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Abstract

Dynamic mode decomposition (DMD) is a factorization and dimensionality
reduction technique for data sequences. In its most common form, it pro-
cesses high-dimensional sequential measurements, extracts coherent struc-
tures, isolates dynamic behavior, and reduces complex evolution processes
to their dominant features and essential components. The decomposition
is intimately related to Koopman analysis and, since its introduction, has
spawned various extensions, generalizations, and improvements. It has been
applied to numerical and experimental data sequences taken from simple to
complex fluid systems and has also had an impact beyond fluid dynamics in,
for example, video surveillance, epidemiology, neurobiology, and financial
engineering. This review focuses on the practical aspects of DMD and its
variants, as well as on its usage and characteristics as a quantitative tool for
the analysis of complex fluid processes.
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1. INTRODUCTION

The analysis of fluid systems often rests on the commonly accepted notion that the transport
of conserved quantities or the evolution of observables is facilitated by only a small number of
coherent structures or a few dynamic processes. These structures have their origin in instabilities
or sensitivities that bring forth spatial patterns and specific scales that synchronize in time into
persistent and observable motion. This compressed character of fluid flows motivates and gives
rise to a concerted effort to extract these essential mechanisms from measurements, simulations,
or data sequences in an attempt to reduce a system of many degrees of freedom to an analog of
tractable size that still captures the essence of the overall process.

Statistical tools, such as variance analysis, conditional averaging (e.g., Alfredsson & Johansson
1984), and quadrant analysis (e.g.,Wallace 2016), have dominated the field of fluid dynamics, par-
ticularly in experimental studies. Pattern extraction techniques based on linear algebra concepts,
such as the Karhunen–Loève expansion, principal component analysis or proper orthogonal de-
composition (POD) (Lumley 1971, Sirovich 1987, Berkooz et al. 1993, Holmes et al. 2012), and
linear stochastic estimation (Adrian & Moin 1988), are part of the standard arsenal of tools for
experimental and computational practitioners. Additionally, local linearization of dynamical sys-
tems (Perry & Chong 1987), Lagrangian coherent structures (Haller 2015), and, more recently,
graph-theoretical methods (Gopalakrishnan Meena et al. 2018) have emerged in an effort to de-
scribe complex fluid behavior.

In this same endeavor, the past decade has seen a renaissance of an alternative viewpoint, origi-
nally introduced in the 1930s: the Koopman formalism of nonlinear dynamical systems (Koopman
1931). This approach provides a complementary formulation of evolution processes that adapts
more readily to situations where data sequences of observables are available, but governing equa-
tions are difficult (or impractical) to formulate. This distinctly data-driven perspective has now
established itself as an active research field to complement and support a more traditional model-
based viewpoint. The advantages of analyzing fluid systems via the spectral properties of the
Koopman operator have been expounded in previous articles (Mezić 2005, 2013); in this review,we
use the same starting point, but concentrate on approximation algorithms to extract this spectral
information from observed data sequences and emphasize various extensions and generalizations
for a wider range of applications.

At the center of this extraction is a factorization and dimensionality reduction technique for
sequential data streams, known as dynamic mode decomposition (DMD) (Schmid & Sesterhenn
2008, Rowley et al. 2009, Schmid 2010, Kutz et al. 2016a). It falls into the category of modal
decompositions, where a high-dimensional spatiotemporal signal is broken apart into a triplet of
purely spatial modes, scalar amplitudes, and purely temporal signals in a process that is akin to a
separation of variables. The details of this decomposition allow us to describe the flow process by
a hierarchy of simpler processes that, when linearly superimposed, recover the full data sequence.
This decomposition facilitates the objective dissection of the flow into dynamic elements (spatial-
mode temporal-signal pairs) that can then be studied in isolation. Superposition—and, hence, the
linearity of this procedure—is critical. It is accomplished not, as commonly done, by a linearization
about an equilibrium or quasi-equilibrium point, but rather by an embedding of the state variable
into an infinite space of observables. DMD and its variants, described in this article, rely on the
fact that a large but finite representation of this infinite-dimensional embedding is sufficient for
an approximate description of the underlying dominant flow behavior.

This review provides a brief theoretical background on the Koopman concept, as it motivates
the design of a data-driven algorithm for the extraction of coherent patterns from flow field obser-
vations. Further details on this have been given by Mezić (2005, 2013). The review then presents
the standard DMD, the core algorithm, as a classical matrix decomposition/factorization method,
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combined with a sparsity-promoting optimization to extract modal amplitudes. The next section
gives an overview of the many improvements and extensions that have been suggested over the
past years, addressing accuracy, robustness, and efficiency issues and widening the application field
beyond flow analysis and evolution processes.Three representative examples, showcasing the flex-
ibility of DMD as an analysis tool for simple to complex flow configurations, are given at the end
of this review.

2. THEORETICAL BACKGROUND AND THE CORE ALGORITHM

2.1. The Koopman Approach to Dynamical Systems

The temporal evolution of a variable x, which fully describes the state of a fluid system, is given
by the nonlinear dynamical system

xi+1 = F(xi ), 1.

where we have chosen the time-discrete formulation and where F represents the nonlinear gov-
erning equations, mapping the state xi over a given time interval �t onto xi+1.

The mapping F commonly stems from a discretization of partial differential equations that
describe the key features of the underlying flow via conservation laws and physical models. Dy-
namical systems of this form have traditionally been analyzed by investigating their equilibrium
points and the linear dynamics of small perturbations about them. This approach is central to
hydrodynamic stability theory, where the repelling (unstable) or attracting (stable) behavior of
equilibrium states (base flows) is investigated and tracked as the governing parameters are varied.

Rather than taking this approach, with its local linearization about equilibrium points,
Koopman analysis accomplishes linearization by a different technique: It adopts a data-driven
viewpoint by considering and tracing observables of the state-vector x as they evolve in time.We
represent these observables of x as φ(x), a yet unspecified set of functions of the state-vector. The
dynamics of the full nonlinear system is then projected onto the dynamics of these observables [see
the review by Budišić et al. (2012)]. When introducing a mapping K that describes the evolution
of observables over one discrete time unit �t, we arrive at

φ(xi+1) = K φ(xi ) = φ[F(xi )]. 2.

From this expression it is easily shown thatK is a linear operator, since we haveK(c1φ(1) + c2φ(2) ) =
c1Kφ(1) + c2Kφ(2) for any two observables φ(1) and φ(2) and constants c1 and c2. The operator K is
termed theKoopman operator.The above procedure can be thought of as a lifting or embedding of
the state-vector dynamics onto an equivalent dynamics in the space of observables (see Figure 1).

We have transformed the nonlinear dynamics in the state variables into an equivalent linear dy-
namics in the observables.However, it is important to keep inmind that we also have transformed a

ϕi ϕi + 1 ϕi + 2

xi xi + 1 xi + 2
F F

State space

Observable space

Embeddingϕ(·)ϕ(·)ϕ(·)

Figure 1

Projection of the state space dynamics given by a nonlinear mapping F onto the dynamics in an
infinite-dimensional observable space given by the linear Koopman operator K. We use the notation
φi = φ(xi), where xi are state variables for the i-th snapshot and φi are the observables for the i-th snapshot.
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finite-dimensional nonlinear system into an infinite-dimensional linear system. The linearization
due to this embedding process is the key idea behind Koopman analysis.

The remaining question concerns the choice of observables that will render our nonlinear
system linear. For dynamical systems F with polynomial nonlinearities in x, it may appear sen-
sible to also include polynomial terms in the suite of observables and define φ(z) as a composite
entity including z and higher powers of z. This solution strategy is termed Carleman lineariza-
tion (Carleman 1932).Despite some success in treating polynomial dynamical systems and control
problems,Carleman linearization can often lead to divergences: the evolution of polynomial terms
in the observable φ(z) produces still higher powers in z and requires their inclusion into our suite
of observables, which in turn gives rise to even higher powers. This process clearly fails to arrive
at a closed system.

To avoid outrunning the span of the chosen observables, we might consider, recalling the linear
nature of K, the invariant subspace of K for our choice of observables. By definition, the invariant
subspace maps onto itself under the action of K and, thus, provides closure. We define

KΦ = ΦΛ, 3.

with Φ the set of eigenfunctions of K and Λ containing the eigenvalues of K on its diagonal. We
proceed by expressing our observables in this eigenfunction basis as φ = Φξ, and starting from
an initial state-vector x0, we generate a temporal sequence of observables according to

φ(x0+k ) = Kkφ(x0) = KkΦξ = ΦΛkξ. 4.

By their very nature, the eigenfunctions of the Koopman operator K form an invariant subspace,
and repeated application of K will contain the dynamics in this subspace. Hence, we avoid the
kind of divergences or closure problems mentioned above. This last expression then motivates a
computational procedure that approximates the Koopman eigenfunctions—not from the operator
itself, but rather from a sequence of observables the operator generates.

2.2. Koopman Eigenfunctions from Data: Dynamic Modes

With the spectral properties of the Koopman operator K identified as the key ingredients for our
linearization process, we aim at devising a procedure to extract this information directly from a
data sequence, thus avoiding the formation or approximation of K. While in exceptional cases
an analytical treatment of the Koopman eigenfunctions is available (see, e.g., Bagheri 2013), we
generally have to resort to numerical approximations to compute the spectral properties of K.

Using Equation 4, in Figure 2 we construct a matrix whose n columns consist of snapshots of
observables generated by a repeated application of the Koopman operator K. The result can be
further manipulated by expressing the powers of K by their spectral equivalents.

ϕn–1 = Φ Λn – 1 ξ

...

ϕ1 = Φ Λ ξ
ϕ0 = Φ ξ

Observables

ϕ0 ϕ1 · · · ϕn – 1

· · ·

Data matrix

= Φ [I Λ · · · Λn – 1] (I     ξ) = Φ diag(ξ) C

Matrix
factorization

Figure 2

Transformation of a finite sequence of observables into a data matrix that is subsequently decomposed using
a matrix factorization. The Kronecker product is denoted by �, and I stands for the identity matrix.
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a   Spectral analysis

=

Data Modes

Amplitudes Dynamics

D Φ Diag(ξ) C

m × n m × n n × n n × n

Amplitudes Dynamics

b   Model reduction

≈

Data Modes

D Φ Diag(ξ) C

m × n m × k k × k k × n

Figure 3

General factorization of a data matrix D into modes Φ, amplitudes diag(ξ), and dynamics C, applying (a)
spectral analysis and (b) model reduction.

The expression in Figure 2 introduces a sequence of observables and establishes a link between
a data matrix and the spectral properties Φ and Λ of the Koopman operator K. In other words, it
suggests a data-drivenmethod to compute the key components of Koopman analysis for dynamical
systems. This formulation is reminiscent of a Krylov technique, where we express the dynamics
of a linear system based on the repeated application of an operator to a starting vector; moreover,
the final step establishes a classical matrix factorization problem.Denoting the snapshot matrix of
observables by D, we aim at decomposing this data matrix into a triple product D = Φ diag(ξ)C
containing the spatial modes in Φ, the amplitudes in diag(ξ), and the temporal dynamics in C (see
Figure 3a).This type of decomposition is commonplace in many application areas, including fluid
dynamics, when we seek to extract coherent patterns from a data sequence. POD and independent
component analysis (ICA) (Hyvärinen 2013) are but two examples of this way of factoring a data
stream into essential structures, their dynamics, and their representation within the original data
sequence. The specifics of the decomposition are given by the constraints placed on the modal
structures Φ (e.g., orthogonality in POD) or the temporal signals C (e.g., statistical independence
in ICA) and vary by application field or processed data. The diagonality of the amplitudes diag(ξ)
ensures a decoupling of the identifiedmode–dynamics pairs and allows for the study of each pair as
a building block of a more complex process. Furthermore, the distribution of the amplitudes may
indicate the prevalence of a few dominant processes and allow for the approximate representation
of the full data sequence by a compressed hierarchy of essential subprocesses—a methodology
termed model or dimensionality reduction (see Figure 3b). These attributes of general matrix
decompositions also carry over to our case.

In our case, the structure of the matrix C, containing the discrete temporal dynamics, uniquely
identifies the partitioning of the data sequence into a triple factorization with a diagonal amplitude
matrix. From the expression above, the matrix C takes on the following shape (see Rowley et al.
2009, Schmid 2010, Kutz et al. 2016a):

C =

⎡
⎢⎢⎢⎢⎢⎣

1 λ1 λ21 · · · λn−11

1 λ2 λ22 · · · λn−12

...
...

...
...

1 λn λ2n · · · λn−1n

⎤
⎥⎥⎥⎥⎥⎦ , 5.
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known as a Vandermonde matrix. The entries λi can be identified as the Koopman eigenvalues
represented by Λ in Equation 4. Following standard convention, the complex eigenvalues λi can
be recast into an exponential form as λi = exp(μi�t) with �t representing the (constant) time
interval between the snapshots in our data matrix. The Vandermonde structure indicates that
we are seeking a decomposition where each row of C constitutes a single (complex) frequency
dynamics. In summary, then, to approximate the spectral properties Φ and Λ of the Koopman
operatorK, we propose a factorization of our datamatrix of observablesD into amodal component
Φ, a diagonal amplitude matrix diag(ξ), and a temporal Vandermonde matrix C.

While no direct linear algebra technique for this kind of factorization exists, we can exploit
a relationship between Vandermonde and companion matrices in our design of a computational
technique. Specifically, we recall that Vandermonde matrices can be used to diagonalize compan-
ion matrices (Rowley et al. 2009). Companion matrices are defined as square matrices comprising
a unit subdiagonal and a nonzero last column:

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1
1 a2

1 a3
...

...
1 an

⎤
⎥⎥⎥⎥⎥⎥⎦ . 6.

We then state S = C−1diag(ξ)C. Using this relation in our matrix factorization yields

D = Φ diag(ξ)C = ΦC S = D′ S, 7.

where we have introduced D′ = ΦC. The companion structure of S in this last expression allows
for the following observation: The unit subdiagonal causes a simple shift in the order of the snap-
shots, whereas the coefficients in the last column represent the final snapshot in our data matrix D
as a linear superposition of the snapshots in D′. A specific case based on seven snapshots is shown
in Figure 4 for demonstration.

The recasting of our matrix factorization from a Vandermonde-based to a companion-based
formalism now suggests a data-based procedure for approximating the spectral properties of the
Koopman operator.This algorithmwill yield theDMDof the datamatrixD.We commence with a
data sequence of n snapshots of observables φ, sampled (for simplicity) at equispaced time intervals
�t. We break this sequence into two subsequences according to

D = [d1, . . . ,dn] =
{
[d1, . . . ,dn−1] ≡ Dn−1

1 ,
[d2, . . . ,dn] ≡ Dn

2.
8.

2 3 4 5 6 7

D

=

1 2 3 4 5 6

D'

a1
a2
a3
a4
a5
a6

1
1

1
1

1

S

Figure 4

Mapping between two shifted data sequences using a companion matrix with, as an example, seven
snapshots. The subdiagonal of the companion matrix represents the shifted snapshots; the last column of the
companion matrix expresses the final snapshot as a linear combination of all previous snapshots.
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Recalling Equation 7, we represent the last column of Dn
2 (i.e., the snapshot dn) as a linear super-

position of the snapshots in Dn−1
1 . This yields a least-squares problem for the companion matrix

S with the solution given by a reduced QR decomposition of Dn−1
1 :

S = R−1QHDn
2 with Q R = qr(Dn−1

1 ), 9.

and H the Hermitian (conjugate transpose) operation.
Returning to the Koopman problem, we can now restate the application of the Koopman op-

erator on our data matrix as

KDn−1
1 = Dn

2 ≈ Dn−1
1 S, 10.

which expresses the action of the Koopman operator K on the data set Dn−1
1 , advancing each

snapshot over one time step �t in the basis of the snapshots in Dn−1
1 by the companion matrix

S. We acknowledge at this point that in this review we use, in a slight abuse of notation, the
same symbol K to denote the theoretical (infinite-dimensional) Koopman operator and its finite-
dimensional representation.

This last expression is reminiscent of a partial decomposition, as employed in the Arnoldi itera-
tion for computing eigenvalues of large-scale matrices via a Krylov subspace technique. Following
the same idea, we gain approximate spectral information about the Koopman operator K from its
lower-dimensional representation S. More specifically, with [Y,Λ] = eig(S) or S = YΛY−1 as the
eigenvalue decomposition of S, we write

K Dn−1
1 Y︸ ︷︷ ︸
Φ

= Dn−1
1 Y︸ ︷︷ ︸
Φ

Λ, 11.

which identifies the approximate eigenvalues and eigenfunctions of the Koopman operator K as
Λ and Φ = Dn−1

1 Y, respectively.
The solution to the least-squares problem in Equation 9 implicitly assumes that the data matrix

Dn−1
1 has full rank, producing a nonsingular matrix R. For long data sequences or periodic flow

phenomena, such as vortex shedding in the wake of a bluff body, the data sequence often contains
redundancies and is hence rank deficient. In this case, we need to use a singular-value decompo-
sition (SVD) in place of the QR decomposition to compute the low-dimensional representation
of the Koopman operator. We factor the data sequence Dn−1

1 by an SVD Dn−1
1 = UΣVH and then

use

KDn−1
1 = Dn

2 = KUΣVH 12.

to form amodified expression S̄ for the low-dimensional representation of the Koopman operator
as the Rayleigh quotient matrix S̄ = UHKU. We obtain an expression for S̄ according to

S̄ = UHDn
2VΣ

−1
ε , 13.

with

Σ−1ε = diag

({
1/σ j for σ j ≥ ε
0 for σ j < ε

)
and Σ = diag{σ1, σ2, . . . , σn−1}. 14.

The last expression introduces a user-defined threshold parameter ϵ that has to be chosen to
avoid rank-deficiency or near rank-deficiency in our data matrix Dn−1

1 . In the above, we have ex-
panded the modal structures in the orthogonal basis U. Together with the truncation of small sin-
gular values, this change of basis from the data snapshots Dn−1

1 to their orthogonal representation
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U adds robustness and numerical stability to the overall DMD algorithm.Themodified procedure
then requires the solution of the eigenvalue problem for S̄ according to [X,Λ] = eig(S̄), which in
turn yields

K U X︸︷︷︸
Φ

= U X︸︷︷︸
Φ

Λ 15.

and identifies the approximate eigenfunctions of K as Φ = U X. Notably, the basis U consists of
the POD modes of the data sequence Dn−1

1 .
In summary, we have a simple algorithm for computing approximate Koopman eigenfunctions

(dynamic modes) and Koopman eigenvalues directly from a sequence of snapshots of observables.
Equations 8, 13, and 14, together with the eigenvalue problem [X,Λ] = eig(S̄) and the represen-
tation Φ = U X, constitute the key steps of the standard DMD algorithm.

While we have yet to address the choice of φ in our data matrix D, we first complete the matrix
factorization D = Φ diag(ξ)C by identifying the amplitudes ξ.

2.3. Amplitudes by Sparsity Promotion

With the modal structures Φ and their temporal dynamics C identified, we finally have to re-
cover the amplitudes ξ from the data sequence. These amplitudes give weight to the identified
mode–dynamics pairs (Φ j , λ j ) and quantify their dominance in the observed data stream. Large
amplitudes pinpoint essential flow processes,while structures with smaller amplitudes can be safely
discarded when analyzing the data sequence.

The amplitudes ξ as a means to separate relevant from negligible fluid processes, however, can
cause problems when the data matrix contains statistical outliers or is otherwise compromised by
high-amplitude noise—a situation frequently encountered when processing experimental data. In
particular, statistical outliers are reflected in the decomposition as structures with large ampli-
tudes and large decay rates (modeling their time-local nature). For this reason, a naïve amplitude
criterion for identifying physically pertinent flow structures is insufficient. Rather, an optimiza-
tion approach is chosen that attempts a faithful reconstruction of the true data using a weighted
superposition of the computed mode–dynamics pairs, but it does so with as few pairs as neces-
sary ( Jovanović et al. 2014). A balance has to be found between these two criteria: the recon-
struction error and the cardinality (i.e., the number of nonzero entries) of the amplitude vector.
Mathematically, the former criterion is expressed as the Frobenius norm ‖·‖F of the difference
between the original and reconstructed data sequence, while the latter criterion is quantified by
the L1-norm of the amplitude vector ξ. We note that the L1-norm is a regularized substitute for
the true cardinality of ξ. We then obtain the following mixed-norm optimization problem:

ξopt = argminξ ‖D− Φ diag(ξ)C‖F + γ ‖ξ‖1, 16.

with ξopt as the optimal amplitude vector and γ as a user-specified parameter directing emphasis
toward the data recovery error or the sparsity of ξ. In the absence of sparsity constraints (γ = 0),
we can recast the above expression into a quadratic programming problem

ξopt = argminξ

{
ξHPξ− pHξ+ s} , 17.

with

P = (XHX)� (C CH)∗, p∗ = diag(C VΣX), and s = trace(Σ2), 18.
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Figure 5

Reconstruction error as a function of the regularization parameter γ , producing amplitude vectors ξ of
increasing sparsity.

where ∗ denotes the complex conjugate, and � stands for the elementwise (Hadamard) product.
The optimal solution is given by ξopt = P−1p and represents the amplitude distribution that min-
imizes the data recovery error, using all computed dynamic modes.

Bringing the sparsity term into play (γ > 0) yields a mixed-norm optimization problem
that can be solved using the alternating directions of multiplier method (ADMM) (Boyd &
Vandenberghe 2004), which iterates between a quadratic optimization problem (as in Equation
17) for a fixed sparsity and a pure L1-regularization for a fixed recovery error. By varying the pa-
rameter γ , we trace out a reconstruction error, as sketched in Figure 5: For low values of γ we
obtain a rather dense amplitude vector ξ and a low reconstruction error, while for large γ the
amplitude vector is sparsely populated but the reconstruction error is substantial. As is common
in regularized optimization problems, a value of γ has to be determined that still yields an accept-
able reconstruction error, while eliminating a maximum of unnecessary or unphysical components
from the amplitude vector.

Since there is no obvious relationship between the value of the regularization parameter γ and
the number of retained components in ξ, a computational sweep over γ is necessary to determine
an acceptable value. However, since the ADMM problem contains matrices that scale with the
number of snapshots in D, the computational burden of this sweep is tolerable ( Jovanović et al.
2014). Once a sparsity pattern for ξ has been obtained, a polishing step, which reallocates residual
components from the neglected to the retained modes, concludes the algorithm for determining
the amplitudes and, thus, the full DMD.

3. EXTENDING THE CORE ALGORITHM

The procedural steps in the previous section are referred to below as the core algorithm. Over
the decade since its introduction, many improvements, extensions, and generalizations have been
devised, producing more accurate or robust methods and bringing Koopman ideas to many ap-
plication areas beyond fluid flow analysis. While it is difficult to cover the many applications and
extensions, we focus on some key developments that have had a significant impact on our way of
analyzing flow data and enhancing our understanding of fluid processes.

We categorize these extensions into efforts to increase the accuracy of the decomposition, its
robustness, and its efficient computation. In addition, we allude to expansions of the Koopman
idea and DMD to other dynamical systems or data sets. Moreover, we mention complementary
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operator-theoretic methods based on transfer operators, which are closely related to Koopman
analysis.

3.1. Toward More Accuracy

A concerted effort has been directed toward the remaining question of the previous section: the
choice of observables. This choice is crucial in arriving at a proper embedding of the nonlinear
dynamical system and in the successful description of the resulting system by a linear operator
(see Figure 1).

We recall that the Koopman operator K is infinite in the space of observables. The approxi-
mation of the Koopman operator by the DMD can be achieved in the limit as either the number
n of snapshots or the number M of observables tends to infinity (see Klus et al. 2016, Korda &
Mezić 2018). Realistically, both numbers are finite, and—while often the number of measurement
points as observables is sufficiently large for a workable approximation of the infinite Koopman
limit—the convergence toward the Koopman operator relies on a judicious choice of observables;
incomplete or poor choicesmay yield spurious results (Tu et al. 2014b,Brunton et al. 2016).Within
this context, the term “accuracy” in this section is to be understood in the sense of approaching
the true infinite Koopman operator with our algorithm, that is, the accuracy of the approximation
of an infinite operator by a finite representation.

3.1.1. The choice of observables and the extended DMD. In many applications in fluid
dynamics, observables are chosen as the measurement points in experiments or as (all or some)
state-vector components on the grid points of numerical simulations. In this case, we have φ(x) =
x. It is tacitly assumed that these observables capture the key dynamics and, thus, are sufficiently
rich to ensure a proper embedding. While this assumption is often sensible, it may fail due to
the presence of strong nonlinearities and other complexities in the underlying dynamical system.
In this case, one may have to resort to more sophisticated observables consisting of a range of
nonlinear functions of the measurements to effectively capture the complex manifold on which
the dynamics unfolds (Tu et al. 2014b). The result of incorporating these modifications into the
core algorithm is known as the extended DMD (EDMD) (Williams et al. 2015).

We start by defining two data sets, D1 and D2, consisting of a sequence of state-vector
realizations. In a break with the earlier derivation, these realizations do not need to be
sampled equidistantly in time; only their associated data points in the second set have
to be displaced by a constant time interval �t. We have D1 = {dt1 ,dt2 , . . . ,dtn } and D2 =
{dt1+�t ,dt2+�t , . . . ,dtn+�t}. In addition, we introduce a set ofM basis functions denoted by Ψ(x) =
{ψ1(x),ψ2(x), . . . ,ψM (x)}T.When applying this function to each member of our two data sets, we
obtainΨ1 = {Ψ(dt1 ),Ψ(dt2 ), . . . ,Ψ(dtn )} andΨ2 = {Ψ(dt1+�t ),Ψ(dt2+�t ), . . . ,Ψ(dtn+�t )}. Express-
ing a general observable φ in the dictionary of functions Ψ according to φ = Ψa with coefficients
a, we proceed by minimizing the residual of mapping Ψ1 onto Ψ2 over the set of all n snapshots
and compute an approximation of K in the space of our (nonlinear) observables by solving

S = argminS

1
2

n∑
i=1

∣∣(Ψ(dti+�t )−Ψ(dti )S
)
a
∣∣2 . 19.

We obtain S = G+A, with

G = 1
n

n∑
i=1

Ψ(dti )Ψ(dti )
H and A = 1

n

n∑
i=1

Ψ(dti )Ψ(dti+�t )
H, 20.
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and where + denotes the Moore–Penrose pseudo-inverse. With S established, we can determine
the spectral properties of K following [X,Λ] = eig(S) and Φ = ΨX.

The EDMD can be thought of as a higher-order Taylor series expansion near equilibrium
points, whereas the standard DMD only captures the linear term and is thus restricted to mo-
tion near fixed points. The choice of a dictionary of observables that effectively represents the
Koopman operator is an open question and the topic of ongoing research. Various approxima-
tions, such as Hermite polynomials, radial basis functions, or discontinuous spectral elements,
have been suggested (Li et al. 2017), and cross-validation techniques are necessary to avoid over-
fitting by the introduced observables. The increased computational burden resulting from a larger
observable space can be mitigated by a kernel trick that implicitly generates a suite of observables
(see Williams et al. 2014, Pan & Duraisamy 2020a).

3.1.2. Learning the embedding. While the EDMD provides a computational framework for
accounting for a set of (nonlinear) observables, it does not answer the question of how to choose
them. An attractive approach for tackling the latter issue is a merging of Koopman-based data
analysis and modern optimization methodology. Efforts in this direction have been further fueled
by the recent rise of machine learning techniques.

Introducing a vector function Ψ(x) as a dictionary of nonlinear observables, we can formulate
a minimization problem for the residual of the mapping expressed as

∑
i ‖Ψ(xi+1)−KΨ(xi )‖2. In

this expression, both the dictionary Ψ and the operator K are the control variables for rendering
the residual a minimum (Li et al. 2017). We have

K,Ψ = argminK,Ψ

n∑
i=1
‖Ψ(xi+1)−KΨ(xi )‖2 + reg(K,Ψ), 21.

where reg(·) stands for a suitable regularizer (e.g., a Tikhonov term). To be practical, one must
parameterize the dictionary by, for example, a three-layer feed-forward neural network of the
form Ψ(x) = Ψ(x;θ) =Wouth3 + bout and hk+1 = tanh(Wkhk + bk ) for k = 0, 1, 2 (see Li et al.
2017). The parameters θ in this expression are the network weights W and the biases b (both for
the internal and output layers). The ensuing optimization in (K,θ) can be accomplished using an
alternating approach: iterating between (a) keeping K fixed, while optimizing with respect to θ,
and (b) optimizing with respect to K, while keeping θ fixed. Standard algorithms, such as pseudo-
inverses and stochastic gradient descent, are applied at each part of the iteration.

An alternative attempt to dictionary learning is the formulation of the embedding by a specific
neural network: an autoencoder. In this formulation, we identify a nonlinear mapping to a latent
state via multiple layers of neural nets (the encoder), which are followed by a second group of
nets (the decoder) that reconstitutes the latent variables back to physical space (see Figure 6 for
a sketch of the layout). Networks of this type are often used in nonlinear model reduction or the
compression of data and images. Crucial in our application is the enforcement of linearity in the
mapping of the identified latent variables over one time step—the condition for the linear Koop-
man operator acting on the embedded state-vector. During the training phase of the autoencoder,
the reconstruction residual xi+1 − φ−1[Kφ(xi )], a linearity constraint, and a multiple–time step
residual are used to update the weights in the encoder, decoder, and linear mapping (Figure 6).
The converged design identifies the embedding φ and the Koopman operator in the latent vari-
ables φ(x). This type of machine learning technique for finding effective observables for Koopman
analysis has been applied to systems with discrete spectra (Otto & Rowley 2019) and with discrete
and continuous spectra (Lusch et al. 2018), as well as to uncertain and stabilized systems (Pan &
Duraisamy 2020b).
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Figure 6

Autoencoder approach to learning the Koopman embedding φ and the Koopman operator from training
data. The encoder and decoder parts consist of multiple layers of neural nets; the innermost network
enforces a linear mapping via the activation function.

3.2. Toward More Robustness

This set of extensions and improvements aims at making the dynamic mode decomposition more
insensitive to noise in the data, to outliers, or to a wide range of disparate scales. In addition, certain
symmetries in the data, which may be poorly represented by the standard decomposition, call for
a preprocessing step or an algorithmic modification.

3.2.1. Sensitivity analysis. Noise is an integral component of experimental data, and it is im-
portant to assess the propagation of noise and uncertainty in the input data through the algorith-
mic steps of the decomposition, as well as to quantify how noise manifests itself in the computed
spectral properties. Duke et al. (2012) explored the sensitivity of output variables to noisy data; in
particular, the signal-to-noise ratio in the incoming data, the record length of the data sequence,
and the resolution of characteristic wavelengths present in the data have been identified as crit-
ical parameters that influence the accuracy of spectral information. Several suggestions for the
improvement of the algorithm and for effective data preprocessing have been made.

Building on weak-noise theory for noisy limit-cycles, Bagheri (2014) demonstrated a damping
effect on the DMD spectrum with a quadratic dependence on the frequency and a linear depen-
dence on the amplitude. This effect resulted in an alignment of the computed eigenvalues along
parabolic arcs in the complex spectral plane.

3.2.2. Data preprocessing. Preprocessing the data sets before applying a decomposition is a
convenient and simple way of (a) minimizing the influence of noise or (b) rebalancing data sets
with vastly different amplitudes. While manipulating the columns of the data matrix does not in-
fluence K, it may well improve the condition number of the data matrix and thus yield a more
well-conditioned algorithm. Drmač et al. (2017) suggested a general row-and-column scaling,
combined with refined Rayleigh–Ritz techniques, to obtain precise and robust spectral proper-
ties of the Koopman operator, even from noisy data. Caution has to be exercised, however, in
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the presence of substantial noise, as certain noise components could be amplified via the scaling
procedure.

A different approach with the same goal is based on the L+S decomposition, a technique for
factoring a (noisy) data sequence into a low-rank component L and sparse component S (Candès
et al. 2011). This method is commonly applied in video surveillance when breaking video footage
into persistent (low-rank) structures and intermittent (sparse) events. Mathematically, we have

L,S = argminL,S ‖L‖∗ + μ‖S‖1, such that D = L+ S, 22.

where ‖·‖∗ denotes the nuclear norm, a differentiable proxy for rank; ‖·‖1 represents the L1-
norm, which is sparsity promoting (as already exploited for the amplitude calculations); and μ
is a user-supplied parameter weighing one effect against the other. The above mixed-norm opti-
mization problem can readily be solved using iterative techniques, such as ADMM, the iteratively
reweighted least-squares algorithm, or the augmented Lagrange multiplier method (as in Scherl
et al. 2020). Eliminating the noise by discarding the identified S component leaves a low-rank
replacement L of the original data sequence D. This denoising procedure (i.e., replacing D by L)
adds robustness to the subsequent DMD analysis and yields spectral information with increased
fidelity.

3.2.3. Translational structures and rotated reference frames. Translational structures, as
they often occur in convectively dominated flows, are difficult to represent as a modal superposi-
tion of single-frequency dynamics. Convected coherent structures often appear as multiple modes
displaying a sequence of higher-harmonic frequencies and spatial wavenumbers, but nearly con-
stant local phase/group speeds. The difficulty in representing this type of structure can be allevi-
ated by using a preprocessing step that aligns the analysis along characteristic coordinates in the
data set (Sesterhenn & Shahirpour 2019). By maximizing the drop in the dominant singular values
of D via a rotation of the reference frame from a physical to a characteristic formulation, one can
make notable improvements, with a more compact representation of the modal structures.

3.2.4. Adjusting the bases. In the core algorithm, the Koopman operator is expressed in the
basis of proper orthogonal modes of the data sequence Dn−1

1 . This choice will result in a robust and
efficient algorithm, despite the fact that this basis may not be optimal. An optimal representation
of the Koopman operator can be formulated using the expression K = LMLH, with L denoting a
low-rank basis and M a reduced description of K. The associated optimization problem can then
be stated as

L,M = argminL,M ‖Dn
2 − LMLHDn−1

1 ‖, with LHL = I. 23.

In other words, rather than computing the Koopman operator in a given basis (U), we simultane-
ously determine the optimal basis (L) and the Koopman operator (M) expressed in this basis (Wynn
et al. 2013). The spectral information is then given by [X,Λ] = eig(M) andΦ = LX.While this op-
timal mode decomposition shows improved robustness to noisy data, it requires a more complex
(nonconvex) algorithm for solving the above optimization problem on a Grassmannian manifold
given by LHL = I;moreover, the rank of the Koopman representation, r = rank(LMLH), has to be
user supplied.

Another attempt at modifying the basis for the DMD has been undertaken by Noack et al.
(2016), who introduced the recursive DMD. It commences with a standard DMD run, after which
the member of the dynamic mode basis is selected that maximally reduces the residual norm of the
current reconstruction error. This selection procedure is then repeated in the space orthogonal
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to the already identified modes, and terminates when the desired number of modes has been de-
termined. By design, the recursively computed modes form an orthogonal basis, while preserving
the monochromatic (single-frequency) feature of DMD modes.

3.2.5. Exact DMD. The projection of K onto the basis U of the data sequence Dn−1
1 leads to

a more robust DMD algorithm. The approximate eigenfunctions Φ = UX are eigenfunctions of
the projected operator UHKU, but not necessarily ofK (Tu et al. 2014b). The eigenfunctions ofK
should be in the column space ofDn

2 rather thanDn−1
1 . In practice, the column spaces ofDn

2 andDn−1
1

are nearly identical owing to the fact that the snapshots [d2, . . . , dn − 1] appear in both data sets.
Nonetheless, for exact eigenfunctions ofKwe have to use the identitiesKΦ = Dn

2VΣ
−1
ε UHΦ = ΦΛ

and UHΦΛ = S̄UHΦ, from which we recover the exact modes via Φ = Dn
2VΣ

−1
ε X. The projected

and exact formulations are equivalent when the two data sequences Dn−1
1 and Dn

2 span the same
column space. The algorithm with the exact recovery of the eigenfunctions of K is termed exact
DMD (Tu et al. 2014b).

3.2.6. Debiased or total least-squares DMD and forward–backward DMD. In the formu-
lation of the core DMD algorithm, a least-squares problem has been solved when matching two
shifted data sequences, Dn−1

1 and Dn
2. In this process, the shifted data set Dn

2 has been taken as
noise-free, while Dn−1

1 has been assumed to contain noise. Since the bulk of the snapshots can be
found in both sequences, it appears more rational to accept noise-contaminated snapshots in both
data sequences, debias the projection of one set onto the other, and formulate a total least-squares
rather than a standard least-squares problem (Hemati et al. 2017). In this manner, the residual
of the matching process is spread among both data sequences. We form a stacked data sequence
D̄ = [Dn−1

1 ;Dn
2] and compute the SVD according to D̄ = UΣVH. The columns of V are then used

to construct a projector� = VVH.The debiased data sequences are then given as Dn−1
1 � and Dn

2�,
which are then fed as the two data sequences into the core algorithm. This modification improves
the recovery of spectral information, particularly in the presence of noise in the measurement
snapshots.

In another attempt at robustifying theDMD,Dawson et al. (2016) suggested a two-step process
where the core algorithm is applied twice: first to extract the usual mapping from Dn−1

1 to Dn
2,

and second to determine a (inverse) mapping from Dn
2 to Dn−1

1 . These two mappings, denoted
respectively by S̄f (forward) and S̄b (backward), are then combined into S̄fb =

√
S̄f S̄b and used

in place of S̄ in the core algorithm. The main idea behind this forward–backward DMD is the
approximate cancellation of noise in the data sequence, as the noise component is assumed to be
independent of the respective evolution direction.Care must be taken when computing the square
root of the matrix product S̄f S̄b.

3.3. Toward More Efficiency

When processing large data, challenges arise on many levels, and our decomposition algorithms
have to be adjusted to accommodate large matrices. In general, we are only interested in the few
modal structures that describe the bulk of the dynamics. For this reason, low-rank and sparsity
concepts can be and should be exploited.

3.3.1. Parallelization. The key algorithm underlying all DMD computations is the QR decom-
position, which is central to the SVD of tall-and-skinny matrices. For highly resolved, 3D data
fields, the resulting snapshot sequences can take on dimensions that require a parallel approach to
computing the SVD. This can be accomplished by incorporating the parallel QR decomposition
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Parallel QR algorithm for a tall-and-skinny matrix D = QR, illustrated for three processors. The original
matrix is partitioned, and each partition is QR-decomposed. The triangular parts are gathered and again
QR-decomposed, resulting in the final triangular part. The final orthogonal part consists of the orthogonal
part of the partitions and the orthogonal part of the gathered triangular part.

of Demmel et al. (2012) into our core algorithm. It partitions the data matrix, performs a QR
decomposition of each partition, gathers the R part of each partition, and performs another QR
decomposition. This final QR decomposition then produces the ultimate R component, while the
Q part is used to assemble theQ parts of each partition into the finalQ component.The procedural
steps of this algorithm are illustrated in Figure 7 for the case of three processors.

An SVD of the final R component then produces the SVD of the entire data matrix. This
parallelization strategy has been incorporated into the core DMD algorithm and has been applied
to very large data sets (Sayadi & Schmid 2016) from direct numerical simulations of transitional
boundary layers and thermal convection. It has shown excellent scaling on a massively parallel
computing architecture.

3.3.2. Randomized algorithms. The underlying assumption of coherence in the data stream
often leads to matrices with a substantial gap in their singular values. This near rank-deficiency
can be exploited effectively by randomized methods (Halko et al. 2011). This type of algorithm
allows for the computation of many characteristics, such as the range or singular vectors, from
the action of the low-rank matrix and its transpose on a suite of random vectors. These random
matrix-vector-products are also termed sketches.

Randomized algorithms provide an alternative viewpoint to Krylov subspace methods where
we express the action of a large matrix A in a space generated by repeated application of A on a
single starting vector b. In the randomized approach, a single application of A on multiple random
vectors produces the basis for the extraction of spectral information:

span{b,Ab,A2b, . . . ,An−1b} ←→ span{Aω1,Aω2, . . . ,Aωn}.
Krylov techniques Randomized approach

Algorithms based on the projection onto these spans are highly efficient, accurate (in a stochas-
tic sense), and particularly suited to data sequences and matrices with a reduced range—a situation
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we often encounter in data stemming from coherent fluid motion. The incorporation of random-
ized algorithms can significantly increase the range of applicability of decomposition techniques in
general, and of DMD in particular. Demonstrations of the efficiency of this randomized approach
are given by Erichson et al. (2019).

3.3.3. Streaming and incremental algorithms. Especially in experimental settings, we en-
counter situations where data become available in a streaming manner—even in real time as
the experiment progresses. In this case, we are particularly interested in incremental versions of
the key algorithms underlying our chosen decomposition. Given a data set D = [d1,d2, . . . ,dn]
and the accompanying SVD U, Σ, and V, we are concerned with the updated decomposition as a
snapshot dn+1 is added to the data set. Rather than computing a new SVD from scratch, we seek
to adjust the current components U,Σ, and V to account for the additional data point dn+1. This is
accomplished by formulating the addition of dn+1 as a rank-onemodification of an augmented data
set (Brand 2002). Within this formalism, only small adjustments have to be made to incorporate
the new snapshot into the updated decomposition. A version of DMD based on this incremental
methodology has been proposed by Hemati et al. (2014) and successfully applied to streaming ex-
perimental data. An additional advantage of this technology is also the markedly reduced memory
footprint, which allows for the treatment of data that otherwise could not reside fully in memory.
Schmid (2021) has provided details of updating (adding new snapshots) and downdating (remov-
ing old snapshots) modifications for the SVD, and thus for DMD, that cover the addition, removal,
and shifting of data points in a finite snapshot window with a known decomposition. Incremental
algorithms are a key technology for the realization of an online, real-time DMD analysis.

3.3.4. Multiresolution DMD. The occurrence of widely separated timescales in the data se-
quence poses algorithmic challenges to any data decomposition and, hence, to DMD. For these
situations, an extension to the core algorithm can be employed consisting of a recursive compu-
tation that progressively removes low-frequency (slow-motion) features from the data sequence
and processes the filtered remainder. At each step the remaining data sequence is split into two
subsequences on which the same low-frequency removal process is continued. In this manner,
a time–frequency analysis is performed that is capable of and effective at detecting elements in
the data sequence that are localized in time and widely separated in scale. The removal-splitting
step is continued until the entire data sequence is processed. Regime-switching in time–frequency
space can be detected, and an adjustment of the sampling rate at each level can further improve
computational efficiency. The resulting multiresolution DMD (Kutz et al. 2016b) incorporates
concepts from wavelet-based multiscale analysis and filter banks and thus exhibits superior res-
olution power of flow features that are localized both in the primal (e.g., time) and dual (e.g.,
frequency) independent variable.

3.3.5. Compressed sensing and sub-Nyquist sampled data. Compressed sensing (Candès
et al. 2006) has had a tremendous impact on many application areas, from general signal process-
ing to digital photography, and from medical image recovery to network tomography. It relies on
the expression of a signal in a basis in which it appears sparsely. When combined with a sparsity-
promoting optimization method (similar to the method applied in the amplitude computation
above), compressed sensing allows for the recovery of signals from highly incomplete frequency
information. In this manner, the common Nyquist–Shannon criterion can be surpassed, and sig-
nals can be accurately recovered, even when sampled at sub-Nyquist rates. This technology can
also be incorporated into the identification of coherent structures by the DMD (Tu et al. 2014a,
Brunton et al. 2015). The application to particle image velocimetry (PIV) data for flow past a
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cylinder, sampled at sub-Nyquist rates, has been reported by Tu et al. (2014a). The correct fre-
quencies and associated modal structures could be recovered successfully, which demonstrates the
potential of combining compressed-sensing techniques with data decomposition methods to op-
timally leverage sensors and produce accurate information beyond their Nyquist limits.

3.4. Conceptual Extensions

The core algorithm has also been carried beyond its application to quantitative flow analysis. It
has been incorporated as a subcomponent into many, more complex algorithms and has been
adapted to data sequences stemming from systems other than evolution processes. In addition,
important advances in the underlying theory of transfer operators have produced—and continue
to produce—new tools for the analysis of dynamical systems.

3.4.1. DMD with control. An important extension of the DMD is concerned with the treat-
ment of externally driven data sequences, which extend the analysis of intrinsic flow features to
the description of the response behavior to external forcing (Brunton et al. 2016, Proctor et al.
2016). The governing equation for the discrete-time data sequence is given as

Dn
2 = KDn−1

1 + BFn−1
1 , 24.

with F as the forcing sequence Fn−1
1 = [f1, f2, . . . , fn−1] and B as the control matrix, which describes

how the forcing interacts with the system governed by K. Two cases have to be distinguished:
(a) the case where the details of the driving, encapsulated in B, are known, and (b) the case where
B is unknown and has to be identified, together with K, from the data.

In the first case, we can employ a simple lifting of the forcing to reformulate the problem as
Dn

2 − BFn−1
1 = KDn−1

1 . We then proceed as before with the compensated output data sequence
Dn

2 − BFn−1
1 and the input data sequence Dn−1

1 and apply the core algorithm to arrive at

S̄ = UH
(
Dn

2 − BFn−1
1

)
VΣ−1ε , with Dn−1

1 = UΣVH, 25.

as the projected approximation of theKoopman operatorK for the driven problem.TheKoopman
eigenfunctions Φ follow from there in the usual manner, that is, Φ = UX with [X,Λ] = eig(S̄), or(
Dn

2 − BFn−1
1

)
VΣ−1ε X for the exact recovery.

For the second case (with unknown B), we augment the evolution operator according to

Dn
2 = [K B]

[
Dn−1

1

Fn−1
1

]
26.

and treat the composite operator [K B] as the unknown to be determined from the data sequences
on both sides of the equation. This formulation is quite common in subspace system identifica-
tion (Van Overschee & De Moor 2012). We proceed as before using an SVD of the composite
data sequence on the right, that is,[

UD

UF

]
ΣVH = svd

([
Dn−1

1

Fn−1
1

])
, 27.

which gives us an input space representation. From this decomposition, we approximate the two
unknown operators as

[K, B] = [Dn
2VΣ

−1
ε UH

D , Dn
2VΣ

−1
ε UH

F ]. 28.

In a departure from earlier analysis, it is necessary to express the dynamics in output space (i.e., in
a basis that spans the output sequence Dn

2). To this end, we have to employ a final transformation
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of the above identified operators [K, B] onto the basis Û given by ÛΣ̂V̂
H = svd(Dn

2). We finally

have Ŝ = Û
HKÛ and B̂ = Û

H
B as the two operators properly transformed to the output space.

The spectral information follows as Φ = ÛX, or, for the exact version, Φ = Dn
2VΣ

−1
ε UH

D ÛX with
[X,Λ] = eig(Ŝ).

This framework applies to dynamical systems with inputs: It allows for the analysis of driven
processes and paves the way for a wide range of control-theoretical applications to processes that
are only observable through measurements and data.

3.4.2. Time-delay embedding, Hankel DMD, and higher-order DMD. DMD is as attrac-
tive in deducing coherent flow features from data sequences (spectral analysis) as it is in repre-
senting the principal dynamics reflected in the data (system identification). The transfer from an
analysis tool to a prediction tool is greatly aided by embedding the data sequence using delay
coordinates. This delay embedding is a common method for expressing ergodic attractors of non-
linear dynamical systems (Takens 1981); for example, it has been applied in signal analysis and
forecasting using singular spectral analysis (Golyandina et al. 2001).

Given a data sequence D consisting of n samples, we construct a Hankel matrix DH of the form

D = [d1,d2, . . . ,dn] −→ DH =

⎡
⎢⎢⎢⎢⎣
d1 d2 d3 · · · dn−3
d2 d3 d4 · · · dn−2
d3 d4 d5 · · · dn−1
d4 d5 d6 · · · dn

⎤
⎥⎥⎥⎥⎦ , 29.

where we have applied an embedding dimension of three. The stacked data matrix DH is then
used in place of D and processed by the core algorithm. Arbabi & Mezić (2017) have shown the
convergence of this Hankelized approach to the eigenfunctions of the Koopman operator; they
also illustrated remarkable improvements in the prediction of simple and complex fluid systems.
Further examples and theoretical results on delay embedding and the Hankel viewpoint of Koop-
man analysis have been given by Brunton et al. (2017), Kamb et al. (2020), and Pan & Duraisamy
(2020a); they convincingly demonstrated that linear time-delayed models are an effective and ef-
ficient tool to capture nonlinear and chaotic dynamics.

Delay embedding is also an important technique when the temporal/spectral complexity of a
dynamical system exceeds the spatial complexity, for example, in systems that are characterized by
a broadband spectrum or are spatially undersampled. In this case, we arrive at a short-and-wide,
rather than a tall-and-skinny, data matrix D, and the core algorithm fails at extracting all relevant
spectral features. A higher-order DMD has been introduced by LeClainche & Vega (2017) to
address this issue. It relies on a delay embedding across multiple dimensions, with

di+d = R1di + R2di+1 + · · · + Rddi+d−1, i = 1, . . . , n− d, 30.

for a d-dimensional delay embedding. The resulting mapping is given by D n
H,2 = KHD n−1

H,1 , with

KH =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I
0 I

...
...
0 I

R1 R2 R3 · · · Rd

⎤
⎥⎥⎥⎥⎥⎥⎦ . 31.

With the augmented (Hankelized) data matrices and the definition of the higher-order Koopman
operator KH, we can apply the core algorithm and extract spectral information from temporally
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broadband or spatially sparse data sequences. The higher-order extension adds more robustness
and flexibility to the standard algorithm and enables the analysis of systems for which temporal
resolution is substituted for spatial resolution.

3.4.3. The adjoint Koopman operator. While the linear Koopman operator K describes the
mapping of observables over one time step and builds the theoretical foundation of the data-
driven DMD, much can be learned from the linear operator adjoint to K, termed the Frobenius–
Perron operator P (Lasota &Mackey 1994). Over the past decade, it has been used successfully in
the description of dynamical systems based on models or observational data, with examples from
molecular dynamics,meteorology, oceanography, and engineering systems.The body of literature
and recent accomplishments are too expansive to review here; only a few key tools for the analysis
of fluid systems are given below. The reader is urged to refer to the work of Froyland & Padberg
(2009), Junge & Koltai (2009), and Klus et al. (2018, 2020) for more details.

The Frobenius–Perron operator P describes the evolution of densities. Given a probability
density ρ(x) we define a mapping of ρ over a discrete time step as

ρi+1(xi+1) = Pρi(xi+1) =
∫
δ[xi+1 − F(xi )]ρi(xi ) dxi. 32.

The kernel expression δ[xi+1 − F(xi)] realizes the conditional probability density of reaching the
state xi+1 from xi, over one time step, following the dynamics F. In other words, while the Koop-
man operator propagates observables forward in time from φ(xi) to φ(xi+1), the Frobenius–Perron
operator evolves the probability density ρ by accounting for all densities that are linked via the
one-step dynamics encoded in F.

From a computational perspective, the Frobenius–Perron operator is most conveniently dis-
cretized using Ulam’s method (Ulam 1960, Junge &Koltai 2009, Bollt & Santitissadeekorn 2013).
To this end, the data sequence is described by tracing it in a sufficiently high-dimensional phase
space and by assigning each data snapshot di to one of a finite number of disjoint hypercubes
�k covering the part of phase space that is occupied by the data sequence trajectories. A discrete
approximation of P is then given by the matrix

Pi j =
#k
{
(dk ∈ �i ) and (dk−1 ∈ � j )

}
#k
{
(dk ∈ Bi )

} , 33.

where #k{·} denotes a simple counting function over the realizations k and (·) represents a Boolean
expression. In words, we count the number of occurrences where snapshots from hypercube �i
were, one time step ago, in hypercube � j and divide by the total number of snapshots in �i. This
provides a probabilistic link between regions of phase space under the governing dynamics F.

Under this formulation, thematrixP is row stochastic, represents a finiteMarkov chain, and en-
codes the dynamics F. Coherence in time, or temporal persistence, is expressed by eigenvectors of
P corresponding to eigenvalues close to one in magnitude, as they describe nearly invariant struc-
tures (see, e.g., Froyland & Padberg 2009, Junge & Koltai 2009, Froyland et al. 2013). Transitory
structures, in contrast, would have eigenvalues less than one in magnitude. Tools from dynamical
systems, linear algebra, graph theory, and Markov chains can be brought to bear on this computa-
tional framework, and much information can be gained from an analysis of the Frobenius–Perron
operator P . This information will enhance and complement the results from a Koopman analysis
based on K. In quantitative flow analysis, the Frobenius–Perron approach has been exploited in a
data-driven cluster-based analysis of shear flow instabilities (Kaiser et al. 2014) and the description
of rare events in models of turbulent flows (Schmid et al. 2018).
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Figure 8

Dynamic mode decomposition analysis of an axisymmetric jet subject to harmonic forcing. Time-resolved
particle image velocimetry (PIV) data are processed for a square domain downstream of the nozzle. Two
cases are considered in the main text: without acoustic forcing, displaying the intrinsic stability behavior of
the jet, and with acoustic forcing, probing the response behavior of the jet to harmonic excitation.

4. APPLICATIONS

DMD and its many variants and extensions have been applied to many configurations and areas—
far too many to summarize here. Three examples will be given to highlight typical features, to
venture beyond standard flow analysis, and to encourage exploration of complex flows with this
effective tool.

4.1. Temporal Analysis

The first example is temporal analysis, arguably the most common application of DMD. Observ-
ables are obtained from measurement points in experiments or from state-vector components on
grid points in simulations and gathered into a data sequence with time as the evolution direction. If
these observables are sufficiently rich in capturing the intrinsic dynamics, the Koopman operator
can be approximated by the DMD. The data sets can range in complexity from a small collection
of hotwire signals to image sequences from a high-speed camera, and from Schlieren movies to
time-resolved tomographic PIV measurements. Even combinations of data sets of varying com-
plexities are possible.

For our example, we consider a circular jet that can be acoustically driven by a loudspeaker
in a plenum [see Figure 8 for a sketch (Schmid et al. 2011)]. The structures arising in the jet
downstream from the nozzle are measured by time-resolved PIV. The Reynolds number of the
flow based on the centerline velocity and jet exit diameter is Re = 14,767. We acquire n = 101
snapshots with a spatial resolution of 63 × 63 for the two measured velocity components. Two
data sets will be considered: the unforced case with no acoustic excitation by the loudspeaker, and
a forced case probing the response of the jet to acoustic forcing. Both cases have been processed by
the sparsity-promoting DMD algorithm. For the forced case, a scalar signal from the loudspeaker
could optionally be included in the state-vector and the resulting data matrix. This extension
would uncover a phase relationship between the forcing loudspeaker and the forced jet response—
and follow a simplified version of the approach outlined above for DMD with control.

In the unforced case, a DMD analysis reveals the intrinsic frequency response at Strouhal
numbers of St = 0.28 and St = 0.46, which fall within the typical range of preferred modes in
axisymmetric jets. The associated structures are displayed in Figure 9a,b. We observe a primary
instability at St = 0.46 that undergoes a vortex-merging process further downstream, inducing a
pronounced response at St = 0.28.

In the forced case, the jet responds quite differently: We observe a lock-on to the forcing fre-
quency in the jet, giving rise to a distinct structure with significant amplitude in the data sequence
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a   Unforced St = 0.28

c   Forced St = 0.39

b   Unforced St = 0.46

d   Forced St = 0.78

Figure 9

Dominant dynamic modes of an axisymmetric jet (a,b) without and (c,d) under harmonic forcing for different
Strouhal numbers St.

(see Figure 9c); a Strouhal number of St = 0.39 is detected, with a pronounced second peak at a
higher-harmonic frequency of St = 0.78 (see Figure 9d). The higher harmonic shows the typical
doubling of the streamwise wavenumber, suggesting a superposition of the two forced modes in
Figure 9c,d in a phase-locked linear combination. This flow behavior is strongly suggestive of a
convective global instability in the axisymmetric jet.

4.2. Composite Analysis

DMD is a data-based method and thus not bound to governing equations or other mathematical
constraints. Instead, we can uninhibitedly construct and explore data sets as to their patterns and
correlations. This is demonstrated with this example.

We consider a compressible axisymmetric jet exiting a circular nozzle, with a Mach number
ofMa = 0.9 (see Figure 10). We are particularly interested in the coherent structures preferred
by the jet, regarding both the hydrodynamic component and the associated acoustic radiation. To
this end, we construct composite snapshots from the numerical simulations, consisting of a first
component that represents hydrodynamic effects (the azimuthal vorticity), and a second compo-
nent that acts as a proxy for acoustic activity (the dilatation). Processing this synchronized data set
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Figure 10

Composite analysis of a compressible axisymmetric jet emanating from a circular pipe with a Mach number
ofMa = 0.9. The data sequence consists of the azimuthal vorticity component and the dilatation, capturing
respectively hydrodynamic and aeroacoustic effects.

by the core algorithm reveals a hierarchy of modal patterns; three of these modes with significant
amplitudes are shown in Figure 11.We observe modes with only hydrodynamic effects, but a neg-
ligible acoustic footprint (Figure 11a,b).This stands in contrast tomodes that exhibit a substantial
acoustic component, with similar hydrodynamic features (Figure 11c–f ). In this manner, we can
distinguish between quiet and loud modal structures and relate features of the hydrodynamics to
sound pressure patterns.

This flexibility in data analysis, owing to the equation-free approach of DMD, can be exploited
in many situations and can become an attractive feature in the analysis of multiphysics phenomena
or inherent feedback loops. For example, Sayadi et al. (2014) investigated a link between the skin
friction signature on the wall and the near-wall structures responsible for it. A composite DMD
analysis of a transitional boundary layer uncovered a surprisingly low-dimensional connection
between streak-like fluid elements and the induced skin friction pattern. Similar analyses can be
performed, for example, for fluid–structure interactions, where structural deformations and flow
patterns are linked in a causal relationship through composite data processing. Combustion and
multiphase data would be amenable to a similar analysis.

CompositeDMDanalysis is closely linked to EDMD,which uses a set of observables to capture
the essence of a dynamical system.While the latter approach (EDMD) is motivated by a complete-
ness argument for the embedding of a nonlinear system, the former approach (composite DMD)
aims at a similar complete description of the dynamics using physical intuition.

4.3. Streamline-Based Analysis

The final example takes the DMD’s flexibility of data processing due to its detachment from gov-
erning equations one step further. It abandons the common assumption of a temporal evolution
direction and, hence, a stacking of columns in D corresponding to snapshots at different instants
in time. Rather, we use a spatial coordinate to describe the evolution of structures. Moreover, this
evolution will be along a curved trajectory in space.

As an example, we consider a jet in cross-flow, exiting perpendicularly into a boundary layer
with a jet-to-freestream ratio of R = 3. The Reynolds number based on the jet diameter is Re =
500. The flow is characterized by a breakdown of vortical structures developing along a curved
counter-rotating vortex pair (CVP). A typical snapshot is presented in Figure 12a. For the DMD
analysis, we determine a base-flow streamline emanating from the center of the transverse jet.We
then define normal planes at equispaced distances along the streamline’s arclength; a total of 110
planes have been chosen (see Figure 12b for a sketch).

Projecting the 3D velocities onto these normal planes and stacking them as columns into the
data matrix D, we can perform a streamline-based DMD analysis of the spatial evolution of fluid
structures along the counter-rotating vortex sheet. The six most dominant modes are displayed
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Figure 11

Three dominant composite modes, showing the vortical (left column; a,c,e) and acoustic (right column; b,d,f ) components of the dynamic
modes.

in Figure 13, showing a vortical breakdown of the CVP, which increasingly concentrates on the
flanks of the base-flow vortex sheet for higher DMD modes, in accordance with numerical and
experimental observations. It should be stressed that these modes will evolve spatially, and the
DMD eigenvalues represent complex wavenumbers (rather than frequencies) along the curved
streamline.

This example demonstrates the adaptability of the analysis tool to complex flow situations,
rooted in the equation-free formulation of the Koopman framework. An equation-based equiva-
lent analysis would be too unwieldy, if not infeasible. By contrast, a geometric rearrangement of
the 3D data is all it took to perform a data-driven analysis of the essential flow patterns.

4.4. Other Application Areas

Koopman analysis and the DMD have seen a wide expansion across many application areas. They
are employed in the detection of patterns, the extraction of reduced-order models, and the pre-
diction of time series based on previous observations. Applications in epidemiology (spreading of

www.annualreviews.org • Dynamic Mode Decomposition 247



20
18
16
14
12
10

0
0 5 10 15 30

x

y

352520

2
4
6
8

y

z

x

a b

Figure 12

Streamline-based dynamic mode decomposition analysis of a jet in cross-flow. (a) Representative snapshot, visualized by isocontours of
the Q-criterion. (b) Layout of the spatial slices normal to the base-flow streamline. The 3D velocity fields are projected into in-plane
and plane-normal components and incorporated into the data matrix.

flu, measles, polio, etc.), in medical imaging and signal analysis [low-resolution MRI (magnetic
resonance imaging), neurodegenerative patterns in Parkinson’s disease, mass cytometry, epilep-
tic EEG (electroencephalogram) classification, decoding of electrocorticographic signals, etc.], in
climate science and oceanography (sea ice patterns and prediction, El Niño–Southern Oscillation
analysis and prediction, flow patterns through the Strait of Gibraltar, etc.), in robotics (external
perturbation estimation, etc.), and in financial engineering (trading strategies, cycle analysis of
markets, etc.) account for a cross section of disciplines where a quantitative description of salient
dynamic features by DMD has had a distinct impact.

5. CONCLUSIONS

The past 15 years have seen a remarkable renaissance of an established idea of treating nonlinear
dynamical systems by linear techniques: Koopman analysis. Combined with computational meth-
ods, as described in this review, this alternative to classical system theory provides new perspec-
tives and many opportunities for the analysis, control, and prediction of fluid flows. It is based on
a linearization step that is not accomplished by expansion about equilibrium or quasi-equilibrium
states, but rather by an embedding of the nonlinear dynamics in an infinite observable space.
With proper embedding, the dynamics in this observable space appears linear, governed by the
Koopman operator. The eigenfunctions of this operator, mapping the observables over a speci-
fied time interval, play a crucial role and represent modal, monochromatic coherent structures.
An approximation of these modes can be determined efficiently by the DMD, directly from data
sequences and without appeal to an underlying model or governing equations.

This review outlined the theoretical background, the core algorithm, and extensions/
generalizations that ensure the accuracy, robustness, and efficiency of the computational algo-
rithms that determine the proper embedding, the linear observable dynamics, and the desired
spectral properties. Variants that allow for the analysis of driven systems, sparse measurements, or
sub-Nyquist sampling have also been described. The advantage of a data-driven approach—in an
era where data are available at an unprecedented scale, both in quality and quantity—can hardly
be overestimated.

While there certainly remain challenges of a theoretical, algorithmic, and practical nature,
it appears safe to foresee a continued impact of these techniques on application areas where
model-based analysis is difficult, or even prohibitive, and where observations suggest the presence
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a   DM1 b   DM3

c   DM5 d   DM7

e   DM9 f   DM11

Figure 13

Dominant dynamic modes (DMs) for a jet in cross-flow. A spatial analysis along the base-flow streamline has
been performed, and the modes are visualized by velocity vectors (black) and vorticity contours (red-gray) in a
plane normal to the base-flow streamline emanating from the jet exit.
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of emerging spatiotemporal patterns and subprocesses. New developments of this data-centric
methodology and new results by applying it to real-life problems are greatly anticipated.

SUMMARY POINTS

1. Koopman theory provides an alternative and attractive perspective to analyzing nonlin-
ear dynamical systemswithin a linear framework.Dynamicmode decomposition (DMD)
provides approximate spectral information about the Koopman operator.

2. Flow analysis by DMD is inherently data driven and equation-free, a key feature that
adds flexibility and applicability to a wide range of data sets.

3. The core algorithm is straightforward, relying on standard linear algebra concepts and
modern optimization techniques.

4. Many extensions and generalizations are available, addressing issues of convergence to-
ward the Koopman limit, robustness to noise and uncertainty in the data, and efficiency
of the computational steps. Advances in peripheral research fields (such as optimiza-
tion, control theory, system identification, harmonic analysis, statistical learning, and
L1-regression) can be readily incorporated into DMD.

5. Data can be processed in creative ways: Composite observables, spatially evolving data
sets, curved evolution directions, and nonuniformly or sub-Nyquist sampled data allow
for the quantitative analysis of many complex fluid (and nonfluid) systems.

FUTURE ISSUES

1. Machine learning, a very active field of research, will continue to influence the
Koopman and DMD framework, even beyond the use of autoencoders. New develop-
ments in representing and learning embeddings will have a direct impact on Koopman
and DMD analysis, and constraints based on known physical properties (symmetries,
conservation laws, etc.) will play a major role in this effort.

2. Delay embedding will be a key methodology for predicting complex dynamical behavior
beyond the horizon of the training data set. This technology, paired with, for example,
optimal prediction based on a Mori–Zwanzig representation (Chorin et al. 2000), could
have important consequences for the forecasting precision for many nonlinear evolution
processes.

3. Sparsity concepts will play an increasing role in aiding the decomposition toward finding
a minimal representation of the overall data sequence in terms of principal subprocesses.

4. DMD and its variants may find their way into many other algorithms. The convergence
behavior of iterative algorithms (such as, for example, stochastic gradient descent) can
be interpreted as a discrete dynamical system, whose dynamic modes could give valuable
information about the slow and fast dynamics of residual fields.

5. Many more application fields, beyond the ones mentioned here, may benefit from the
sort of quantitative analysis expounded in this article. This will be particularly valuable
for application fields where first-principle governing equations are difficult or impossible
to come by.
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6. Many generalizations and improvements have been developed as single features. Synthe-
sizing and combining these specific extensions into a comprehensive framework would
provide a platform for the data-centric analysis of a great many dynamical systems.
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Noack BR, Stankiewicz W,Morzyński M, Schmid PJ. 2016. Recursive dynamic mode decomposition of tran-

sient and post-transient wake flows. J. Fluid Mech. 809:843–72
Otto SE, Rowley CW. 2019. Linearly recurrent autoencoder networks for learning dynamics. SIAM J. Appl.

Dyn. Sys. 18:558–93
Pan S, Duraisamy K. 2020a. On the structure of time-delay embedding in linear models of non-linear dynam-

ical systems. Chaos 30:073135
Pan S, Duraisamy K. 2020b. Physics-informed probabilistic learning of linear embeddings of nonlinear dy-

namics with guaranteed stability. SIAM J. Appl. Dyn. Sys. 19:480–509
Perry AE, ChongMS. 1987. A description of eddying motions and flow patterns using critical-point concepts.

Annu. Rev. Fluid Mech. 19:125–55
Proctor JL, Brunton SL, Kutz JN. 2016. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Sys.

15:142–61
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