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Abstract

Turbulent flows in porousmedia occur in a wide variety of applications, from
catalysis in packed beds to heat exchange in nuclear reactor vessels. In this
review,we summarize the current state of the literature onmethods tomodel
such flows.We focus on a range of Reynolds numbers, covering the inertial
regime through the asymptotic turbulent regime. The review emphasizes
both numerical modeling and the development of averaged (spatially fil-
tered) balances over representative volumes of media. Formodeling the pore
scale, we examine the recent literature on Reynolds-averagedNavier–Stokes
(RANS) models, large-eddy simulation (LES) models, and direct numerical
simulations (DNS). We focus on the role of DNS and discuss how spatially
averaged models might be closed using data computed from DNS simula-
tions. A Darcy–Forchheimer-type law is derived, and a prior computation
of the permeability and Forchheimer coefficient is presented and compared
with existing data.

171

mailto:brian.wood@oregonstate.edu
https://doi.org/10.1146/annurev-fluid-010719-060317
https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-010719-060317
https://www.annualreviews.org/doi/10.1146/annurev-fl-52-020620-200001


FL52CH08_Wood ARjats.cls December 7, 2019 14:45

Reynolds number:
the Reynolds number
for porous materials is
of the same form
physically as for
conventional flows

1. INTRODUCTION

Turbulence in porous media occurs in a wide range of applications, from the practical (catalysis
in packed bed reactors) to the highly exotic [the flow of superfluid helium past superconducting
elements in high-energy particle accelerators (Soulaine et al. 2017)]. In practice, turbulent flows
are sometimes specifically designed for because of the improvements turbulence brings to heat
and mass transfer processes ( Jin & Kuznetsov 2017, Jouybari et al. 2016).

Although turbulence in porous media has been identified sporadically across the literature,
there has been a relative lack of information about the breadth of the applications. InTable 1, we
outline several interesting applications where turbulence in porous media has been unequivocally
established in the published literature. In this table, we focus to the extent possible on industrial
processes, pilot plant studies, and numerical simulations that are designed specifically to represent
a realized system (as opposed to, for example, basic research in the absence of a specific applica-
tion). To interpret these data, one must define a Reynolds number, and we have chosen to use the
most widely adopted of these definitions, known as the pore Reynolds number (or the particle
Reynolds number),

Rep = ρ ‖U‖dp
μ

, 1.

where U is the intrinsic average velocity and dp is the average pore diameter (the notation is
defined in the Supplemental Appendix).Ultimately, the choice of Reynolds number is amodeling
decision; specific forms may be convenient for particular applications, but there is no universal
form that can be considered optimal (see the sidebar titled The Reynolds Number for Porous
Materials).

Table 1 Example applications of high-Rep flows in porous media

Application Rep range Typical value Reference(s)
Packed bed catalysis (particularly

exothermic reactions)
150–10,000+ 3,000 Kołodziej et al. 2001, Lucci et al. 2017, Schouten et al.

1994, Sharma et al. 1991,Wehinger et al. 2015
Heat transfer operations in packed

beds
300–60,480 500+ Boomsma et al. 2003, de Walsh & Froment 1972, Dixon

et al. 2012, Tian et al. 2016
Catalytic steam reforming 400–23,000 5,000 Rúa & Hernández 2016, Shayegan et al. 2008, Xu &

Froment 1989, Yu et al. 2006, Zhang et al. 2018
Dense fluidized beds/sprouted beds 100–10,000 300 Deen et al. 2012, 2014; Link et al. 2005; Lu et al. 2018
Nuclear pebble bed reactors 600–65,000 46,000 Dave et al. 2018, Lu et al. 2018, Shams et al. 2013,

Wang-Kee et al. 2008
Fluid–porous interface/dams/

hyporheic zone
100–190,000 300 Blois et al. 2014, Hester et al. 2017, Packman et al. 2004,

Pokrajac & Manes 2009, Shimizu et al. 1990
Porous burners 200–12,780 250 de Lemos 2009, Forward 1945, Howell et al. 1996,

Nimvari et al. 2014
Oil–air separations 150–3,500 1,000 de Carvalho et al. 2015, 2017
Near-wellbore gas extraction 450 NA Elenbaas 1948
Produce cooling 227–4,400 1,000 Chau et al. 1985, Irvine et al. 1993, Vigneault et al. 2004
Rotating packed beds 3000–35,000 3,610 Burns et al. 2000, Larsson et al. 2017
Near-surface atmospheric flows

(e.g., forest canopies, urban
landscapes)

100–
1,000,000+

NA Belcher 2005, Belcher et al. 2012, Finnigan 2000, Shaw
& Schumann 1992

Abbreviations: NA, not any; Rep, pore Reynolds number.
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Direct numerical
simulation (DNS):
avoids the closure
problem by simulating
all scales of turbulent
motion down to the
viscous (Kolmogorov)
scale

THE REYNOLDS NUMBER FOR POROUS MATERIALS

Several characteristic length scales have been adopted in the literature, and this has created multiple definitions for
the Reynolds number (and some confusion in interpreting results).

With the conventional Reynolds number, the size of the pores within a porous material is perhaps the most
intuitive and physical length scale to adopt. Ideally, we would use the integral length scale, dI (Section 2.1).However,
for packings of spheres, one often uses the particle diameter, dp (assuming that dpore ≈ dp ≈ dI), as the characteristic
length scale. Thus, the Reynolds number for packed spheres is usually represented by

Rep = ρ ‖U‖dp
μ

= ‖U‖dp
ν

.

Note that some definitions (e.g., Dybbs & Edwards 1984) further complicate the issue by using the Darcy (superfi-
cial) velocity in the definition of the Reynolds number, so that we have ReD = εγ‖U‖dp/μ and Rep = ReD/εγ (where
εγ is the porosity).

Blake (1922) and later Ergun (1952) used the hydraulic diameter as the characteristic length scale. It is not
difficult to show that

dH = 2
3

εγ

1 − εγ

dp.

This led to a second set of Reynolds numbers of the form (dropping the factor 2/3)

ReH = ρ ‖U‖dp
μ

(
εγ

1 − εγ

)
= ρ ‖UD‖dp

μ

(
1

1 − εγ

)
.

This form of the Reynolds number has been used frequently. It may help in situations where comparisons of media
with different porosities are desired.

There is one additional form used in the literature based on the Darcy permeability, κ , of a porous medium.The
Reynolds number is given by

Reκ = ρ ‖U‖√
κ

μ
.

This is not particularly problematic for sphere packs; one can use, for example, the Kozeny–Carmen equation to
approximate the permeability via (Kaviany 2012)

κ = ε3γ

180(1 − εγ )2
dp.

However, for other materials (e.g., consolidated media or foams) no simple conversion between Rep and Reκ is
possible. Because Rep is based on principles that are closer to the physical measures of the turbulent fluctuations,
this definition has been more widely adopted in the modern literature than ReH or Reκ .

One of the challenges in studying turbulence in porous media is that the structure of these
flows is not nearly as well studied as turbulence in more conventional fluid flows. Flows in porous
materials are strongly influenced not only by the presence of fluid–solid interfaces but also by the
fact that the geometry of these interfaces is quite complex. Generally speaking, the conventional
approaches used to average and close the momentum balance for the case of turbulence are un-
likely to be directly applicable to turbulence in porous materials. For this reason, direct numerical
simulation (DNS) appears to be an important tool in understanding turbulence in porous materi-
als for the foreseeable future. Fortunately, the Reynolds numbers relevant for many applications
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Inertial flows: steady
or unsteady flows that
are significantly
influenced by the
inertial term in the
Navier–Stokes
equations, but that are
not conventionally
turbulent

Flow regimes: useful
for understanding the
qualitative nature of
flows in porous
materials at various
Rep and are not
necessarily meant to
be interpreted
quantitatively

are currently within reach of DNS, where simulations up to approximately Rep ≈ 3,000 can be
conducted with reasonable computational power and effort. If Moore’s law continues to hold [and
assuming the degrees of freedom scale as Re3p (Sagaut 2006)], this would translate to Rep ≈ 30,000
in another decade.

The purpose of this review is to explore recent advances in modeling turbulent flows in porous
media and to propose potential directions for future study.The problem of strictly inertial (but not
turbulent) flows in porous materials is substantially more mature; excellent reviews on the topic
are available elsewhere (Koch & Hill 2001, Lasseux et al. 2019). The remainder of this review is
structured as follows. In Section 2, we discuss the characteristics of flows in distinct flow regimes
in porous materials. In Section 3, a discussion of various numerical modeling considerations is
presented, with a focus on DNS. In Section 4 we address the problem of upscaling the momentum
balance equations using the volume-averaging theory (VAT); the connections between large-eddy
simulation (LES) and VAT spatial averaging are also discussed. The use of DNS for closing the
VAT-averaged equations is discussed in Section 5.

2. THE CHARACTER OF TURBULENT FLOWS IN POROUS MEDIA

Although turbulent flow in a porous material [or even its existence; see Lage et al. (2002) and the
sidebar titled Inertia Versus Turbulence: A Complicated History] has been much discussed, it is
now clear that turbulent flows in porous materials are more common than has been commonly
assumed.

The structure of turbulence in porousmaterials is only just beginning to be understood.Porous
materials are unusual in that the flows are dominated by the geometrically complex fluid–solid in-
terface. Clearly, flows in porous media are substantially influenced by fluid–solid interfaces, but
they are generally not similar to flows in ducts or pipes. In particular, because of the rapidly chang-
ing geometry along flow paths, we cannot assume, for example, that the flow becomes statistically
independent with distance along the fluid–solid interface. In Figure 1, we have given an example
of the various scales involved in turbulent flows in a porous material.

INERTIA VERSUS TURBULENCE: A COMPLICATED HISTORY

Early in the study of flow in porous materials, it was recognized that deviations from the conventional Darcy’s law
appear at high-enough flow rates. The most recognized report on this phenomenon was by Forchheimer (1901)
[see Lage (1998) for additional discussion]. As early as 1945, a study of Rose recognized that there was an inertial
transition regime between laminar and fully turbulent flows in porous materials. However, as use of the nonlinear
Forchheimer law expanded, the clarity of these early works became obscured as all deviations from Darcy’s law
became increasingly attributed to turbulence. This misunderstanding seems to have been reinforced by analogies
of flow in porous materials to flow in pipes or capillaries (Fancher & Lewis 1933). As such, one would expect the
transition between laminar and turbulent flows to be abrupt. However, with a few exceptions such as monolithic
catalysts, the flow in porous materials is substantially unlike pipe flows. Regardless, the idea that any deviation from
a linear pressure–velocity relationship in porous media signified the existence of turbulence became entrenched,
particularly in applied fields such as groundwater supply and gas and oil recovery (e.g., Swift 1962). Although
this misunderstanding was cleared up in 1972 by Bear (1972) (personal communication), some took this message
to indicate that turbulence essentially never occurs in porous materials, continuing the confusion on the topic.
Fortunately, works such as that of Dybbs & Edwards (1984) helped reestablish the concept that, in most cases, there
is a gradual transition from laminar to inertial (steady or unsteady) and to more proper turbulent flows.
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Representative
volume: a form of
ergodicity such that
volume and ensemble
averages can be
considered equal
within an acceptably
small bound of
statistical variation
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Figure 1

Some of the scales in the hierarchical structure of turbulence in a porous material. (a) A packed-bed reactor with macroscale length LM.
(b) A representative volume, V (x), of the porous material, with support scale �. The geometry of the porous material itself has an
integral scale of approximately dI, often approximated by the spatially averaged pore diameter. (c) A vertical slice through the medium,
illustrating the structure of a turbulent flow; the flow structures in this figure were created from direct numerical simulation via
computation of the Lagrangian coherent structure (Finn & Apte 2013a). (d) Structures associated with the turbulent flow with a
spectrum of scales (�) between the Kolmogorov scale (η) and the average pore size (dp).

One of the challenges in both computing and modeling flow in porous materials is that the
geometric structure of the material itself is complex. To provide a visual understanding of various
types of porous media, in Figure 2 we have presented several examples of porous materials.

One conventional approach to reduce the dimensionality of processes in porous materials has
been to form volume averages over a large number of particles (as illustrated by the volume domain
V in Figure 1). The goal of this effort is to obtain a spatially filtered macroscale model (where
the details of individual solids would be no longer resolved) that captures the essential features of
the process under consideration. In a manner similar to the RANS (Reynolds-averaged Navier–
Stokes) and LES types of averaging approaches in turbulence theory, in VAT, closures for the
upscaling process are developed to predict the statistics of the unresolved microscale processes.

In a porous material, the process of time averaging (or, in the appropriate limits, statistical av-
eraging) alone is generally not sufficient to develop an upscaled representation of the momentum
balance. Time averaging would result in smoothing the fluctuating component of the velocity and
pressure fields. However, the spatial deviations caused by the complex geometry would still re-
main. For this reason, VAT approaches have typically focused on spatial averaging by performing
convolutions with an appropriate spatial filter, which is large enough that at least the material
statistics can be considered representative and independent of its location in the macroscale do-
main. Sometimes such a volume is called a representative elementary volume (REV). It is intuitive
to notice that there is a substantial correspondence in the classical volume-averaging approach in
porous materials with the LES filtering method used in turbulence. Although both temporal and
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c

Figure 2

Several examples of porous materials: (a) a metal foam, (b) a highly anisotropic fibrous medium, and (c) a random packing of spheres. In
each of these panels, the size of the domain illustrated is roughly on the order of the size of a representative elementary volume for that
medium. Panels a and b adapted with permission from Zeschky et al. (2003) and Nouri & Martin (2015), respectively.

spatial filtering will be discussed below, an LES-like spatial-averaging perspective will be adopted
for the purpose of upscaling, as detailed in Section 4.

2.1. Geometrical Properties

The porous material itself imposes significant constraints and influence on the structure of the
turbulence within the pore space.The spatial characterization of porous materials is a discipline in
and of itself, in part because functional porous materials can take on a wide variety of interesting
geometries (Figure 2). The most widely used metrics (applied to nearly all porous materials)
are the volume fraction and the integral scale(s) associated with the pore space. The fluid-phase
indicator function is defined by

Iγ (x) =
{
1 in fluid phase,
0 in solid phase.

2.

This leads to the definition of the averaging volume, and the volume of the fluid phase, as

V (x) =
∫
r∈V (x)

1 dV (r), Vγ (x) =
∫
r∈V (x)

Iγ (r) dV (r). 3.

The superficial volume-averaging operator is given by 〈·〉. The superficial average of the indicator
function Iγ yields the porosity,

εγ (x) = 〈1〉 =
∫
r∈V (x)

G(r − x)Iγ (r) dV (r), 4.
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with ∫
r∈V (x)

G(r − x) dV (r) ≡ 1. 5.

Here,G is a spatial filtering function [or weighting function, cf. Sagaut (2006)]; for the remainder
of the review,we assume that the functionG does not depend upon spatial location. By convention,
the vector x locates the centroid of the averaging volume, and r represents the independent coor-
dinates defining the volume centered at x. In the VAT literature (Battiato et al. 2019, Quintard &
Whitaker 1994), the function G is usually assumed to be compactly supported with characteristic
size �.

2.2. Flow Field Properties

In the absence of macroscale turbulence in the porous domain (see Section 2.3 for a fuller discus-
sion), Figure 1 implies some additional features of turbulent flows in porous materials that are
dissimilar to those of flows in free fluids. Because of the presence of the network of fluid–solid
interfaces (i.e., the pore space) in the REV, the maximum scale of turbulent eddies is bounded
by the pore size. Although it is possible for coherent or inertial structures to span multiple pores
(Chu et al. 2018), both the Eulerian and Lagrangian integral scales measured to date suggest that
the largest flow structures are roughly on the order of the size of a single pore (Uth et al. 2016).
This yields two interesting features about the turbulent structures in such flows: (a) They are band
limited above by (roughly) dp and below by η, and (b) it is likely that averaging over an REV in such
circumstance does not impose a cutoff on the spectrum of eddy sizes (or, equivalently, energies).
This has significant implications when such assumptions can be made. In particular, one does not
have to overcome the difficulties of modeling the interaction between scales [e.g., the filtered ver-
sus subgrid scales (SGS) that occur in LES] that have been artificially separated by filtering.These
two features actually make the problem of predicting the macroscale properties of the flow field a
bit less complex than might be true for a general problem of free fluids decomposed by the LES
scheme.

2.2.1. Microscale flow field properties. Because of the complicated interaction between the
fluid and solid phases in porousmaterials, there is no single set of criteria that outlines the behavior
of porousmaterials at different Rep.However, a qualitative progression of the flow regimes can still
be established, and it is useful for understanding the evolution of flow structure with increasing
Rep.To facilitate easy comparison with other work,we also provide the corresponding ranges using
ReD and ReH (and assuming εγ = 0.4).

(a) Darcy regime (Rep < 25, ReD < 10, ReH < 17): In this regime, the flow field is well approx-
imated by Stokes flow.

(b) Inertial regime (25 < Rep < 375, 10 < ReD < 150, 17 < ReH < 250): In this range, inertial
effects begin to manifest, with pore spaces dominated by inertial cores; the velocity distribution
in the pores differs markedly from the that of the Darcy regime. Steady vortical structures have
been observed in this regime (e.g., Wood 2007).

(c) Unsteady laminar (transitional) regime (375 < Rep < 750, 150 < ReD < 300, 250 < ReH <

500): In this regime, unsteady, transitional flows are observed. These flows vary from periodic
behavior in vortexes to large-scale structures exhibiting intermittency.

(d) Turbulent regime (Rep > 750, ReD > 300, ReH > 500): The structure of the flows within
the pore space begins to resemble more conventional turbulent flows.
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(e) Asymptotic regime (Rep > 3,400, ReD > 1,360, ReH > 2,267): The value of Rep is high
enough such that the turbulence can be approximated as being locally isotropic over most of the
pore space.Under these conditions,Kolmogorov similaritymay allow reasonable scaling estimates
to be made [see the discussion below and the discussion by Patil & Liburdy (2015)].

InFigure 3, a sequence of flowfield images fromDNS studies (Finn 2013,Finn&Apte 2012) is
illustrated over the range 56 < Rep < 676. This sequence of images gives some indication for how
the flow field can evolve at the pore level as the average fluid velocity increases. In particular, note
the change between Rep = 56 and Rep = 112, where the inertial core begins to undergo helical
motions forming a vortex. This vortex increases in strength as Rep increases and eventually shows
highly unsteady behavior as Rep tends to the highest value (an animation for the Rep = 676 case is
provided in Supplemental Videos 1 & 2).

Our research group has also conducted several high-resolution particle imaging velocimetry
studies at high Rep in packings of spherical particles. The details of these studies are reported else-
where (Patil & Liburdy 2013a,b; Wood et al. 2015). The experimental setup used 15-mm borosil-
icate beads, and index-of-refraction-matched fluid experiments were conducted at Rep = 510,
1,612, and 4,834; this range of Reynolds numbers is typical of the kinds of applications listed
in Table 1. Among the results collected were micrographs of the instantaneous velocity field, as
illustrated in Figure 4. A wide variety of flow structures were observed; Patil & Liburdy (2013a)
broadly categorized these structures as (a) channel-like flows, (b) impinging flows resulting in a
(transient) stagnation region, (c) recirculating flows (including recirculation behind wakes and the
formation of vortex structures), and (d) jet-like flows. In Figure 4, flows illustrating merging jet-
like structures in a pore are presented as a function of increasing Rep. In Figure 4a–c, a sequence
of LES-filtered velocity fields are shown as vector plots, where the color indicates the velocity
fluctuation magnitude normalized by the large-scale spatial average–intrinsic velocity magnitude,
‖U‖. As Rep increases, the large-scale features tend to become less regular. In Figure 4d–f, the
velocity deviations from the LES-filtered average are plotted as vector plots. In these panels,
the color is a measure of the magnitude of the local vorticity. These plots are consistent with the
regime guidelines identified above, but also suggest that there is more than can be stated about
the flow characteristics for Rep above 600. For example, while it is obvious that the flow fields
in the Rep = 1,612 and 4,834 cases are turbulent, it is also observed that the turbulent structures
are somewhat different. In the Rep = 1,612 case, there are still coherent and inertial structures.
However, most of the these are essentially eliminated at Rep = 4,834; similar observations were
noted by Khayamyan et al. (2017) and Nguyen et al. (2019). This observation is also consistent
with Patil & Liburdy (2015), who found that for Rep > 3,400, it was possible to develop asymp-
totic relationships (typically only valid for sufficiently high Rep) for predicting the Kolmogorov
length and velocity scales as power-law functions of Rep. Two-dimensional (2D) flows are not ad-
dressed in this review because of the substantial differences in the characteristics of 2D and 3D
flows (Fourar et al. 2004, Spalart 2015).

2.2.2. Macroscale flow field properties. In the simplest case of a homogeneous porous
medium, the statistics of the average flow field are unlike that of many of the conventional flows
in free-fluid turbulence. In fact, for homogeneous porous materials with uniform boundary con-
ditions (e.g., ideal flow through a cylindrical packed bed of spheres), one would expect there to be
a relatively constant average velocity (except perhaps near the cylinder walls) and generally negli-
gible gradients in the average velocity field. This makes these flows more similar to, for example,
grid turbulence as opposed to models whose primary driving force is assumed to be proportional
to the mean rate of strain. Thus, the simplest flow in a porous medium cannot be described at

178 Wood • He • Apte

https://www.annualreviews.org/doi/suppl/10.1146/annurev-fluid-010719-060317


FL52CH08_Wood ARjats.cls December 7, 2019 14:45

Mean flow

Mean
flow

γ = 0.47

Rep = 56 Rep = 112

Rep = 169 Rep = 676

–1–2–3– 4–5

λ2 × 10–7

–1–2–3– 4–5

λ2 × 10–7

a b

–1–2–3– 4–5

λ2 × 10–7

LowHigh

Pressure, p

c d

y
x

z

Figure 3

Change in the flow field in a single pore (extracted from the random packing illustrated on the left) with increasing pore Reynolds
number, Rep. The stream ribbons represent the instantaneous velocity. Ribbon color for panels a–c is the value of the second eigenvalue,
λ2, of (S2 + �2) ( Jeong & Hussain 1995); here, εγ is the porosity, S is the rate of strain tensor, and � is the rate of rotation tensor. The
ribbon coloring in panel d is on the basis of the normalized local pressure. Animations for Rep = 676 appear in Supplementary Videos
1 & 2; these animations include the stream ribbons from the pore illustrated above and a set of counter-rotating vortices from another
pore at this Reynolds number. Panels adapted with permission from Finn & Apte (2012).

www.annualreviews.org • Modeling Turbulent Flows in Porous Media 179

https://www.annualreviews.org/doi/suppl/10.1146/annurev-fluid-010719-060317


FL52CH08_Wood ARjats.cls December 7, 2019 14:45

Rep = 510

a
Rep = 1,612

2.00.2

b
Rep = 4,834

LES-
filtered

velocity

Rep = 510 Rep = 1,612 Rep = 4,834

c

d e f

500–500

ω = ||
Δ

 × u|| (s–1)~ ~ ω = ||
Δ

 × u|| (s–1)~ ~

200–200

Deviation
velocity

||u||/||U||~

Figure 4

Experimental data illustrating turbulence in porous media for different pore Reynolds numbers, Rep. These data were collected from a
packing of 15-mm beads using particle imaging velocimetry with an index-of-refraction-matched fluid (Patil & Liburdy 2013a,b; Wood
et al. 2015). (a–c) Large-eddy simulation (LES)-filtered velocities using a 1.5-mm-square sharp spatial filter; the color scale is the
normalized velocity, ‖ũ‖/‖U‖. (d–f ) Velocity deviations; the color scale represents the magnitude of the out-of-plane vorticity,
ω̃ = ‖∇ × ũ‖, in units of s−1. Animations for both the LES-filtered velocities and the residual velocity (and vorticity) appear in
Supplemental Videos 3–8.

the macroscale by an effective viscosity-type law. This is not to say that such terms would not
appear in a more general description of a system with macroscale gradients, but only that there
must also be some other term in the macroscale transport equation that is not related to gradients
of the spatially averaged velocity if one is to model macroscale flow fields like these. This case is
similar to examples in the literature of fluids with zero mean straining (e.g.,Warhaft 1980), which
require that closures be effected by some other approximation than an effective viscosity repre-
sentation (Mansour &Wray 1994).This problem is more fully explored in Section 4. In particular,
we propose possible functional forms for closure (as distinct from specific closure models, such as
RANS-type closures).

2.3. The Problem of Macroscale Turbulence in Porous Media

There are substantial and unanswered questions regarding whether macroscopic turbulence can
occur in porous materials. Here, the term “macroscopic” applies to the spatially averaged Navier–
Stokes equations and indicates turbulent structures that occur in the porous medium at scales
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Pore-scale
prevalence
hypothesis: it remains
an open question
whether macroscale
turbulent structures
can arise in flow in
porous media or the
presence of the porous
matrix suppresses such
structures

larger than the characteristic length (�) of averaging volume itself (this is known as the pore-
scale prevalence hypothesis). This question has been discussed vigorously, with no clear resolution
(Antohe & Lage 1997; Jin & Kuznetsov 2017; Jin et al. 2015; Lee & Howell 1991; Nield 1991,
2001). One of the primary problems with fully understanding the answer to this question is a
lack of experimental or numerical results conducted at values of Rep high enough that large-scale
turbulence structures might be created.

In principle, the upscaledNavier–Stokes equations have the same nonlinearity as themicroscale
equations (see Section 4.4). From that perspective, the potential for macroscale turbulence ex-
ists mathematically. If one can determine a sensible characteristic length scale for the macroscale
(e.g., in a heterogeneous porous medium, this would be the integral scale associated with fluctua-
tions in macroscale properties such as the porosity or permeability), then a macroscale Reynolds
number measuring the gradients in the averaged velocity field could be established. In this sense,
macroscale turbulence is plausible (i.e., with structures larger than �); however, the macroscale
velocities required to reach these conditions in packings (with porosities on the order of ε = 0.36)
may not be extreme. However, given that there are applications that involve pore-based Reynolds
numbers up to 104–105 (e.g., nuclear pebble bed reactors), the extreme velocities required to
achieve macroscopic turbulence may be achievable and relevant.

In high-porosity systems, the potential for macroscale turbulence is even more plausible. Re-
cent publications (Chu et al. 2018, Srikanth et al. 2018) have reported evidence for large-scale
symmetry-breaking structures for periodic systems with high porosity. Intuitively, this makes sense
because, with high-enough porosity, the flow topology changes from one that resembles an in-
ternal flow through a pore space to an external flow around widely separated obstacles. Much
more research will need to be done before this question has a satisfactory resolution, ideally us-
ing DNS or appropriately formulated LES/RANS models on large-scale and nonuniform porous
materials.

3. MODELING TURBULENCE IN POROUS MEDIA

Porous materials have exceptionally complex geometries, and thus it has only recently become
feasible to conduct resolved, pore-scalemodeling of suchmaterials. In the following,we discuss the
primary numerical modeling approaches that have been attempted to date. Because development
of accurate representations of the complex media involved are central to all of these approaches,
we begin with a short review of this topic and then discuss the methods that have been developed
for modeling turbulent flows in these complex structures.

3.1. Geometry and Meshing Considerations

Fully resolved simulations of fluid flow in low-porosity packed beds and porous media present
unique challenges mainly due to the complexity of the fluid–solid interface. Typical simulations to
date have primarily been based on finite-volume or finite-elementmethods using body-fitted grids
for packings containing on the order of hundreds of spheres (Atmakidis &Kenig 2009,Dixon et al.
2006, Finn & Apte 2013b, Guardo et al. 2006). This approach requires an accurate description
of the solid–fluid boundary, as well as use of an unstructured grid. Unstructured mesh genera-
tion for complex geometries is a nontrivial process in general, and in packed beds the process is
complicated by the sphere-to-sphere contact points. Near the contact points, the grid elements
(regardless of element geometry) tend to become unrealistically small, have a high aspect ratio,
and become skewed. Generating a high-quality mesh in many cases can take longer than actually
computing the solution for the fluid flow field.
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Several methods have been proposed to mitigate the gridding problem near contact points.
Most commonly, the contact points are completely eliminated by artificially reducing the size of
the spheres to create small gaps (Atmakidis & Kenig 2009, Calis et al. 2001, Nijemeisland &
Dixon 2004). Another related approach is to create the spheres with a slightly larger radius than
the actual value, so that the spheres overlap to create a continuous edge in the plane perpendicular
to the contact line (Guardo et al. 2006). Yang et al. (2013) have used refined, smoothed-surface
mesh generations near contact points to conduct body-fitted, unstructured grids for simulations of
Stokes flow in a bead pack. Another approach unites two contacting spheres with a small cylinder
placed along the line of contact (Dixon et al. 2013, Finn & Apte 2013b, Kuroki et al. 2009). This
technique has the potential to significantly reduce overall mesh size because the regions where
small-element sizes are required have been eliminated.

Each of these approaches takes advantage of the fact that the fluid very close to the solid con-
tact points tends to be more or less stagnant even at moderate Reynolds numbers; however, for
applications involving mass and heat transport, these approaches may significantly impact trans-
port of these quantities near the contact points. The bulk behavior of flows in porous media and
packed beds is strongly affected by porosity, so it is important that the bridges do not significantly
reduce the volume of the pore space.

Finn & Apte (2013b) used this approach with the bridge diameter chosen to beDb = 0.25D, so
that the volume of a single cylinder bridge is Vb = 0.0015Vsp, where Vsp is the volume of a single
sphere. Even for packings with moderate coordination numbers, the total solid volume would
increase by less than 1% (and only in the mostly stagnant contact regions). By comparison, the
commonly adopted technique of shrinking the spheres by 1% of their original size will decrease
the solid volume (everywhere) by roughly 3%.

The contact point and other mesh-related pitfalls encountered with body-fitted grids can
be avoided by using Cartesian grid–based methods. These include immersed boundary meth-
ods (Mittal & Iaccarino 2005), fictitious domain methods (Apte et al. 2009, Glowinski et al. 2001,
Haeri & Shrimpton 2012), the lattice Boltzmann method (LBM) (Chukwudozie & Tyagi 2013;
Hill & Koch 2002a; Hill et al. 2001a,b; Ladd 1994a,b), and methods based on smoothed-particle
hydrodynamics (Ovaysi & Piri 2010).The immersed boundary, fictitious domain, and LBMmeth-
ods typically use regular Cartesian meshes to discretize both the solid and fluid portions of the
domain. At the solid–fluid interface, a synthetic force is applied to satisfy (weakly) the desired
boundary condition (e.g., the no-slip condition). The means by which this force is applied and
computed is a field of active research, and several formulations have been proposed.

Grids that do not conform to the porous material geometry have been used successfully in
previous studies. However, studies on dense packings with low porosity are rare (Magnico 2003,
2009) and have generally used a structured-grid approach,where the surface representation is stair
stepped due to a voxelized treatment of the solid boundaries. While the meshing overhead is low
with this approach, artificial surface roughness is imposed, which influences the accuracy of the
results. Other notable exceptions are the recent study of transitional flow through arrays of fixed
2D square rods (Malico & Ferreira de Sousa 2012) and Darcy flow through reconstructed 3D
porous materials (Smolarkiewicz & Winter 2010).

Finn & Apte (2013a,b) made a systematic analysis of the effect of grid type (unstructured
body fitted versus structured body nonconforming) and of the corresponding computational
approaches based on second-order finite-volume methods. That work showed that body-
nonconforming methods resulted in more accurate predictions of turbulent flows in low-porosity,
densely packed media. This was primarily because the Cartesian grids eliminated low-quality,
skewed, and unstructured grids in the small gaps between beads that are well known to degrade
the solutions in body-fitted mesh methods.
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3.2. Direct Numerical Simulation for Modeling Turbulence in Porous Materials

DNS has become a numerical tool to explore the fundamental physics of turbulence and to gener-
ate data sets for a priori and a posteriori analysis to verify and test reduced-order turbulence clo-
sures (Moin &Mahesh 1998). In porous materials, a majority of the DNS studies of transitional or
turbulent flows have been conducted at somewhat unrealistic moderate to high porosities, often
in the absence of particle–particle contact.

Recently, to investigate presence of macroscale turbulence and inertial structures that span
scales larger than the solid beads, several researchers ( Jin & Kuznetsov 2017, Jin et al. 2015,
Kuznetsov 2017, Uth et al. 2016) using LBM studied different solid matrix geometries (square
and round cylinders), spheres in unbounded/periodic domains, and spheres confined in a wall for
high porosity (>0.78) and a range of Reynolds numbers (Rep = 300–1,000). They concluded that
the sizes of turbulent structures do not exceed far beyond the pore scale, even for high-porosity,
low-tortuosity configurations.

Very few studies have used DNS for computing inertial, transitional, or turbulent flows in
densely packed porous media. LBM simulations were computed by Hill et al. (2001b) and Hill
& Koch (2002b) for flows through a close-packed, face-centered cubic (FCC) array of spheres
to examine the steady and unsteady inertial flows including the transitional regime (up to Rep =
850). The FCC arrangement creates a highly tortuous structured packing with the lowest possible
porosity (εγ = 0.26). Due to the extreme compactness of the pore space, the flow through the
porous geometry experiences rapid expansion and contraction.

Recent work (Apte et al. 2018; He et al. 2018, 2019) has examined transitional and turbulent
flows (Rep ∼ 850–2,850) in densely packed media in a FCC packing using the fictitious domain
method. The region of peak production of turbulence kinetic energy (TKE) in the pore was ob-
served to be behind the particles near the entrance with high mean shear. Because of the large
turbulence intensities over the entire pore, contributions of the turbulent transport to the TKE
budget were found to be important. Negative values of net TKE production were observed in
the jet impingement regions, as well as in the weakly pronounced wake region behind the particle
surfaces, present over about 10% of the pore volume. In most situations, the TKE production
should remain positive, implying that the mean flow is feeding the turbulence. However, when
the production becomes negative, the energy transport process is reversed. Such a phenomenon
is rare and indicates a quality somewhat unique to turbulence in highly constrained systems.
In the negative production regions, the pressure transport term shows dominant and positive peaks
for all Reynolds numbers. It is found that the pressure fluctuations play a significant role for the
redistribution of TKE near the wall. None of these results on the pore scale can be reproduced
using standard RANSmodels with the same geometry, and this underscores the importance of the
role of DNS in fully understanding turbulent flows in porous media. The results of these studies
are presented in more detail in Section 5. To provide a sense for the structure of these flows, we
have plotted in Figure 5 the isosurface of swirling strength, as defined by Zhou et al. (1999). It is
shown that the length scales associated with these structures decrease with increasing Rep and are
on the order of 10% of the particle diameter.

3.3. Averaged Turbulence Models Used to Describe the Fluid Phase
in Porous Materials

Because DNS is practical only for turbulent flows where Reynolds numbers are not too large,
there have been several efforts to apply both RANS and LES models to describe the average flow
behavior of the turbulence at the microscale. In these methods, either probabilistic averaging
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Figure 5

Isosurfaces (fixed at λci = 0.25λmax
ci ) of the swirling strength, λci, from direct numerical simulation in a triply

periodic, face-centered cubic (FCC) unit cell (He et al. 2019) at different pore Reynolds numbers, Rep. The
swirling strength is determined by computing the imaginary component of the complex conjugate
eigenvalue of the velocity gradient tensor.

(RANS, or time averaging with the appropriate ergodic hypothesis) or spatial filtering (LES) is
used to eliminate some portion of the fluctuating velocity field. The primary difficulty in these
methods is the conventional one: Even after averaging, averages involving the fluctuating velocity
field appear (e.g., the Reynolds stress). Because of the nonlinearity of the system, there is no
obvious way to close these equations. Decades of research on this problem have led to several
closure schemes of varying complexity and specificity to the problem being solved. A summary
of these methods can be found in many texts, such as the monographs by Pope (2000) and Sagaut
(2006). In the following, we summarize the research that has been conducted using these methods
to simulate flows in porous materials.
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3.3.1. Reynolds-averaged Navier–Stokes-type models. Several pore-scale simulations of un-
steady and turbulent flow through porous media have been conducted using a variety of RANS-
type closure models for the Reynolds stress. Models based on the k–ε or k–ω closure with
improvements for wall-bounded flows [such as the k–ω SST (shear stress transport) or the re-
alizable k–ε model for enhanced wall treatment] have been by far the most widely used in low
porosity, randomly packed materials (Dave et al. 2018, Dixon et al. 2012, Ferdos & Dargahi 2016,
Getachew et al. 2000, Jayaraju et al. 2016, Logtenberge 1999, Taskin et al. 2008). These methods
have also been applied to the study of turbulent flows in periodically arranged packings of mod-
erate to high porosity ( Jouybari et al. 2016, Kopanidis et al. 2010, Kundu et al. 2014, Kuwahara
et al. 1998, Pedras & de Lemos 2003, Smale et al. 2006, Soulaine et al. 2017, Torabi et al. 2017,
Xiang et al. 2008).

Although the approach has had some success, it is not clear that k–ε-type models are well
suited for modeling flows in the complex, wall-bounded geometry that defines a porous medium.
For low-porosity media, there are rapid acceleration and deceleration regions where the gradient
diffusion hypothesis–based eddy viscosity models may not be appropriate. There are several k–
ε-like models that have been developed for specific circumstances; however, most are based on
the gradient diffusion hypothesis (Pope 2000). In addition, assumptions regarding the isotropy
and the balance of production and dissipation assumed in these models are clearly not met based
on DNS studies (He et al. 2019) (Section 3.2). These same DNS studies have shown that both
pressure diffusion and pressure strain terms are important in flows in porous materials. These
terms are not generally accounted for in conventional k–ε models.

Other high-order turbulence models such as v2f (Kazerooni & Hannani 2007) have been ap-
plied to incompressible flow in a high-porosity periodic array of square rods for various values
of Rep and εγ . An advantage of the v2f model is that it accounts for the wall blocking effects and
does not require the use of wall functions. By comparing with the results from an LES model,
Kazerooni & Hannani (2007) showed that the v2f model generally performs better than conven-
tional k–ε models.

Althoughmore complex than zero-, one- and two-equationmodels for predicting the Reynolds
stress, second-order closures are more likely to be constructive approaches for modeling turbu-
lence in porous materials. Perot & Moin (1995) have shown that the structure of turbulence is
influenced by the proximity to walls even in the absence of mean shear. Second-order closures for
complex geometries have been proposed by Craft & Launder (1996). These closures specifically
avoid using wall-normal coordinates, and thus are applicable to complex geometries. However,
to our knowledge, no such models have been attempted in applications to porous materials. Such
models might provide a viable alternative to DNS for porous media simulation if they can be
further developed and validated for the complex flows encountered in porous media.

Several researchers have proposed developing macroscale models by assuming that a RANS
momentum balance equation is first developed at the microscale, and then averaging the RANS
equations to obtain a macroscale equation for the momentum balance in an REV model for the
Reynolds stress (Masuoka & Takatsu 1996, Nakayama & Kuwahara 1999, Pedras & de Lemos
2001). There are several variations on this approach, and there is no reason that closures with a
more accurate set of equations representing near-wall conditions (e.g., v2f ) could not be treated
similarly. Interested readers can find an accounting of this approach in the text by de Lemos (2006).

There is room for improvement with these models. The approach itself is reasonable; however,
the closures that have been adopted often do not reflect more recent advances in closure modeling.
In particular, specifically accounting for near-wall behavior should yield an approach that does
not depend on ad hoc additions to the balance equations for k and ε. As stressed by Pope (2000,
p. 458), k–ε models are not particularly accurate for complex flows, especially in regions of strong
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heterogeneity, such as in the proximity of walls.More advanced formulationsmay bemore suitable
for applications to porous materials.

3.3.2. Large-eddy simulation–type models. Only a small number of studies have used LES
for predictive simulation of turbulent flows in densely packed, low-porosity porous media. This is
primarily due to (a) the complex flow geometries involved and (b) the accurate (low-dissipation)
numerical methods required to obtain reliable results (Mahesh et al. 2006). Typically, the com-
putational grid resolution requirement in LES is roughly an order of magnitude lower than
DNS.However, since porous media geometries involve complex boundaries surrounding the pore
spaces, the grid requirement is not significantly reduced, as fine resolution is still necessary in the
near-wall region. Furthermore, typical SGS models based on the dynamic Smagorinsky model
require local averaging of the coefficients owing to lack of any homogeneous directions. Such
averaging in the presence of complex-shaped walls can result in nonsmooth eddy viscosities, re-
quiring significant clipping of the coefficient and potentially reducing robustness of the numerical
calculation.

Few LES studies have been performed in high-temperature, randomly packed, nuclear pebble
bed reactors (Hutter et al. 2011, Jafari et al. 2008, Shams et al. 2014). Shams et al. (2014) used
a finite-volume approach on unstructured grids for LES of turbulent heat transfer in a packed
bed at a pore Reynolds number of 9,753; a wall-adapting local eddy (WALE) viscosity model was
adopted to give the proper (asymptotic) SGS viscosity near the walls. The predicted flow field
involved strong 3D cross and rotational components with strong enhancement and attenuation of
turbulence with flow separation. The complex flow pattern resulted in temperature distributions
that showed unsteady hot spots near the contact points. Jafari et al. (2008) compared LES with
Reynolds stress models for randomly packed beds in a cylindrical tube with smooth and rough-
ened walls to evaluate the potential of LES in predicting turbulent scalar dispersion. Hutter et al.
(2011) used LES to study metal foams for a range of Reynolds numbers (Rep = 1,200–4,500) using
a dynamic Smagorinsky model with an unstructured grid, finite-volume solver. Suga et al. (2017)
used LBM to conduct LES studies of conjugate heat transfer in square rods, staggered cube ar-
rays, and body-centered cubic foams for a wide range of porosity (εγ = 0.52–0.91) and Reynolds
numbers (Rep = 475–3,000). They also used the WALE model for SGS viscosity. They used the
LES data to study volume-averaged turbulent heat flux and dispersion in a porous medium.Most
recently, Lian et al. (2018) used LES with a WALE viscosity model to simulate flows at the in-
terface between river and a porous river bottom, with Reynolds number up to Rep ∼ 1,400 in the
porous material.

Srikanth et al. (2018) performed LES of turbulent flow in periodic, homogeneous porous
media for medium-to-high-porosity (εγ = 0.5−0.8) periodically arranged packings of spheres,
columns, and circular cylinders. They indicated that the occurrence of von Kármán instability in
homogeneous porous media resulted in symmetry-breaking in the macroscopic flow; this caused
an angular deviation of the flow from the principal direction along which the pressure force is
applied. The macroscopic flow angle was observed to differ in magnitude for different obstacle
arrangements.

Still lacking and much needed are systematic analyses and assessments of the SGS models, the
grid quality and resolution, the overall accuracy and robustness of the computational method, and
the impact of numerical dissipation on turbulence statistics in LES of turbulent flow through low-
porosity porous media. As a final note, there has been significant and at times vigorous discussion
in the literature on the importance of the order of application of the time and spatial averages for
turbulence in porous materials (Lage 1998, Lage et al. 2002, Nield 2001, Nield & Bejan 2017,
Travkin 2001). Ultimately, this question is about not the order of operations per se but rather
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how the nonlinear term is decomposed (Germano 1992). It is this feature, rather than the order
of operations, that creates differences among models.

Although the topic is an important one, the focus might be better restated in the context of
existing research from LES theory, which asks the question,What is an optimal filter for turbulent
flows? In this context, the question is not necessarily about the order of operations but about how
to best optimize the filtering operation (Langford &Moser 1999) for one or more properties [e.g.,
representations for the decompositions (Germano 1992), algebraic consistency of the results, in-
variance properties of the filtered quantities (Oberlack 1997), and symmetry of the filters (Berselli
et al. 2007)].

4. DEVELOPMENT OF MACROSCALE EQUATIONS FOR
HIGH–REYNOLDS NUMBER FLOWS IN POROUS MEDIA

Several approaches have been adopted for averaging the Navier–Stokes equations in porous ma-
terials, including hybrid mixture theory (Bennethum & Giorgi 1997), homogenization methods
(Mei & Auriault 1991, Panfilov & Fourar 2006), thermodynamically constrained averaging the-
ory (Gray & Miller 2014), and VAT (Breugem & Boersma 2005; de Lemos 2006; Finnigan 2000;
Lasseux et al. 2011, 2019; Rosti et al. 2018; Travkin 2001). Possibly because of the similarity to
LES, VAT has been the most prominent upscaling method in the literature for inertial and turbu-
lent flows. In the following, we present a VAT formulation patterned significantly after Whitaker
(1996), but with several modifications in the symmetry of terms and the structure of the proposed
closure. The VAT has much in common with LES filtering; the VAT approach to this problem
has been under continual research for the past 25 years, with many of the results paralleling those
developed for LES. In the VAT approach, a spatial filter is applied pointwise to a set of differential
balance equations and boundary conditions written at the microscale. The superficial volume-
averaging operator is as defined in Section 2.1. Applying this operation to the velocity field u with
spatial filter G gives the following convolution,

〈u〉|(x,t ) =
∫
r∈V (x)

G(r − x)Iγ (r)u(r, t ) dV(r). 6.

The intrinsic volume average 〈·〉γ is defined by

〈u〉γ = 1
εγ

〈u〉. 7.

This represents the average take over only the fluid phase volume.
Because of phase boundaries, the operations of spatial differentiation and spatial averaging

do not, in general, commute; these are handled by application of the spatial averaging theorem
(Whitaker 1999, Finnigan 2000),

〈∇ ⊗ u〉|(x,t ) =∇ ⊗ 〈u〉 +
∫
r∈Aγ κ

G(r − x)nγ κ (r) ⊗ u(r, t ), dA(r), 8.

〈∇ · u〉|(x,t ) =∇ · 〈u〉 +
∫
r∈Aγ κ

G(r − x)nγ κ (r) · u(r, t ), dA(r). 9.

Independent variables will be listed only in definitions and as needed for clarity. Upon applying
the no-slip boundary condition to the second of these, we have

〈∇ · u〉 = ∇ · 〈u〉. 10.
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Spatial deviations in VAT are defined identically to those in LES; note that it is the intrinsic
average that is adopted for the decomposition

u(x, t ) = 〈u〉γ |(x,t ) + ũ(x, t ). 11.

When applied to the problem of the Navier–Stokes equations in a porous medium, the VAT en-
counters the same kinds of difficulties that are encountered in LES. Primarily, these are (a) the
decomposition of the nonlinear term and (b) difficulties arising from closure for a nonlinear prob-
lem. In the next section, we briefly outline a summary of the averaging and closure approaches to
Navier–Stokes flows in porous materials as treated specifically by the VAT.

4.1. Averaging

To simplify notation, we adopt the modified pressure specified by p = P + ρ (with ρg = −ρ∇

and ρ∇ · ∇ ≡ 0). For the outline of the upscaling analysis presented below, we assume that the
flow is incompressible and the porosity constant. Upon averaging and using the velocity decom-
position, the Navier–Stokes and conservation equations read

ρ
∂〈u〉
∂t

+ ρ∇ · 〈u ⊗ u〉 = −〈∇ p〉 + μ〈∇ · [∇ ⊗ u + (∇ ⊗ u)†]〉, 12.

∇ · 〈u〉 = 0. 13.

Here, we have used the fact that the time derivative commutes with spatial averaging, and we have
assumed that both a no-slip condition for the velocity and a zero normal gradient of the modified
pressure apply at the fluid–solid interface. We have purposefully maintained the symmetric form
for the viscous term for later reference. Using the decomposition given by Equation 11, the prod-
uct of the velocities can be expanded into the conventional Leonard’s form (cf. Leonhard 1974;
Sagaut 2006, section 3.2),

〈u ⊗ u〉 = 〈〈u〉γ ⊗ 〈u〉γ 〉 + 〈〈u〉γ ⊗ ũ〉 + 〈ũ ⊗ 〈u〉γ 〉 + 〈ũ ⊗ ũ〉. 14.

Note that on the right-hand side, the use of the spatial averaging theorem leads to the following
results,

〈∇ · [∇ ⊗ u + (∇ ⊗ u)†]〉 = ∇2〈u〉γ +
∫
r∈Aγ κ (x)

Gnγ κ · [∇ ⊗ 〈u〉γ + (∇ ⊗ 〈u〉γ )†] dA(r)

+
∫
r∈Aγ κ (x)

Gnγ κ · [∇ ⊗ ũ + (∇ ⊗ ũ)†] dA(r), 15.

〈∇ p〉 = ∇〈p〉 +
∫
r∈Aγ κ (x)

Gnγ κ〈p〉 dA(r) +
∫

Aγ κ (x)
Gnγ κ p̃dA(r), 16.

which are notable for several reasons. First, the results are similar in structure (e.g., Pope 2000,
section 13.3; Sagaut 2006, section 3.3), but not identical, to the LES equations because of the
presence of the area integral terms generated by the commuting of integration and spatial differ-
entiation. These integrals tie the upscaled problem directly to the fluid–solid boundary condition
[and thus break Galilean invariance (Oberlack 1997)].

188 Wood • He • Apte



FL52CH08_Wood ARjats.cls January 31, 2020 16:55

Quasi-Reynolds
operator: in the
volume averaging
literature,
Reynolds-like spatial
averaging is usually
conveyed by the
separation of
characteristic length
scales, dp�LU

4.2. Simplification

Understanding turbulence in porous media is still in its infancy. From our perspective, it is better
to initially seek simpler, perhaps more constrained, solutions than to develop the most general
results, as long as one is clear about the assumptions being made. For flows in porous materials,
we can hope that under some circumstances there is representative behavior. For instance, the case
of homogeneous porous materials provides one example. For such materials, we expect that the
structure of turbulence in the pores has a spatial statistical structure that is quasi-homogeneous
[in the sense of Christakos (2000) andWood & Valdés-Parada (2013)] such that the concept of an
REV (of the statistics for the fluid phase) exists. To simplify the analysis, we adopt the following
assumptions.These assumptions will need to be revised for more complex flows. (a) The system of
interest consists of a spatially (quasi-) homogeneous porous medium. (b) There is a large enough
volume in the system such that the statistics of the velocity field can be considered to be spatially
homogeneous. In the VAT literature, this condition is usually stated by the constraint dI  �

(equivalently, dp  �). (c) There is a separation of length scales between the size of the filtering
function and the characteristic length scale for gradients of the average velocity, LU . In short, this
means that we have �  LU ∼ LM, where LM is the macroscale characteristic length illustrated
in Figure 1. Taken together, the constraints listed above allow significant simplification of the
macroscale equation. To formalize the approximations being made, we define the quasi-Reynolds
operator as follows.

In quasi-ergodic spatial fields (cf. Christakos 2000, von Neumann 1932, Wood 2008, Yaglom
2012), by definition volume averages can bemade to be as close to the probabilistic average desired
by making the volume sufficiently large. Specifically, for the decomposition of the velocity field,
we require

〈〈u〉γ ⊗ 〈u〉γ 〉 = 〈u〉γ ⊗ 〈u〉γ + O(U2
ε ), 〈〈u〉γ ⊗ ũ〉 = 〈u〉γ ⊗ O(Uε ), 17.

where U2
ε is a tensor and Uε is a vector. These quantities can be determined from a simple Taylor

series expansion of the averaged concentrations (Quintard & Whitaker 1994, Whitaker 1999,
Wood 2013; cf. Pope 2000, section 13.4.4). These two quantities are assumed to be small in the
sense that we have 〈u〉γ ⊗ 〈u〉γ � U2

ε and 〈u〉 ⊗ 〈u〉 � 〈u〉 ⊗ Uε . Arguments similar to those found
in section 1.3 of Whitaker (1999) show that this approximation is valid for �  LU . When this
condition ismet, variations of 〈u〉γ on the scale of� can be neglected for the purposes of averaging.
This does not indicate that ∇ ⊗ 〈u〉γ equals zero, only that the variation of the average velocity
within any averaging volume may be neglected. When this condition is met, the spatial averages
behave like Reynolds averages (thus, the term “quasi-Reynolds operator” is applied). Under these
conditions, we have the approximation

〈u ⊗ u〉 = 〈u〉γ ⊗ 〈u〉γ + 〈ũ ⊗ ũ〉. 18.

This same kind of analysis allows the following simplifications to be made,

〈∇ · [∇ ⊗ u + (∇ ⊗ u)†]〉 = ∇2〈u〉γ +
∫
r∈Aγ κ (x)

Gnγ κ · [∇ ⊗ ũ + (∇ ⊗ ũ)†] dA(r), 19.

〈∇ p〉 = ∇〈p〉 +
∫
r∈Aγ κ (x)

Gnγ κ p̃ dA(r). 20.
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Assuming these conditions, the following form for the volume-averaged momentum balance
is valid,

ρ
∂〈u〉γ

∂t
+ ρ〈u〉γ ⊗ ∇ · 〈u〉γ = −∇〈p〉γ + μ∇2〈u〉γ − ρε−1

γ ∇ · 〈ũ ⊗ ũ〉

+μ

∫
r∈Aγ κ (x)

ε−1
γ Gnγ κ ·

(
− p̃

μ
I + [∇ ⊗ ũ + (∇ ⊗ ũ)†]

)
dA(r). 21.

With the exception of the symmetric stress tensor formulation, this result is identical to the
volume-averaged form previously developed by Whitaker (1996). It is also similar to the con-
ventional LES filtering (Pope 2000, section 4.1), except for the presence of the two integral terms
that bring in boundary information. The integral term is of principle importance to the upscaled
expression. In short, the microscopic boundary conditions driving the production of turbulence
are represented at macroscopic scale by this integral. In homogeneous turbulence with no gradi-
ent in the average velocity, this integral represents the only microscale information that survives
at the macroscale.

4.3. Closure

Frequently in VAT, the problems that are upscaled are linear ones. For those, a straightforward
process yields balance equations for the deviation quantities and the problem is closed. This pro-
cess is explained in detail by Wood & Valdés-Parada (2013). As is well known (being one of the
central problems of turbulence), for nonlinear problems there are usually not exact formal clo-
sures. Some linearizations have been attempted for applications in porous materials (Lasseux et al.
2019), and these have led to interesting results for the low-Rep regime.

It is helpful here to explicitly develop the balance equation for the velocity fluctuations. Sub-
tracting Equation 21 from the unfiltered Navier–Stokes equations results in the following (cf.
Whitaker 1996),

ρ
∂ũ
∂t

+ ρũ · ∇ ⊗ ũ + ρ〈u〉 · ∇ ⊗ ũ + ρũ · ∇ ⊗ 〈u〉

= −∇ p̃+ μ∇2ũ + ρ∇ · 〈ũ ⊗ ũ〉

+μ

∫
r∈Aγ κ (x)

ε−1
γ Gnγ κ ·

(
p̃
μ
I + [∇ ⊗ 〈u〉γ + (∇ ⊗ 〈u〉γ )†]

)
dA(r), 22.

ũ = −〈u〉γ for r ∈ Aγ κ (x), 23.

nγκ
· ∇ ⊗ ũ = −nγκ

· ∇ ⊗ 〈u〉γ for r ∈ Aγ κ (x), 24.

along with the pressure Poisson equation for p̃, external boundary conditions, etc. Here, we have
explicitly included the statement of the velocity boundary conditions at the fluid–solid interface
to reinforce the importance that these conditions impose on the problem.Note that we have used
them to replace the velocity deviation terms in the area integral in Equation 22.

The availability of DNS data provides two possible routes for closing the upscaled momen-
tum balance. First, one could consider closing the balance directly by computing the terms p̃ and
〈ũ ⊗ ũ〉 from the DNS data. Although this would close the model, it would do so in a way that
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Source term: the
no-slip condition at
the fluid–solid
interface creates a
source term in the
closure problem (see
Equation 24), which is
the dominant term for
this problem

was specific to the geometry being modeled, and the pressure deviations and Reynolds stress term
would enter the problem as a forcing function (Apte et al. 2018).

For the second option, one could examine solutions for the deviation quantities in terms of the
source terms that appear in the deviation balance. For linear balance equations, integral solutions
can always be expressed as linear functionals of the source terms (this is simply a feature of linearity
as described by the classical theory of Green’s functions). For nonlinear systems, one can propose
a solution that is a nonlinear functional of the source terms, but conditions for the existence of
general solutions are usually not possible. As a rule, the algebraic form of this functional will not
be known explicitly; only its dependencies on the sources will be known. Thus, the functional
form of the solutions has to be guided by physical insights to the system and other features (such
as invariance properties) that help constrain possible solutions.

The advantage to such an approach, however, is that the result is a closed momentum balance
for predicting ũ as functions of the variables known in the macroscale momentum balance. At the
macroscale, this then leads to a homogeneous balance in terms of only 〈p〉γ and 〈u〉γ (and any as-
sociated, potentially nonlinear, tensor functions of 〈u〉γ ). Direct comparison with DNS results can
then be used to compute the effective tensors for a particular Rep and geometrical configuration.

We take the second tactic in this work. The problem given by Equations 22–24 contains two
types of source terms: (a) the terms involving S = 1

2 [∇ ⊗ 〈u〉γ + (∇ ⊗ 〈u〉γ )†] appearing in the
boundary integral and (b) the term 〈u〉γ appearing in the first boundary condition (Equation 23).
It is reasonable to assume that the solution can be expressed as some nonlinear combination of
the source terms, ũ(r, t ) = N (〈u〉γ ,S); treating the two components of S as separate sources,
one might extend this explicitly in the form ũ(r, t ) = N (〈u〉γ ,S,�) (cf. Pope 1975, Wallin &
Johansson 2000, Weatheritt & Sandberg 2017). Note that this closure is different from many
conventional turbulence closures in that the average velocity is invoked as a source, and this breaks
Galilean invariance as described above. In zero–mean shear flows (Lumley 1979,Mansour&Wray
1994), in the presence of boundaries (Lumley 1970, appendix A; Spalart 2015), and even in high–
Reynolds number flows (Hanjalić & Launder 1972, section 3), the use of the average velocity as a
constitutive variable is not especially unusual, although it seems to have fallen out of favor (possibly
because of its implications for Galilean invariance, which for our case are already broken). Given
these constraints, one reasonable closure is given by

ũ(r, t ) = M(r, t ) · 〈u〉γ + Mu(S,�). 25.

Here, the vectorMu is adopted to map the second-order source to the vector ũ. The second-order
tensor function Mu is not computed in detail here because of the nature of the flows studied.
However, it is worthwhile proposing a form for this vector. One option would be to adopt, with
proper caution, an integrity basis for the tensor (Pope 1975,Wallin & Johansson 2000). There are
many possible functions involved in this particular nonlinear algebraic form, taking the form

Mu(S,�) =
10∑
n=1

m(n) · T(n), 26.

where T(n) are the basis tensors, and the set {m(n)} are parametric vectors that depend on the
integrity basis tensor invariants. Use of an equation of this form has been intractable in the past,
but the rapid development of machine learning algorithms used in concert with DNS results (e.g.,
Duraisamy et al. 2019, Ling et al. 2016) have made this approach possible. A similar analysis of
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the pressure Poisson equation leads to

p̃(r, t ) = μb(r, t ) · 〈u〉γ + μBp(S,�), with Bp(S,�) =
10∑
n=1

B(n) : T(n)
. 27.

For these solutions to be useful, one would first need to use available physical constraints (e.g.,
invariance principles, knowledge of the macroscale isotropy/anisotropy) about the particular av-
eraged flow to further reduce the sets of parameters {m(n)} and {B(n)}.

4.4. Closed Model: Homogeneous Media

Results to date have been computed primarily for both random and periodic homogeneous media.
The upscaled models for such media are substantially less complicated than those for heteroge-
neous media, which can support strong gradients in the average velocity. In the foregoing analysis,
we have assumed that one could neglect the variations of the averaged velocity within a support
volume, V (x). Under these conditions, the closures simplify to

ũ(r, t ) = M(r, t ) · 〈u〉γ , p̃(r, t ) = μb(r, t ) · 〈u〉γ . 28.

With these expressions, the macroscale model can be formally closed.We note that the parameters
M and b are expected to be functions of Rep. We impose the following additional constraints
representing the case of a spatially homogeneous medium. Many of these can be eliminated in
more advanced studies of the problem.

(a) The property of quasi-ergodicity applies, allowing us to drop the time derivative term. In
essence, this means that the support scale � is large enough such that the macroscale flow field
does not experience significant temporal fluctuations.

(b) Quasi-ergodicity also assures that there are no macroscopic gradients in the velocity. In
reality, even a homogeneously packed reactor will still have gradients in the porosity and, hence,
in the averaged velocity (e.g., Vortmeyer & Winter 1982); however, this approximation is the
appropriate one for the analysis of an ideal homogeneous medium.

(c) Quasi-ergodicity also assures that, for a homogeneous medium with constant average ve-
locity, the area integral appearing in Equation 22 is constant in space.

These conditions, which are quite reasonable for the case of homogeneous media, dramatically
simplify the momentum balance. Somewhat surprisingly, the conventional Reynolds stress plays
no role in the solution for a homogeneous porous material. This is much like the case of decaying
homogeneous turbulence, where the spatially averaged velocity (across the conduit) is a constant.
The simplified momentum balance takes the form

−
∫
r∈Aγ κ (x)

ε−2
γ Gnγ κ · I ⊗ b(r, t ) dA(r) · 〈u〉 = − 1

μ
∇〈p〉γ . 29.

To complete the analysis, we define

K−1
T (Rep) = −

∫
r∈Aγ κ (x)

ε−2
γ Gnγ κ · I ⊗ b(r, t ) dA(r), 30.

where KT is the total effective permeability tensor (which depends on Rep). This allows the mo-
mentum balance to be expressed in the form

KT
−1 · 〈u〉 = − 1

μ
(∇〈P〉γ − ρg), 31.
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where here, the pressure has been written in the unmodified form. It is conventional (Whitaker
1996) to represent the total effective permeability tensor as a sum of a linear (constant) part and
a correction that depends upon Rep. To accomplish this, one defines the decomposition K−1

T =
K−1[I + F(Rep)],whereK is the conventional (constant) Darcy’s law permeability tensor and F(Rep)
is the Forchheimer correction tensor. Using this decomposition, one finds a final result of the
form

〈u〉 = −K
μ

· (∇〈P〉γ − ρg) − F(Rep) · 〈u〉. 32.

If F is assumed to be a linear function of Rep (e.g., F = F0 ‖U‖dp/ν), the conventional quadratic
dependence for the Forchheimer law can be extracted. This dependence, however, will have to be
determined through experiment (through either DNS or a combination of pore-scale measure-
ments and DNS).

5. CASE STUDY: DIRECT NUMERICAL SIMULATION AND UPSCALING
FOR TURBULENCE IN A HOMOGENEOUS MEDIUM

Recently, Apte et al. (2018) and He et al. (2018, 2019) performed simulations of transitional and
turbulent flows for Rep = 854–2,846 (ReH = 300–1,000) through a close-packed, FCC array of
spheres. The detailed characteristics of turbulence are presented elsewhere (He et al. 2019); how-
ever, we have used the data from those results to compute the effective parameters K and F as
described below. Note that, because of the symmetry of the system, for these simulations we have
〈u〉 = (UD, 0, 0) and ∇〈p〉γ = (−P′

0, 0, 0); here,UD is the Darcy velocity,UD = εγU (note thatUD

andU are signed quantities). Under these conditions, it is not hard to show that KT is a diagonal
tensor and that Equation 32 reduces to

P′
0 = μ

Kxx
UD + ρ

F0,xx
Kxx

dp
εγ

UD|UD|, 33.

where we have assumed the linear form Fxx(Rep) = F0,xxRep. In applications, this is frequently put
in the form (Ergun 1952)

P′
0 = μ

Kxx
UD + ρCFUD|UD|, CF = F0,xxdp

εγKxx
. 34.

This recovers the conventional quadratic form frequently called theDarcy–Forchheimer equation
(cf. Whitaker 1999). Nondimensionalizing the result (cf. Ergun 1952, Vafai & Tien 1981) gives

 = 1
K0,xx

+ F0,xx
K0,xx

Rep, with  = P′
0d

2
p

μUD
, K0,xx = Kxx

d2p
. 35.

Note that the nondimensional form for the pressure gradient is similar to that of Ergun (1952).
The two parameters K0,xx and F0,xx were determined from the DNS data reported by He

et al. (2019) using two independent methods. (a) The nondimensional pressure gradient  and
Reynolds number Rep were computed from the available DNS data (He et al. 2019) using
Equation 35. A plot of || versus Rep yields a line with slope F0,xx/K0,xx and intercept 1/K0,xx.
These data are shown in Figure 6. (b) The value of KT was computed using the result from
the VAT, i.e., by computing Equation 30 by directly integrating the pressure deviations at the
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DNS data, FCC packing (He et al. 2019)
RANS data, FCC packing (Gunjal et al. 2005)

Ergun (1952) equation (Equation 37)
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Figure 6

Comparison of DNS and VAT results with the Ergun (1952) equation and data from Gunjal et al. (2005).
Note that the Gunjal et al. (2005) data were computed with a RANS k–ε model and conventional wall
functions; this may explain in part the discrepancy with the DNS data. Abbreviations: DNS, direct numerical
simulation; FCC, face-centered cubic; RANS, Reynolds-averaged Navier–Stokes; VAT, volume-averaging
theory.

solid–fluid interfaces, using the expression

KT,xx = −UD

ε3γ

[∫
r∈Aγ κ (x)

Gnγ κ ,x p̃ dA(r)

]−1

. 36.

Then, using the known (from the low-Rep DNS) value for Kxx, F0,xx is easily determined. These
data are also illustrated in Figure 6.

For comparative purposes, we also plotted the predicted value of the pressure drop from the
Ergun (1952) equation, which has been put in the nondimensional form

|| = A
(1 − εγ )2

ε3γ
+ B

(1 − εγ )
ε2γ

Rep, 37.

where here A and B are the conventional Ergun (1952) equation parameters taking the values of
A = 150 and B = 1.75.

InTable 2, we have listed the values for the parameters K0,xx and F0,xx, as well as the equivalent
but more conventional parameters A and B, with A = ε3γ /[(1 − εγ )2K0,xx] and B = ε2γF0,xx/[(1 −
εγ )K0,xx]. There is reasonably good correspondence among the various data sets. In particular,
K0,xx deserves some special mention because its value is well known for FCC lattices. Our results
recover the result most frequently reported; the results of Gunjal et al. (2005) are about 37%
higher than this result. It is possible that this is a consequence of the RANS modeling used to
compute their results, which still need development before they can be reliably applied to porous
materials.

Remarkably, the two data sets that we have for computing the Ergun (1952) B constant are in
reasonably good agreement. As mentioned previously, at very high values of Rep, the TKE in the
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Table 2 Values for K0,xx, F0,xx, A, and B for the DNS results from this work, as compared with
the Ergun (1952) equation and values from the literature

Study K0,xx F0,xx A B
This work 1.72 × 10−4 2.56 × 10−3 186 1.75
Gunjal et al. (2005) 2.73 × 10−4 3.07 × 10−3 207 2.00
Ergun (1952) 2.14 × 10−4 3.03 × 10−3 150 1.75
Dolamore et al. (2018) 1.70 × 10−4 NA 189 NA
Eshghinejadfard et al. (2016) 1.71 × 10−4 NA 188 NA
Maier et al. (1998) 1.71 × 10−4 NA 188 NA
Average 1.94 × 10−4 2.89 × 10−3 164 1.83

Abbreviations: DNS, direct numerical simulation; NA, not any.

pore space becomes more evenly distributed. It may be that this process diminishes the influence
of walls. Exactly the same mechanism was proposed by Patil & Liburdy (2015) in their analysis of
turbulence structures at very high (Rep > 3,400) Reynolds numbers.

SUMMARY POINTS

1. Turbulence in porous media is far more prevalent than might be commonly assumed.
Turbulence not only occurs in many industrial and environmental applications of porous
materials but also plays an important role in many instances in increasing rates of heat,
mass, or momentum transfer.

2. There has been some progress in using direct numerical simulation (DNS) for modeling
turbulence in porous materials, but the results to date are somewhat limited, especially
for structures with porosities similar to those found in packed beds. The simulations
to date indicate that the flows within porous materials can show inertial flow features
(such as jets, helical vortices, and coherent structures) and some unique behavior (such
as net-negative production) in the distribution of turbulence kinetic energy.

3. The development of the macroscale momentum balance equation in the form of a
Darcy–Forchheimer-like law (Equation 32) appears to be valid for the case of periodic
media. For the case of face-centered cubic packings, a Forchheimer tensor of the form
F = F0Rep is a reasonable model, as evidenced by comparison with DNS data. This con-
firms that the conventional quadratic law can be recovered from the combination of
volume-averaging theory and DNS.

FUTURE ISSUES

1. Developing the volume-averaged equations and associated closure in the presence of
macroscopic gradients in the velocity will be a critical problem. In particular, both aver-
aging and DNS results for porous materials with significant average gradients would be
helpful.

2. Whether turbulence at the macroscale can exist within a porous material is still an
open question, although not strictly an academic one because there are systems where
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exceptionally high pore Reynolds numbers are realistic. DNS and adopting larger-scale
materials (particularly gradient porosity materials) will both be critical for addressing
this question.

3. For high Reynolds numbers, it will still be necessary for the foreseeable future to use
Reynolds-averaged Navier–Stokes or large-eddy simulation (LES) models. There may
be reasonable approaches for specifying a preaveraged momentum balance at the mi-
croscale, but how to appropriately represent the influence of the exceptionally complex
geometrical structure should be carefully considered. A systematic analysis and assess-
ment of the subgrid-scale models in LES for turbulent flow through porous media (espe-
cially realistic packings with comparatively low porosity) is needed for LES approaches
to be tractable.

4. The averaged momentum balance equations have not been derived for the most gen-
eral case of flow in a porous material with significant gradients on the length scale of �.
Equations 25–27 provide a potential mathematical form for the closure for this case but
do not provide an explicit method for computing the associated parameters. The com-
plexity of this problem is significant. The combination of DNS and machine learning
algorithms may be useful for parameterizing proposed closures. Because of the process
of spatially averaging over many pores, there is some hope that porous materials may
exhibit discoverable universal behaviors that can be associated with, for example, the
topological characteristics of the materials.
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