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Abstract

In the past few decades various particle image–based volumetric flow mea-
surement techniques have been developed that have demonstrated their
potential in accessing unsteady flow properties quantitatively in various
experimental applications in fluid mechanics. In this review, we focus on
physical properties and circumstances of 3D particle–based measurements
and what knowledge can be used for advancing reconstruction accuracy and
spatial and temporal resolution, as well as completeness. The natural candi-
date for our focus is 3D Lagrangian particle tracking (LPT), which allows
for position, velocity, and acceleration to be determined alongside a large
number of individual particle tracks in the investigated volume. The ad-
vent of the dense 3D LPT technique Shake-The-Box in the past decade has
opened further possibilities for characterizing unsteady flows by delivering
input data for powerful data assimilation techniques that use Navier–Stokes
constraints. As a result, high-resolution Lagrangian and Eulerian data can
be obtained, including long particle trajectories embedded in time-resolved
3D velocity and pressure fields.
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1. INTRODUCTION

Lagrangian particle tracking (LPT) is a volumetric flow measurement technique capable of fol-
lowing high numbers of tracer particles over extended periods of time, even in highly turbulent
scenarios. In this introduction we physically motivate the importance of these and related tech-
niques, introduce the general principle, provide an overview of the historical development, and
describe recent advances in postprocessing. In-depth discussions of these topics are provided in
Sections 2–4.

Most flows we encounter in everyday life are unsteady, turbulent, and three dimensional (3D).
The Reynolds numbers reached in nature, aerodynamics, and in many relevant technical appli-
cations are typically far above the onset of turbulence. Human beings are literally immersed in
unsteady fluid flow phenomena, from those in our blood vessels and respiratory tracts to flows
around and inside various transport vehicles, currents in oceans, atmospheric turbulent boundary
layers (TBLs), and mixed thermal convection inside closed rooms. In order to make any technical
use of fluid flows, one needs to understand their Lagrangian and Eulerian properties in detail in
various applications and situations. The main features of turbulent flows are their dynamic energy
transfer mechanism in a cascade from large to increasingly smaller (vortical) flow scales down
to dissipation (Richardson 1922) and their increase of spatial and temporal scale separation with
Reynolds number as L/η ∼ Re3/4λ and TL/τη ∼ Re1/2λ (Toschi & Bodenschatz 2009; see also the
sidebar titled Scales of Turbulent Flows).

Turbulent flow structures can be defined as 3D topologies, either stable or unstable saddle-
points or stable or unstable nodes, according to the local velocity gradient tensor (VGT) (Chong
et al. 1990), that change their shape and orientation in time while convecting (downstream) with
the bulk flow. On the other hand, the flow and its coherent structures themselves can be under-
stood and described as a dynamic composition of an almost infinite number of fluid elements that
are moving with the local flow as Lagrangian trajectories and are coupled with neighboring ele-
ments by pressure gradients and viscosity. In a Lagrangian frame of reference, these fluid elements
are entering and exiting more persistent Eulerian coherent flow structures, thereby keeping them
alive or leading to their final decay. Therefore, flow topologies can be defined either in a Eulerian
(laboratory) reference system, for example, by the invariantsQ and R of the VGT (for incompress-
ible flows), or from a Lagrangian perspective as Lagrangian coherent structures (LCS) (Haller
2015) moving with the fluid elements. Nevertheless, both reference systems allow the same flow
to be described, as the Lagrangian and Eulerian velocity vectors are identical for each time step.

Fluid flow dynamics follow physical laws describing their momentum exchange and mass
conservation by a set of equations, which were first discovered by Navier and Stokes. These gov-
erning laws are nonlinear partial differential equations and, nowadays, allow numerical methods to

SCALES OF TURBULENT FLOWS

The Reynolds number Re expresses the ratio of inertial to viscous forces in the flow by, for example, Reλ =U · λ/ν,
whileU is the flow velocity,λ is theTaylormicro-length scale, and ν is the kinematic viscosity. ForRe� 1, the flow is
typically turbulent and consists of a broad range of flow scales. The integral length scale and timescale are denoted
L and TL, respectively, which are measures for the largest and most persistent flow structures. The Kolmogorov
length scale and timescale, η and τη, respectively indicate the smallest flow structures and shortest timescales that
lead to dissipation into heat. Therefore, a flow measurement technique that allows for a wide range of flow scales
to be captured is desired. For the technical capabilities of Lagrangian particle tracking, it is of importance that the
spatial scale separation, L/η, grows faster with Reλ than the temporal one, TL/τη.
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predict flows and their features by computer simulations, such as for aerodynamical design
purposes. At high Reynolds numbers, the resolution requirements in space and time and the non-
linearity of the flow physics involved pose many problems for numerical codes, regarding either
the available computer resources or the validity and applicability of established turbulence mod-
els or scaling laws (Mani & Dorgan 2023). A very high degree of computational effort is already
needed for predicting turbulent flows at moderate Reynolds numbers by direct numerical sim-
ulations (DNS). Today, even with modern high-performance computing resources, converged
DNS results (e.g., for the flow around a small passenger aircraft) cannot be provided at all and
will most probably not be reachable within the next couple of decades. Therefore, (advanced)
computational fluid dynamics code developments that use turbulence or subgrid-scale models to
solve their closure problem [large eddy simulations, (unsteady) Reynolds averaged Navier–Stokes
(NS) equations, etc.] require spatially (and temporally) well-resolved experimental validation data
at high Reynolds numbers, preferably in full volumes around various model geometries. High-
quality velocity vector fields (instantaneous and mean with Reynolds stresses) enable the tuning
of numerical parameters and the adaptation or further development of various turbulence mod-
els. Promising fields that will be closely linked to velocity, acceleration, and pressure data from 3D
LPT measurements in the near future include data-driven turbulence models (Duraisamy et al.
2019) and the exploration of universal constants (Viggiano et al. 2021) or turbulent transport
properties in inhomogeneous turbulence from Lagrangian statistics.

1.1. Particle Image–Based Velocimetry

During the past decades a tremendous increase of flow field information has been gained from ex-
perimental investigations applying image-based measurement techniques. Particle image–based
methods visualize the flow using clouds of small tracer particles that are illuminated and observed
by one or more cameras (complementary or alternative to existing probe techniques). For exper-
iments in unsteady and turbulent flows, nonintrusive volumetric and time-resolved measurement
techniques, determining all three components of the velocity (and acceleration) vectors at many
points instantaneously, are highly desired. Consequently, in recent years particle image velocime-
try (PIV) techniques have been extended from 2D to 3D and from two-pulse snapshot modes to
temporal resolution (Adrian & Westerweel 2011, Raffel et al. 2018, Beresh 2021). Various vol-
umetric (and time-resolved) PIV and particle tracking velocimetry (PTV) techniques and their
capabilities have already been presented in dedicated papers. For single (or stereo) camera views,
scanning PIV has been proposed by, for example, Gray et al. (1991) and Brücker (1997); holo-
graphic PIV techniques have been presented by Hinsch (2002), Katz & Sheng (2010), and others;
coded aperture PIV was first introduced by Willert & Gharib (1992); defocusing PIV was de-
scribed by Pereira et al. (2000); structured-light PIV was described by, e.g., Aguirre-Pablo et al.
(2019); and light field or plenoptic PIV was described by Fahringer et al. (2015) and others. Appli-
cations of single-camera 3D PTV for microfluidics include astigmatism (Cierpka et al. 2010) and
holographic PTV (Choi et al. 2012). Single-view 3D PIV and PTV techniques can operate with
less optical access, but due to the limited aperture, the reconstructed particle position uncertainty
in depth direction (the direction parallel to the main viewing direction of the camera) is much
larger (typically by a factor greater than 3) compared to the in-plane uncertainties. Multicamera
methods rely on several camera projections, allowing similar position and velocity uncertainties
in all three directions in space when appropriate projection angles are applied (ideally an angle of
90° is used between the two outermost cameras—the “aperture” of the camera system).

Tomographic PIV (Tomo-PIV), which was introduced by Elsinga et al. (2006) and further
developed by Wieneke (2008), Atkinson & Soria (2009), and Novara et al. (2010), significantly
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enhanced the spatial resolution of volumetric velocimetry. Therefore, Tomo-PIV rapidly evolved
to become the most commonly used and robust 3D flow measurement technique in the decade
following its first publication. It enables flow field estimates to be delivered on regular 3D velocity
vector grids via iterative local cross-correlation schemes with relatively high spatial resolution
based on, typically, four to six camera projections and at particle image densities aroundNI = 0.05
particles per pixel (ppp). Furthermore, by using many camera projections one can increase the
number of truly reconstructed particles per time step while reducing the so-called ghost particle
fraction (Elsinga et al. 2006),which holds true as well for particle-based reconstruction schemes for
3DLPT.For all 3D reconstruction techniques,NI determines the possible spatial resolution inside
the investigated flow for a given depth of the measurement volume; however, the reconstruction
difficulty increases withNI . The maximum value ofNI at which a method can reliably reconstruct
true particles while not creating too many ghost particles typically determines its performance.
Novel machine learning (ML) approaches are promising methods for increasing the range of NI-
values for Tomo-PIV techniques (Gao et al. 2021). A further increase of spatial resolution or
particles per volume (ppv) has been achieved by a scanning Tomo-PIV setup in a turbulent low-
speed flow (Lawson & Dawson 2014). However, for all cross-correlation-based PIV techniques,
a spatial low-pass filter modulation of the velocity gradients inside the measured flow has to be
accepted because only a group of particle images (typically four to ten) located inside a 2D or 3D
correlation window [e.g., 32² px (pixels) or 32³ voxels] enables a robust estimation of the position
of the local displacement vector peak. Furthermore, acceleration vector fields are not directly
accessible by this method. Consequently, a measurement technique that enables individual tracer
particles to be followed volumetrically and at high densities in time is more suited to bridge the
scattered measurement data, including position, velocity, and acceleration, along reconstructed
particle trajectories to the governing NS equations.

1.2. Particle Tracking Methods

In contrast to PIVmethods, particle trackingmethods have been developedwith 3DPTV schemes
that enable relatively sparse particle track reconstructions (e.g., Nishino et al. 1989, Maas et al.
1993, Malik et al. 1993, Guezennec et al. 1994, Virant & Dracos 1997, Ouellette et al. 2006,
Machicoane et al. 2019, Dabiri & Pecora 2020) at particle image densities between ∼0.005 and
0.02 ppp. Increased particle track densities in the measurement volume can be achieved with scan-
ning 3D PTV techniques (Hoyer et al. 2005, Kozul et al. 2019), reaching higher ppv values for
relatively low flow velocities. Nowadays, state-of-the-art 3D LPT techniques can reach high par-
ticle image densities of ∼0.05–0.2 ppp using the Shake-The-Box (STB) method (Schanz et al.
2016, Jahn et al. 2021, Leclaire et al. 2021, Sciacchitano et al. 2021b).

Figure 1 depicts the general working principle of 3D particle tracking experiments: First, par-
ticle images of (illuminated) passive tracers inside the flow are taken simultaneously from several
camera projections (typically three to six) for each time step. Then, particle image peaks are de-
tected on each camera and the lines-of-sight (LOS) of each peak are virtually elongated into the
measurement volume according to the 3D camera calibration. When LOS of detected particle
image peaks on several cameras intersect below an allowed triangulation error (∼1 px), a true 3D
particle position can be assumed.Using all detected peaks on the different cameras, one can recon-
struct clouds of 3D particle positions for each time step. A tracking approach is then applied in a
second step that aims at always finding the identical imaged particle along the corresponding time-
line of 3D particle reconstructions in order to build up long 3D particle trajectories. The actual
implementations of the different LPT steps can be performed with varying levels of sophistication
and are discussed in Sections 2 and 4.
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Postprocessing:
e.g., extraction of flow structures

Figure 1

The basic steps of a Lagrangian particle tracking experiment. 2D particle images (peaks) are identified on all
camera images for a certain time step (green dots) and then used to determine 3D positions (blue dots) using
(iterative) triangulation procedures (red lines). The particle clouds from several time steps can be connected
to tracks under certain constraints. Velocity and acceleration of the trajectories yield several properties via
postprocessing (e.g., flow structures) by applying regularized interpolation (data assimilation) to all particles
tracked at a certain time step.

Figure 2 shows a specific application of LPT in a large and densely seeded Rayleigh–Bénard
convection cell. The key aspects of the setup are a pulsed volumetric illumination and a multicam-
era setup consisting of at least three cameras and capable of temporally resolving the flow. Here,
the STB algorithm (see Section 3.1) was used to instantaneously track up to 560,000 tracers over
long periods of time from the images obtained from six cameras (Bosbach et al. 2021, Godbersen
et al. 2021).

Here we would like to suggest using the name “3DLPT” for volumetric measurements of indi-
vidual particle trajectories (following, e.g., Ouellette et al. 2006) because the achievable measures
along individual particle paths are manifold, including position, velocity, acceleration (material
derivative), and (sometimes even) jerk, as well as their Lagrangian properties. All of these are
important for the fluid mechanical characterization of the investigated flow and are valuable in-
puts for high-resolution postprocessing approaches using bin-averaging for one- and multipoint
statistics, data assimilation (DA), ML, and integration [e.g., pressure from LPT (Rival & van
Oudheusden 2017, van Gent et al. 2017)]. The velocity, as might be suggested by the term “PTV,”
is not the only important outcome.

Tomo-PIV and 3D LPT/PTV techniques, as well as various similar volumetric velocimetry
techniques for fluid flows, have been extensively presented and discussed in recent reviews (e.g.,
Scarano 2013,Westerweel et al. 2013, Discetti & Coletti 2018, Machicoane et al. 2019) and text-
books (Schröder & Willert 2008, Adrian & Westerweel 2011, Raffel et al. 2018, Dabiri & Pecora
2020). Furthermore, with the recent development of high-speed lasers and cameras, the range of
flow velocities in which time-resolved velocity field information can be gained via PIV and LPT
has been widened significantly in spatial and temporal resolution (Beresh 2021).

In all various volumetric flow measurement techniques, the achievable dynamic spatial range
(DSR) (see Adrian 1997) for sampling any (turbulent) flow field is mainly restricted by the res-
olution of the used camera sensor and the reachable volumetric particle density, which limit the
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Figure 2 (Figure appears on preceding page)

(a) Exemplary setup of a Lagrangian particle tracking (LPT) experiment, consisting of a Rayleigh–Bénard convection (RBC) cell 1.1 m
in height with tracer particles (here, helium-filled soap bubbles) illuminated by a pulsed light source (here, from above by arrays of
high-power LEDs (light-emitting diodes) shining through a transparent water-cooled top plate). The illuminated tracers are recorded
in a time-resolved fashion by a system of cameras, all imaging the same (illuminated) volume. (b) Actual image from one camera of the
experiment, showing bubbles inside the cell and the illuminated heated floor. The insets show examples at several particles per pixel
(ppp) concentrations. (c) LPT was performed on the high-density images using the Shake-The-Box method. (d) Flow structures can be
visualized by applying FlowFit data assimilation to the tracked particle field in panel c. Panels adapted from Godbersen et al. (2020)
(CC BY-NC 4.0; https://doi.org/10.1103/APS.DFD.2020.GFM.V0074).

instantaneous sampling of the largest and smallest achievable flow structures, respectively. The
latter is directly related to NI and the depth of the investigated volume. Therefore, if flow dy-
namics and repetition rates of cameras and illumination allow, 3D scanning methods can achieve
relatively high volumetric particle densities (and DSR values) and do not suffer (like many other
techniques) from both the reduction of scattered particle light due to small camera lens apertures
and the expansion of the available (laser) light for full volumetric illumination.

On the other hand, the dynamic velocity range (DVR) (Adrian 1997) and dynamic accelera-
tion range (DAR) (Schanz et al. 2016) are strongly linked to the reconstructed particle position
accuracy and the temporal sampling along the (exploitable) particle trajectories. To enhance DSR
and DVR of particle-based measurements, the need for a “completely new approach” has already
been proclaimed (Westerweel et al. 2013, p. 409). In general, multi-illumination or time-resolved
imaging strategies of tracer particles inside flows enable higher accuracies than can be achieved
with two-pulse strategies when determining temporal derivatives of the particle trajectory. All
three characteristic values, DSR, DVR, and DAR, can be maximized in a 3D LPT experiment
by exploiting the knowledge of the physical (fluid mechanical and optical) properties of the indi-
vidual tracer particles and their imaging. Applying this physical knowledge for an enhanced 3D
particle reconstruction and tracking scheme was the path followed by the STB development in
the past decade. High position accuracies of reconstructed particles require well-sampled particle
images (∼2 px in diameter, no pixel-locking) at high signal-to-noise ratio (SNR), as the discretized
gray values of particle images contain the particles’ position information. Then, the applied 3D
reconstruction scheme should aim at a strong reduction of ghost particles in order to keep the
distributed image intensity at the true particles’ positions for enhancing their position accuracy.
Finally, having obtained such high positional accuracies, accurate temporal derivatives along fitted
tracks, like velocity and acceleration, are only available at sufficiently high sampling frequencies.
With respect to extreme but rare acceleration events inside turbulent flows, it has been proposed
that one samples at least 40 times faster than the Kolmogorov timescales, τη, in order to avoid
respective tracking and truncation errors (Lawson et al. 2018). However, hardware restrictions
do not always allow for such high illumination and imaging frequencies. In Section 3.2 below
the temporal sampling problem for high-acceleration (and -jerk) events is addressed again in the
context of an advanced prediction and correction STB scheme.

1.3. Advanced 3D Particle Tracking and Data Assimilation Techniques

The STB technique is an advanced 3D LPT method that combines the triangulation-based ad-
vanced iterative particle reconstruction (IPR) technique (Wieneke 2012, Jahn et al. 2021) with the
exploitation of the temporal and spatial coherence of Lagrangian particle tracks in the investigated
flow. STB enables the processing of particle image densities up to NI = 0.2 ppp under good ex-
perimental conditions with an almost complete suppression of ghost particles. Subsequently, the
dense scattered particle tracks are temporally filtered (Gesemann et al. 2016, Gesemann 2021) for
estimating position, velocity, and acceleration (material derivative), which can be used in a second
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step as input for DA approaches using NS constraints, delivering the full time-resolved 3D veloc-
ity gradient tensor and pressure fields (e.g., Gesemann et al. 2016, Schneiders & Scarano 2016,
Jeon 2021). Using only solenoidal constraints applied to dense LPT data, in case D of the Fourth
International PIV Challenge in 2014, the first DA schemes have already shown better spatial and
temporal resolution of the reconstructed volumetric flow field than advanced Tomo-PIV tech-
niques (see Kähler et al. 2016). A further benchmark test of the 3D pressure field reconstruction
capabilities of various pressure from PIV and LPT approaches also showed strong benefits in us-
ing dense LPT data, delivering velocity and acceleration vector fields as input for DA schemes
that apply fully nonlinear NS constraints (see van Gent et al. 2017). Current developments aim
at maximizing the achievable flow information from single flow experiments at high particle im-
age densities by applying (combined) 3D LPT, DA, and ML (Brunton et al. 2020) approaches.
However, in many high-speed flow experiments, full temporal resolution for particle image–based
volumetric velocimetry is still not possible. Here, multipulse and multi-illumination techniques
for Tomo-PIV (Lynch& Scarano 2014, Schröder et al. 2013) and LPT (Novara et al. 2016b, 2019)
have been developed that can capture volumetric velocity fields at high spatial resolution, as well
as DVR (see Figure 5) (e.g., van Gent et al. 2017).

The scattered nature of the individually tracked particles provides a great advantage over other
related measurement techniques such as PIV. Instead of a fixed regular grid of convolution win-
dows whose size imposes a low-pass filtering effect on resolvable flow structures and gradients,
the particle track positions are distributed homogeneously and provide local point measurements
of fluid elements when using particles with diameters below the smallest scales of the investi-
gated flows, such as the Kolmogorov length scale dp < η, and at low Stokes numbers St � 1.
This can be exploited in Eulerian ensemble averaging using spatial binning to realize very fine
(subpixel) resolutions since the bin size is primarily limited by the amount of available data and
the fitted position accuracy. This allows for a direct trade-off between bin size and convergence
of the underlying statistics (Schröder et al. 2015). One particularity of LPT is that the position,
velocity, and acceleration of a particle can be determined not only at each measured timestep but
also, inherent to the postprocessing, continuously along the full reconstructed track (Godbersen
& Schröder 2021). The position accuracy of a measured particle path along the filtered track is
typically in the range of 0.1 px. In the context of characterizing the results of evaluation methods,
the normalized pixel unit px has evolved as a universal measure of length due to its transferability
between different measurements or synthetic test cases.

There have been attempts to quantify the uncertainty of LPT measurements on a spectral
level (Gesemann 2021), on a single–particle trajectory level ( Janke & Michaelis 2021), and as a
full framework that tries to account for various noise and bias sources (Bhattacharya & Vlachos
2020). For DA,methods like track benchmarking (Schneiders & Sciacchitano 2017) and synthetic
benchmark tests can be used (van Gent et al. 2017, Sciacchitano et al. 2021a).

By now, LPT constitutes a measurement tool that allows for accurate 3D flow measurements
in a multitude of flows at high spatial and temporal resolution. In the following, we highlight the
main steps of its evolution, discuss potential obstacles, and present ideas and developments for
further advances.

2. PREREQUISITES FOR DENSE 3D LAGRANGIAN
PARTICLE TRACKING

2.1. 3D Particle Tracking Velocimetry

The first approaches to characterizing an underlying flow by following the trajectories of tracer
particles used manual tracking of singular particles and date back to the beginning to middle of the
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twentieth century (Nayler & Frazer 1917, Chiu & Rib 1956). Agüí & Jimenez (1987) provided a
review and assessment of PTVmethods mainly established before the advent of digital cameras, as
well as their interpolation strategies. The systematic extension to the joint 3D tracking of particles
in larger numbers took place in the early 1990s with developments in digital 3D PTV by Nishino
et al. (1989) and especially Maas et al. (1993) andMalik et al. (1993). These algorithms function by
triangulating 3D positions from projections of the particle field on multiple cameras, followed by
a secondary tracking step connecting physically reasonable appearances in successive triangulated
particle clouds (see Figure 1).

The triangulation process presumes an accurate calibration of the viewing direction for each
camera, for example, using a Tsai or a simple pinhole camera model (Raffel et al. 2018). Peaks
are identified on all cameras and 3D locations are determined by applying epipolar geometry
with an allowed triangulation error ε. The triangulation process is performed for each time step
independently. Trajectories are then extracted by successively examining the reconstructions for
particles that minimize a certain cost function for each already identified track. The cost functions
can be a simple nearest-neighbor approach, more elaborate methods that seek to minimize the
acceleration over several past and future time steps (see Malik et al. 1993, Ouellette et al. 2006,
Xu 2008), or probabilistic frameworks (e.g., Herzog et al. 2021).

A multitude of methods for particle image identification, positioning, tracking, and postpro-
cessing have been developed in the scope of 3D PTV (Dabiri & Pecora 2020). The technique
has been successfully applied in many research areas; one of the most prominent applications was
turbulent flows to investigate, for example, acceleration statistics (La Porta et al. 2001), velocity
statistics (Xu 2008) or vorticity dynamics (Lüthi et al. 2005) by examining particle tracks over very
long examination times (Shnapp et al. 2019). The downside of the approach is the triangulation
process’s limited particle image density and the increase of ambiguities within the tracking pro-
cess with increasing particle number. Therefore, the applicable particle image density NI rarely
exceeded 0.005 ppp (see Figure 2b).

2.2. Advances in Calibration Accuracy

The determination of an accurate calibration for all cameras is a key aspect in all volumetric mea-
surement techniques.A geometrical calibration is typically performed using either a 3D calibration
target or a 2D target translated to at least two parallel positions, yielding an accuracy of the order
of 1 px. On the PTV side this accuracy was regarded as sufficient, mainly because the low particle
image densities allow one to treat ε in a relatively flexible manner.

This changed with the introduction of Tomo-PIV in 2006 (Elsinga et al. 2006, Scarano 2013).
Tomo-PIV reconstructs particles as intensity blob distributions in large arrays of voxels (∼109)
for each time step and subsequently applies local 3D cross-correlation schemes of two (or more)
subsequent intensity distributions to determine a regular grid of (low-pass-filtered) volumetric
velocity vectors. The multiplicative nature of the MART (multiplicative algebraic reconstruction
technique) algorithm used for tomographic reconstruction (Herman & Lent 1976, Atkinson &
Soria 2009) requires that the pixels corresponding to an intersection point in object space on all
cameras be nonzero. A decalibration results in a shift of the pixel matrix and would therefore
create a different 3D intensity blob distribution, with more energy distributed to initially empty
places (ghost particles), reduced intensity at the true particle locations, and distortions of their 3D
shape. The insight that sub-pixel-accurate calibrations are required led to the development of the
volume self-calibration (VSC) method; see the sidebar titled Volume Self-Calibration.

Building upon VSC, a calibration procedure of the optical transfer function (OTF) (Schanz
et al. 2013a) of the particles in several subvolumes was developed, accounting for the often-varying
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VOLUME SELF-CALIBRATION

A calibration of a 3D camera system using a calibration target is limited by the number of markers on the target
and the accuracy with which these are positioned and detected. Furthermore, calibration errors can be introduced
by vibrations, physical interaction, or thermal effects.

The VSC method (Wieneke 2008, 2018) uses measurement images themselves to correct and refine the initial
target calibration. A triangulation process is applied on sparse images (low ppp values) to determine preliminary
3D positions, possibly allowing a large triangulation error to counteract the initial decalibrations. The triangu-
lated particles are then back-projected onto the different cameras and the differences of the back-projection to the
original particle peak are determined, giving an indication of how much each camera is decalibrated in relation to
the others. Averaging these differences over many particles yields disparity vectors, which are used to correct the
initial 2D-3D mapping functions. By iterating the process, the calibration errors can typically be corrected below
0.1 px. Recently, further calibration methods have been developed to account for distortions beyond the order of
the applied calibration model (Schanz et al. 2019, Michaelis et al. 2021).

imaging conditions across the measurement volume between the different cameras and within a
single camera frame.This allows for a precise matching of the reprojected and the original particle
image, thereby increasing accuracy and reducing the residual.Note that VSC andOTF calibration
both are particle based in nature and directly use particle imaging properties. Not only does this
make the gained information ready for use in particle position–based reconstruction schemes, like
IPR and STB, but it also means that the necessary algorithmic structures (like peak detection and
triangulation) can be directly used, thereby reducing the development effort.

2.3. Toward High-Density Particle Reconstruction

PTV had shown that a direct knowledge of particle positions is highly desirable—only that this
method was severely limited by the usable particle image density. Combining the stability of to-
mographic reconstruction and the benefits of particle tracking, Tomo-PTV attempts to identify
3D particle peaks within tomographically reconstructed volumes and track those over two ormore
frames (Schröder et al. 2011, Doh et al. 2012, Novara & Scarano 2013, Fuchs et al. 2016, Bross
et al. 2019, Cornic et al. 2020). The usable particle densities can indeed be elevated compared to
PTV (up to around 0.05 ppp); however, the position accuracy is limited by the 3D peak detection
and processing times, and memory demands are high due to the large voxel space.

A major step in reverting to pure particle tracking was the development of IPR by Wieneke
(2012).This procedure represents an iterative approach to triangulation with intermediate particle
position optimization, as discussed in more depth below. The underlying idea is that particles that
could not be found by an initial triangulation should be easier to identify once the reconstruction
problem is already partly solved. For a particle to be successfully triangulated, a peak needs to be
identified for the corresponding particle image in all cameras at an accuracy within the allowed
triangulation error ε. Such an identification can be inhibited by image noise, image distortions,
or, most importantly, an overlap with the images of other particles. In such cases the detection
of all concerned particle peaks is compromised or even completely prevented. This problem be-
comes very common once high particle image densities are targeted.AtNI = 0.1 pppmost particle
images overlap with another particle image (Cierpka et al. 2013). With rising NI , common peak-
finding algorithms (e.g., Ouellette et al. 2006) increasingly underestimate the particle number and
the position accuracy declines. Above a certain limit ofNI , the number of peaks found using a clas-
sical peak detector remains nearly constant, despite the additional particle images (Michaelis et al.
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Figure 3

Iterative particle reconstruction scheme, consisting of multiple steps running iteratively in outer and inner
loops: (❶) peak detection on original or residual images, (❷) triangulation of 3D positions, (❸) 3D position
and intensity optimization (“shaking”), (❹) filtering of 3D positions by intensity (steps ❸ and ❹ are
processed iteratively in an inner loop), and (❺) subtraction of reprojected 3D positions from original particle
images. The residual image is used as input for another iteration of all five steps in order to amend particle
positions not yet found in further outer loops. Figure adapted from Jahn et al. (2021) (CC BY 4.0).

2010). From this point on, the found peaks represent local maxima of overlapping particle clus-
ters, instead of single particles. These considerations show that simple triangulation is bound to
fail even at moderate particle image densities. IPR shifts this limitation using several approaches.
The general scheme, consisting of an inner and an outer loop, is depicted in Figure 3.

The process starts with a normal 3D triangulation using peaks identified on the original images.
This step is followed by a particle position optimization [see the sidebar titled Position Optimiza-
tion (Shaking the Particles)]. The particle intensity is optimized alongside the position. Particles,
whose intensity falls below a threshold, are deleted as they are assumed to be false reconstruc-
tions (ghost particles). The optimization and filtering process is itself applied iteratively (NSHAKE

executions of the inner shaking loop), with intermediate updates to the residual image. By this ap-
proach, the particles are implicitly informed of the state of other particles with which they share
an overlapped image in one or more cameras. Therefore, the initially local method (each particle
is optimized independently) yields a quasi-global solution after some optimization iterations.

Once position and intensity have been optimized for the current particle distribution, the re-
maining particles are used to create residual images. These should be void of the already known
particles so that the remaining peaks can be better identified, as overlap situations have been
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POSITION OPTIMIZATION (SHAKING THE PARTICLES)

The 3D position of reconstructed (triangulated) particles typically exhibits a certain error due to limited peak detec-
tion accuracy, noise, and image overlap. However, an optimization can be attempted that modifies the triangulated
3D positions, such that the reprojected image of each particle best matches the local image patch on all cameras
simultaneously.

For most methods, the position is shifted iteratively following the gradient descent of a cost function R, which
is defined by the difference of the measured image and the reprojection (the sum of the local residuals). Due to the
iterative shifting,while approaching theminimum of R, this process is often referred to as shaking the particles.This
gradient decent can be determined either numerically (Wieneke 2012) or analytically ( Jahn et al. 2021). A different
approach by Yang & Heitz (2021) uses a kernel optimization to deduct the optimal particle position. Thus, the
combined information from all cameras imaging a certain particle is used to correct the inaccuracies introduced by
the peak detection on the individual cameras.

This process also acts as a corrector scheme of the prediction step in the STB algorithm (see Section 3.2).

(partly) resolved. Having found the peaks on the residual image, another triangulation is per-
formed, the newly found 3D particles are added to the already known cloud, and the particles are
again treated by iterative position/intensity optimization and filtering. The outer loop is repeated
forNIPR iterations. For low-noise synthetic data, applying many iterations of outer and inner loops
can help to converge to a full solution at very high position accuracy (<0.01 px); for noisy (ex-
perimental) data, both NIPR and NSHAKE can be kept reasonably low (three to five iterations), as
the position accuracy is in any case dominated by the image noise. For an accurate position opti-
mization and realistic creation of the projected image it is evident that the demands on both the
geometrical calibration and the OTF calibration are high.

The requirement that a peak be found on all cameras can be difficult to achieve. Therefore,
IPR can apply triangulations, where particles are also accepted if a peak is not present in one or
more cameras, thereby greatly increasing the number of correctly triangulated particles at the cost
of an increased creation of ghost particles.The scheme was applied byWieneke (2012), who found
an accurate reconstruction of noise-free synthetic images at particle image densities up to NI =
0.05 ppp.

Recently, Jahn et al. (2021) showed an advanced IPR that further extends the working range
by several considerations. Firstly, the peaks found on the first two considered cameras upon tri-
angulation determine the examined 3D coordinates. Therefore, a particle cannot be found if its
peak is missed in either of these. The use of several permutations of the camera order when tri-
angulating prevents this effect. Secondly, the intensity of a particle is determined as an average of
all cameras during the optimization process. However, ghost particles are often only supported by
bright peaks on a single or few cameras. Therefore, ignoring the NCi (locally) brightest cameras
for the intensity determination significantly reduces the intensity (and thereby the number) of
ghost particles, while having only an insignificant impact on the true particles. Thirdly, ghost par-
ticle creation grows exponentially with the allowed triangulation error ε. By gradually increasing
ε with each triangulation, one can reconstruct well-defined true particles at the beginning; larger
values of ε are only reached in a stage when the low number of still-present peaks reduces the
probability of creating a ghost particle.

With these measures, IPR is able to fully reconstruct particle distributions from noise-free
synthetic images up to NI = 0.14 ppp ( Jahn et al. 2021). Introducing moderate image noise and
particle intensity variations only slightly worsens these results, apart from the positional error that
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rises to∼0.1 px.Heavy image noise and strong intensity variations inhibit the reconstruction of all
true particles; however, ghost levels still remain low at moderateNI ( Jahn et al. 2021, Sciacchitano
et al. 2021b).

2.4. From Synthetic to Experimental Data

It has to be noted that the conditions encountered in real-life experiments are typically quite
different from those produced by synthetic test data. Often the scattering behavior of the tracer
particles is not regular for several directions and in time due to polydisperse size distributions,Mie
scattering lobes, nonspherical particles, particle surface properties, and speckles from coherent
light sources. Certain particles scatter more light in one camera than in others, depending on their
size, shape, rotation state, and position (Raffel et al. 2018). While the position-resolved relative
intensity of the particle images on different cameras is known from the OTF calibration in an
average sense, single particles can deviate considerably from this calibration. In such a case the
reconstruction problem is not uniquely solvable. For the same reasons, a single particle can vary
in intensity over time while moving through the illuminated volume.

The intensities of overlapping particle images might not sum up perfectly on each camera
due to several effects. Occultation of two or more particles can partly block light coming from far
particles.When using laser illumination, the light scattered on two particles in a proximity smaller
than the coherence length of the laser can interfere along the LOS toward a camera, causing a
speckle pattern instead of the sum of two Gaussians. These effects can severely aggravate peak
detection and the resolution of overlap situations. On the other hand, very good results in these
aspects can be achieved by using helium-filled soap bubbles (HFSB) in air or fluorescent particles
in water as tracers and incoherent light sources such as pulsed LEDs (light-emitting diodes) for
illumination. Inhomogeneities in the illumination stemming from the laser beam profile or other
sources of diffraction patterns (knife-edges, dust on lenses, etc.) can lead to intensity variation of
the scattered light along a moving particle.

Non-Gaussian particle imaging is often caused by astigmatism due to properties of imaging
lenses or viewing nonperpendicularly through interfaces of different indices of refraction. Aper-
ture effects (edges or model parts along the LOS) can lead to severe particle image distortions
and depth-of-focus limitations to blurring of particles. Background intensity or light reflections at
model surfaces of the particle images require appropriate preprocessing steps, such as subtraction
of a minimum image or more advanced spectral-based (Mendez et al. 2017) or ratio-cut methods
(Wang et al. 2020). Viewing through a contaminated medium (e.g., not illuminated seeding parti-
cles, dirt, algae) can cause the image quality to be heavily deteriorated, with only limited chances
of recovery by image-processing schemes.

In general, particle imaging conditions for LPT experiments should be organized such that the
scattered particle light is of sufficient SNR and of similar intensity for all camera viewing directions
(e.g., the same scattering angle with respect to the (laser) light propagation) and consistent over
time for all moving particles inside the illuminated volume. Pixel-locking, astigmatism, and blur-
ring of particle images should be avoided by adjusting focus and aperture and using prisms.There-
fore, the physical properties of the light scattering (e.g.,Mie scattering, reflection), the light source
itself, the image background, and the particle and its surface have to be considered thoroughly.

3. SEIZING TEMPORAL INFORMATION

The effects discussed in the previous section can lead to a significant reduction in reconstruction
performance of single–time step experimental data compared to synthetic data for all reconstruc-
tion algorithms. However, for each experiment, a certain amount of additional information is
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available through the temporal evolution of the particle field, recorded at two (double-pulse), few
(multipulse), or many (time-resolved) successive time steps. Each recorded time step represents
a (slightly) novel view on the particle distribution, enabling the detection of previously hidden
information. Combining this information can improve the reconstruction of the full data set.

The connection of particle reconstructions in classical PTV applications represents a filtering
step, separating the particles found on physically reasonable trajectories from the ones that ap-
pear more randomly in the volume. Thereby, the reconstructions are purged from probable ghost
particles; however, correctly reconstructed particles might also be discarded if the triangulation
failed in neighboring time steps. The filter is applied as a postprocessing of the reconstruction,
without feedback.

A first attempt to improve the reconstruction via information from other time steps was de-
veloped within the Tomo-PIV framework as motion-tracking-enhanced MART (Novara et al.
2010). Here, the correlated velocity result of two or more time steps was used to mutually de-
warp the reconstructed voxel spaces, leading to a suppression of ghost particle intensities. Later
a time-marching version of the method was developed, which was shown to work up to NI =
0.2 ppp (Lynch& Scarano 2015).Recently,Lasinger et al. (2020) published an integrated approach
that combines a joint IPR process of two time steps and the regularized deduction of a connecting
flow field using a global energy minimization. The process works reliably on high-density particle
images, albeit currently only for two frames.

In 2013, inspired by the introduction of IPR two years earlier and the results of Tomo-PTV,
the STB method was developed for time-resolved data (Schanz et al. 2013b, 2016), which not
only incorporated temporal information into the reconstruction process but also introduced a re-
versal of the logic chain: Instead of first reconstructing a particle position distribution for each
time step separately, in which matches for known tracks are searched as a second step, the algo-
rithm preinitializes a to-be-reconstructed time step with all particles for which a track is already
known. The precise positioning within the current time step is achieved by a predictor/corrector
scheme. Only at this point are the remaining unknown particles reconstructed, whose number
is typically low compared to the number of already tracked and reliably predicted particles. Two
simple physical conditions are used here: (a) An existing real particle, moving inside an illumi-
nated volume, does not disappear, and (b) the particle path is sufficiently smooth according to the
underlying fluid mechanics and temporal resolution. Therefore, its existence in each following
time step can be presupposed and quite accurately predicted, and this will be manifested by the
images. The STB tracking scheme does not need to learn, or be informed of, the underlying flow
physics, as it intrinsically makes use of them without any preknowledge. The debatable constraint
of sufficient smoothness of the particle tracks is addressed in Section 3.2,with a focus on rare high-
acceleration events in turbulent flows.With an increasing number of known particles, the creation
of ghost particles is increasingly suppressed.The algorithm converges to a self-stabilizing solution
where mostly only particles entering the measurement domain need to be identified, thereby dras-
tically enhancing the usable seeding density and reducing the computational effort. For achieving
a good (or sufficient) spatial and temporal resolution in a 3D LPT experiment, one needs to con-
sider DSR, DVR, and DAR by setting an appropriate size of the measurement volume for a given
camera resolution, as well as a sufficiently high seeding concentration and acquisition frequency
for the flow under investigation.

3.1. Outline of Time-Resolved Shake-The-Box

The working principle of the STB technique is outlined in Figure 4 and further described below.
At the beginning of a time series, no prior information is available; therefore, the method starts
with an initialization phase akin to a standard tracking evaluation (Figure 4). The first Ninit time

524 Schröder • Schanz



IPR  

Original images at ti + 1

IPR

Ti
m

e
IPR 

IPR 

IPR 

Initialization
(tracking over
4 recordings)

Time-resolved multicamera recordings

t1

t2

t3

t4

t5

tN

ti + 1

4 × 3D particle clouds

Residual images at ti + 1

Predicted tracked
particles at ti + 1 Corrected tracked

particles at ti + 1

Fitted tracks
(Wiener filter)

STB:
From 2D images

to 3D particle
tracks

Correction: “shaking”
(position optimization
of predicted particles) 

Image subtraction
(original minus

back-projection)

Prediction
(extrapolation to

next time step, ti + 1)

Corrected tracked
+ new particles at ti + 1 

Tracking
(connect ti + 1 to tracks

+ create new 4-step tracks)

Figure 4

Shake-The-Box (STB) processing. The STB scheme is initialized with iterative particle reconstruction (IPR) processing of four
subsequent time steps (t1 to t4) from multicamera particle images and subsequent temporal connection to 3D particle tracks (yellow).
Next, the particle position of each track is predicted for the next time step (ti + 1) by extrapolating suitable temporal fitting functions
(red). Then, 3D position and intensity optimizations are applied by the shaking approach and residual images are calculated (green). An
IPR process is applied to the residual images, yielding new 3D positions (purple); corrected predictions and new 3D positions are used
to finally elongate the existing tracks to the current time step (blue) and identify new tracks from the yet untracked particles of the last
four time steps (purple, akin to the initialization).

steps (typically Ninit = 4) are reconstructed using (advanced) IPR. Within these particle clouds,
connected sequences of particle positions (track candidates) are identified. To this end, several
methods of varying fidelity are available (Ouellette et al. 2006). The track candidates are then
confirmed as identified tracks using a maximum-acceleration constraint and the condition that
each reconstructed particle can only be part of one track. A prior sorting of the track candidates
based on the average acceleration increases the stability. Further discriminators between true and
false tracks can be the inclusion of the surrounding flow field (Schanz et al. 2016, Khojasteh et al.
2021) or particle-space correlations (Novara et al. 2016a).

With the steps above, tracks of Ninit length have been identified that fall within the physi-
cal boundaries of the experiment. These tracks are then used to preinitialize the particle field at
time tNinit+1 by predicting the position of the tracked particles at this time step using, for example,
a polynomial fit, a Savitzky–Golay filter (Savitzky & Golay 1964), or a predictive Wiener filter
(Wiener 1949). In any case, the choice of the prediction filter should reflect the expected accel-
erations and the position noise level. Due to acceleration, noise, overlapping particle images, and
other experimental factors, the predictions will exhibit certain deviations from the true position,
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which need to be corrected. For this purpose, the position-optimization scheme applied within
the IPR scheme can be reused. While the positional errors encountered within IPR are usually
on the order of the allowed triangulation error, the range of position deviation can be noticeably
higher when predicting a particle position. As discussed in Section 3.2, the prediction of the vast
majority of particles can still be shifted to the correct position. Once the already tracked par-
ticles are placed correctly, particles that are not yet tracked or newly entering the domain are
then detected. For this, IPR is applied on residual images (created by subtracting the projections
of the predicted and corrected particles from the original recordings) that are significantly less
populated, thereby simplifying the reconstruction of the still missing particles. From these newly
reconstructed particles at tNinit+1 and the still-untracked particles of t2 to tNinit , additional tracks of
length Ninit are extracted (Figure 4) and added to the set of tracks being predicted at tNinit+2. The
search for new tracks can be aided by velocity information of already tracked neighboring par-
ticles. This scheme is reiterated for all available steps in the time series. The number of tracked
particles steadily grows (convergence phase) until it reaches a state where mostly only particles
that are entering the measurement domain have to be identified. Nearly all other particles are
correctly placed by the corrector/predictor scheme prior to any reconstruction efforts (converged
phase). This scheme of tracking before reconstruction constitutes a reversal of the PTV strategy
and defines the stability of the tracking process as a time-marching self-optimization.

After reaching the end of the time series, a second pass can be performed, operating backward
in time. At each time step, the particles tracked in the first pass are used to preinitialize the IPR
object. A track that was starting at time step tn in the first pass is predicted at tn−1 and followed
backward in time until leaving the measuring domain (the entering point in forward time). The
second pass complements tracks that were not immediately identified and fills up the time steps
at the beginning of the time series, where the tracking system was still converging (see Schanz
et al. 2016, figure 13, or Huhn et al. 2017, figure 10). Often it is not necessary to perform IPR
during the second pass—a pure prediction and correction of ending (originally starting) tracks is
sufficient.

As an example, Figure 2c shows tracking results of STB evaluations of a measurement on a
cylindrical Rayleigh–Bénard convection cell 1.1 m in height and diameter, filled with HFSB.Only
half of the measured volume is displayed. Up to 560,000 bubbles are instantaneously tracked. The
local particle image density in the middle of the field of view is NI = 0.18 ppp (the average over
the full image is NI = 0.12 ppp). Processing of each time step takes below 45 s on a Ryzen 3950X
16-core processor.

It is noteworthy that the parameters for the initial identification of tracks can typically be set
conservatively. A reliable rejection of false tracks is thereby achieved, possibly missing the ones in
highly accelerated regions. As a full time series is available, these particles will eventually be trans-
ported into calmer regions and picked up by the tracking process there. The high-acceleration
event will then be captured in the second pass by following the particle backward in time.

Since 2020 an open source code project inspired by the ideas of the STB scheme has been
available; it is described for shadow graphic LPT by Tan et al. (2020).

3.2. Prediction Errors and Their Correction

Individual particle trajectories exhibiting high accelerations pose an obstacle to the tracking
process. If the track is not yet known, an identification at the time instant of the acceleration
may be inhibited by the maximum-acceleration constraint. If, on the other hand, the particle is
already tracked, the prediction of the new location might show a strong deviation from the real
position once the acceleration event is reached (this should be the prevailing case in a converged
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tracking system). It has been shown recently (Schanz et al. 2022) that position-optimization
methods based on a gradient descent (Fletcher & Powell 1963, Jahn et al. 2021) can reliably
correct particle position errors up to 2.3 px for the two in-plane directions (orthogonal to the
cameras’ main viewing direction). Even larger errors can be corrected in the depth direction,
depending on the angle of the camera setup. At typical recording rates—limiting the particle shift
to below 10 px—only extreme events would exhibit such large accelerations so that the particle
cannot be recovered by the position optimization. However, the misprediction of the position can
be amplified by noise, overlapping particle images, nonoptimized prediction, or a low temporal
sampling of the flow. In order to handle such conditions, Schanz et al. (2022) introduced the
variable space step (VS) method, an approach to correct large, but rare, prediction errors by using
an iterative grid search for a small subset of particles. Using this method, even mispredictions
in the range of 10 px can be corrected with high probability. In a sample case, in a synthetic
turbulent flow with an average particle shift per time step of ∼20 px, using noisy image data at
NI = 0.1 ppp, one could correct ∼95.3% of all particle predictions by pure position optimization,
while ∼99.5% of particle predictions could be corrected by additionally applying VS. This allows
for reliable particle tracking in turbulent flows even at relatively low temporal sampling. In such
cases, however, a slight underestimation of extreme events due to truncation may still occur.

Other correction schemes that do not rely upon a gradient determination have also been devel-
oped. Yang & Heitz (2021) introduced a variational approach to the prediction step that involves
performing multiple predictions on perturbations of the past positions, followed by a position
determination via a learned function. They found an increased tracking of highly accelerated par-
ticles compared to a basic implementation of STB. A quantitative study of its correction abilities
has yet to be performed.

In addition to increasing the working range of the position correction, the prediction step can
also be improved. Incorporating prior knowledge—like averages of previous evaluations or numer-
ical simulations—could inform the tracking process of expected flow structures (e.g., statistically
stationary accelerations in the vicinity of an object). The 3D flow field could be extrapolated using
the currently tracked particles to predict the presence of vortices in the path of a particle and ac-
cordingly modify the prediction point. This could be performed on a particle level [e.g., extending
the ideas of Khojasteh et al. (2021)] or even using NS-regularized DA methods (Gesemann et al.
2016, Schneiders & Scarano 2016, Jeon 2021) with reliable advection schemes toward the inter-
rogated time step, which would constitute a further incorporation of the flow physics (in addition
to the continuity of the particle trajectories) in the reconstruction/tracking process and, in turn,
would progressively enhance the DA quality.

3.3. Tracking in Highly Dynamic Flows

High-density particle tracking in flows with a high DVR (e.g., jet flows) exhibits some peculiari-
ties. The acquisition rate has to be chosen such that the fastest particles can be reliably tracked.
However, slowly moving particles in the entrainment regions can pose a problem for the tracking
algorithm due to long-lasting situations of particle image overlap in several camera projections
and a quasi-static generation of ghost particles. One solution to these issues is to introduce an
iterative tracking approach that consists of several passes (forward and backward in time) at de-
creasing time separations [variable time step STB (VT-STB) (Schanz et al. 2021)]. This way,
a tracking of particles at their respective optimal temporal sampling can be achieved. VT-STB
can be seen as complementing the VS method discussed in the previous section. While VS deals
with high-acceleration events, VT treats the effects of slow flow regions or bulk motion with low
accelerations.
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3.4. Multipulse Particle Tracking

The previous sections have worked out the benefits of a time-resolved series of measurements for
reconstruction and accuracy. However, such measurements cannot always be performed, mostly
due to hardware limitations when the flow of interest is too fast for the available cameras or illumi-
nation. In such cases, the typical approach is to revert to double-frame cameras, which can sample
the flow twice with very low interframe time (less than 200 ns, depending on the cameras). As men-
tioned in Sections 2.3 and 3, several high-density two-frame particle tracking methods have been
developed (Fuchs et al. 2016, Cornic et al. 2020, Lasinger et al. 2020, Novara et al. 2022), exploit-
ing the advantages of particle-basedmeasurements in high-speed flows [e.g., the creation of highly
resolved profiles (Kähler et al. 2012)]. Limitations arise from the missing temporal information.
The partner search (i.e., connecting two 3D positions of the same particle at two time steps) can
be ambiguous. Additionally, the position and velocity errors are elevated due to the lack of a tem-
poral fit, and acceleration is not available at all (Kähler et al. 2016, Sciacchitano et al. 2021a). As
discussed by Westerweel et al. (2013), an extension of the typical two-pulse setup to more pulses
would greatly enhance the abilities of PIV and LPT measurements in high-speed flows. Such an
extension was introduced by Novara et al. (2016a) as Multi-Pulse-STB, working with two sepa-
rate camera and illumination systems, separated by polarization. Later, the experimental setup was
simplified by an evaluation strategy, working with two double-illuminated exposures on a single
two-pulse system (Novara et al. 2019). The concept of multiple illuminations on a single image
can even be used in time-resolved measurements to increase the temporal resolution (Schanz et al.
2019). The setup and results of a multipulse experiment are given in Figure 5. The Multi-Pulse-
STB method was successfully applied in boundary layer flows (Novara et al. 2019), on a laminar
wing at 80 m/s (Geisler et al. 2016), and on jet flows at Mach 0.31 and 0.59 (Sellappan et al. 2020)
and at Mach 0.506 and 0.845 (Manovski et al. 2021). Increased laser pulse intensities for volumet-
ric, multipulse illumination of small tracer particles can be provided as well by pulse-burst laser
systems (see, e.g., Lynch & Wagner 2022).

3.5. Temporal Filtering

When the process of particle tracking is finished, the tracks consist of raw particle positions for
all time steps. A temporal filter is used to increase the positional accuracy and to extract the
Lagrangian velocity and acceleration (see Figures 2c and 6, as well as the left and middle of
Supplemental Video 1).To this end, variousmethods are applicable.A polynomial fit of second or
third order can be applied,with the possibility of tuning the filter strength to the experiment via the
length of the used kernel. This kernel can even be dynamically adapted to the current state of the
particle ( Janke & Michaelis 2021). Another approach is the use of a (cubic) B-spline curve whose
filter strength can be calibrated to the noise conditions by deducting a crossover frequency from
the position amplitude spectrum, which also yields the average position accuracy (Gesemann et al.
2016, Gesemann 2021). The method can be tuned to be equivalent to an optimal Wiener filter.
As a rule of thumb, the positional errors can be nearly halved by applying a well-calibrated filter.

4. POSTPROCESSING OF LAGRANGIAN DATA

LPT methods simultaneously yield long Lagrangian trajectories for a multitude of particles and
a discrete field of velocity and acceleration information at the particle locations for each time
step, and even in between them, given the continuous filtering. This allows one to go beyond
the diffraction limitation of particle imaging for two-point statistics (Godbersen & Schröder
2020, Hammond & Meng 2021). A broad field of research to benefit from such enhanced 3D
LPT methods is particle-laden turbulence, especially when collisions need to be considered
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Figure 5

Exemplary measurement using Multi-Pulse STB: A TBL flow with a micrometer-sized droplet seeding is illuminated by two
double-pulse lasers (80 × 120 × 10 mm3) and observed by eight double-frame cameras, illuminating each frame twice. From each
image pair, approximately 95,000 particles are tracked. This data can be used, for example, by data assimilation for flow structure
identification or by bin-averaging methods to determine high-resolution profiles of velocity and Reynolds stresses. Figure adapted from
Novara et al. (2019), with permission from Springer; copyright 2019 Springer-Verlag. Abbreviations: DNS, direct numerical
simulation; STB, Shake-The-Box; TBL, turbulent boundary layer.

(Brandt&Coletti 2022). Inertial particles (Ebrahimian et al. 2019) and slip over superhydrophobic
surfaces (Abu Rowin & Ghaemi 2019) in turbulent boundary layers have been investigated using
STB. Besides the creation of highly resolved Lagrangian and Eulerian statistics, the tracking data
may be used in various ways, as described below.

4.1. Bin Averaging

Advanced binning procedures can produce a 3D array of one-, two-, and multipoint statistics
of the flow (mean values, Reynolds stresses, two-point correlations, structure functions, etc.)
at very high spatial resolution, down to subpixel accuracies. According to Reynolds (triple)
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Figure 6

Lagrangian particle tracking measurement in homogeneous turbulence at Reλ = 270 in a von Kármán water flow between two
counter-rotating propellers (Schröder et al. 2022). (a) Approximately 65,000 particles visualized at five consecutive time steps as
spheres, colored by x-velocity. (b) The same flow situation, here with 30 time steps, connected by velocity vectors and colored by
x-acceleration (ax). (c) Flow structures identified via FlowFit data assimilation of the particle cloud at the central time step, given by an
isosurface of the Q-criterion (Q = 2,500/s2).

decomposition, u = ū(+ũ) + u′, the statistical flow quantities are the mean ū (periodic ũ) and fluc-
tuation u′ components of all three velocity vector components. The respective Reynolds stress
tensor u′

iu
′
j and higher-order statistics are further measures for characterizing unsteady and turbu-

lent flows. Profiles of these quantities can be determined by dividing the measurement region into
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Figure 7

3D bin averaging of the flow around a cube mounted on a surface and submerged in a laminar boundary layer with a flow speed of
U = 0.2 m/s and a bin size of 0.25 × 0.25 × 0.25 mm3 (see Schröder et al. 2020).

small subregions (bins) and averaging the properties of all particles located within each of these
bins over all measurements available. Depending on the flow and the volume, the profiles can be
1D, 2D, or 3D.Figure 7 shows a 3D-averaged profile of the flow around a surface-mounted cube,
while Figure 5 displays a 1D profile of Reynolds stresses of a TBL with a resolution of 14.5 µm
(1/3 of a viscous unit). The usable size of the bins scales inversely with the number of measure-
ments: Themore data that are available, the finer the resolution can be (in contrast to PIV,which is
always limited to the correlation window size). Important for the reliability of the statistics is a local
convergence study and a precise uncertainty quantification. Recently, a versatile functional bin-
ning procedure has been introduced that optimizes the convergence speed of 3D LPT one-point
and multipoint statistics by using the continuous track and uncertainty information (instead of
sampling the particle only at each measured time step) (Godbersen & Schröder 2020, Godbersen
& Schröder 2021). Further measures to increase the spatial resolution have been integrated into
the functional approach, such as arbitrarily shaped bins (Raiola et al. 2020) and weights, allowing
for adaptation to mean flow gradients (Agüera et al. 2016).

4.2. Data Assimilation for Spatial Interpolation

Representing flow data on a regular grid or in a continuous functional way within a Eulerian
frame of reference is desirable for many established processing methods (e.g., for flow structure
identification and pressure determination). The availability of Lagrangian velocity and acceler-
ation allows for interpolations that go beyond a simple averaging approach. In the last couple
of years, techniques for DA schemes have been established for single- and multi-timestep LPT
results using solenoidal constraints or a full incompressible NS regularization. For the latter,
velocity and acceleration (material derivative or left side of the NS momentum equation) are used
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as input values. Such methods include FlowFit (Gesemann et al. 2016) and vortex-in-cell (VIC)
approaches [VIC+ (Schneiders & Scarano 2016), VIC# ( Jeon et al. 2018, Jeon 2021), and VIC-
TSA (Scarano et al. 2022)]. These DA schemes provide a continuous functional representation of
the assimilated velocity vector field without additional spatial filtering, on the basis of (truncated)
3D radial basis functions or third-order B-splines. Analytical derivatives can be computed for the
full time-resolved velocity gradient tensor Ai j (t ) for an arbitrary grid, and 3D pressure fields are
implicitly integrated by solving the related Poisson equation and imposing constraints from the in-
compressible NS equations using nonlinear optimization solvers [e.g., L-BFGS (limited-memory
Broyden–Fletcher–Goldfarb–Shanno) (Nocedal 1980; see also van Gent et al. 2017, Huhn et al.
2018)]. In their review on the development of load estimation techniques,Rival& vanOudheusden
(2017) explicitly proposed that LPT+DA will become the new standard for instantaneous 3D
pressure reconstruction and stated its importance for future measurements of unsteady flows.
Examples of DA applied to LPT data can be found in Figures 2d, 5, and 6c, as well as in
Supplemental Video 1 (right panel).

5. LARGE-SCALE VOLUMETRIC MEASUREMENTS

For a long time during the development of PTV and Tomo-PIV, volumetric investigations re-
mained limited to relatively small volumes. High-speed lasers were used to illuminate DEHS
[di(2-ethylhexyl) sebacate] droplets (∼1 µm in diameter) in air or suitable tracers in water (e.g.,
polyamide particles up to 100 µm in diameter, depending on the scales to be resolved). Especially
in air, the small tracers restricted the volumes that could be illuminated to a few cubic centime-
ters. Two developments changed this: the steady progress in the development of LEDs, allowing
researchers to build scalable pulsed illumination arrays (Stasicki et al. 2017), and the introduction
of submillimeter HFSB tracer particles in air (Bosbach et al. 2009). The light reflected on the
∼300-µm-diameter bubbles is orders of magnitude more intense than the light scattered on small
oil droplets. At the same time, density matching ensures a high flow-tracing fidelity (Scarano et al.
2015). With laser illumination, the applicable volume size for high-speed investigations grows to
several liters (Scarano et al. 2015); for LED illumination, the volume is mostly limited by the
number of available LEDs. First attempts by Kühn et al. (2011) used Tomo-PIV in a convection
cell with 55 liters of measured volume. The imaging properties of the (noncoherent) light re-
flected on the bubbles proved to be very favorable for particle tracking methods. Time-resolved
investigations of an impinging jet (Huhn et al. 2018) and a turbulent boundary layer (Schanz et al.
2019) have also been performed. The latter reached a volume size of 450 liters.When investigat-
ing slow flows (e.g., driven by temperature gradients), one can use illumination times of several
milliseconds, further increasing the achievable volume size. A thermal plume has been captured
in a volume of 550 liters (Huhn et al. 2017), and the Rayleigh–Bénard flow depicted in Figure 2
was measured in 1,045 liters, the full volume of the cell. Recently, a flow measurement around a
breathing and heated human model was performed in a volume of 12 m3 (Schröder et al. 2022).
The use of high-resolution cameras allowed up to 3million bubbles to be followed instantaneously
and small instantaneous turbulent structures of the thermal plume to be resolved, despite the large
volume size. Scalable LED illumination has also been applied in water, yielding images free of ar-
tifacts caused by coherent light (Kim et al. 2021). The image quality can be further improved by
using fluorescent particles and appropriate filters (Kim et al. 2022, Weiss et al. 2022).

A different approach to increasing the volume size was developed by Schneiders et al. (2018)
in the form of the coaxial volumetric velocimeter. The measurement device consists of a fixed
and precalibrated system of four cameras, installed in a common housing. Between the cameras
a volumetric laser illumination is installed (Figure 8a). The light reflected by HFSB seeding is
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Figure 8

A coaxial volumetric velocimeter for time-averaged large-volumetric measurements. (a) Lavision’s MiniShaker S consists of a fixed and
precalibrated system of four cameras, installed in a common housing. (b) Measurement of a single subvolume in front of a cyclist.
(c) Scanning of the full volume using a robotic arm. (d) Time-averaged velocity field around full cyclist model, showing contours of
streamwise velocity u in the center plane, together with an isosurface of u = 7 m/s. (e) Surface pressure coefficient CP distribution in the
foot/ankle region, along with isocontours of the Q-criterion, colored by streamwise vorticity ωx. Panels a, c, and d adapted from Jux
et al. (2018) (CC BY 4.0). Panels b and d adapted from Jux (2022) with permission; copyright 2021 the author. Abbreviation: HFSB,
helium-filled soap bubbles.

recorded by the four cameras; particle trajectories are reconstructed using STB. The device can
simply be pointed at a region of interest and operated for a certain time, yielding LPT results in a
volume of up to 30 liters (Figure 8b). Larger volumes are scanned by moving the velocimeter on a
robotic arm, systematically scanning the object of interest (Figure 8c).One interesting application
of the method is the measurement of the flow around a full-scale cyclist ( Jux et al. 2018), which
yielded the flow in a volume of 2 m3 at a freestream velocity of 14 m/s by stitching together 450
subvolumes (Figure 8d,e). Other examples include an investigation of the flow behind a micro air
vehicle (Martínez Gallar et al. 2020) and the determination of all components in Collar’s triangle
of forces acting on a flexible wing (Mertens et al. 2021). The downsides of the method are the low
position accuracy in the depth direction (due to the limited opening angle of the camera views)
and the restriction to averaged data due to the scanning approach.

SUMMARY POINTS

1. Lagrangian particle tracking (LPT) can accurately track a large number of particles
(104–106), yielding a high dynamic spatial range (DSR). Applying temporal filtering at
calibrated levels yields high dynamic velocity and acceleration ranges (DVRs andDARs).
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2. Recent developments in LPT software allow the usable particle image density con-
centration to be increased by up to ∼0.2 particles per pixel (ppp) using advanced
Shake-The-Box (STB) processing—many times more than the densities reached by
classical particle tracking velocimetry (PTV) methods. Furthermore, these advances
have increased DVR significantly compared to two-pulse tomographic particle image
velocimetry (Tomo-PIV) measurements.

3. The dynamics of a flow plays an important role in its evaluation. Regions of quiescent
flow can be as problematic for the tracking scheme as rare high-acceleration events or
low temporal sampling. The variable space step and variable time step methods improve
the tracking performance of the STB scheme in such conditions.

4. High particle densities allow one to create converged single- and multipoint statistics
at subpixel resolution (∼0.1 px), greatly increasing the DSR for statistical approaches.
Statistics for proximities below the diffraction limits of imaging can be reliably
determined using functional binning approaches.

5. Time-resolved 3D velocity, acceleration, and pressure fields represented by continuous
3D functions can be determined using novel constrained data assimilation (DA) methods
(3D and 4D variational, as well as adjoint). The availability of velocity and accelera-
tion (material derivative) data allows for Navier–Stokes constraints to be used, thereby
achieving maximized spatial resolution from the dense scattered tracer particles.

6. The quality of LPT measurements is greatly dependent on the care taken to optimize
experimental parameters (e.g., image signal-to-noise ratio, particle scattering properties,
available temporal resolution). Likewise, researchers should aim to guarantee a precise
calibration at all times using (instantaneous) volume self-calibration. Further correction
methods can account for nonlinear effects (e.g., viewing through curved windows).

7. The use of noncoherent light sources (e.g., LED arrays) illuminating sufficiently large
tracer particles (e.g., helium-filled soap bubbles in air, polyamide in water) produces
particle imaging highly suitable for LPT evaluation in large volumes due to the much-
improved superposition and consistency of particle images. Using fluorescent particles
additionally minimizes background reflections.

FUTURE ISSUES

1. An enhanced predictor scheme could incorporate corrections using preknowledge of the
flow topologies, gained either by computational fluid dynamics (CFD) or previous ex-
perimental results. Further improvements are expected using DA of previous time steps,
advected to the current time, creating a physics-based space–time link.

2. The effect of particle images overlapping in one ormultiple cameras on position accuracy
and local bias errors should be quantified. Generally, tools for uncertainty quantification
of LPT and DA need to be further developed and assessed.

3. An openly accessible benchmark data set (HOMER LPT and DA Evaluation Portal;
https://w3.onera.fr/flow-benchmarks) is available and will be extended continuously,
allowing researchers for the first time to quantitatively compare different methods on a
common synthetic data base using underlying CFD simulations.
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4. A further significant increase of processable particle image densities will be difficult to
achieve.However, higher particle concentrations (particles per volume) could be reached
by using a scanning approach in low-speed flows, avoiding phase shifts by regarding the
trajectories as functionals.

5. Current DA approaches mainly apply regularization based on the momentum equation.
Further constraints could be gained by using more conservation laws and equations (e.g.,
the energy equation) and by thoroughly utilizing the temporal resolution.

6. The prediction and correction scheme introduced by the STB method could also be
implemented for other 3D flow measurement techniques like holographic, astigmatic,
light field, and tomographic particle tracking.
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