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Abstract

Anisotropic particles are common in many industrial and natural turbulent
flows. When these particles are small and neutrally buoyant, they follow
Lagrangian trajectories while exhibiting rich orientational dynamics from
the coupling of their rotation to the velocity gradients of the turbulence
field. This system has proven to be a fascinating application of the funda-
mental properties of velocity gradients in turbulence. When particles are
not neutrally buoyant, they experience preferential concentration and very
different preferential alignment than neutrally buoyant tracer particles. A
vast proportion of the parameter range of anisotropic particles in turbu-
lence is still unexplored, with most existing research focusing on the simple
foundational cases of axisymmetric ellipsoids at low concentrations in ho-
mogeneous isotropic turbulence and in turbulent channel flow. Numerical
simulations and experiments have recently developed a fairly comprehensive
picture of alignment and rotation in these cases, and they provide an essential
foundation for addressing more complex problems of practical importance.
Macroscopic effects of nonspherical particle dynamics include preferential
concentration in coherent structures and drag reduction by fiber suspensions.
We review the models used to describe nonspherical particle motion, along
with numerical and experimental methods for measuring particle dynamics.
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1. INTRODUCTION

Turbulent flows with suspended particles of nonspherical shape are a common occurrence in
many industrial and natural processes. Industrial processes include pulp making and papermaking
(Lundell et al. 2011), pharmaceutical processing (Erni et al. 2009), and soot emission from com-
bustion processes (Moffett & Prather 2009). Natural processes include the dispersion of pollen
species in the atmosphere (Sabban & van Hout 2011), the dynamics of icy clouds (Heymsfield
1977), and the cycle of plankton and marine snow in the oceans (Pedley & Kessler 1992). The
reasons for different particle shapes range from the particular generation process (ice crystals or
soot) to natural selection (pollen or plankton) and design needs (textile or pulp fibers).

The problem of anisotropic particles in turbulence is quite complicated. Beyond the complexity
of turbulence and of multiphase flows with spherical particles (Balachandar & Eaton 2010), we now
have to consider forces and torques that depend on particle orientation. Fully specifying a problem
with nonspherical particles in turbulence requires specifying many parameters, including the forc-
ing and boundary conditions, fluid density, fluid viscosity, particle size and shape, particle density,
and particle concentration. Other factors that may be important include the particle translational
and rotational diffusivity, gravitational acceleration, particle deformability, collisions, aggregation
or fragmentation, non-Newtonian fluid rheology, and electrostatic forces. Critical applications of-
ten involve many of these complicating factors at once. For example, papermaking involves fiber
suspensions at high concentration with interparticle forces that control floc formation (Lundell
et al. 2011). Icy clouds have heavy nonspherical particles sedimenting in a turbulent environment
with important effects from collisions and electric charging (Pruppacher & Klett 2010).

There are many different ways for particles to be anisotropic. Pollen grains and plankton
species occur in a dazzling variety of shapes. Textile or cellulose fibers vary in their shape and
rigidity. But there is a simple and rich problem at the core of nonspherical particles in turbulence:
How do small ellipsoidal particles translate, orient, and rotate at low concentrations in turbulent
flows? Small density-matched particles translate with the fluid, independent of their shape, so their
translational motion is identical to Lagrangian fluid particles in turbulence, which have been a
major research focus in the past two decades (Toschi & Bodenschatz 2009). Nonspherical particles
experience torque from the fluid strain field, which leads to preferential alignment. However, in
turbulent flows, the fluid strain is dominated by small scales, which have a degree of universality,
so many properties of nonspherical particle motion are similar between different turbulent flows.
The case of homogeneous isotropic turbulence provides an important reference case in which
well-defined velocity gradient statistics along Lagrangian trajectories (Meneveau 2011) produce
well-defined properties of anisotropic particle motion. The close connection between nonspherical
particle motion and the small scales of turbulence has also allowed studies of particle motion to
produce new insights into the dynamics of fluid turbulence (Ni et al. 2014, Kramel et al. 2016).
In many flows, particles become aligned by the mean velocity gradients, leading to preferential
orientation (Parsheh et al. 2006). Turbulent channel flow has been a particularly important case
that is relevant to industrial flows and is accessible to high-resolution numerical simulations (Zhang
et al. 2001). When nonspherical particles are not density matched, they exhibit many features
of inertial particles in turbulence, such as preferential concentration, but with rich additional
phenomena due to particle orientation and rotational slip (Mortensen et al. 2008b; Marchioli
et al. 2010, 2016).

In this review, we focus on ellipsoidal particles. The fluid torques on ellipsoids are mathemat-
ically tractable, and the torques on small particles with many other shapes are the same as their
equivalent ellipsoids ( Jeffery 1922; Bretherton 1962; Brenner 1963; 1964a,b,c; Harris & Pittman
1975). Much of the previous work in this field has considered axisymmetric ellipsoids, also called
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Figure 1
Spheroid shapes used to investigate the dynamics of anisotropic particles with p, the unit vector along their
symmetry axis, and their possible rotations. (a) Prolate ellipsoids, λ > 1, mimic the behavior of rigid rods or
cylinders. (b) Oblate ellipsoids, λ < 1, mimic the behavior of rigid disks.

spheroids. Any spheroid shape can be specified by a single aspect ratio, λ, defined as the ratio of
the dimension along the symmetry axis to a perpendicular dimension: λ = 1 corresponds to a
sphere, λ > 1 corresponds to a prolate spheroid or fiber (Figure 1a), and λ < 1 corresponds to
an oblate spheroid or disk (Figure 1b). The rotations of axisymmetric particles are naturally de-
composed into a component along the symmetry axis, called spinning or drilling, and components
perpendicular to the symmetry axis, called tumbling.

To provide a concrete example of the rich dynamics of a small nonspherical particle in tur-
bulence, we can examine the trajectory of a small rod in a recent experiment (Parsa et al. 2012).
With the aid of high-speed imaging from multiple cameras, the Lagrangian trajectory of the
rod in a nearly homogeneous turbulence field was measured and rendered in a perspective three-
dimensional (3D) view (Figure 2). The trajectory exhibits several important features of anisotropic
particles in turbulence. First, there are regions of the trajectory with very rapid changes in the
particle orientation, with squared tumbling rates up to 30 times the mean square. These rare
events come from intermittent large velocity gradients, which are a characteristic feature of high–
Reynolds number turbulent flows. With anisotropic particles, their effects are directly evident in
particle rotations. Second, the upper left section of the trajectory shows the particle spinning in a
vortex with a low tumbling rate. This reflects the tendency of nonspherical particles to preferen-
tially orient themselves with a long axis aligned with the fluid vorticity. Preferential alignment is
responsible for many interesting features of nonspherical particles in turbulence.

This article reviews the status of our understanding of the complex interaction between
anisotropic particles and turbulent fluid flows. We focus on the foundational problem that can
be rigorously addressed using Lagrangian approaches to Kolmogorov-scale particles. Extensions
to more complex cases, including the macroscopic features of multiphase flows of nonspherical
particles, are also discussed. Section 2 reviews mathematical models widely used to describe kine-
matics and the dynamics of anisotropic particles, as well as the forces and torques acting between
particles and the fluid. We examine methods used in numerical simulations in Section 3 and those
used in experimental investigations in Section 4. Section 5 reviews work related to small-scale
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Figure 2
Trajectory of a fiber from multiple-camera high-speed video measurements in a turbulent flow between
oscillating grids at Rλ = 214. The color of the rod represents the tumbling rate, with blue representing a low
tumbling rate and red a high tumbling rate. The fiber has a length L = 1 mm and aspect ratio λ = 5. Figure
adapted with permission from Parsa et al. (2012).

Kolmogorov scales:
the small scales of
turbulence are
characterized by the
Kolmogorov length
η = (ν3/ε)1/4 and
Kolmogorov time
τη = (ν/ε)1/2, with ν
the kinematic viscosity
and ε the energy
dissipation rate per
unit mass

phenomena such as preferential orientation, rotational dynamics, and relative motion between
particles and fluid. Section 6 highlights a few of the profound macroscopic effects produced by
collective particle motion, including preferential segregation and turbulent drag reduction.

2. MODELING MOTION OF ANISOTROPIC PARTICLES

Figure 3 identifies some of the different models used to describe particle translation and rotation
in turbulent flows. The particle size, particle shape, and particle to fluid density ratio are the
parameters in this case. The widely used models of spherical particles are appropriate only for a
narrow range of particle shapes near λ = 1. In the limit of high aspect ratios, a class of models
derived from slender body theory has been successful (Khayat & Cox 1989, Shin & Koch 2005). At
other aspect ratios, the appropriate model depends strongly on the ratio of the particle size to the
Kolmogorov length scale, L/η, and also on the particle density. Here L is the largest dimension
of a particle. The quantitative determination of the parameters at which specific models begin to
fail depends on the quantities of interest and the degree of accuracy required, so we emphasize
that Figure 3 is intended for conceptual use.

2.1. Tracer Particles

The simplest particles to model are those that are small enough to act as perfect flow tracers.
Spherical tracer particles have a velocity, u(p), that matches the fluid velocity at the particle position,
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Figure 3
A parameter space of anisotropic particles in turbulent flows with models used to describe different cases. In this conceptual scheme,
heavy particles roughly represent solid particles in air, ρp/ρ f ∼ 1,000. The purple dashed line is St = τp/τη = 0.1 using the relaxation
times given in the sidebar Particle Relaxation Times. The red dotted line is approximately the point at which tracer models begin to fail
for the second moment of accelerations of spheres (Brown et al. 2009) and rotations of slender rods (Shin & Koch 2005). The blue
dotted-dashed lines are simply conceptual dividers.

Particle Reynolds
number (Re p ):
|u(p)−u( f )| L

ν
; defined

using the slip velocity
relative to the fluid
and largest particle
dimension, L

u( f ), and the particle rotates at the fluid rotation rate, which is half the local fluid vorticity.
Nonspherical tracer particles translate with the fluid, just like spherical particles, but their rotation
depends on their orientation with respect to the velocity gradient tensor. An axisymmetric particle
with symmetry axis given by the unit vector p rotates with a solid-body rotation rate � that can
be split into a spinning rate,�p = � · p, and tumbling rate, ṗ = � × p, so that � = �p p + p × ṗ
and |�|2 = �2

p +|ṗ|2. For axisymmetric tracer particles, the spinning rate is half the component of
the fluid vorticity along the particle axis. But the tumbling rate has a contribution from the strain
rate and is given by

ṗi = Wi j p j + λ2−1
λ2+1

(
Si j p j − pi pk Skl pl

)
, (1)

where Si j = 1
2 (Ai j + Aji ) is the strain-rate tensor and Wi j = 1

2 (Ai j − Aji ) is the rotation-rate
tensor, which are, respectively, the symmetric and antisymmetric parts of the velocity gradient
tensor, Ai j = (∂ui )/(∂x j ). The last term in Equation 1 is the contribution parallel to p needed
to keep the strain from changing the magnitude of p. Analysis of tracer particle rotation can
be simplified by considering the equation linear in p that is obtained by ignoring the last term
and separately handling the normalization (Szeri 1993, Wilkinson et al. 2010). The extension to
nonaxisymmetric (tri-axial) ellipsoids was considered by Jeffery (1922). Chevillard & Meneveau
(2013) and Einarsson (2015) provided expressions for tracer rotations in the tri-axial case.

2.2. Inertial Point-Particle Models: Stokes Drag

Another class of models describes cases in which the particle Reynolds number, Rep , is small but
there is translational and rotational slip between the particle and fluid (see the sidebar Particle
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PARTICLE RELAXATION TIMES

For spherical particles, the translational relaxation time is τp = (2ρp a2)/(9μ), where ρp is the particle density, a
is the particle radius, and μ = ρ f ν is the dynamic viscosity. For nonspherical particles, the particle translational
relaxation time depends on direction, and additional rotational relaxation times may be important.

A standard approach to define a single-particle relaxation time is to assume an isotropic particle orientation
distribution, in which case the average relaxation time for a prolate spheroid is

τp = 2
9
ρp a2

μ

λ ln(λ+ √
λ2 − 1)√

λ2 − 1
,

where a is the radius perpendicular to the symmetry axis (Shapiro & Goldenberg 1993). For an oblate spheroid,
the average relaxation time is (L. Zhao et al. 2015)

τp = 2
9
ρp a2

μ

[
π − 2 tan−1(λ(1 − λ2)−1/2)

]
2(1 − λ2)1/2

.

The relaxation times for prolate and oblate spheroids reduce to the spherical result as λ goes to 1.
The rotational relaxation time for a sphere is τr = 2

15 (ρp a2)/(μ) (Brenner 1964b). For anisotropic particles, it is
possible to define the rotational relaxation time tensor via the rotational resistance tensor (Brenner 1964b, Shapiro &
Goldenberg 1993). In particle coordinates, the rotational relaxation time tensor is diagonal with different timescales
for spinning and tumbling, both of which are typically shorter than the translational relaxation time (L. Zhao et al.
2015, Marchioli et al. 2016).

Euler parameters:
constitute a unit
quaternion, a vector in
4-space subject to the
unit-length constraint
and allow for
description of finite
rotations of a single
rigid body

Relaxation Times). The spherical particle version of these models is the widely used spherical
Stokes drag model (Toschi & Bodenschatz 2009).

The dynamical equations of rigid-body motion govern particle translation and rotation:

m
du(p)

dt
= F, (2)

d(I·�′)
dt

+ �′ × (I·�′) = N′. (3)

Equation 2 is written in the inertial frame of reference, but Equation 3 requires use of the particle
frame of reference so that the rotational inertia tensor, I, is constant in time. The frames of
reference are shown in Figure 4. For nonspherical particles, the drag force, F, is generally not
colinear with the slip velocity; therefore, a translational resistance tensor, K′, is needed:

F = μR K′RT · (u( f ) − u(p)). (4)

The resistance tensor for spheroidal particles, K′, is available in references (e.g., Brenner 1964c,
Loth 2008, Siewert et al. 2014a, Challabotla et al. 2015a). The orthogonal rotation matrix, R,
converts particle coordinates to comoving coordinates, and RT is its transpose. In a number of
studies (e.g., Zhang et al. 2001, Mortensen et al. 2008a, Marchioli et al. 2010), the elements of
R have been expressed in terms of the four Euler parameters, q , and its time evolution, q̇ , was
computed using rigid-body kinematic equations of the form 2 q̇ q̃ = �, where q̃ is the conjugate of
q (Arribas et al. 2006). Recently, Zhao & van Wachem (2013) used quaternion algebra to perform
transformations between different coordinate systems based solely on the four Euler parameters,
which removes the need to compute R explicitly, thus improving both numerical efficiency and
precision.
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Figure 4
The inertial frame of reference, with axes labeled as x, y , and z, remains fixed in space and time. The
ellipsoid frame of reference, with axes labeled as x′, y ′, and z′, has its origin at the particle’s center of mass
and coordinate axes aligned with the principal directions of inertia of the ellipsoid. The comoving frame of
reference, with axes labeled as x′′, y ′′, and z′′, has its origin at the center of mass and is always aligned with
the inertial frame of reference. The symmetry axis of the particle, p, is defined to lie along z′, and its
direction angles (θx , θy , and θz) with respect to the inertial frame are shown.

Jeffery (1922) calculated expressions for the torques on ellipsoids, N′, in Equation 3. Expressions
for torque on prolate and oblate spheroids are also available in Loth (2008) and in Challabotla
et al. (2015a). For particles with other shapes in creeping flow, there can be contributions to the
torque from relative translation as well as from the strain rate and relative rotation (Kim & Karrila
1991, Guazzelli & Morris 2012).

2.3. Inertial Point-Particle Models with Fluid Inertia

In some cases, particles have all dimensions small relative to the Kolmogorov scale of the flow, but
the particle Reynolds number is too large to use Stokes drag models. There are several different
approaches taken in this case. The case of spherical particles is instructive. Point-particle models
for small spheres in unsteady flow include the first effects of fluid inertia through added mass and
Basset history terms (Gatignol 1983, Maxey 1983). Higher-order effects include Faxén and lift
terms (Calzavarini et al. 2009, Meller & Liberzon 2015).

For nonspherical particles, we do not yet have analytic approaches that account for fluid inertia
in unsteady flow and are applicable across the full range of spheroidal shapes. In the slender body
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ORIENTATION-DEPENDENT DRAG COEFFICIENT

On the basis of the work of Rosendahl (2000), Zastawny et al. (2012) proposed the following correlation:

CD = CD,φ=0◦ + (CD,φ=90◦ − CD,φ=0◦ ) sina0 φ,

which allows for the prediction of the drag coefficient, CD, as a function of the orientation, φ, defined by the angle
between the direction of the fluid velocity and the longest axis of the body. The correlation is based on the drag on
the particle when parallel and perpendicular to the main flow (Leith 1987, Hölzer & Sommerfeld 2008):

CD,φ=0◦ = a1

Rea2
eq

− a3

Rea4
eq

, CD,φ=90◦ = a5

Rea6
eq

− a7

Rea8
eq
.

The correlation is valid for a range of Reeq and is a function of the nine shape-dependent coefficients ai computed
for ellipsoids, disks, and fibers (Zastawny et al. 2012, table 2). Similar correlations for the lift force and fluid torque
have been proposed (Yin et al. 2003, Zastawny et al. 2012).

limit, solutions can be derived from Navier-Stokes because two dimensions are small enough that
the Reynolds number of the inner flow remains low (Khayat & Cox 1989). The full range of
spheroidal shapes has been studied in steady simple shear flow, leading to a fairly comprehensive
picture of the effects of fluid and particle inertia in that case (Ding & Aidun 2000, Subramanian
& Koch 2005, Einarsson et al. 2015, Rosén et al. 2015, and references therein).

Empirical drag models have been developed to address many applied problems in which non-
spherical particles have larger particle Reynolds numbers (e.g., Mandø & Rosendahl 2010, Raman
& Fox 2016). The familiar drag coefficient for a sphere can be found in any fluids textbook (e.g.,
Bird et al. 1960) as a piecewise approximation fitted to a large amount of experimental data.

Drag coefficient data exist for cylinders and disks in a fixed orientation in a laminar flow
(e.g., Lapple & Shepherd 1940). Some experimental data exist for anisotropic particles (Haider &
Levenspiel 1989), but in the case of ellipsoids, there is an apparent lack of investigation (El Khoury
et al. 2010). Modeling efforts (Rosendahl 2000, Yin et al. 2003) and computational efforts (Hölzer
& Sommerfeld 2008; Zastawny et al. 2012; Jiang et al. 2014, 2015) have collected data for lumped
drag coefficients in the cases of ellipsoids in shear or uniform flow at different orientations. Ex-
pressions for the drag coefficient of different aspect ratios at any orientation have been developed
and benchmarked (Ouchene et al. 2015) (see the sidebar Orientation-Dependent Drag Coeffi-
cient). Loth (2008) presented an analysis based on trajectory-averaged drag coefficients using the
approach of Ganser (1993) in expressing the drag force as a function of the particle Reynolds num-
ber and shape-dependent coefficients. As remarked by Loth (2008), drag coefficients are usually
given as a function of the particle Reynolds number, Reeq , which is based on the diameter of the
volume-equivalent sphere.

2.4. Large Particles

When particles have at least one dimension larger than the Kolmogorov scale, they interact with
the nonlinear variation of the velocity field, and point-particle models are no longer possible. In
general, large particles have been studied with particle-resolved simulations (see Section 3) and
with experiments (see Section 4). The one exception is in the slender rod limit, for which Olson &
Kerekes (1998) and Shin & Koch (2005) developed expressions for the response of a thin fiber to a
spatially varying velocity field. Some statistical properties of the motions of very large particles in
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DNS: direct numerical
simulation

turbulence can be modeled by considering the range of turbulent scales that affect particle motion
and relating particle statistics to known statistical properties of the turbulent cascade (Parsa &
Voth 2014).

3. DIRECT NUMERICAL SIMULATION APPROACHES

Many recent developments in turbulence have been obtained by the use of direct numerical sim-
ulation (DNS) (Hussain 1983, Rogallo & Moin 1984, Moin & Mahesh 1998). Because DNS
is able to solve for all scales of motion, down to the smallest, it has been particularly valuable
to the study of turbulent dispersed flows, in which the limiting case of small spherical particles
has received extensive attention (Elghobashi & Prosperetti 2009, Balachandar & Eaton 2010). For
anisotropic particles in turbulence, the number of papers exploiting DNS to elucidate fundamental
physical features is quickly growing (Soldati & Andersson 2013, Voth 2015). This section exam-
ines current modeling approaches to DNS of either small, sub-Kolmogorov particles or larger
particles.

3.1. Lagrangian Point-Particle Models: One-Way Coupling

Lagrangian models are based on DNS of the Eulerian velocity field and computation of the
trajectory of the particles according to the equations defined in Section 2. The first contributions
paving the way to Lagrangian tracking of nonspherical particles in DNS were by Mallier & Maxey
(1991) and later by Shin & Maxey (1997), who investigated the combined actions of rotation,
inertia, and gravity on the velocity of prolate and oblate spheroids settling in a synthetic cellular
flow. In both papers, the authors used Stokes flow models for inertial particles.

Zhang et al. (2001) investigated the transport and deposition of ellipsoidal particles in a DNS
of turbulent channel flow. The parameter range and quantities examined in this flow configuration
have been rapidly expanded by subsequent works (Mortensen et al. 2008a,b; Marchioli et al. 2010,
2016; Moosaie 2013; Marchioli & Soldati 2013; L. Zhao et al. 2015). The one-way coupling
approach provides a formally clean framework to examine in detail the influence of turbulence
on particles at low particle concentration, but gives no information regarding the influence of
particles on turbulence and particle-particle interactions. The main findings of these works are
related to orientation and rotation statistics, which show a tendency of fibers to align in the
direction of the mean flow close to the wall, and to the preferential concentration of particles. The
same observables have also been evaluated in DNS of isotropic turbulence (e.g., Parsa et al. 2012,
Gustavsson et al. 2014, Siewert et al. 2014a, Byron et al. 2015, and references therein), in which
fiber alignment induced by the fluid velocity gradients resulted in rotation rates much lower than
those predicted by rotationally averaged models.

The main assumptions characterizing the one-way coupling approach are that fibers are ap-
proximated as noninteracting ellipsoids with uniformly distributed mass immersed in a dilute flow.
Additionally, the fiber size is assumed to be smaller than the Kolmogorov length scale, and lubrica-
tion forces arising when particles are in close proximity are ignored. Also ignored are aggregation
and breakup phenomena. Despite these simplifications, however, the resulting lumped-parameter
model captures the key physics coupling the orientation of particles to the velocity gradients and
coupling the translational motion to the orientation, as highlighted in Section 2. The dependence
of the hydrodynamic viscous drag force on the particle orientation creates crucial differences be-
tween elongated fibers and equivalent spherical particles. The influence of fiber inertia and shape
was investigated by directly comparing fiber rotation and orientation with the local properties of
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LES: large-eddy
simulation

A priori LES:
large-eddy simulation
field obtained from a
filtered direct
numerical simulation
field

the carrier flow in a turbulent channel (e.g., Marchioli et al. 2016, and references therein) and in
homogeneous isotropic turbulence (e.g., Byron et al. 2015, and references therein).

A few studies have applied Lagrangian tracking of anisotropic particles in large-eddy simu-
lation (LES)-resolved turbulence fields. Njobuenwu & Fairweather (2015) studied the effect of
particle shape on their dynamics in an LES-resolved turbulent channel flow. They used shape- and
orientation-dependent drag and lift coefficients to solve for translational and rotational motions of
oblate and prolate ellipsoids. Lecrivain et al. (2016) studied the sedimentation of fibers in flat and
roughened channels using quasi-DNS resolution. An intriguing suggestion of the scale separation
in modeling translational and rotational motion of ellipsoids was provided by Chen et al. (2016).
Using DNS, a priori LES, and LES, and following an approach similar to that used for spherical
particles (Bianco et al. 2012, Geurts & Kuerten 2012), they observed that the filtered subgrid-scale
fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal
particles.

3.2. Two-Way and Four-Way Coupling

Even small particles will influence the fluid momentum equation when their volume fraction
is high enough. Owing to preferential concentration and clustering, this can occur locally as
well as globally. In dense flows, interparticle collisions may also become important, leading to
aggregation or fragmentation with direct and indirect effects on the collective dynamics of the
particles. Given the complexity of modeling the momentum exchange between the carrier and
dispersed phase, two-way coupling studies of nonspherical particles are scarce in the literature.
In Eulerian-Lagrangian simulations, momentum coupling between spherical particles and fluid
is mostly done via the point-force approximation (e.g., Crowe et al. 1996, Balachandar & Eaton
2010), which usually neglects the torque coupling (Andersson et al. 2012). The computation of
the stresses exerted by the rods on the fluid is not straightforward (Suen et al. 2002), possibly
including the direct computation of the Fokker-Planck equation for the orientation distribution
function or other methods (Szeri & Leal 1992, 1994). Combined with the large number of particle
trajectories required to obtain values of stress at any point in the flow field, these computations
quickly become unfeasible. Early DNS-based attempts to compute the stresses due to fibers are
based on closure models (Den Toonder et al. 1997, Moosaie & Manhart 2011), on moment
approximation methods (Paschkewitz et al. 2004, 2005b; Gillissen et al. 2007a,b), or on the use of
Monte Carlo simulations for the conformation distribution function of the fibers (Moosaie 2013,
Moosaie & Manhart 2015). In these works, fibers are assumed much smaller than the Kolmogorov
length scale, their distribution remains homogeneous in the fluid, and they are able to exchange
stresses with the fluid according with their local orientation.

Recently, Eulerian-Lagrangian fully coupled simulations for fibers on the order of the
Kolmogorov scale in turbulent channel flow have been performed to examine the collision mech-
anisms of fibers with the walls (Zhao & van Wachem 2013), as well as the physics of fiber-induced
turbulence modulation and its dependence on fiber length (L. Zhao et al. 2015). These aspects
are investigated for semidilute concentrations considering statistical observables based either on
fluid and fiber velocities (e.g., turbulent kinetic energy, fluid-fiber correlations) or on fiber orien-
tation (e.g., direction cosines). Collision rates for dense suspensions of fibers or, more generally,
nonspherical particles in channel flow have not yet been measured numerically. To the best of our
knowledge, collision rates have been computed only for small ellipsoidal particles settling in decay-
ing isotropic turbulence (Siewert et al. 2014a), with results showing the dependence of the particle
orientation on the gravitational settling velocities, which determine the collision probability.
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3.3. Finite Size and Fluid Inertia Effects

Shin & Koch (2005) first demonstrated the limits of the low–Reynolds number approximation for
fiber motion by employing DNS to compute the torque acting on very slender fibers with sizes
ranging from tracers that rotate like material lines to particles much longer than the Kolmogorov
scale. For increasing length, rotational motions slow down, demonstrating that the particles filter
the effects of the smaller eddies.

Computational approaches investigating the motion of large particles that are not in the slender
body limit require accurate tracking of the particle interface and integration of fluid forces, which
involve more complex algorithms and larger computational resources. The advantage of these
methods is a straightforward way to overcome the limits imposed by the low–Reynolds number
approximation at the basis of the point-particle Stokes flow model.

The motion of large particles has been largely investigated (Tenneti & Subramaniam 2014) by
exploiting force coupling methods (Liu et al. 2009), the fictitious domain method (Pan et al. 2002),
immersed boundary methods (Mittal & Iaccarino 2005), and lattice Boltzmann methods (Aidun
& Clausen 2010). However, at present these computationally expensive approaches are unable to
handle suspensions of millions of small finite-size particles, as often required to obtain reliable par-
ticle statistics in a turbulent flow environment. Even though these methods have indeed been used
to simulate finite-size spherical particles in turbulent flow (Uhlmann 2008, Lucci et al. 2010), we
can report only one investigation in the specific domain of anisotropic rigid particles in turbulence
(Do-Quang et al. 2014). Using a lattice Boltzmann method, these authors were able to simulate
on the order of 10,000 spheroidal particles with a size equivalent to several grid cells, including
contact and lubrication force models for fiber-fluid, fiber-fiber, and fiber-wall interactions.

4. EXPERIMENTAL APPROACHES

Despite the ubiquity of turbulent flows with nonspherical particles, it has been only relatively
recently that experiments have been developed to measure the orientation and rotation of indi-
vidual particles in a turbulent environment. Early experimental work focused on particle motion
in laminar flows and complex cases relevant to specific applications; however, we do not review
early work here and instead refer readers to a few papers that cite this work. For example, Noel &
Sassen (2005) reviewed early work on ice crystals in clouds; Bernstein & Shapiro (1994) identified
early laboratory experiments that measured particle orientations; and Zhang et al. (2001) reviewed
work on the deposition of nonspherical particles. Recent experimental measurements have relied
almost exclusively on imaging, with most of the work imaging the motion of fibers.

4.1. Single-Camera Methods

Because fibers are nearly 1D, a single camera can measure the projection of the particle orientation,
p, onto the image plane. A small fraction of particles that point directly toward the camera cannot be
measured, but this is rare for high–aspect ratio fibers, making single-camera measurements simple
and effective. Parsheh et al. (2005, 2006) studied the orientation distribution of fibers in a turbulent
flow as it accelerated through a planar contraction. They used 2D images of neutrally buoyant
rayon fibers to determine the fiber orientation distribution. A nearly isotropic turbulent flow
behind a grid produces a nearly isotropic particle orientation distribution, and they measured how
the preferential orientation develops as particles experience the mean strain from the contraction.
Carlsson et al. (2010) measured fiber orientations in the bulk and near-wall regions of a similar
accelerating flow using a headbox geometry relevant to the paper industry. Håkansson et al.
(2013) analyzed the preferential concentration of fibers in the boundary layer of a half-channel
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flow down an incline. Kvick (2014) used 2D imaging to measure the orientation distribution of
fibers in the boundary layer of the same flow. This work includes a section identifying nine physical
parameters necessary to specify the fiber suspension flow and the five nondimensional groups they
form, which highlights a theme of our review: Turbulent flows of nonspherical particles occur
in a large parameter space that has just begun to be explored. Hoseini et al. (2015) extended this
work to resolve the distance from the wall, with a particular focus on measuring the motion of
particles within one particle length of the wall, where new physics beyond simple Stokes drag
models become important. Capone & Romano (2015 ) and Capone et al. (2015) measured fiber
concentration and orientation in the flow over a backward-facing step and in an immersed free
jet.

A wide variety of methods have been developed for determining fiber orientations from 2D
images. Carlsson et al. (2011) described a steerable filter that provides an accurate way to extract
orientations of fibers from 2D images, and they applied it to images from a turbulent half-channel
flow. Abbasi Hoseini et al. (2014) developed a neural network method for tracking fibers in suc-
cessive images. A particular challenge occurs when attempting to use imaging systems to simul-
taneously measure fiber motion and the fluid velocity field around the particles. Various groups
have developed different solutions to separate the fibers and tracers in images (Bellani et al. 2012,
Dearing et al. 2013, van Hout et al. 2013, Ni et al. 2015).

A drawback of standard single-camera measurements is the missing orientation coordinate.
Figure 5 shows a comparison of mean orientations of fibers in a channel flow from single-camera
experiments and DNS from Dearing et al. (2013). Close to the centerline, the particles are nearly
randomly oriented in both experiments and simulations, but the measured mean orientation is
different because of the projection effect. If the 3D probability distribution of orientations is
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Figure 5
Fiber mean orientation as a function of distance from the wall in turbulent pipe flow at Reτ = 250. The wall
distance is scaled to the hydraulic radius, RH. Blue symbols refer to particle image velocimetry (PIV)
experimental data taken in a 10-cm pipe, and the solid lines refer to direct numerical simulation (DNS) data
for channel flow (Marchioli et al. 2010). Dashed lines indicate the average direction cosine of a full 3D
isotropic distribution (〈cos θx〉3D = 1/2) and average direction cosine of the projection over the camera
measurement plane of a full 3D isotropic distribution (〈cos θx〉2D = 2/π ).
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Euler angles:
the three subsequent
rotations required to
rotate from the
ellipsoid reference
frame to the inertial
reference frame

known, the mean can be corrected. Away from the centerline, the 3D distribution is not known
in the experiments, and comparison requires projecting the DNS data onto the plane accessible
to the experiments.

A powerful method for obtaining 3D particle orientations from single-camera measurements
is digital holography. van Hout et al. (2013) described an implementation of this method for fiber
tracking. They noted that multiple-camera holographic systems are needed to obtain high position
resolution in all directions.

4.2. Multiple-Camera Methods

Multiple cameras allow the full fiber orientation vector to be measured at the cost of more complex
camera calibration (Bernstein & Shapiro 1994, Parsa et al. 2012, Parsa & Voth 2014). With three
cameras whose viewing axes are not in the same plane, the full 3D orientation can be measured
for any particle orientation. The use of more than three cameras improves the robustness of
orientations measured from messy images, which are the norm in turbulent imaging applications.

Recently, multiple-camera methods have been extended to measure the orientation and rotation
rates of particles with more complex shapes. Bellani et al. (2012) developed methods for injection
molding particles from hydrogel, which are transparent, are index matched to the fluid, and have
tracers embedded in them. They used a stereoscopic particle image velocimetry system with a laser
sheet much thinner than a hydrogel particle. The measurements provide three component velocity
fields in both the fluid and solid phase with sufficient resolution to measure many velocity vectors
on a sheet inside a single hydrogel particle. From these velocities, they obtain measurement of
the full solid-body rotation rate vector of the particle. This method has been used in more recent
work (e.g., Bellani et al. 2013, Byron et al. 2015).

Marcus et al. (2014) used 3D printed particles to measure the orientation and rotation of
particles with shapes made of many slender arms, which allow them to study effective ellipsoids
across a range of aspect ratios. To measure the orientation of these particles from multiple-camera
images, they developed a general method that projects a model particle onto each camera. A least-
squares minimization of the difference between the model and experimental images provides the
position and Euler angles that best match the measured images.

4.3. Other Experimental Methods

There are a variety of other experimental methods used for suspensions of complex particles. In this
review, we focus on fundamental dynamics at lower concentrations, but at higher concentrations,
these suspensions typically become opaque, and methods such as nuclear magnetic resonance,
optical coherence tomography, acoustic velocimetry, and capacitance tomography need to be used
to see inside the sample. None of these is currently able to track small single-particle orientations,
but high concentration will continue to be an important case, and these methods or particle-fluid
index matching (Holm & Soderberg 2007) is necessary for measurements. Experimental tools for
optical imaging as well as these other measurements continue to improve rapidly, and we are likely
to see new regions of parameter space opened up to precision measurements in the years to come.

5. STUDIES OF ALIGNMENT AND ROTATION
OF NONSPHERICAL PARTICLES

In this section, we review some of the main scientific results obtained in studies on the orientation
and rotation of nonspherical particles at low concentrations in turbulence.
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viscous shear flow
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turbulence

5.1. Preferential Orientation

A central focus of work on anisotropic particles in turbulence has been on understanding the
probability distribution of the particle orientation, ψ(p, x, t). Alignment is often quantified using
the moments of the orientation distribution (Hinch & Leal 1975):

ai j = 〈pi p j 〉 =
∫
ψ pi p j dp, (5)

ai jkl = 〈pi p j pk pl 〉 =
∫
ψ pi p j pk pl dp. (6)

There are some subtleties in exactly how the deterministic and stochastic contributions to
the particle orientation distribution are defined. Often the orientation distribution is considered
to have deterministic contributions from the average velocity field and stochastic contributions
from turbulent fluctuations, Brownian motion, and the initial particle orientation (Krushkal &
Gallily 1988). But it is also possible to consider the instantaneous orientation distribution at the
location of a single fluid element with deterministic contributions from the history of the velocity
gradients at the particle position and stochastic contributions from the initial particle orientation
and Brownian motion (Szeri & Leal 1993).

Particles are oriented by deterministic velocity gradients and randomized by stochastic veloc-
ity gradients and Brownian effects. The relative importance of orienting and randomizing effects
can be quantified by a rotational Péclet number, Pe = (dU/dx)/(Dp ), where dU/dx is a typical
deterministic strain rate and Dp is the rotational diffusivity. In the Brownian case, the rotational
diffusivity can be calculated (Bernstein & Shapiro 1994, and references therein). Although turbu-
lent rotations are not simple diffusion, the particle orientation can often be described with diffusive
models (Olson & Kerekes 1998, Marchioli & Soldati 2013). Shin & Koch (2005) evaluated in de-
tail the ways to quantify the turbulent rotational diffusivity. Although some foundational work on
nonspherical particles in fluid flows was inspired by the rheology of suspensions in which Brown-
ian motion is important (Hinch & Leal 1972), we focus the rest of this review on non-Brownian
particles with orientation distributions that are the result of turbulent fluctuations.

5.1.1. Alignment in turbulent shear flows. A widely studied case is the alignment of anisotropic
particles in turbulent shear flows. Here the orientation distributions of particles are studied in lab-
oratory coordinates, and the preferential orientation is a result of competition between alignment
by mean velocity gradients and randomization by fluctuating velocity gradients. Almost all the
studies that determine 3D orientations of individual particles in shear flows are numerical simula-
tions, and most have worked with the simple case of inertial fibers without gravity. An important
sequence of papers using inertial point-particle simulations in DNS of turbulent channel flow has
developed a clear phenomenology concerning preferential alignment near the wall (Zhang et al.
2001, Mortensen et al. 2008b, Marchioli et al. 2010, Marchioli & Soldati 2013, Challabotla et al.
2015b, F. Zhao et al. 2015, L. Zhao et al. 2015).

Figure 6a shows one component of the mean orientation of neutrally buoyant particles with a
range of aspect ratios in a channel flow. In the center of the channel, all particles approach random
orientation. But near the wall, fibers are aligned very differently than disks. Fibers align with their
symmetry axis preferentially in the streamwise direction, whereas disks align with their symmetry
axis in the wall-normal direction. This alignment can be understood as a result of particles that
are temporarily in Jeffery orbits ( Jeffery 1922). Particles with aspect ratios very far from 1 will
spend most of their time aligned in the observed preferential orientation before quickly tumbling
and returning to the preferred alignment.

When the particle Stokes number increases, inertia makes some significant changes in the
particle orientation, particularly for disks. Figure 6b shows the same mean orientation component
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Mean wall-normal component of the particle orientation for particles of different aspect ratios from direct numerical simulation of
turbulent channel flow and a one-way coupled inertial point-particle model: (a) tracer particles (St = 0) and (b) inertial particles
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as in Figure 6a, but for particles with St = 30 rather than tracers. The alignment is totally different
with the disks now perpendicular to the wall-normal direction. The full published data show that
these disks are spinning like wheels with p in the spanwise direction. This phenomenon can also
be related to particle dynamics in simple shear flow, in which particle inertia causes the degenerate
Jeffery orbits to become unstable. Disks migrate toward spinning motion with p in the spanwise
direction, whereas fibers migrate toward tumbling motion with p in the wall-normal/streamwise
plane, matching the preferential orientation observed in the turbulent simulations (Rosén et al.
2015, and references therein).

For inertial particles, the preferential orientation combines with the particle slip velocity to
make significant changes in the wall-normal velocities, which can have significant effects on particle
deposition rates. Zhang et al. (2001) and Marchioli et al. (2010) have simulated these effects.

5.1.2. Alignment in homogeneous isotropic turbulence. In isotropic turbulence, there can
not be any preferential alignment in laboratory coordinates, but the dynamics of anisotropic
particles are still strongly affected by preferential alignment. Particles become aligned with the
local velocity gradient tensor. This alignment has large effects on particle rotations, as described in
Section 5.2.1. It also causes nearby particles to be instantaneously aligned with each other, which
can affect light scattering and rheology.

Pumir & Wilkinson (2011) explored the alignment of slender fibers, aspect ratio λ � 1, in
isotropic turbulence. They found that fibers have their symmetry axis, p, strongly aligned with
the vorticity vector. Alignment with the eigenvectors of the strain rate tensor is weaker, with
p aligned best with ê2, slightly less with ê1, and strongly perpendicular to ê3. Experiments have
recently been able to access both the orientations of a fiber and the velocity gradient tensor around
it (Ni et al. 2015), finding alignment that is broadly consistent with the simulations. For thin disk-
shaped particles, λ � 1, the symmetry axis is preferentially aligned with ê3 and perpendicular to
the vorticity (Gustavsson et al. 2014, Byron et al. 2015). Figure 7 encapsulates the preferential
alignment of slender fibers and thin disks in homogeneous isotropic turbulence. The spherical
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probability density of the particle orientation, p, is shown in the coordinate system defined by the
eigenvectors of the strain rate tensor.

5.2. Rotation Rate

The preferential alignment of nonspherical particles has profound implications for particle rota-
tion statistics.

5.2.1. Rotations in homogeneous isotropic turbulence. Shin & Koch (2005) observed that
the mean square tumbling rate, 〈 ṗi ṗi 〉, for slender tracer fibers advected by the flow was a factor of
2.8 smaller than predicted for randomly oriented fibers. Parsa et al. (2012) performed experiments
in approximately homogeneous isotropic turbulence that agreed with the earlier simulations and
also presented DNS results on the probability distribution of tumbling rates of spheroids across
all aspect ratios. Marcus et al. (2014) extended the experimental tumbling rate measurements to
disks and spheres. These results have very little dependence on the Reynolds number of the flow
(Shin & Koch 2005, Parsa et al. 2012).

For slender fibers, the tumbling rate was the natural rotational variable to consider. However,
experimental tools introduced by Bellani et al. (2012) allowed the full solid-body rotation rate
of axisymmetric particles to be measured and motivated comparison of statistics of spinning and
tumbling. Byron et al. (2015) studied the spinning, tumbling, and the full solid-body rotation rate
of spheroids of all aspect ratios. Figure 8 shows their data for the mean square tumbling rate
as a function of aspect ratio. Both the mean square spinning rate and the tumbling rate depend
strongly on the aspect ratio. They combine to produce a mean square solid-body rotation rate
that is nearly independent of shape.

The alignment and rotation of small neutrally buoyant nonspherical particles have been ratio-
nalized as a consequence of the particles becoming aligned with a long axis along the direction in
which the fluid has been stretched (Marcus et al. 2014, Ni et al. 2014). A counterintuitive feature of
turbulent flows is that the direction in which the fluid has been stretched is preferentially aligned
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with the intermediate eigenvector of the instantaneous strain rate tensor ê2. From this empirical
fact, it naturally follows that fibers should have p preferentially along ê2, whereas disks should
have p preferentially in the plane of ê1 and ê3. Conservation of angular momentum causes the
vorticity to also preferentially align with the direction in which the fluid been stretched. This leads
to particles with a long axis aligned with the vorticity vector (Ni et al. 2014). Most features of
rotations of neutrally buoyant particles can be understood in this framework. Fibers tumble slowly
because they are aligned with vorticity, so it does not contribute to ṗ. Disks preferentially have
p perpendicular to the vorticity, so vorticity contributes strongly to tumbling but almost nothing
to spinning. Because strain cannot contribute to the spinning of axisymmetric particles, disks spin
very slowly.

5.2.2. Rotations in turbulent shear flows. In shear flows, particle rotation has been extensively
studied in laboratory coordinates. Marchioli & Soldati (2013) reported the mean and root mean
square rotation statistics for inertial fibers as a function of distance from the wall. Challabotla et al.
(2015a,b) provided the same statistics for disks and neutrally buoyant particles. L. Zhao et al. (2015)
recently connected much of what we know about rotations in homogeneous isotropic turbulence
with what we know about tracer and inertial particles in turbulent channel flow. They decomposed
rotations into spinning and tumbling and observed statistics near the channel centerline that are
very similar to earlier results in isotropic turbulence. The addition of particle inertia results in
relatively small changes near the channel centerline, with both the spinning and tumbling rates
decreasing for heavier particles. However, near the wall at z+ = 10, the relative importance of
spinning and tumbling changes dramatically. The changes are largest for inertial particles. For
example, heavy disks spin much faster than heavy fibers, the opposite of the isotropic turbulence
trend in Figure 8.
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Mean square rotation rate as a function of aspect ratio for tracer particles in homogeneous isotropic turbulence.

www.annualreviews.org • Anisotropic Particles in Turbulence 265



FL49CH11-Soldati ARI 21 November 2016 7:49

SETTLING DUE TO GRAVITY

Shape effects can modify the settling and growth rates of particles in relevant environmental phenomena, such as
the formation of ice clouds (Pruppacher & Klett 2010) and the fallout and dispersion of volcanic ash (Beckett et al.
2015). The case of slender fibers sedimenting in a quiescent fluid has been considered in several studies reviewed by
Guazzelli & Hinch (2011). This system displays an instability to clustering with rapid sedimentation of the clusters
(Koch & Shaqfeh 1989). Inertial ellipsoids settling in a prototypical turbulent flow have been studied by Mallier &
Maxey (1991). They demonstrated that both oblate and prolate spheroids fall faster than spheres in cellular flow. In
recent DNS, Siewert et al. (2014a) observed that prolate and oblate ellipsoids in decaying isotropic turbulence settle
faster than spherical particles. Siewert et al. (2014b) measured increased collision rates of the settling prolate and
oblate ellipsoids compared to spherical particles of the same mass, attributing this phenomenon to the combined
effects of preferential sweeping due to turbulence, increased settling velocity, and rotation.

6. SHAPE EFFECTS ON PARTICLE-TURBULENCE INTERACTIONS

The dynamics of many individual particles in turbulent flows combine to produce dramatic macro-
scopic effects. In many applications that motivate work in this field, the most pressing issues are
these collective macroscopic phenomena. These are challenging problems given that modeling,
simulating, or measuring many particles in turbulence at moderate to high concentrations is diffi-
cult. A number of phenomena could be included in this section, such as light scattering by aligned
particles (Noel & Sassen 2005) and the rheology of fiber suspensions (Lundell et al. 2011). How-
ever, we review two problems that attracted the attention of researchers and for which significant
progress has been made in connecting microscopic particle dynamics to the macroscopic phenom-
ena of interest: preferential segregation and drag reduction. We also briefly discuss a few works
focusing on anisotropic particles settling in isotropic turbulence due to its major importance in
some environmental phenomena (see the sidebar Settling due to Gravity).

6.1. Preferential Segregation in Bounded Flows

Preferential sweeping due to turbulence may cause nonuniformity in the fiber concentration and
long-term segregation of fibers into specific flow regions. In wall-bounded flows, this can have
consequences for the throughput of several industrial processes (Parsheh et al. 2005; Krochak
et al. 2009, 2010; Carlsson et al. 2010; Håkansson et al. 2014). Interactions of inertial fibers with
coherent structures near the wall make fibers segregate into elongated streaks, which correlate
spatially with regions of low fluid velocity. This phenomenon has been observed on a qualitative
basis by numerical simulation of inertial elongated ellipsoids modeled as pointwise particles (Zhang
et al. 2001; Mortensen et al. 2008a,b).

Figure 9 compares particle segregation from DNS data in a closed channel (Marchioli et al.
2010) with that from experimental data in an open channel (Håkansson et al. 2013, Kvick 2014).
In Figure 9a, the streamwise fluid velocity fluctuations in the wall-parallel plane at z+ = 6.4 are
superimposed to the position of pointwise fibers 10z+ long. Fibers are gravity free with St = 30
and λ = 50, but their finite length was ignored in the wall contact model. Fibers clearly segregate
into the low-speed streaks. In Figure 9b, the position of fibers is captured from the transpar-
ent bottom of the channel. Fibers are slightly heavier than the fluid with λ = 28. Experiments
show the same qualitative behavior of the DNS, with fibers clearly segregated into long streaks,
the spacing of which indicates the typical distance between low-speed streaks in wall turbulence.
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Figure 9
Fiber accumulation into low-speed streaks in turbulent channel flow. (a) Channel flow simulations at Reτ = 150 (based on the half
channel height) of inertial fibers 10y+ long. (b) Experiments in an open channel at Reτ 	 178 (based on the open channel height) of
inertial fibers 1 mm long. Panel a adapted with permission from Marchioli et al. (2010), and panel b adapted with permission from
Kvick (2014).

For increasing Reynolds number, the fibers show increasingly less segregation into streaks, pos-
sibly demonstrating an effect of wall interactions stronger than inertia. In a recent investigation,
Challabotla et al. (2015a) reported a similar behavior for inertial oblate ellipsoids. In their DNS
simulation of channel turbulence with four-way-coupled fiber dispersion, F. Zhao et al. (2015)
observed that regardless of the aspect ratio and Stokes number, the tendency of prolate ellipsoids
with small inertia to oversample low-speed streaks decreases for increasing λ, up to the point at
which the average near-wall velocity of fibers increases beyond that of the fluid.

According to Do-Quang et al. (2014), this scenario can dramatically change if particles are
fully resolved. With a DNS on the order of 10,000 spheroidal particles 9.6z+ long, they studied
a fully coupled turbulent flow laden with large particles with negligible inertia. Figure 10 shows
the position of fibers with a distance to the wall less than 15z+. Different from previous works,
in the present case, particles have very small inertia, and it is possibly the combined effect of
finite size and wall collisions that makes fibers segregate into high-speed streaks. Visualizations
suggest that when the finite-size fibers are carried by a turbulent sweep toward the wall into a
high-speed streak, wall interactions prevent them from following the fluid sideward into a low-
speed streak. This result has implications for the mean streamwise velocity of particles, which
in this case is larger than that of the fluid. An important consequence of particle preferential
concentration by the structures of wall turbulence is the influence segregation has on settling and
deposition phenomena. Soldati & Marchioli (2009), Zhang et al. (2001), and Marchioli et al. (2010)
observed an increase of turbophoretic wall-normal velocity (Caporaloni et al. 1975) and settling
for increasing aspect ratio. Similar trends have been reported for a quasi-DNS by Lecrivain et al.
(2016).

6.2. Turbulent Drag Reduction

Understanding how turbulent drag can be influenced by the dispersion of small quantities of
particles, and how the shape of such particles can be optimized, is an important issue for sustainable
fluid transport (Procaccia et al. 2008). We examine the effects of small rigid, rod-like tracer fibers
and of inertial ellipsoids on turbulence. Paschkewitz et al. (2004) used a finite-difference DNS of
turbulence coupled with an Eulerian solver to compute the shear stress exerted on the fluid by rigid
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Figure 10
Fiber accumulation into high-speed streaks in turbulent channel flow. Simulations of inertial fibers 10y+
long are at Reτ = 150. Figure adapted with permission from Do-Quang et al. (2014).

rods much smaller than the Kolmogorov length scale. Rods, being small and at low concentration,
are uniformly distributed but can apply stresses that depend on their orientation. Figure 11a
illustrates the mechanism by which such tiny rods can reduce drag as proposed by Paschkewitz
et al. (2004). These authors demonstrated that in the near-wall, turbulence-producing region of
channel flow (Lumley & Blossey 1998), drag reduction correlates well with strong fluctuations of
fiber stress in intervortex extensional regions. As a precursor to these intense fiber stress events,
fibers align in the spanwise or wall-normal direction. Due to the intense fiber stress, the extensional
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Figure 11
(a) Schematic illustration of the mechanism for fiber-induced drag reduction.� Fibers align in intervortex regions.� Fibers generate
large stresses and body forces that oppose vortex motion.� Vortex structures are dissipated, and fibers realign in the flow direction.
� Vortex structures reemerge, and the cycle repeats. (b) Cross-stream snapshot of the instantaneous wall-normal component of the
fiber stress superimposed on the projection of the primary orientation axis vector. Figure adapted with permission from Paschkewitz
et al. (2004).
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flow is progressively reduced down to a level that allows fibers to realign into the flow streamwise
direction so that the fiber stress is also reduced. Correspondingly, the vortices are weakened or
destroyed (Paschkewitz et al. 2005b).

Figure 11b shows the correlation of the extra shear stress and the orientation of the fibers, with
the color map of the wall-normal component of the fiber stress acting on the fluid superimposed
with the cross-stream projection of the primary axis orientation of fibers. In a channel with a
shear Reynolds number of 150, Paschkewitz et al. (2004) computed drag reduction up to 26%,
whereas companion experimental measurements (Paschkewitz et al. 2005a) demonstrated a more
modest value of 10%. Within the limit of fibers much smaller than the Kolmogorov scale, similar
observations were made by Gillissen et al. (2008). Moosaie (2013) and Moosaie & Manhart (2015)
confirmed the drag reduction mechanisms by tiny fibers and have been able to compute drag
reduction up to 16% in a channel flow at Reτ = 180.

A different mechanism by which the turbulence-regeneration cycle can be weakened occurs in
the case of inertial particles. Simulations have shown that the tendency of small inertial particles
to segregate into low-speed streaks is associated with the modulation of turbulence statistics
and drag reduction (Pan & Banerjee 1996, Dritselis & Vlachos 2008, Zhao et al. 2010). Recent
Eulerian-Lagrangian simulations of inertial spheroids in turbulent channel flow have also shown
similar effects. Andersson et al. (2012) performed a two-way-coupled Eulerian-Lagrangian DNS
of 2.5 million inertial pointwise spheres and λ = 5 ellipsoids interacting with turbulence in
channel flow. Compared to the usual force-coupled simulations (Squires & Eaton 1990, Crowe
et al. 1996), they used force and torque coupling between ellipsoids and the fluid and were able
to demonstrate drag reduction for both spheres and ellipsoids. However, they also reported that
in force- and torque-coupled simulations, turbulence modulation effects decreased compared
with the case in which only force coupling is accounted for. L. Zhao et al. (2015) observed that
interparticle and particle-wall collisions can be important in particle-laden flows, particularly
in the wall region, where the particle concentration can also reach locally high values in flows
that are dilute on average. They performed Eulerian-Lagrangian four-way-coupled simulations
considering pointwise spheres and inertial fibers. They confirmed that inertial ellipsoids segregate
into low-speed streaks, add inertia, and delay all fluid motions in the wall region, thus changing
the synchronization of the wall turbulence-regeneration cycle. L. Zhao et al. (2015) reported a
maximum drag reduction of approximately 5% obtained for fibers with λ = 5, which reduce drag
significantly more than spheres. Do-Quang et al. (2014) qualitatively observed the decrease in
wall turbulence structures associated with a reduced intensity of the streamwise fluctuations by
studying turbulent channel flow at Reτ = 180 of a low concentration of large elongated particles
with small Stokes number and size up to 24 wall units.

SUMMARY POINTS

1. Anisotropic particles occur in a dazzling variety of shapes. The case of rigid spheroidal
particles is mathematically tractable and allows insights into the many ways nonspherical
shape is important to particle dynamics in turbulence. Particles of many other shapes can
be treated as ellipsoids with effective aspect ratios.

2. The number of parameters needed to fully specify a turbulent flow with nonspherical
particles is large. A phenomenology of the simple foundational case of small spheroidal
particles at low concentrations in canonical flows has been developed, but many other
parts of the large parameter space have barely been explored.
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3. Small particles behave like tracers with translation that matches the fluid and rotation
that has the same contribution from vorticity as the fluid with an additional contribution
from the strain rate. Small slender fibers rotate like material lines. Because particles rotate
in response to the small scales in turbulent flows, nonspherical particle dynamics have a
degree of universality that reflects the common features of small-scale turbulence.

4. Point-particle models for inertial nonspherical particles in the Stokes drag regime have
been rigorously derived and are widely used. When fluid inertia becomes important,
models are available that rely on empirical expressions for drag, lift, and unsteady effects.
In the slender fiber limit, we have the most comprehensive set of models, extending from
point particles to fibers longer than the Kolmogorov scale.

5. DNS of anisotropic particles in turbulence are increasingly available and have produced a
wealth of data and insights, mostly for tracers and inertial point particles. Rapid progress
is extending DNS to complex flows, turbulence modulation, large particles, and other
frontiers.

6. Experimental techniques for imaging the dynamics of individual nonspherical particles
in a turbulent environment have recently become available.

7. In homogeneous isotropic turbulence, fibers spin much faster than they tumble, whereas
disks tumble much faster than they spin. The combined solid-body rotation rate is nearly
independent of shape. These effects can be understood as a consequence of a particle
aligning with a long axis parallel to the vorticity as a consequence of Lagrangian stretching
in the flow.

8. The alignment of spheroids in turbulent channel flow displays a rich phenomenology.
Prolate ellipsoids align with their symmetry axis in the streamwise direction, whereas
the alignment of oblate ellipsoids depends on their inertia, with tracers aligning in the
wall-normal direction and heavy disks aligning in the spanwise direction.

9. Inertial fibers and tracers can alter turbulence-regeneration mechanisms in different
ways: Rigid, inertia-less fibers can produce extra stresses, damping the counter-rotating
vortices in the wall region and producing drag reduction. Inertial fibers can segregate
preferentially into low-speed streaks and delay the fluid flow.

FUTURE ISSUES

1. Macroscopic consequences of individual particle dynamics are only partly understood,
with large proportions of parameter space to be explored and many aspects of the complex
cases relevant to applications still to be grounded in fundamental physics.

2. Figure 3 identifies some classes of models that have been used. Point-particle models that
rigorously account for effects of fluid inertia in the unsteady case relevant to turbulence
do not exist for shapes other than spheres and slender bodies. Development of these
models and quantification of the parameters at which various models can reliably be used
for specific quantities would be valuable.
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3. Numerical simulations capable of handling arbitrarily shaped particles in turbulence
are needed. Stokesian dynamics and lattice Boltzmann methods can be used. However,
simulations that resolve turbulence scales and particle scales while acquiring sufficient
statistics to achieve convergence are computationally expensive.

4. A particular need in experiments is the ability to track individual particles at higher
concentrations, at which drag reduction and changes in suspension rheology become
important.

5. Careful attention needs to be given to the effects of inhomogeneity of the turbulent
flow on nonspherical particle motion. Inertial particles in inhomogeneous flows carry a
memory of the region of the flow they recently came from (Gerashchenko et al. 2008).
Predictive understanding of inhomogeneous flows with nonspherical inertial particles
will require models capable of accounting for the Lagrangian history of particles and of
fluid velocity gradients.

6. The case of active matter made of self-propelled particles provides another interesting
class of nonspherical particle motion (Lauga 2016), and the study of active nonspherical
particles in turbulence is promising.
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