
Annual Review of Fluid Mechanics

Drop Impact Dynamics:
Impact Force and Stress
Distributions
Xiang Cheng,1 Ting-Pi Sun,1 and Leonardo Gordillo2
1Department of Chemical Engineering and Materials Science, University of Minnesota,
Minneapolis, Minnesota, USA; email: xcheng@umn.edu
2Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile (USACH),
Santiago, Chile

Annu. Rev. Fluid Mech. 2022. 54:57–81

First published as a Review in Advance on
September 23, 2021

The Annual Review of Fluid Mechanics is online at
fluid.annualreviews.org

https://doi.org/10.1146/annurev-fluid-030321-
103941

Copyright © 2022 by Annual Reviews.
All rights reserved

Keywords

impact force, pressure, shear stress, self-similarity, singularity, boundary
layer, air cushioning, erosion

Abstract

Dynamic variables of drop impact such as force, drag, pressure, and stress
distributions are key to understanding a wide range of natural and industrial
processes. While the study of drop impact kinematics has been in constant
progress for decades thanks to high-speed photography and computational
fluid dynamics, research on drop impact dynamics has only peaked in the
last 10 years. Here, we review how recent coordinated efforts of experi-
ments, simulations, and theories have led to new insights on drop impact
dynamics. Particularly, we consider the temporal evolution of the impact
force in the early- and late-impact regimes, as well as spatiotemporal fea-
tures of the pressure and shear-stress distributions on solid surfaces.We also
discuss other factors, including the presence of water layers, air cushioning,
and nonspherical drop geometry, and briefly review granular impact crater-
ing by liquid drops as an example demonstrating the distinct consequences
of the stress distributions of drop impact.
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1. INTRODUCTION

Drop impact is so familiar to us that we are usually indifferent to this elegant ephemeral fluid
process in our daily life, for example, when raindrops fall on our skin with small yet perceptible
force. However, this everyday phenomenon is of great importance to many natural and industrial
processes, ranging from soil erosion (Terry 1998, Planchon & Mouche 2010, Bako et al. 2016) to
the dispersion and spreading of airborne pathogens ( Joung& Buie 2015, Bourouiba 2021) and the
coating and printing of functional materials (Wijshoff 2018). Driven by its ubiquitous presence
and vast industrial applications, drop impact has become one of the most extensively studied topics
in fluid mechanics.

Although the study of drop impact can be traced back nearly 150 years to the pioneering work
of Worthington (1876), significant progress has only been made in the past three decades thanks
to the fast development of high-speed photography techniques ( Josserand & Thoroddsen 2016).
In combination with advanced numerical algorithms enabled by increasing computational power
(Scardovelli & Zaleski 1999, Popinet 2009), researchers can now elucidate the spatiotemporal
structures of fast drop impact events with unprecedented detail. A wide range of theoretical
concepts including Wagner’s (1932) impact theory, viscous boundary layers (Schlichting &
Gersten 2000), self-similarity (Barenblatt 1996), and finite-time singularity (Eggers 1997, Eggers
& Fontelos 2015) have been invoked and integrated to decipher the dynamics of drop impact.

Nevertheless, relying upon direct imaging, most experiments have focused on the kinematics
of impact processes, i.e., the morphological changes of impacting drops (Figure 1). Kinematic
features such as the maximum spreading diameter (Bennett & Poulikakos 1993, Clanet et al. 2004,
Ukiwe & Kwok 2005, Roisman 2009, Eggers et al. 2010, Laan et al. 2014,Wildeman et al. 2016),
the contact time (Richard et al. 2002, Bird et al. 2013), and the splashing threshold (Mundo et al.
1995, Yarin & Weiss 1995, Josserand & Zaleski 2003, Xu et al. 2005, Roisman 2009, Riboux &
Gordillo 2014, Howland et al. 2016) have taken the center stage and dominated the study of drop
impact. In comparison, relatively fewer studies have been devoted to dynamic properties such as
the impact force and stress distributions of drop impact, even though these dynamic variables
arguably lead to the most consequential outcomes of drop impact events.

Many early studies of drop impact were motivated by the process of soil erosion (Laws 1940,
Ellison 1945,Palmer 1965,Ghadiri&Payne 1977, Imeson et al. 1981,Nearing et al. 1986,Nearing
& Bradford 1987), where the impact force and stress distributions of raindrops play a key role in
breaking soil aggregates and detaching and transporting granular particles (Figure 1b).Wear and

a

b

Figure 1

Drop impact kinematics. (a) A 3-mm-diameter drop of aqueous glycerol solution with a viscosity of 6 mPa·s and an impact velocity of
1.5 m/s impacts on a glass surface. Frames are 75 µs apart. Panel a courtesy of Michelle Driscoll. (b) A 3-mm-diameter water drop with
an impact velocity of 2.7 m/s impacts on a granular medium made of 90-µm-diameter glass beads. The times of the snapshots are
t = 0.3 ms, 5.7 ms, 11.9 ms, 19.4 ms, and 56.8 ms after the impact at t = 0. Panel b adapted with permission from R. Zhao et al. (2015).
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Mach number:
M = V/c

damage induced by repeated impact of high-speed drops on solid surfaces such as turbine blades
also crucially depend on impact force and stress distributions (Hancox & Brunton 1966, Zhou
et al. 2008, Obreschkow et al. 2011, Takekura et al. 2018). Moreover, these dynamic quantities
are also the leading factor affecting surface cleaning and jet peening and cutting (Kondo & Ando
2019, Mitchell et al. 2019a). The temporal variation of impact force and stresses also controls the
splashing of droplets on soft substrates (Pepper et al. 2008, Howland et al. 2016), as well as the
signature of raindrop noises (Prosperetti & Oguz 1993, Yu & Hopkins 2018, Schmid et at. 2021).
Lastly, the survival of living organisms exposed to the elements in events such as the collision of
flying insects with falling raindrops (Dickerson et al. 2012, Kim et al. 2020) and the abscission
of plant leaves by raindrops (Gart et al. 2015) also relies on the transient force impulse of drop
impact.

More fundamentally, impact force and stress distributions can reveal certain aspects of drop
impact dynamics, which are hard, if not impossible, to probe from kinematics measurements. Par-
ticularly, these dynamic quantities exhibit strong temporal variations at the early time of drop
impact, where impacting drops barely deviate from their original spherical shape (Rioboo et al.
2002, Lagubeau et al. 2012, Philippi et al. 2016). Thus, measuring the temporal evolution of the
impact force and pressure distribution of drop impact provides a more sensitive way to investigate
impact dynamics at early times (Eggers et al. 2010, Philippi et al. 2016). Similarly, the shear stress
distribution of drop impact reveals the development of the viscous boundary layer within impact-
ing drops (Roisman 2009, Eggers et al. 2010, Lastakowski et al. 2014, Philippi et al. 2016, Riboux
&Gordillo 2017, Gordillo et al. 2019), which is difficult to access by other experimental methods.

There are many excellent reviews focusing on the kinematics of drop impact (Rein 1993, Yarin
2006, Marengo et al. 2011, Josserand & Thoroddsen 2016, Yarin et al. 2017). Instead, we provide
here a brief account of the current understanding of the impact force and stress distributions of
drop impact.We limit our review on drop impact to moderate impact velocities, where impacting
drops can be considered incompressible. The compressibility of impacting drops leads to the so-
called water-hammer pressure on the order of ρVc over a time duration of RV/c2 (Lesser & Field
1983,Nearing et al. 1986, Field et al. 2012).Here,ρ is the density of liquid,V is the impact velocity,
c is the speed of sound in the drop, and R is the radius of the drop. For a typical millimeter-sized
raindrop impacting at its terminal velocity of ∼10 m/s, ρVc is large,∼10 MPa. However, the time
duration associated with the propagation of the compression wave in the impacting drop is only
∼10 ns. The radius of the contact area over this time interval is on the order of RV/c ∼ 10 µm.
Hence, compressibility affects only the very early moment of impact over a tiny contact area,
which is not directly relevant to drop dynamics at long times and is hard to detect experimentally
(Soto et al. 2014, Visser et al. 2015, Bako et al. 2016). The effect of air cushioning further screens
the water-hammer pressure, as we discuss below. As a result, compressibility is important only for
drop impact of very high speeds with theMach number on the order of one (Lesser & Field 1983),
a regime beyond the scope of the current review.

We organize the review as follows. In Section 2, we first consider the temporal evolution of
impact force. Experimental and theoretical understanding of drop impact force are discussed in
the early-impact regime and the late spreading regime, respectively.We then discuss the pressure
and shear stress distributions underneath impacting drops in Section 3. The discussion is limited
to spherical drops impacting on a dry smooth solid surface first. Other relevant factors such as the
presence of liquid layers, the effect of air cushioning, and nonspherical drop shapes are considered
in Section 4. Lastly, we briefly discuss granular impact cratering by liquid drops in Section 5,
which provides a concrete example demonstrating the unique role of the stress distributions of
drop impact in surface erosion. Open questions and future directions are stated at the end.
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Reynolds number:
Re = DV/ν

Weber number:
We = ρDV 2/γ

Froude number:
Fr = V/

√
gD

2. IMPACT FORCE

2.1. Temporal Evolution of Impact Force

Impact force is the most studied dynamic quantity of drop impact. Piezoelectric sensors are fre-
quently used formeasuring the temporal evolution of the normal force of impacting drops (Imeson
et al. 1981; Nearing et al. 1986; Nearing & Bradford 1987; Grinspan & Gnanamoorthy 2010; Li
et al. 2014; Soto et al. 2014; Zhang et al. 2017, 2019; Gordillo et al. 2018; Mitchell et al. 2019b;
Schmid et at. 2021). Other methods such as cantilever beams (Mangili et al. 2012, Soto et al.
2014, Gart et al. 2015, Chen et al. 2019) and accelerometer arrays attached to elastic plates (Yu &
Hopkins 2018) have also been employed for impact force measurements.These measurements are
often synchronized with high-speed photography for simultaneous imaging of the morphology of
impacting drops (Zhang et al. 2017, 2019; Gordillo et al. 2018; Mitchell et al. 2019b; Schmid et at.
2021).

Figure 2 shows an example of a simultaneousmeasurement of the shape and of the impact force
of a silicone oil drop impacting on the smooth metal surface of a piezoelectric sensor. Upon im-
pact, the contact line of the drop increases immediately following a square-root temporal scaling.
Nevertheless, the top of the drop still falls linearly with the original impact velocity at early times,
as if the impact had not yet occurred at the bottom. In contrast, the impact force rises quickly upon
impact and reaches a maximum when the boundary of the drop is approximately vertical to the
impacted surface. The force then decays over much longer times as the drop spreads out radially
along the surface. The resulting force–time curve is asymmetric with respect to the peak force. As
a comparison, the impact force of an elastic sphere on a flat surface is symmetric, preserving the
time-reversal symmetry.

The key dimensionless numbers governing the dynamics of drop impact are the Reynolds num-
ber Re and the Weber numberWe, which compare the inertia of impacting drops with the viscous
and capillary forces, respectively. We consider impact conditions with the Froude number Fr �

1 such that the effect of gravity is negligible. For raindrops impacting at their terminal velocities,
we have Re ∼ 104, We ∼ 102–103, and Fr ∼ 50. In the limit of high Re and We, where inertia
dominates the impact process, Soto et al. (2014) experimentally demonstrated that the peak force
follows the inertial force scaling, Fmax ∼ ρD2V 2. Later experiments by Zhang et al. (2017) further
showed that the temporal evolution of the dimensionless impact force F̃ (t̃ ) exhibits a universal
form in this limit, independent of Re and We. Here, the impact force F(t) is nondimensionalized
by the inertial force, F̃ = F/(ρD2V 2), and the time is nondimensionalized by the impact time,
t̃ = t/(D/V ). The universal form has also been confirmed by several independent experiments
(Figure 3a) (Gordillo et al. 2018, Yu & Hopkins 2018, Mitchell et al. 2019b). In this review, the
dimensionless quantities are represented by adding a tilde on the top of the corresponding di-
mensional quantities. The time- and length scales used for nondimensionalization are the drop
diameter D and impact time D/V, respectively. Pressure is nondimensionalized by ρV 2.

The shape of the universal form is characterized by three features: (a) the dimensionless peak
force, F̃max = 0.85 ± 0.05; (b) the dimensionless time when the peak force occurs, t̃max = 0.17 ±
0.02; and (c) the area underneath the force–time curve before the peak force, which is about one
quarter of the total area (Figure 3b) (Gordillo et al. 2018). Note that the total area underneath a
force–time curve gives the impulse of the impact event, which is equal to the initial momentum
of the impacting drop. Thus, one quarter of the initial momentum has been transferred from the
drop to the impacted surface when the peak force is reached.

The deviation from the universal form has been observed under the following conditions.
(a)When Re is below 200, F̃max increases and t̃max decreases with decreasing Re (Figure 3a) (Zhang
et al. 2017, Gordillo et al. 2018). Although the temporal evolution of the impact force does not
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Gordillo et al. 2018
Philippi et al. 2016
Eggers et al. 2010
Mitchell et al. 2019b
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Figure 2

Simultaneous measurements on the kinematics and dynamics of an impacting drop of diameter D = 2.2 mm
with impact velocity V = 1.93 m/s, viscosity ν = 20 cSt, and surface tension γ = 18.9 mN/m. (a) Drop
height hmax (t) and the radius of the turning line r0(t). The fitting lines indicate the free fall of hmax with V
and the scaling of r̃0 =

√
6t̃/2. Here, the dimensionless variables are represented by adding a tilde on the top

of the corresponding dimensional variables. The length and time are nondimensionalized by the drop
diameter D and the impact time D/V, respectively. The impact force is nondimensionalized by ρD2V 2.
(b) Normal impact force F(t). Experimental results are from Gordillo et al. (2018). Theoretically, Philippi
et al. (2016) predicted the impact force in the early-impact regime, whereas the force in the late spreading
regime can be derived from the pressure formula of Eggers et al. (2010). Mitchell et al. (2019b) provided an
empirical relation covering the entire time domain. Panels a and b adapted with permission from Gordillo
et al. (2018). (c) The definition of the turning line at r0(t). Arrows indicate the flow inside an impacting drop
in the lab frame (left) and in the reference frame moving with the drop initial impact velocity (right).

follow the universal form at low Re, the shape of the force-time curves is still invariant. The area
underneath the force curve before the peak remains at 1/4 of the total impulse (Gordillo et al.
2018). A good collapse can still be achieved when F(t) is normalized by Fmax and t is normalized
by tmax (inset in Figure 3a). (b) For large drops near their terminal velocities, F̃ (t̃ ) also deviates
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Figure 3

Temporal evolution of impact force. (a) Dimensionless impact force, F̃ = F/(ρD2V 2), versus dimensionless time, t̃ = t/(D/V ), at
different Reynolds numbers, Re, where D is the drop diameter and V is the impact velocity. (Inset) Impact force normalized by the peak
force Fmax versus time normalized by the peak time tmax . (b) The ratio of the area underneath the F − t curves after the peak to that
before the peak, S, at different Re. The inset shows the definition of the area ratio, S. (c) The numerical prefactor α and (d) the scaling
exponent β of the impact force F̃ = αt̃β near t → 0+ (see the inset in panel d). The inset in panel c shows α in a log-log plot. ν is the
kinematic viscosity of the drop. Dashed lines are the theoretical prediction (Equation 2). Figure adapted with permission from Gordillo
et al. (2018).

from the universal form (Yu & Hopkins 2018). It has been suggested that the deviation arises
due to the deformation of large drops under air drag (see Section 4.3). (c) The impact force of
viscoelastic drops also deviates from the universal form (see Figures 3d and 4c and discussion
below).

The temporal evolution of the impact force naturally divides an impact event into two regimes,
i.e., the early-impact regime before the peak force and the later-impact regime after the peak force.
Below we consider the dynamics of the impact force in each of these two regimes, separately.

2.2. Early-Impact Regime: Turning Line–Controlled Self-Similar Flow

The early moment of drop impact is driven by inertia and controlled by the sudden change of the
direction of flow velocity from downward vertical to outward radial. Such a drastic change occurs
over a localized region near the turning line. In the reference frame moving with the drop’s initial
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(a) Peak force F̃max (see inset) as a function of Reynolds number Re. Symbols are from experiments, and the dashed line is the theoretical
prediction (Equation 4). (b) Peak time t̃max as a function of Re. Symbols are from experiments, and the dashed line is the theoretical
prediction (Equation 3). (c) Comparison of the force–time curves of viscoelastic drops at low Re < 7 with those of Newtonian drops at
high Re. The color map is the same as that in Figure 3a. Abbreviation: AGX, aqueous glycerin of weight percentage X%.

impact velocity, the flow inside the drop winds around the turning line, showing a tank-treading
movement (Figure 2c). Before the formation of the liquid lamella, the turning line is coincident
with the contact line (Philippi et al. 2016). The two terms are used interchangeably. With the
liquid lamella, however, the turning line sits at the root of liquid lamella and separates from the
contact line at the tip of the lamella.The turning line becomes the waistline of the impacting drop.

Quantitatively, the radius of the turning line follows a square-root scaling, r0(t ) ∼ √
DV t, at

high Re and We near t → 0+, which was first proposed by Wagner (1932) in the context of the
water entry of solid objects. The scaling can be obtained geometrically by considering the in-
tersection of a free-falling drop with the impacted surface at small t. Experiments and detailed
calculations have confirmed the scaling with a numerical prefactor slightly larger than the simple
geometric consideration, r0(t ) = √

6DV t/2 (Figure 2a) (Riboux & Gordillo 2014, Philippi et al.
2016, Gordillo et al. 2018). Experiments have shown that the peak force is reached when the side
wall of the impacting drop is normal to the impacted surface (Mitchell et al. 2019b). The obser-
vation suggests r0(t = tmax ) = D/2 at the peak time, which gives t̃max = 1/6, agreeing with the
experimental findings.
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The fast horizontal flow on the substrate generates a viscous boundary layer that propagates
radially and moves upward. When the length scale of the impact process under consideration
l is larger than the thickness of the viscous boundary layer lv but much smaller than the drop
size D, the inertia-driven potential flow should have a self-similar structure with the self-similar
variable defined via l/r0. The condition of self-similarity is satisfied at the early times of high-Re
drop impact, as l̃v ≈

√
t̃/Re � r̃0 = √

6t̃/2 � 1 at small t̃. Josserand & Zaleski (2003) first applied
the self-similar hypothesis for drop impact on a thin fluid film at early times. They showed that
p = ρV 3/2D1/2t−1/2g(X, Y), where X = 1 − r/r0 and Y = z/r0 are the self-similar coordinates and
g is a dimensionless scaling function. The impact force then follows as F ∼ pr20 ∼ ρV 5/2D3/2t1/2

or F̃ ∼ t̃1/2 in the dimensionless form. Using the length scale set by the turning line r0, we can
also form a simple scaling argument for the impact force. The portion of an impacting drop that
decelerates from V to 0 over a time interval of dt is d[r30 (t )] ∼ (VD)3/2t1/2dt, which leads to the
change of the axial momentum dM∼ ρV 5/2D3/2t1/2dt. Thus, the impact force scales as F= dM/dt
∼ ρV 5/2D3/2t1/2.

Philippi et al. (2016) analyzed the detailed structure of the self-similar potential flow for drop
impact on a dry surface and obtained an analytical solution for the impact force in the high Re
limit as t → 0+ with an order-one numerical prefactor:

F̃ = 3
√
6

2
t̃1/2. 1.

Gordillo et al. (2018) experimentally verified the predicted square-root temporal scaling of the
impact force. Figure 3c,d show the numerical prefactor α and the power exponent β of the tem-
poral scaling of the impact force, extracted from the power law fitting of the experimental force–
time curves at early times. Above Re > 200, α = 3

√
6/2 and β = 1/2 quantitatively agree with

Equation 1. The square-root scaling has also been confirmed by two other recent experiments
and simulations (Mitchell et al. 2019b, Zhang et al. 2019).

At 7 < Re < 200, the impact force still follows the square-root temporal scaling. However,
the numerical prefactor increases with decreasing Re, deviating from the theoretical prediction
(Figure 3c,d). To understand the behavior of the impact force at finite Re, Gordillo et al. (2018)
performed an asymptotic perturbation calculation by matching the inner velocity profile within a
viscous boundary layer and the outer velocity profile in the self-similar potential flow to the first
order of Re−1/2. They showed that the viscous boundary layer enhances the propagation speed of
the self-similar pressure field within the impacting drop, leading to an increased impact force:

F̃ = 3
√
6

2

(
1 + 8

√
6

3π3/2

1
Re1/2

)
t̃1/2. 2.

Equation 2 quantitatively agrees with experiments without fitting parameters (Figure 3c,d). Note
that the viscous boundary layer grows as lv ∼ √

νt, showing the same temporal scaling as r0(t).
Thus, the viscous effect is added as a self-similar correction to the original solution of the potential
flow, resulting in the same square-root temporal scaling for the impact force at finite Re. At even
lower Re< 7, experiments using high–molecular weight silicone oils with viscosity above 1,000 cSt
showed an increase of the exponent of the temporal scaling above 1/2 (Figure 3d). In addition,
the area of the force–time curves before the peak sharply increases above 1/4 of the total area
(Figure 3b) toward the value of 1/2, which is the expected result for the impact of elastic spheres.
These qualitative changes are thus attributed to the effect of the viscoelasticity of high–molecular
weight silicone oils (Gordillo et al. 2018).

The peak time t̃max can be estimated as the time when the self-similar pressure field propagates
through the entire impacting drop and terminates the early-time self-similar flow structure.While
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the top of an impacting drop decreases linearly with the initial impact velocity following (D− Vt)
in the early-impact regime (Figure 2a), the self-similar pressure field propagates upward following
(VD3t)1/4 at high Re (Gordillo et al. 2018). The two fronts meet at tmax when (D − Vtmax ) =
A(VD3tmax )1/4, where an order-one geometric factorA is added to count themismatch of the shape
of the isobars and the free surface of the drop. From t̃max = 0.17 at high Re, we have A = 1.29.
The above argument can be extended to finite-Re impact by considering the enhanced pressure
propagation induced by the viscous boundary layer. The dimensionless peak time is given by the
solution of the following polynomial equation,

(1 − t̃max)
4 − A4

(
1 + ŨRe−1/2

)2
t̃max = 0, 3.

where Ũ = 8
√
6/(3π3/2) is the first-order correction to the axial velocity of the outer poten-

tial flow. The calculation provides a quantitative prediction of the peak time as a function of Re
(Figure 4b) with no fitting parameter. Since the shape of the force–time curves is invariant (inset
in Figure 3a), the peak force at low Re can thus be estimated as

F̃max(Re) = F̃∞
max

t̃∞max

t̃max(Re)
, 4.

where F̃∞
max = 0.85 ± 0.05 and t̃∞max = 0.17 ± 0.02 are the peak force and time in the high-Re limit,

respectively.The equation provides a good estimate of the peak force of viscous drops (Figure 4a).
At low Re < 7, the prediction deviates from experiments likely because of the viscoelasticity of
silicone oils used in experiments. The force–time curves of viscoelastic drops become more sym-
metric, approaching the behavior of solid-sphere impact (Figures 3b and 4c). Negative forces can
also be observed due to the bouncing of the viscoelastic drops on the force sensor (Figure 4c).

2.3. Late-Impact Regime: Drop Spreading

Pressure gradients dominate the impact process in the early-impact regime and redirect the flow
from the axial direction to the radial direction. In contrast, the spreading of drop in the late-impact
regime is driven by drop inertia in the radial direction. Pressure gradients are insignificant and
play only aminor role in the process.Depending onRe andWe, the spreading is eventually checked
by either viscous forces, capillary forces, or both, giving rise to the maximum spreading diameter
(Laan et al. 2014). Nevertheless, from the perspective of impact force, the axial momentum of
impacting drops approaches zero near the maximum spreading diameter, which leads to only very
weak impact force. Thus, our discussion of the impact force in the late-impact regime focuses
on inertia-driven spreading when the force signal is still strong and ignores viscous and capillary
effects important toward the end of drop spreading.

Inertia-driven drop spreading is governed asymptotically by a hyperbolic flow (Yarin & Weiss
1995, Fedorchenko et al. 2005, Roisman 2009, Roisman et al. 2009, Eggers et al. 2010): vr =
r/(t + t0) and vz = −2z/(t + t0), where vr and vz are the flow velocity in the radial and axial
directions, respectively. The term t0 indicates the onset time of inertia-driven spreading after
impact. The associated pressure field can then be obtained from the Euler equations, p(r, z, t) =
3ρ[h2(r, t) − z2]/(t + t0)2, where h(r, t) is the free surface of the spreading drop, which can be
further written as h(r, t) = hmax (t)G(ξ ), where hmax = A1D3/[V(t + t0)]2 is the maximum drop
height at r = 0 with a fitting constant A1 and G(ξ ) is a dimensionless scaling function (Roisman
et al. 2009, Eggers et al. 2010). The variable ξ = r

√
hmax/V0 is a self-similar variable governing

drop spreading, and V0 = πD3/6 is the drop volume. The impact force can thus be calculated as

F̃ (t̃ ) = 2π
∫ ∞

0
p̃(r̃, z̃ = 0, t̃ )r̃ dr̃ = π2A1

(t̃ + t̃0)4

∫ ∞

0
G2(ξ )ξ dξ , 5.
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which shows a 1/4 power law decay at long times. From experiments on the shape of spreading
drops, we obtain A1 = 0.492, t̃0 = 0.429, and

∫∞
0 G2(ξ )ξ dξ = 0.0911 (Lagubeau et al. 2012).

Equation 5 agrees with experiments for t̃ > 0.8 (the Eggers et al. line in Figure 2b).
Instead of the power law decay, Mitchell et al. (2019b) showed empirically that the decrease of

the impact force can be approximated by an exponential decay:

F̃ (t̃ ) = F̃0 exp
(

− t̃ − t̃0
k

)
. 6.

From direct fitting, we have 1/k = −2.84. The exponential decay starts around t̃0 = 0.5, with
F̃0 = 0.53.

By interpolating the square-root scaling of the early-impact regime and the empirical expo-
nential decay of the spreading regime,Mitchell et al. (2019b) also proposed a simple formula that
quantitatively describes the temporal evolution of the impact force over the entire time domain
(the Mitchell et al. line in Figure 2b),

F̃ (t̃ ) =
√
C1t̃ exp (−C2t̃ ), 7.

where the coefficients C1 = 1,000π/243 and C2 = 10/3 are fixed by the initial momentum of im-
pacting drops ρV0V and the peak time t̃max = 0.15.Note that

√
C1 ≈ 3.60 is close to the numerical

factor 3
√
6/2 ≈ 3.67. Thus, Equation 7 is asymptotic to Equation 1 in the limit t → 0+.

3. STRESS DISTRIBUTIONS

3.1. Pressure

Impact force quantifies the average impact pressure but cannot reveal the pressure distribution
underneath impacting drops. Indeed, the pressure distribution of an impacting drop is far from
uniform, which provides more detailed and interesting information on the dynamics of drop im-
pact. We again divide our discussion into the early- and late-impact regimes.

3.1.1. Early-impact regime. The self-similar scaling in the early-impact regime has shown that
p(t) ∼ ρV 3/2D1/2t−1/2 (see Section 2.2). Marengo et al. (2011) further suggested that the velocity
field in an impacting drop can be approximated by the irrotational flow past a disk of radius r0(t),
where r0(t) is the radius of the turning line. At the impact point, the velocity potential of the flow
past a disk is known as φ = −2Vr0/π (Batchelor 1967). The pressure can then be calculated using
the unsteady Bernoulli’s equation,

p
ρ

+ ∂φ

∂t
+ 1

2
(�φ)2 = 1

2
V 2. 8.

The pressure at the stagnant point with �φ = 0 is

p(r = 0, t ) = 1
2
ρV 2 + 2ρV

π

dr0
dt

= 1
2
ρV 2 +

√
6

2π
ρV 3/2D1/2t−1/2, 9.

where we use r0(t ) = √
6DV t/2 instead of the radius of a truncated sphere suggested in the original

derivation by Marengo et al. (2011).
A similar analogy between drop impact and flow past a radially expanding disk has also been

made by Philippi et al. (2016). Based on the analogy, they calculated the self-similar potential flow
during early impact near the tip. Their theory provided the analytical solution of the turning line
r0(t) and revealed the singular structure of the pressure distribution over the contact area,

p(r, t ) = 3
√
2

2π
ρV 2D√

3VDt − 2r2
. 10.
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Figure 5

Pressure distribution of drop impact at Reynolds number Re = 5,000 and Weber numberWe = 250 at early times from numerical
simulations. (a) Close-up view of the pressure field inside an impacting drop at early times, t̃ = 2 × 10−4. (b) Time series showing the
development of the pressure field (top panels), as well as the pressure on the impacted surface (bottom panels). From top to bottom,
t̃ = 5 × 10−5, 5 × 10−4, and 5 × 10−3. (c) Pressure p̃ at the contacted surface at different times. Time increases from red to blue to gray.
(d) Pressure as a function of the rescaled variable ξ = r̃/

√
t̃. The black dashed line is the theoretical prediction (Equation 10). Figure

adapted with permission from Philippi et al. (2016).

Equation 10 reduces to Equation 9 at the drop axis r = 0, except for a constant dynamic pressure
that can be adsorbed by redefining the reference pressure. More importantly, it reveals a finite-
time singularity at the turning line r0(t) away from the impact axis. The prediction quantitatively
agrees with volume-of-fluid numerical simulations (Figure 5). Particularly, Equation 10 predicts
an annular ring of divergent pressure propagating radially with the turning line (Figure 5b,c).
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Such a noncentral pressure maximum is in sharp contrast to the pressure distribution induced by
a steady jet of a liquid impinging on a flat wall, where the pressure maximum is expected at the
central stagnation point. For steady flows,we have�φ/�t= 0 in Equation 8. Since the kinetic term
is (�φ)2/2 ≥ 0, the pressure p= ρ[V 2 − (�φ)2]/2 reaches maximum at the central stagnant point.
In contrast, the acceleration term �φ/�t dominates drop impact, leading to the counter-intuitive
off-axial pressure maximum ( Josserand & Zaleski 2003, Philippi et al. 2016). The integration of
Equation 10 over the contact area within the turning line gives the impact force in Equation 1.

It is clearly difficult to conduct experimental measurements on the transient pressure distribu-
tion underneath millimeter-sized drops with micron spatial resolutions and submillisecond tem-
poral resolutions. Early experiments assessing the damage of solid surfaces induced by high-speed
drop impacts with impact velocities >200 m/s showed patterns of ring cracks on the impacted
surfaces, indicating the existence of annular pressure peaks (Figure 6a) (Adler 1977, Hackworth
1979). Experiments have also been conducted by shooting cylindrical bullets at high speeds into
2D drops or the side of vertical liquid jets. Pressure was measured by embedded small piezo-
electric sensors on the surface of the bullets. An off-axial pressure maximum has been observed,
although the temporal variation of the pressure distribution has not been reported (Figure 6b)
(Rochester &Brunton 1979,Lesser & Field 1983).Using an array of miniature force sensors based
onmicroelectromechanical systems,Thanh-Vinh and coworkersmeasured the temporal evolution
of pressure distributions under impacting drops of low impact velocities relevant to this review
(Thanh-Vinh et al. 2016, Thanh-Vinh & Shimoyama 2019). Nevertheless, the spacing between
the force sensors in their experiments was too large to resolve the fine structure of the pressure
distribution predicted in Equation 10. More recently, the authors of this review measured the
temporal evolution of the stress distributions of drop impact by imaging the deformation of elas-
tic gels underneath impacting drops (Sun et al. 2021). The measurements provided experimental
evidence of the noncentral propagating pressure maximum for drop impact (Figure 6c).
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Impact pressure from experiments. (a) Ring fracture formed on chemically vapor-deposited zinc sulfide due to the impact of a 2-mm-
diameter water drop at an impact velocity of V = 340 m/s. The width of the picture is 2.89 mm. Panel a adapted with permission from
Hackworth (1979). (b) Peak pressure p at different positions r under a 2D water drop of diameter 5.0 mm with an impact velocity of
V = 100 m/s. Panel b adapted with permission from Rochester & Brunton (1979). (c) Temporal variation of the pressure distribution
underneath a 3.5-mm-diameter drop of sodium iodide aqueous solution (60% weight per weight) with a drop impact of V = 2.97 m/s.
Panel c data from Sun et al. (2021).
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Pressure distribution during drop spreading. (a) Numerical results showing the pressure p̃ near the impacted surface as a function of the
radial position r̃ at different times t̃. The impacted surface is treated as a symmetric plane with a slip boundary condition. Panel a
adapted with permission from Roisman et al. (2009). (b) Pressure at the impact axis. Symbols are numerical results at high Reynolds
number Re and Weber numberWe from Roisman et al. (2009) and Eggers et al. (2010). Lines are fittings (Roisman et al. 2009) and
theoretical predictions (Eggers et al. 2010, Gordillo et al. 2018).

3.1.2. Late-impact regime. Inertia-driven drop spreading at high Re andWe in the late-impact
regime leads to a universal pressure field away from the edge of the spreading lamella. Roisman
et al. (2009) numerically solved the universal pressure distribution along the contact surface in the
late-impact regime (Figure 7a). They found that the contact pressure at the center of spreading
drops can be fitted with an exponentially decaying function, p(r = 0, t) = 1.7ρV 2exp(−3.1Vt/D)
(Figure 7b).

The pressure at the impact axis has also been simulated by Eggers et al. (2010) (Figure 7b).
They further analytically solved the asymptotic pressure distribution along the contact surface
in the limit t → ∞: p(r, t) = 3ρh2(r, t)/(t + t0)2 (see Section 2.3). Here, the free surface of the
spreading drop is h(r, t) = hmax (t)G(ξ ), with hmax (t) = h(r = 0, t) the maximum drop height at the
impact axis.While hmax (t) = A1D3/[V(t+ t0)]2 can be derived from the mass conservation with A1

as a numerical constant (Roisman et al. 2009), the scaling function G(ξ ≡ r
√
hmax/V0) is obtained

from either experiments (Lagubeau et al. 2012, Lastakowski et al. 2014) or simulations (Eggers
et al. 2010). An empirical function has been proposed,G(x) = 1/(1 + Cx2)6, with C = 0.625 from
simulations (Eggers et al. 2010) and C = 0.604 from experiments (Lastakowski et al. 2014). Thus,
an analytical formula for the pressure distribution underneath a spreading drop is reached,

p(r, t ) =
[

3ρA2
1D

6

V 4(t + t0)6

] [
πV 2(t + t0)2

πV 2(t + t0)2 + 6CA1r2

]12
, 11.

where A1 = 0.492 and t0 = 0.429D/V are obtained from the experimental profile of spreading
drops (Lagubeau et al. 2012), and A1 = 0.39 and t0 = 0.25D/V are obtained from the numerical
profile of spreading drops (Roisman et al. 2009). The calculation by Eggers et al. is valid at the
long-time limit when p → 0. Gordillo et al. (2018) further extended the self-similar scaling of
drop spreading and provided a fully nonlinear self-similar analytical solution for hmax (t) and p(r, t),
valid at finite times in the late-impact regime of inviscid-drop impacts. In the t → ∞ limit, their
theory analytically predicts A1 = 0.44 and t0 = 0.31D/V, which are in close agreement with fitted
parameters of experiments and simulations. The pressure at the impact axis was also given in a
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parametric representation

p̃(ω̂) = − 1
8t22

ω̂T ′′(ω̂)
T 3(ω̂)

and t̃ (ω̂) = t1 + t2T (ω̂), 12.

where t2 = √
2/3, t1 = −t2T(2), and T(x) = 2x−1/2(1 + x3)1/2 − 3(1 + x3)1/3F[ − 1/3, 1/6, 2/3][(1 +

x3)−1], with F[m, n, p](x) a hypergeometric function. Different theoretical predictions are compared
in Figure 7b.

We end this section with two remarks. First, Equations 11 and 12 predict p(t) behaves asymp-
totically following 1/(t + t0)6 at the impact axis, which is different from the exponential decay
suggested based on the fitting of numerical results (Figure 7b). Nevertheless, the formulas nu-
merically converge in the regime of inertia-driven spreading for 0.5 < t̃ < 2. At even longer times
toward the end of spreading, the inertia-driven universal pressure profile is invalid due to the ac-
tion of viscous and capillary forces. Second, since the maximum pressure of spreading drops occurs
at the impact axis, the pressure maximum has to shift from the position of the turning line near
the edge of impacting drops to the center of the drops during the transition from the early-impact
to the late-impact regime (Eggers et al. 2010, Bako et al. 2016). It is still not clear how the shift
proceeds theoretically (see the Future Issues section).

3.2. Shear Stress

Next, we consider the shear stress distribution of drop impact, which is more relevant to the
erosion induced by drop impact. At high Re andWe, the viscous boundary layer is thin and scales
as l̃v ∼

√
t̃/Re. Pressure gradients across this thin viscous boundary layer are small. Hence, to the

first order, the pressure distribution is not affected by the viscous boundary layer. Nevertheless,
the boundary layer plays the essential role for the shear stress on impacted surfaces. Ignoring
the viscous boundary layer would lead to zero shear stress and significantly reduce the erosion
capability of impacting drops (Bako et al. 2016).

3.2.1. Early-impact regime. In the early-impact regime, Philippi et al. (2016) hypothesized
that the structure of the viscous boundary layer of drop impact is similar to that of the shock wave–
induced boundary layer. Here, the turning line of an impacting drop is analogous to a shock front
with a growing viscous boundary layer trailing behind. Based on the classic shock wave solution
(Mirels 1955), they obtained the velocity profile within the boundary layer and calculated the shear
stress distribution along the contact surface,

τ (r, t ) = η
∂vr (r, z = 0, t )

∂z
=

√
6ρ1/2V 3/2D1/2η1/2

π3/2

2r
3VDt − 2r2

, 13.

where η is the dynamic viscosity of fluid. Similar to the pressure distribution (Equation 10), the
shear stress also exhibits a finite-time singularity at the turning line r0(t). The formula agrees well
with numerical simulations away from the singularity (Figure 8a). A small cutoff � was found
near the turning line, below which the 1/r singularity is screened (Figure 8b). By integrating the
shear stress over the contact area, they also derived the magnitude of the drag force induced by
drop impact in the early-impact regime,

Fd(t ) =
∫ 2π

0

∫ r0−�

0
τ (r, t )r drdθ = 5.35η1/2ρ1/2V 2D

√
t, 14.

where � = 0.02
√
VDt is chosen based on numerical findings at different Re.
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Shear stress distribution in the early-impact regime. (a) Shear stress τ from numerical simulations with Reynolds number Re = 5,000
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distribution underneath an impacting drop. Impact conditions are the same as those in Figure 6c. Panel c data from Sun et al. (2021).

Our recent experiments with elastic gels confirmed the existence of a propagating shear stress
maximum (Figure 8c). The position of the maximum shear stress is slightly behind the turning
line, following a square-root temporal scaling. The drag force from our latest experiments also
quantitatively agrees with Equation 14 after a transient time upon impact.

3.2.2. Late-impact regime. The viscous boundary layer plays a more prominent role in deter-
mining the shape of impacting drops in the late-impact regime during drop spreading (Roisman
2009, Eggers et al. 2010, Schroll et al. 2010). The final thickness of the spreading lamellae of vis-
cous drops is set by the thickness of the viscous boundary layer at the time when the growing layer
meets with the decreasing surface of the spreading drops.

A simple scaling can be formulated for the shear stress during drop spreading (Bako et al. 2016).
As discussed in Section 2.3, inertia-driven drop spreading is governed by a hyperbolic flow with
vr ∼ r/t. The thickness of the viscous boundary layer grows as lv ∼ √

νt. Thus, the shear stress
scales as τ (r, t ) ∼ ηvr/lv ∼ ρ

√
νrt−3/2.More detailed analysis confirmed the scaling with a numer-

ical factor close to one (Roisman 2009, Eggers et al. 2010):

τ (r, t ) = 1.0354
√

νρrt−3/2. 15.

Equation 15 shows that τ (r, t) increases linearly with r and reaches a maximum at the edge of the
spreading lamella,where a thick rim is formed due to the capillary force and the hyperbolic velocity
profile is invalid. After the stress maximum, the shear stress quickly relaxes to zero toward the edge
of the rim (Bako et al. 2016). The function form of the shear stress in the rim of spreading drops
has not been studied. Differently from the pressure distribution, where the maximum pressure
shifts from the edge of an impacting drop to the center of the drop during the transition from
the early-impact to the late-impact regime, the maximum shear stress stays near the edge of the
impacting drop in the entire impact process. Indeed, due to the axial symmetry of drop impact,
the shear stress is necessarily zero at the impact axis.
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4. OTHER FACTORS

Studies of the impact force and the stress distributions in an ideal impact situation,where spherical
drops impact on smooth solid surfaces, have been inspired and motivated by related problems
that include other factors, such as the presence of fluid layers, the effect of air cushioning, and
nonspherical impacting drops.

4.1. Fluid Layers

The preexisting fluid layer on impacted surfaces can significantly modify the impact force and
stress distributions.

4.1.1. Impact force. Petersson (1995) experimentally studied the drop impact force on a solid
surface covered by a water layer using an underwater piezoelectric sensor. Although the exact
thickness of the water layer was not measured, Petersson showed that the peak force decreases and
the width of the force peak increases with increasing thickness of the water layer.More recently, Yu
&Hopkins (2018) used the technique of wavelet deconvolution and studied the temporal evolution
of the drop impact force on an elastic plate underneath a water layer of controlled thickness. The
force–time curves can be generally divided into two parts in their experiments: the short-time
dynamics due to the initial impact and the long-time dynamics associated with the formation of
jets, vortex rings, or oscillating bubbles induced by the impacting drops (Yarin 2006). While the
force impulse of the initial impact broadens with the thickness of the water layer, consistent with
Petersson’s experiments, the force at long times is more complicated because of complex flow
dynamics in the water layer. Particularly for small drops impacting into deep layers, bubbles are
entrained underneath the impact point. The oscillation of these bubbles gives rise to strong force
signals at high frequencies above 700 Hz in the frequency domain.

4.1.2. Stress distributions. Early studies by Hartley and coworkers investigated impact-
induced shear stress on a solid surface underneath water layers of different thicknesses (Hartley
& Alonso 1991, Hartley & Julien 1992). They focused on the short-time dynamics during the
expansion of impact craters in the water layer. Based on numerical simulations at intermediate Re,
they obtained a series of empirical relations for various features of the shear stress distribution,
including the maximum shear stress, the position and time of the maximum shear stress, and the
spatial distribution of the shear stress. Particularly, they suggested that the maximum shear stress
on the solid surface follows

τmax = 4.17C1ρV 2(2h/D+ 1)−3.16Re−0.55, 16.

where h is the thickness of the water layer. The prefactor C1 ranges between 0.91 and 1 and is a
weak function of a specific combination of We and Fr. Equation 16 shows a strong dependence
of τmax on the thickness of the water layer. Water layers effectively shield the shear stress at the
solid surface, a known effect from the study of soil erosion (Mutchler & Young 1975, Bako et al.
2016). The decay of shear stress after the maximum shows a strong dependence on We and Fr,
as gravity and surface tension provide the restoring force for the disturbed water layer. Using
hot-film anemometry, Hartley and coworkers further experimentally measured the shear stress of
drop impact on the bottom surface of a water flume.A slow horizontal base flow had to be imposed
in the flume in order to maintain a constant fluid temperature over the hot-film sensor in their
experiments. A qualitative agreement between numerical and experimental results was found.

Thanks to advances in computational power, simulations of the pressure and shear stress of
drop impact on water layers can now be extended to high Re, which is relevant to raindrop impact.

72 Cheng • Sun • Gordillo



Bako et al. (2016) showed that the position of the maximum pressure inside the water layer follows
the square-root scaling, rmax(t ) ∼ √

t, similar to that of drop impact on dry surfaces. For shallow
water layers of height h/D< 1/4, the maximum pressure is pmax(t ) ∼ 1/

√
t, which also agrees with

the prediction of Equation 9. For thick layers, the maximum pressure is pmax (t) ∼ 1/t at interme-
diate times and transitions to ∼1/

√
t at long times. The crossover time between the two scaling

behaviors increases with increasing h/D.While rmax (t) within water increases with time, the max-
imum pressure on the solid surface underneath the water layers stays at r = 0. Thus, water layers
eliminate the annular pressure maximum on the solid surface.Nevertheless, self-similar structures
of the pressure field could still be identified, although the scaling parameters vary with h/D. For
the maximum shear stress on the solid surface, Bako et al. (2016) found τmax /(ρV 2) ∼ (2h/D +
1)−2.6, which shows a weaker dependence on the thickness of the water layer than that predicted
by Equation 16. Self-similar structures of shear stress distributions were observed for shallow
(h/D< 1/3) and thick (h/D> 1) water layers, but not for water layers of intermediate thicknesses.

4.2. Air Cushioning

Since the discovery of the effect of ambient air on the splashing of impacting drops on solid sur-
faces (Xu et al. 2005), air cushioning in drop impact has attracted great research interests [see
Josserand & Thoroddsen (2016) and references therein]. The thin layer of air underneath an im-
pacting drop induces a submicron dimple-like deformation on the bottom of the drop and delays
the contact between the drop and the solid surface (Figure 9a) (Thoroddsen et al. 2005, Driscoll
& Nagel 2011, Kolinski et al. 2012, Lee et al. 2012). This effect of air cushioning screens the
1/

√
t singularity of the pressure at the impact point predicted by Equations 9 and 10, as well as

the water-hammer pressure at the very early moment of impact. Smith et al. (2003) calculated the
screened pressure on the impacted surface. Before the drop touches the surface, a maximum gas
pressure first builds up at the impact axis. As the impact pressure overcomes the gas pressure, an
annular pressure maximum develops at later times along a ring where the distance between the
bottom of the deformed drop and the surface is smallest at hmin . Similar dynamics have also been
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Figure 9

Air cushioning effect. (a) Snapshots from simulations showing the deformation of a drop of diameter D =
3.4 mm (ηg = 1.8 × 10−5 Pa·s, ρ = 0.78 g/cm3) before contacting the impacted surface at an impact velocity
of V = 3.74 m/s. (b) The corresponding gas pressure within the air layer. Figure adapted with permission
from Mani et al. (2010).

www.annualreviews.org • Drop Impact Dynamics 73



Stokes number:
St = ηa/(ρVD)

reported by Mandre and coworkers (Figure 9b) (Mandre et al. 2009, Mani et al. 2010), who fur-
ther showed that the air underneath the impacting drop can either drain out of the thin layer or
be compressed, depending on specific impact parameters and the ambient pressure. The compres-
sion dynamics are further divided into two different regimes in their theory: the subcompressible
regime at large hmin and the supercompressible regime at small hmin . In all the cases, the pressure
distributions near hmin can be described by self-similar solutions.

Coupling the potential flow of the impacting drop with the lubrication flow of the thin incom-
pressible air film, Hendrix et al. (2016) studied the air entrainment induced by drop impact on
a deep liquid pool. Their simulations revealed a similar pressure screening effect by air cushion-
ing, where the maximum gas pressure moves from the impact axis to the contact ring between the
drop and the pool. Josserand et al. (2016) also discussed the effect of air cushioning in regularizing
the pressure singularity at the turning line for drop impacts on a thin liquid film. In the draining
regime without air compression, they showed that the pressure inside an air layer of viscosity ηa

follows p ∼ ρV 2St−1/3, where the Stokes number St compares the viscous effect of air with drop
inertia. The proposed scaling agrees with their simulations. Systematic experiments investigating
the effect of air cushioning on the impact force and stress distributions of drop impact have not
been conducted so far (see the Future Issues section).

4.3. Nonspherical Drops

Drops under equilibrium form perfectly spherical shapes due to the action of capillary forces.
However, drops in nature are often in an out-of-equilibrium state.For instance, dropsmay oscillate
between a prolate and oblate shape due to the initial perturbations (Lamb 1945).The amplitude of
the oscillation diminishes over time because of viscous dampening. Likewise, large drops falling at
their terminal velocities are deformed due to air drag, leading to nonspherical shapes with flatter
bottoms (Clift et al. 1978). The effects of the nonspherical shape on the impact force of liquid
drops have been examined in several experiments and simulations.

The first evidence of the shape-dependent impact force was from the early study of Nearing
& Bradford (1987), who showed that the peak force oscillates with the release height. They veri-
fied the shape origin of the force oscillation by showing that the oscillation amplitude decreased
with the fall time. For a millimeter-sized water drop released from a 14-m height, the oscillation
amplitude is a few percent of the mean peak force. More recently, Zhang et al. (2019) studied
the impact force of ellipsoidal drops of different aspect ratios in simulations. They found that
oblate drops have larger peak forces and shorter peak times compared with prolate drops of
the same impact momentum. They further showed that the impact force of ellipsoidal drops ex-
hibits the same square-root temporal scaling at early times as the impact force of spherical drops
(Equation 1). The higher peak force induced by the impact of oblate drops has been confirmed
by recent experiments comparing the temporal evolution of the impact force of oblate, spherical,
and prolate drops (Schmid et at. 2021). When nondimensionalized by the nominal diameter D =
(6V0/π )1/3 defined in terms of the drop volume V0, the dimensionless peak force of large drops
near terminal velocities is larger than F̃max = 0.85 of the universal force curve (Yu & Hopkins
2018). The deviation is attributed to the oblate shape of large drops induced by air drag, which
gives rise to the higher peak force.

5. SURFACE EROSION AND GRANULAR IMPACT CRATERING

The pressure and shear stress of drop impact are responsible for the wear and erosion of impacted
surfaces, which motivated many of the studies reviewed above. In this last section, we briefly dis-
cuss impact-induced surface erosion on granular media as an example illustrating the outcome of
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Figure 10

Granular impact cratering by liquid drops. (a) Morphology of granular craters induced by the impact of 3.1-mm-diameter water drops.
Panel a adapted with permission from R. Zhao et al. (2015). (b) Ratio Dliquid

c /Dsolid
c of the diameter of granular craters by water drops to

that by solid spheres at different projectile sizes D and energies E based on Equations 17 and 18. The dashed line indicates the sizes and
energies of projectiles where the ratio is 1. Above the line, liquid drop craters are larger. (c) Comparison of the diameter of drop craters
and that of solid-sphere craters. Eg = (π/6)ρgφgD4 is the characteristic potential energy, where φ is the volume fraction of granular
media. (d) Excavated crater volume Vc normalized by V0 = (π/6)D3 versus the scaled granular deformation energy Es/Eg. Panels c and
d adapted with permission from de Jong et al. (2021).

the unique spatiotemporal structure of the stress distributions of impacting drops. Although the
erosion of hard solid surfaces by high-speed impacting drops have been investigated (Figure 6a)
(Adler 1977,Hackworth 1979), the study of the erosion effect of low-speed drop impact relevant to
the current review focuses mainly on deformable granular media.We limit our review on the pro-
cess of impact cratering by single drops on dry granular media. Other effects such as the ejection
of granular particles, the so-called rain splash, and impact on wet granular media can be found in
the literature (see Furbish et al. 2007, Long et al. 2014, Zhang et al. 2015, and references therein).

Under the impact of a liquid drop, the surface of a granular medium readily deforms. Granular
particles on the surface are pushed away from the impact point by the spreading drop, leading
to an impact crater as the final outcome of the impact event (Figures 1a and 10a). Early experi-
ments investigated the scaling of the diameter Dc of liquid drop impact craters on granular media
(Katsuragi 2010, Marston et al. 2010, Delon et al. 2011). These experiments suggested that Dc

scales with the 1/4 power ofWe of impacting drops, which yieldsDc ∼ E1/4, where E is the impact
energy of the drops. Nevertheless, later studies extending over a larger range of impact energies
showed the scaling exponent is less than 1/4 due to the internal dissipation associated with drop
deformation (Nefzaoui & Skurtys 2012, R. Zhao et al. 2015). R. Zhao et al. (2015) proposed a
scaling relation for the diameter of impact craters:

Dc = 1.74
(
ρg
)−1/6D1/3E1/6. 17.

The van der Meer group has conducted a series of experiments investigating both the dynamics
of impacting drops on granular surfaces and the shape of resulting impact craters (S.-C. Zhao
et al. 2015, 2017, 2019; de Jong et al. 2017, 2021). They showed that the energy transferred from
impacting drops to granular media can be expressed as Es = Z∗

cE/(D/2 + Z∗
c ), where Z

∗
c is the

maximum crater depth. A scaling of Dc/D ∼ E0.16
s has been found.

www.annualreviews.org • Drop Impact Dynamics 75



As a comparison, the scaling of the size of impact craters by solid spheres has also been obtained
from experiments (Uehara et al. 2003),

Dc = 0.92
[

ρ

ρgμ2

]1/4
D3/4H1/4 = 1.08

[
1

ρggμ2

]1/4
E1/4, 18.

whereH is the fall height of solid spheres, ρg is the density of granular particles, and μ is the grain
friction coefficient. Note that the impact energy is E = (π/6)D3ρgH.

The different scaling behaviors of the two impact processes arise due to the distinctive dynamic
features of their stress distributions. Equation 18 shows that, when plotted against the impact en-
ergy, the size of craters from solid-sphere impact is independent of the size of spheres. As the
positions of the maximum impact pressure and the maximum shear stress of solid-sphere impact
are stationary, concentrating near the impact point, the process of solid-sphere impact can be
viewed as the deposit of a point-source energy on the granular surface, similar to explosion crater-
ing (Gao et al. 2017, Liu et al. 2020). As a result, the crater size is independent of the size or even
the shape of the impacting sphere when the impact energy is sufficiently high (Pacheco-Vazquez
2019). In contrast, the maximum pressure and shear stress of drop impact expand radially in an
impact event (Figures 6c and 8c). Since the spreading of impacting drops is a strong function of
the size of the drops, the resulting granular craters exhibit a clear size dependence (Equation 17).

As a consequence of this size dependence, the diameter of impact craters by large drops at
low impact energies is larger than that of solid-sphere impact craters at the same impact energy,
even though the average impact force and pressure of drop impact are significantly smaller than
those of solid-sphere impact (Figure 10b). More recent experiments by de Jong et al. (2021)
directly compared the sizes of granular craters by drop impact and those by solid-sphere impact.
Their study indeed showed larger impact craters by water drops at relatively low impact energies
(Figure 10c). In addition, they showed that the drop impact craters are shallower than those from
solid spheres. More interestingly, they found that the excavated crater volume is the same for
both drop and solid-sphere impact when plotting against the granular deformation energy Es

(Figure 10d).

FUTURE ISSUES

1. While the self-similar dynamics in both the early-impact and the late-impact regimes
have been elucidated thanks to recent theoretical progress, an understanding of the tran-
sition between the two regimes at intermediate times is still out of reach. As a result, a
first-principle description of the dynamics of impact force and stress distributions over
the entire time domain of drop impact has not yet been achieved. As the maximum im-
pact force occurs in this transition regime, a theoretical understanding of the regime
will provide a quantitative prediction of the peak impact force, which is crucial for many
impact-related processes.

2. Quantitative measurements of the stress distributions underneath impacting drops are
highly demanded and are important not only for verifying the key assumptions of theo-
ries and simulations but also for understanding the dynamics of drop impact in situations
that are hard to simulate at present (e.g., drop impact on granular media). For such chal-
lenging measurements, new experimental techniques are likely needed.

3. Although extensive research has been conducted in probing the kinematics of drop im-
pact across a large control parameter space, the study of the impact force and stress
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distributions under different impact conditions requires further efforts. The effects of
important parameters on the dynamical variables of drop impact, including the texture
of impacted surfaces, the impact angle of impinging drops, and the pressure of ambient
gases, have not been systematically investigated. Understanding the influence of these
parameters will open the door for manipulating and exploiting the impact force and
stress distributions of drop impact in engineering applications.

4. Experiments on the impact force of low–Reynolds number drops without viscoelastic-
ity are needed to detect the higher-order effect of viscosity on the peak force and time
(Figure 4). It would also be interesting to investigate the impact force and stress distri-
butions of viscoelastic drops and explore the transition between drop impact and solid
sphere impact from the perspective of impact dynamics and materials science.

5. A vast knowledge gap still exists between our fundamental understanding of the impact
force and stress distributions and the outcome of drop impact events. For example, it
is far from clear how the dynamics of impact force and stress distributions lead to the
unusual scaling of drop impact granular craters (Equation 17) and how to use the basic
understanding presented in this review to predict the degree of soil erosion induced by
raindrop impact.
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