotic manifestation and generalization of pat-
tern formation, turbulent bands have turned out to be elementary and fundamental components
of transitional flows, much like the streaks and vortices. They occupy an intermediate position
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in the hierarchy between the large horizontal dimensions of a domain and the vertical gap size
that is the scale of the streaks and vortices. The bands exist symbiotically with large-scale flows;
the interaction between the two is responsible for maintaining them. Yet, despite the consider-
able interest and effort devoted to their study, the mechanisms producing the bands remain, at
best, incompletely understood. Their angles and widths cannot yet be quantitatively explained by
a predictive theory from first principles.
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