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Abstract

Reliable full-scale prediction of drag due to rough wall-bounded turbulent
fluid flow remains a challenge. Currently, the uncertainty is at least 10%,
with consequences, for example, on energy and transport applications ex-
ceeding billions of dollars per year. The crux of the difficulty is the large
number of relevant roughness topographies and the high cost of testing each
topography, but computational and experimental advances in the last decade
or so have been lowering these barriers. In light of these advances, here we
review the underpinnings and limits of relationships between roughness to-
pography and drag behavior, focusing on canonical and fully turbulent in-
compressible flow over rigid roughness. These advances are beginning to
spill over into multiphysical areas of roughness, such as heat transfer, and
promise broad increases in predictive reliability.
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Roughness size: k is a
roughness height, the
choice of which is
determined by
application and
context

Wall distance:
without loss of
generality, the origin
of the y (wall-normal)
coordinate is aligned
with minimum
roughness elevation;
y = 0 is distinct from
the zero-plane
displacement of
turbulence, y = d

Fluid properties:
ν is the kinematic
viscosity, α is the
thermal diffusivity, ρ is
the density, and cp is
the specific heat at
constant pressure

Friction velocity:
uτ ≡ (τw/ρ)1/2, where
τw is the wall shear
stress (drag per unit
plan area) and ρ is the
fluid density

Friction
temperature:
θτ ≡ qw/(ρcpuτ ),
where qw is the wall
heat flux (heat transfer
per unit plan area), uτ

is the friction velocity,
and ρ and cp are fluid
properties

+ superscript:
denotes viscous-
friction scaling, where
variables are scaled by
uτ , θτ , and ν; e.g.,
U+ ≡ U/uτ , Θ+ ≡
Θ/θτ , and y+ ≡ yuτ /ν

1. PREVALENCE AND IMPORTANCE OF SURFACE ROUGHNESS

In fluid mechanics, whether a surface is smooth or rough is judged not in microns but by the flow
occurring next to it. For a turbulent flow, a surface cannot be considered smooth if its topographi-
cal features are large enough to disrupt the smallest eddies near the wall and thus alter the transfer
of momentum (drag), heat, and mass. In practice, this condition translates to topographical fea-
tures greater than about 10 µm on both passenger aircraft and container ship hulls, about 1 µm on
gas turbine blades, and about 0.1 mm on atmospheric surfaces. In this hydraulic (or aerodynamic)
sense, all of the aforementioned examples are rough or nearly rough, with consequences for costs
and emissions.

The basic problem (Section 2) is to predict performance-critical quantities such as drag and
heat transfer, but because each roughness topography affects flow differently, routine predictions
currently remain insufficiently reliable, with uncertainties costing billions of dollars per year (see
the sidebar titled Economic Value of Uncertainty in Full-Scale Drag Predictions). As such, rough-
ness continues to be an active area of research. The challenge in research has been the large num-
ber of relevant topographies and the costs associated with testing each topography, but these bar-
riers have been lowered since the last major review of the subject ( Jiménez 2004). The maturing
of high-fidelity simulations and rapid-prototyping technologies as viable tools has permitted in-
vestigations of a growing array of roughness topographies with unprecedented levels of detail and
accuracy (Section 4). These studies have enabled efforts to systematically unpick the effects of
different topographical characteristics (Section 3) and to explore the far reaches of the Moody
chart, yielding insights into limiting behaviors (Section 5). Progress is now at hand in challeng-
ing areas such as rough-wall heat transfer (Section 6). Here we highlight these recent advances,
focusing on the prediction of drag and heat transfer due to rough wall-bounded turbulent flow,
complementing recent reviews on predictive correlations (Flack & Schultz 2010) and outer-layer
similarity (Flack & Schultz 2014). We also draw parallels with canopies, which constitute a spe-
cialized area focusing on dense roughness (Finnigan 2000, Nepf 2012), and we occasionally refer
to engineered surfaces for drag reduction, which tend to be transitionally rough and are reviewed
in depth elsewhere (García-Mayoral et al. 2019).

2. ACCOUNTING FOR ROUGHNESS IN TURBULENT FLOW

We first summarize the roughness problem (Figure 1).We would like to predict the drag per unit
plan area, τw (SI units: N/m2), or heat transfer per unit plan area, qw (SI units: W/m2), given any
roughness topography characterized by its roughness size, k; flow at wall distance y characterized
by the mean velocity,U(y), and mean temperature, Θ (y), relative to the wall; and fluid properties,
ν, α, ρ, and cp. In dimensionless form, the problem can be stated as finding τw/(ρU 2/2) = 2/U +2

and qw/(ρcpUΘ ) = 1/(U+Θ+ ) as a function of y+, k+, and Pr, where the friction-scaled mean
velocity is U + ≡ U/uτ , the friction-scaled mean temperature is Θ+ ≡ Θ/θτ , uτ is the friction ve-
locity, θτ is the friction temperature, the viscous-scaled wall distance is y+ ≡ yuτ /ν, the roughness
Reynolds number is k+ ≡ kuτ /ν, and the Prandtl number is Pr ≡ ν/α. Here, the + superscript
denotes viscous-friction scaling. Use of the (total) plan area, At, as opposed to, e.g., the wetted
area, Aw, allows for comparisons between surfaces at matched wall-normal fluxes of momentum
and heat in the flow. We restrict the discussion to rigid roughness under canonical and fully tur-
bulent incompressible flow and to forced convection where buoyancy is unimportant such that
temperature variations behave as a passive scalar. Low solid conductivity [high roughness Biot
number (Stimpson et al. 2017)] alters heat transfer, as the wall temperature would vary noticeably
along roughness elements (Orlandi et al. 2016), but here we simplify the discussion by considering
isothermal walls. The mass-transfer problem can be similarly posed (e.g., Brutsaert 1982).
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ECONOMIC VALUE OF UNCERTAINTY IN FULL-SCALE DRAG PREDICTIONS

Improved drag predictions allow for better-informed and better-timed decisions. The translation between cost and
drag is complex and involves socioeconomic aspects, such as emissions. In order to demonstrate the scale of the cost
with traceable numbers, we provide the following simplified analysis based on energy considerations. The analysis
merely reflects today’s uncertainty in predicting drag due to roughness, not the drag penalty itself due to roughness,
which would be even greater.

We use the scatter in ks/k (Section 2.2.2) or �U + (Section 2.2.1) as a measure of what we cannot explain today,
which could, in principle, be reduced with further research. To account for established topographical factors, we
inspect the ks/(CDk) versus λf data compilation in figure 1a of Jiménez (2004) to estimate that the scatter of ks/k is
0.7 to 3, which is on the same order as that in the data compilation of ks/krms versus Sk (Flack et al. 2019, figure 6).
The fully rough approximation (Equation 3) translates this scatter in ks/k to a range in�U + of (1/κ) ln 0.7≈ −0.89
to (1/κ) ln 3 ≈ 2.7, say ±2, consistent with the scatter in figure 13 of Chan et al. (2015). The percentage scatter
in drag coefficient Cf ≡ 2/U+

δ at matched δ+ (nominally smooth) or matched δ/k (nominally rough) can then be
estimated using �Cf/Cf = (1 − �U+/U+

δ )−2 − 1 ∼ 2�U+/U+
δ , whereU+

δ is based on the nominal condition. For
many applications, including aircraft and ships, we have U+

δ ≈ 20–35, meaning that the uncertainty in full-scale
drag prediction,�Cf/Cf, is at least 2(±2)/35 ≈ ±11%. This estimate, of course, depends on having a well-behaved
surface that obeys the framework in Section 2. The practice of setting ks = k should be discouraged because it
corresponds to a potential error of at least 0.1 to 10 of the actual ks/k ( Jiménez 2004, figure 1a), or ±6 in �U +,
which, in turn, translates to an uncertainty in �Cf/Cf of at least 2(±6)/35 ≈ ±34%.

In shipping, skin friction can account for up to 90% of the drag (Schultz et al. 2011). Due to the ban on coatings
containing TBT (tributyltin), ship hulls routinely develop slime films (Schultz et al. 2015). The cost of this type
of moderate hull fouling for the US Navy’s Arleigh Burke-class destroyer fleet alone is estimated to amount to
over US$1 billion over 15 years, primarily due to increased fuel consumption to overcome the ≈10% drag penalty
(Schultz et al. 2011). In-water hull cleanings can significantly reduce this roughness impact, but economically in-
formed maintenance decisions depend on accurate drag estimates. If the wetted hull area of this class represents
22% of the fleet, and the fleet represents 0.5% of the number of ships globally (cf. Schultz et al. 2011), then scal-
ing the ≈10% drag penalty by the ±11% drag uncertainty due to roughness yields a corresponding uncertainty of
±US$67 billion per year globally.

In aviation, where skin friction constitutes 50% of drag (Spalart & McLean 2011) and fuel costs are six times
the global profits in 2018 (IATA 2019), the ±11% drag uncertainty, such as for acoustic-liner roughness in fan
ducts [ks ≈ 20 µm, ≈6% of the skin-friction wetted area (cf. Spalart et al. 2017)], here amounts to ±2% of profits.
For the nominally smooth but nearly rough aircraft skin [ks ≈ 10 µm (Moyes et al. 2017)], the +11% skin-friction
uncertainty due to roughness translates to a drag penalty of 5.5%, or 33% of profits.

Roughness is routinely considered when siting wind farms using classifications mapped to standardized val-
ues of y0. Given the wind speed U10 at y = 10 m from meteorological data, the available power, which scales
with the cube of U100 at the typical turbine hub height of y = 100 m, can be estimated using the log law
U 3

100 ≈U 3
10[ln(100 m/y0)/ ln(10 m/y0)]3. Taking y0 = 0.01 m of tall grass (Stevens & Meneveau 2017) as an ex-

ample, an error bar of 0.7 to 3 of y0, consistent with that of ks, corresponds to an uncertainty due to roughness in
available power of ≈ ±9%, which affects turbine selection and economic viability.

The formulation here using y,U, and Θ is natural for large-eddy simulation (LES) wall models
or Reynolds-averaged Navier–Stokes (RANS) wall functions, but the basic structure and response
are preserved if the problem is posed, for pipe or channel flows of cross section

∫
dA, using the

bulk velocity Ub ≡ ∫
U dA/

∫
dA, mixed-mean temperature Θm ≡ ∫

UΘ dA/
∫
U dA and pipe ra-

dius or half-channel height δ (Moody 1944, Nikuradse 1933, Dipprey & Sabersky 1963), or, for
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Viscous wall unit:
a length ν/uτ above a
smooth wall that scales
the viscous sublayer
and the smallest eddies
of turbulent flow

Roughness sublayer:
in principle, the
near-wall region y < yr
that knows about the
roughness topography;
above it, the time-
averaged flow is
spatially homogeneous
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Figure 1

(Inset) The setup of the roughness problem. The desired outputs are the wall shear stress, τw, or the wall heat flux, qw, given the mean
velocity,U(y), and mean temperature, Θ (y), at distance y from the wall, along with fluid properties ν, α, ρ, and cp. The wall is
characterized by a physical roughness size, k, here chosen to be the maximum peak-to-trough roughness height, kt (Section 3.1.1),
and δ is the outer-layer thickness (e.g., boundary-layer thickness). For concreteness, the wall-normal coordinate y = 0 is aligned with
the minimum roughness elevation. (Main figure) A close-up view of the rectangular region of roughness topography in the inset. Here,
h describes the roughness topography. The average roughness elevation is located at y = h, from which the variation h′ is measured.
The peak-to-trough roughness height of subsample i is kti. The height above h of the ith-highest peak of the entire sample is kpi and
the depth below h of the ith-lowest trough of the entire sample is kvi. Above the roughness sublayer (Section 2.1.2) (y > yr), the
time-averaged flow (blue streamlines) is spatially homogeneous. The wall offset (zero-plane displacement) (Section 2.1.1) is located at
y = d such that y − d is the distance-to-the-wall scale of the turbulent eddies (solid white lines) in the log layer: yr < y � δ. A notional
probability density function (PDF) of h is shown on the right, along with a measure of its width, krms, where krms is the
root-mean-square of h′ or, equivalently, the standard deviation of h.

boundary layers, using the freestream velocityUδ ≡U(y= δ) and temperature Θδ ≡ Θ (y = δ) and
boundary-layer thickness δ or fetch x (Prandtl & Schlichting 1934, Granville 1958, Yaglom 1979)
(cf. Section 2.3). Thus, in all formulations, knowledge of the mean velocity and temperature pro-
files for the wall-bounded turbulence formed over a rough surface,U +(y+; k+) andΘ+(y+; k+,Pr),
respectively, is akin to solving the problem of drag τw and heat transfer qw of rough surfaces.

2.1. Outer-Layer Similarity

All predictive models rely on an important assumption, proposed by Townsend (1956, p. 89) and
articulated byRaupach et al. (1991), that smooth- and rough-wall turbulence behave similarly away
from the wall. Specifically, this similarity hypothesis states that friction-scaled turbulent relative
motions in the outer layer (δ ≥ y � ν/uτ , k), such as the mean velocity defect U+

δ −U+ and
covariances of velocity fluctuations u′

iu
′
j
+, are independent of surface condition at sufficiently high

Reynolds number (i.e., when the outer-layer thickness is greater than the viscous wall unit, δ �
ν/uτ ) and sufficiently large scale separation (δ � k). The direct effect of roughness is confined
to the roughness sublayer (y < yr), and roughness only sets the boundary condition, namely the
friction velocity uτ for the outer flow of thickness δ. This is basically a dimensional argument that
implies that only uτ and δ are relevant in the outer layer, from which we obtain, e.g., Uδ − U =
uτF(y/δ) and u′

iu
′
j = u2τGi j (y/δ), where F and Gij are each unique functions of y/δ, independent of

whether the wall is smooth or rough.
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Two-dimensional
(2D) roughness:
2D roughness denotes
topographies with
variation only in one
direction, while 3D
roughness denotes
topographies with
both streamwise and
spanwise variations,
i.e., h′ = h′(x, z)

EQUIVALENT SAND-GRAIN ROUGHNESS

Inspired by the pioneering studies of Nikuradse (1933), Schlichting (1937) introduced the concept of the equiva-
lent sand-grain roughness ks of a surface, which defines the grain size of uniform (monodisperse), close-packed sand
grains on a hypothetical surface that would cause the same drag as the surface of interest if exposed to the same
flow in the fully rough regime (Section 2.2.2). Although it is a length scale, ks does not measure a physical distance.
Rather, it is a hydraulic scale defined by drag that must be determined from experiments or simulations for a specific
surface roughness. This is the roughness height listed on the Moody diagram (Moody 1944), providing a common
currency (Bradshaw 2000) across disparate roughness for wall-bounded turbulence and serving as an input param-
eter for predictions, e.g., RANS calculations and rough flat plate calculations (Section 2.3). The simplicity of this
single parameter masks its complicated origin, and the potential exists to incorrectly use ks as a physical measure of
roughness elevation, or to incorrectly ascribe ks based on geometry.

The general validity of this hypothesis for a wide range of roughnesses is tied to the stated or
unstated assumptions above. For example, an unstated assumption that is easy to overlook is the
necessity that not just k but also no other surface scales compete with y and δ for relevance in the
outer layer (or else F andGij would not be functions of only y/δ), noting that a single scale k by itself
is insufficient to fully describe any roughness topography. Such cases are not necessarily academic
but often arise in practice (Section 5). An often-quoted criterion for the necessary separation of
scales is k/δ < 1/40 ( Jiménez 2004), which is based on the assumption that roughness directly
influences up to yr = 3k of the flow above it so that restricting this region to be below half of the
thickness of the log layer, i.e., 3k < 0.5 × 0.15δ, leads to k/δ < 1/40. But for roughness with in-
plane features of wavelengthmuch larger than k, the direct region of influence could be larger than
yr = 3k (Section 2.1.2), and the quoted scale separation k/δ should correspondingly be smaller than
1/40. Because these kinds of cases challenge the validity of our classical understanding outlined
above, with consequences for the reliability of prediction, several roughness studies (e.g., Flack
et al. 2005, Castro 2007, Amir & Castro 2011, Krogstad & Efros 2012) have been dedicated to
assessing and revisiting these cases, as reviewed by Flack&Schultz (2014), the consensus being that
outer-layer similarity does hold once a sufficiently large scale separation is achieved, even for two-
dimensional (2D) roughness such as tranverse bars and rods (Krogstad &Efros 2012). It is difficult
to prescribe guarantees of outer-layer similarity, but if in doubt, checks at higher δ/k and fixed k+

are recommended (e.g., Leonardi et al. 2007). Accurate wall shear stress, a notoriously difficult
quantity to measure experimentally, is critical for assessing outer-layer similarity. Depending on
the facility and operating flow conditions, the accuracy of uτ can be, for boundary layers, ≈±4%
using indirect methods (Schultz & Flack 2007) and ≈±1–3% using drag balances (Krogstad &
Efros 2010, Squire et al. 2016) and, for channels,≈±0.5–4% from measurement of pressure drop
(Schultz & Flack 2013).

2.1.1. Wall offset (y= d). An important aspect to consider when assessing outer-layer similarity
is the zero-plane displacement, d, also known as the wall offset. The distance y is often measured
from a reference plane, such as the bed on which roughness elements are mounted. However, the
outer turbulent flow does not perceive its origin to be at y= 0 but at y= d (Figure 1). The shifted
wall-normal coordinate y− d corrects for this flow-physical inconsistency so as to collapse all pro-
files in the outer layer: Uδ − U = uτF[(y − d)/(δ − d)] and u′

iu
′
j = u2τGi j[(y− d )/(δ − d )]. A similar

concept is the canopy penetration depth, ε ≡ k − d (Luhar et al. 2008, Nepf 2012), where k is the
height of the canopy. For small k+, y = d locates the mostly intact smooth-wall-like turbulence
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Sparse or dense
regime: the drag
behavior with
increasing frontal
solidity λf (at fixed or
varying plan solidity
λp): ks/k increases in
the sparse regime but
decreases in the dense
regime

that is displaced relative to the mean flow such that U(y = d) is nonzero, a concept that can be
exploited to reduce drag (Luchini et al. 1991, Bechert et al. 1997, Jiménez 2004, García-Mayoral
et al. 2019). For larger k+, the near-wall turbulence is altered, and d locates the extrapolation to
zero of the distance-to-the-wall scaling y − d of the turbulence (Figure 1) that is associated with
the log profiles (Section 2.2) (Nikora et al. 2002). In general, U(y = d) is not necessarily 0. The
offset y = d is typically between the crest and trough of roughness elements, and depends not
only on the roughness topography but also on the roughness Reynolds number. For roughness in
the sparse or dense regime, y = d approaches the crest or the trough, respectively ( Jackson 1981,
Raupach et al. 1991, Macdonald et al. 1998, Grimmond & Oke 1999, Luhar et al. 2008). If the
spacing between roughness elements is small relative to viscous scales, y = d also approaches the
crest because the flow behaves as if a smooth wall were located at the crest (MacDonald et al. 2016,
2018; Sharma & García-Mayoral 2020). Far above the roughness (y � k), the offset 0 < d < k is
often neglected, where y = k is the crest of the roughness, and so y − d ∼ y is valid for cases with
large scale separation (δ � k) and thus large Reynolds numbers (δ � ν/uτ ) since we have δ > y�
k � ν/uτ for rough walls. In the log layer above, for example, a fully rough wall (Section 2.2), for
y/k � 1, say y/k = O(10), and ks = O(k), the error incurred in assessing the mean profile,U + =
(1/κ) ln[(y− d)/ks]+ Bs(∞), is the discrepancy (1/κ ) ln[1 + O(0.1)] ≈ 0.24, which is small relative
to U+ = (1/κ ) ln[O(10)] + Bs(∞) ≈ 14 (0.24/14 ≈ 1.7%). For some applications, such as dense
canopies, the wall offset can be close to the crest of the roughness (d ≈ k) and ks/k � 1 (say 0.1;
see Luhar et al. 2008). In such cases, a log region can be well established close to the roughness
crests y/k � O(1) (say, y/k = 3) owing to sufficient scale separation, y − d � ks (3k − k = 2k �
0.1k in this case), but where d cannot be neglected since it remains an appreciable proportion of y
(d/y = 1/3 in this case).

Jackson (1981) proposed the center of drag as a way to locate the zero-plane displacement
but this is not necessarily a reliable measure of the origin of turbulence that is associated with
the log profiles. Indeed, it has been shown that this definition is not always appropriate (Cheng
& Castro 2002, Breugem et al. 2006, Coceal et al. 2007, Chan-Braun et al. 2011, Chan et al.
2015, MacDonald et al. 2018). The analysis of Jackson (1981) assumes zero pressure gradient and
fully developed flow, which are perfectly satisfied in neither boundary-layer nor internal pressure–
driven flows. Internal flows with a large volume of obstruction relative to the outer-layer thickness
are susceptible to this bias (Breugem et al. 2006, Pokrajac et al. 2006, MacDonald et al. 2018),
and a simple extension to include pressure gradients seems unsatisfactory (Breugem et al. 2006).
In summary, the offset d is a parameter determined by the flow (like the equivalent sand-grain
roughness, ks; Section 2.2.2). Geometrical definitions (e.g., mean roughness elevation, h; Chan
et al. 2015) are well defined, but the wall offset needs to be accounted for in denser topographies.
If the log law does not exist, e.g., in the case of insufficient scale separation, then other definitions
may be better suited (Nikora et al. 2002).

2.1.2. Roughness sublayer (y < yr). Each roughness topography has a specific flow signature
near the wall. For example, the flow can resemble flow over bluff bodies, including separated flow
with reattachment regions and shed vortices (Hong et al. 2011, Yuan & Piomelli 2014b). This
roughness-affected region near the wall is labeled the roughness sublayer (y < yr), the extent of
which is roughness dependent. In this region, one of the assumptions of outer-layer similarity
(a condition for the log law) is violated (y 
� k) and the flow is clearly influenced by the local
roughness topography. In principle, y> yr quantifies the scaling argument y� kwhere outer-layer
similarity holds. In practice, even though similarity of the mean recovers above yr � k, i.e., without
a large scale separation, similarity of the turbulent fluctuations requires a large scale separation
and also depends on the scale of the fluctuations (Flack & Schultz 2014, Chan et al. 2018) and
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In-plane roughness
wavelength: λ is an
in-plane scale of the
roughness topography,
e.g., lateral or
streamwise inter-
element spacing or
wavelength, the choice
of which is determined
by application and
context

roughness type (e.g., 2D bars; Flack & Schultz 2014). A measure of the roughness sublayer (of the
mean) can be determined by the wall-normal location yr above which the time-averaged flow is
spatially homogeneous, as set by a threshold (Raupach et al. 1980, Pokrajac et al. 2007; see also
the time-averaged streamlines in Figure 1).

It is convenient to quote the wall-normal extent of the roughness sublayer based on a rough-
ness topographical feature. Jiménez (2004) and Raupach et al. (1991) suggest two to five times k
but it is not obvious which roughness height k to use in general. Assessing similarity of the tur-
bulent fluctuations, Flack et al. (2007) proposed 3ks as the height of the roughness sublayer, using
the hydraulic scale, ks (Section 2.2.2). The advantage to using ks is that it incorporates the drag-
producing surface features for defining the roughness sublayer, but the disadvantage is that it can
no longer be determined from topography. In a study of 3D sinusoidal roughness for a range of
height-to-wavelength ratios,Chan et al. (2018) found yr ∝ λ ≈ 0.5λ, where λ is the in-plane rough-
ness wavelength, rather than yr ∝ k, provided that the zero-plane displacement d is accounted for,
i.e., yr ≈ d+ 0.5λ, which is particularly important for the denser sinusoids, for which d approaches
the crest. This scaling is also observed for 3D canopies (Sharma & García-Mayoral 2020) and
is consistent with the emergent literature on spanwise heterogeneous roughness (Section 5.2.2),
where the wall-normal extent of the secondary flows is proportional to the spanwise wavelength
of heterogeneity, . A similar scaling, yr ≈ k + λ, was pointed out by Raupach et al. (1980), with
λ identified as the spanwise spacing (Raupach et al. 1991). For infinitely wide (2D) surfaces, the
streamwise spacing must be considered ( Jiménez 2004). Lee & Sung (2007) studied k × k bars
with pitch λ = 8k, finding yr ≈ 5k.

2.2. Log Laws

In turbulent wall-bounded flow over smooth walls, ν/uτ scales the viscous sublayer, and when
the roughness size k is small relative to this scale, i.e., k+ � 1, the roughness is submerged below
the viscous sublayer and the surface appears smooth to the flow. If the outer Reynolds number
is sufficiently large (δ � ν/uτ ), an inertial range of y where viscosity does not directly matter
(y � ν/uτ ) can emerge near the wall that is independent of the outer-flow geometry (y � δ).
There, the only dimensionless group involving the mean velocity gradient is (y/uτ )(dU/dy) =
1/κ , where κ (≈0.4) is the von Kármán constant. Integration leads to the textbook log law,

U+
S = (1/κ ) ln y+ + A, 1.

where the log-law intercept A (≈5.0) is universal for smooth walls (k+ � 1) and the subscript “S”
indicates smooth-wall conditions. The intercept A is like a boundary condition because it is the
value ofU + if the log law is extrapolated to y+ = 1.When the wall is rough such that k+ is no longer
small, the additional requirement that y is far above the direct influence of roughness (y/k� 1), i.e.,
above the roughness sublayer, leads to the same sole-surviving dimensionless group as in the case
of the smooth wall, (y/uτ )(dU/dy)= 1/κ , but the integration constant is now B in y/k coordinates:

U+
R = (1/κ ) ln(y/k) + B(k+ ), 2.

where B is a function of both the roughness topography and the roughness Reynolds number
k+ and the subscript “R” indicates rough-wall conditions. If viscous effects can be neglected in
setting the intercept B, then for k+ � 1 the intercept B approaches a finite value B(∞) that is
independent of roughness Reynolds number but depends only on the roughness topography. The
converse is not always true, i.e., it does not always follow that viscous effects can be neglected
given k+ � 1, e.g., large riblets (Gatti et al. 2020).
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Wake:
in wall-bounded
turbulence, the
departure of the mean
velocity profile,U(y),
from the log law in the
outer layer, y � 0.15δ

Skin-friction
coefficient:
Cf ≡ τw/( 12ρU 2

δ ),
where τw is the wall
shear stress, ρ is the
fluid density, and Uδ is
the mean velocity U at
y = δ

Maximum
peak-to-trough
roughness height:
kt ≡ max(h′) − min(h′),
where h′ is the
variation in roughness
elevation about the
mean

Subsample-average
peak-to-trough
roughness height:
kt ≡ 1

N
∑N

i=1 kti,
where kti is the
peak-to-trough height
of the ith subsample

Outer-layer similarity (y � ν/uτ , k) is one necessary condition to obtain the log laws of
Equations 1 and 2. For this reason, the appearance of a log law has often been taken as evidence of
outer-layer similarity. However, an additional condition for logarithmic behavior is y � δ, while
Townsend’s outer-layer similarity requires only y< δ. These requirements relate to the roughness
sublayer, yr. The existence of a log region in rough-wall flows requires y> yr and y� δ, which are
void when yr/δ 
� 1. Even in these scenarios, outer-layer similarity remains a possibility beyond
and without the log region, in the limited wake region yr < y < δ. Presumably, studies (Castro
2007, Amir & Castro 2011, Chan et al. 2015) observing that outer-layer similarity holds even
for k/δ � 0.15 are referring to this kind of similarity in the wake. This is the so-called obstacle
regime ( Jiménez 2004) of large relative roughness (Flack & Schultz 2014) in which the log-law
parameters κ , A, and B(k+) are not well apparent.

Equation 2 provides an expression for U +(y+; k+), and so the effect of a given rough surface
boils down to determining the unknown function, B(k+). All of the physical dimensional reason-
ing has already been made leading up to Equations 1 and 2. Hereafter, discussions in terms of
the roughness function �U + (Section 2.2.1), equivalent sand-grain roughness ks (Section 2.2.2),
roughness length y0 (Section 2.2.3) or drag length (CDa)−1 (Section 5.1) are a matter of taste, con-
vention, interpretation, convenience, or history. For precision, y should be replaced by y − d near
the roughness in Equation 2 to account for the offset of the turbulent flow (Section 2.1.1).

2.2.1. Roughness function,�U +. A convenient and intuitive way to describe the log-law inter-
cept B(k+) is through the roughness function �U +(k+), defined independently by Clauser (1954)
and Hama (1954) and given by the shift at matched y+ of the rough-wall log law (Equation 2)
relative to that of the smooth wall (Equation 1):

�U+(k+ ) =U+
S −U+

R = (1/κ ) ln k+ + A− B(k+ ). 3.

The roughness function captures themomentum deficit resulting from surface roughness and thus
can be interpreted as a measure of the drag penalty relative to a smooth wall: Drag increases for
�U + > 0 and drag reduces for �U + < 0. The roughness function also expresses the difference
in skin-friction coefficient between the smooth wall, CfS, and the rough wall, CfR, at matched
δ+ (Figure 2a). The roughness function is invaluable in permitting experimental or numerical
roughness data, often obtained at lower outer Reynolds numbers and in a particular geometry
(e.g., pipe), to be scaled up to predict drag at application Reynolds numbers in other geometries
(e.g., channel or flat plate) (Section 2.3). Some caution is required here since Chan et al. (2015)
and Thakkar et al. (2018) have both noted that �U + retains some δ+ dependence at low δ+ (and
low δ/k), due to a distorted log region that is not yet fully formed [cf. obstacles ( Jiménez 2004)],
but such effects are likely limited to δ+ � 200 (and δ/kt � 10), overestimating �U + by � 1.

To appreciate the influence of a rough surface on wall-bounded turbulence, in Figure 2b we
map �U + of a few surfaces as a function of roughness Reynolds number, k+ ≡ kuτ /ν, where
k = kt or kt presently (respectively, the maximum peak-to-trough roughness height or the
subsample-average peak-to-trough roughness height). For �U + = 0, the surface remains hydro-
dynamically smooth because viscosity damps out the roughness-induced turbulent fluctuations
that would otherwise retard the flow. As k+ increases, the onset of roughness effects occur,
�U + � 0, and the flow is said to be transitionally rough. In this roughness regime, both viscous
and pressure drag on the roughness elements contribute to skin friction. As k+ increases further,
pressure drag dominates, τw ∝ ρU 2. In this so-called fully rough regime, the skin-friction coeffi-
cient (at constant k/δ) becomes independent of Reynolds number (Reδ ≡ δUδ/ν; see Figure 3a),
and Equation 3 shows that �U + asymptotes to (1/κ) lnk+ + A − B(∞), where B(∞) is the
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(a) Mean velocity profile,U+, for (purple curve) smooth- and (gray curve) rough-wall turbulent boundary layers at matched δ+, along
with the rough-wall profile at higher δ+ (green curve). Black and gray dot-dashed lines show Equations 1 and 2, respectively (the log
laws for the smooth and rough profiles). (b) Roughness function �U+ as a function of peak-to-trough roughness height, k+

t (see
Figure 1), for various rough surfaces. For grit-blasted and tubeworm surfaces, the average peak-to-trough roughness height kt is used.
Dashed lines show Equation 3. (c) �U+ as a function of equivalent sand-grain roughness, k+

s . The dashed line shows Equation 4, and
the dot-dashed line shows Colebrook’s (1939) formulation for the roughness function.

finite log-law intercept that depends only on the roughness topography [indicated for sand-grain
roughness Bs(∞) in Figure 2b].

Every rough surface has a possibly distinct �U + (k+), not only in the value of the fully rough
intercept B(∞) but also in the behavior of the transitionally rough regime—this is what makes the
prediction of drag due to rough surfaces so difficult.TheMoody diagram (Moody 1944) adopts the
Colebrook form (Colebrook 1939) of the friction factor,which is equivalent to the roughness func-
tion,�U + = (1/κ) ln(1 + γ k+) (cf. Grigson 1992, equation 15), with γ ≡ exp{κ[A− B(∞)]}. This
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Full-scale predictions. (a) A Moody (1944)-type chart for a pipe [κ = 0.4, A = 5, Bs(∞) = 8.5, and Π andW as given by Nagib &
Chauhan (2008)]. Here, κ is the von Kármán constant, A is the smooth-wall intercept, Bs(∞) is Nikuradse’s (1933) fully rough intercept
for uniform sand grains, Π is the wake strength, andW is the wake function. (b) Drag curve for rough-wall boundary layers developing
over a flat plate [κ = 0.4, A = 5, Bs(∞) = 8.5, and Π andW as given by Monty et al. (2016)].
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Nikuradse- versus
Colebrook-type:
the shape of the
roughness function
�U+ in the
transitionally rough
regime: Nikurase-type
exhibits critical
(on-or-off ) behavior,
while Colebrook-type
exhibits gradual
behavior

formulation is based on commercial pipes where wall drag displayed a gradual, monotonic tran-
sition from hydraulically smooth to fully rough behavior. This roughness function shape implies
�U + > 0 for all k+ > 0, negating complete viscous damping of roughness-induced disturbances
even for k+ � 1 (this formulation is shown in Figure 2c). This behavior stands in contrast to the
abrupt departure from the hydraulically smooth condition (�U + = 0 for finite values of k+) and
the inflectional nature of the skin friction in the transitionally rough regime observed byNikuradse
(1933) in classic pipe-flow experiments using uniform sand grains (Figure 2b,c). Colebrook (1939)
asserted that this difference in the transitionally rough regime stemmed from the uniformity of
the roughness used by Nikuradse and the close-packed arrangement of the elements. Bradshaw
(2000) provided a theoretical argument for Nikuradse- versus Colebrook-type behavior based on
the Oseen solution for isolated roughness elements. However, recent data indicate that irregular,
engineered surfaces with multiple scales of roughness more closely followNikuradse-type (critical
onset) behavior than Colebrook-type behavior (gradual onset) (Figure 2c). For instance, honed
surfaces (Shockling et al. 2006, Schultz & Flack 2007), commercial steel pipes (Langelandsvik
et al. 2008), painted and sanded surfaces (Flack et al. 2012), grit-blasted surfaces (Flack et al.
2016, Thakkar et al. 2018; Figure 2b,c), and even sparsely biofouled surfaces (Monty et al. 2016;
Figure 2b,c) all exhibit sudden departure from the hydraulically smooth regime, and many also
display inflectional Cf behavior in the transitionally rough regime. Bradshaw’s (2000) argument is
also at odds with that used for riblets (cf. Jiménez 2004, García-Mayoral et al. 2019).While �U +

of most surfaces displays asymptotic (1/κ) ln k+ + constant behavior in the fully rough regime,
some surfaces have demonstrated a�U + that does not scale with roughness height (Sections 3.1.4
and 5).

2.2.2. Equivalent sand-grain roughness height, ks. If the roughness Reynolds number is
based on the equivalent sand-grain roughness height, k+

s ≡ ksuτ /ν, then the roughness function
(Equation 3) for all surfaces is set by

�U+(k+
s ) = (1/κ ) ln k+

s + A− Bs(k+
s ), 4.

where Bs(k+
s ) is the unique log-law intercept function of U+

R (cf. Equation 2) measured by
Nikuradse (1933) for uniform sand grains, which is the de facto standard. In the literature, Bs(k+

s )
is typically presented as data or a fit, but the important value is the limit Bs(∞) = 8.5 in the fully
rough regime (such that the log intercept of Equation 4 in Figure 2b,c is A− Bs(∞) ≈ 5.0 − 8.5 ≈
−3.5). Comparing Equations 3 and 4 in the fully rough regime, we can convert from the physical
roughness size k to the hydraulic scale ks, using ks/k = exp {κ[Bs(∞) − B(∞)]}, where Bs(∞) takes
the standardized value of 8.5. This relationship, where ks/k is determined by only κ and B(∞),
is a consequence of the equivalent sand-grain roughness concept (cf. Schlichting 1937). Without
the fully rough condition, Bs and B remain functions of k+

s and k+, respectively, and matching
Equations 3 and 4 yields a ratio ks/k that is a function of k+. To make explicit the often implied
fully rough condition, researchers sometimes use the ks∞/k notation for the constant ( Jiménez
2004). Equation 4 is a useful way to determine ks/k from �U +. Graphically, this procedure is
the same as shifting the horizontal log axis (multiplying k by a factor C) such that the fully rough
asymptote (large k+ data) collapses onto �U + = (1/κ)ln (Ck+) + A − Bs(∞), the resulting shift
C being just ks/k (Figure 2c). Practitioners should be cautious when comparing values for ks/k or
�U + across multiple studies, or when using these to make full-scale predictions, to ensure that
there is consistency in κ , A, and Bs(∞).

2.2.3. Roughness length, y0. Similar to ks, the roughness length y0 is used in meteorology,
such that U+

R = (1/κ ) ln(y/y0), i.e., it is the location y = y0 where the log law extrapolates to
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U + = 0. As with Equation 2, y should be replaced with y − d for y = O(k) to account for
the wall offset (Section 2.1.1). Comparing Equations 2 and 3 gives �U+ = (1/κ ) ln y+0 + A ⇔
y+0 = exp[κ (�U+ − A)] (cf. Castro 2007). In the fully rough regime, matching the above with
Equation 4 gives y0/ks = exp [−κBs(∞)] ≈ 1/30, a good relationship to keep in mind.

2.3. Full-Scale Prediction

Full-scale predictions of the skin-friction coefficient Cf are possible via an assumed mean velocity
profile, U +. Writing Equation 2 in terms of ks and adding a wake function W (≡ 2 for y = δ) of
strength Π yield the following composite expression valid from the log region up to y = δ:

U+ = (1/κ ) ln(y/ks ) + Bs(k+
s ) + (Π/κ )W (y/δ). 5.

At the edge of the boundary layer, we have y = δ and U+ =U+
δ ≡ √

2/Cf , so Equation 5 re-
duces to an implicit equation that can be solved, provided that we know Bs as a function of
k+
s = (ks/δ)Reδ/

√
2/Cf , to find Cf = Cf(ks/δ, Reδ), with Reδ ≡ δUδ/ν. This is shown in Figure 3a,

which is essentially the commonly usedMoody chart, only here we presentCf and Reδ based on the
center-line velocity, Uδ . With only a moderate increase in complexity we could repose the prob-
lem in terms of a (pipe) bulk velocity,Ub = (1/δ2)

∫ δ

0 2U (δ − y) dy, and a friction factor, 8/(U+
b )2

(Nikuradse 1933), as is common for internal geometries.
For a turbulent boundary layer developing over a flat plate (a model for a ship hull or an

aircraft fuselage), the boundary-layer thickness δ is a function of the development length x and so,
rather than ks/δ and Reδ , the problem can be reposed as Cf = Cf(ks/x, Rex) or Cf = Cf(Rek, Rex),
with Rex ≡ Uδx/ν and Rek ≡ Uδks/ν. The additional relationship between x and δ is solved with
the von Kármán momentum integral equation (for zero pressure gradient), dθ/dx = Cf/2, where
θ is the momentum thickness that can be calculated from the assumed profile (Equation 5). The
procedure is readily tackled (Prandtl & Schlichting 1934,Granville 1958,Monty et al. 2016, Pullin
et al. 2017).Figure 3b shows example drag curves resulting from this approach, highlighting a few
subtle differences for this developing case. The curves at fixed Rek assume that ks is homogeneous
over the length of the plate, showing the decrease of Cf toward the long-plate limit (large Rex) of
the smooth line (Pullin et al. 2017). The scenario yielding constant Cf in the developing boundary
layer occurs in the fully rough regime when ks/x is constant. This could occur where a fully rough
ks grows linearly along the plate (yielding a constant Cf along the entire length of the plate) (e.g.,
Sridhar et al. 2017). A more practical manifestation of this curve is for a fixed x location along a
homogeneous fully rough plate, for which the constant ks/x curves show that the Cf at this fixed
location is not a function of the unit Reynolds number, Uδ/ν. For this scenario, δ would also be
invariant with unit Reynolds number at a fixed x location (Pullin et al. 2017). Typically engineers
are more interested in the integrated drag coefficient Cf (= (1/L)

∫ L
0 Cf dx) for a plate of length

L, and for this reason these drag curves are often presented as Cf versus ReL ≡ UδL/ν (Granville
1958, Pullin et al. 2017).

For the cases with ks/δ = 0.001 in Figure 3a and with ks/x = 3 × 10−7 and Rek = 3 × 102

in Figure 3b, the three different line types show Cf resulting from different assumed behaviors
of Bs(k+) in the transitionally rough regime: Colebrook, Nikuradse, and fully rough type. In the
parameter space close to the smooth curve, uncertainty regarding the transitionally rough behav-
ior can lead to errors in Cf that exceed 10%, and hence in this regime knowledge of ks alone is
insufficient to predict drag accurately. As an example of the importance of this regime, aircrafts
have typical surface roughness of ks ≈ 10 µm (Moyes et al. 2017). In cruise conditions (altitude
of 10 km, Uδ = 250 m/s, Rek ≈ 71) and for a fuselage length of L ≈ 60 m (ReL ≈ 4.3 × 108,
ks/L ≈ 1.7 × 10−7), the difference between theCf for a Colebrook- or Nikuradse-type surface for
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Frontal solidity:
λf ≡ Af/At, where Af is
the frontal projected
area of roughness
elements

Effective slope:
ES ≡ 1

At

∫ | ∂h′
∂x | dA,

where h′ is the
variation in roughness
elevation about the
mean

Plan solidity:
λp ≡ Ap/At, where Ap
is the plan area of
roughness elements

Skewness:
Sk ≡ ( 1

At

∫
h′3 dA

)
/

k3rms, where h
′ is the

variation in roughness
elevation about the
mean and krms is the
root-mean-square
roughness height

Average roughness
height:
ka ≡ 1

At

∫ |h′| dA,
where h′ is the
variation in roughness
elevation about the
mean

Root-mean-square
roughness height:
krms ≡

√
1
At

∫
h′2 dA,

where h′ is the
variation in roughness
elevation about the
mean

2N-point-average
peak-to-trough
roughness height:
kz ≡ 1

N
∑N

i=1(kpi +
kvi ), where kpi + kvi is
the ith-highest peak-
to-trough height of
the entire sample and
N = 5 typically

Total plan area: At

ks = 10 µm is approximately 5%, highlighting the importance of understanding the roughness
topographies that lead to these respective transitionally rough behaviors.

3. RELATING SAND-GRAIN ROUGHNESS TO TOPOGRAPHY

The bottleneck in our ability to make full-scale predictions of drag (Section 2.3) is the lack of a
proven method to ascribe ks (Section 2.2.2) based solely on topographical features:

ks = f (measured topographical properties). 6.

Thus, a great deal of research has been directed at attempts to correlate topographical features
to ks (for an extensive review, see Flack & Schultz 2010). A review of more recent attempts is
given in Section 3.2. The ultimate challenge for research in this area is to produce a generalized
model or correlation that is sufficiently robust to work across the range of rough surfaces that are
encountered in applications. This challenge, as formulated in Equation 6, is essentially posing the
question: Which topographical properties exert an influence on the flow and what is the bare-
minimum set of these properties that would be required to estimate the drag of a surface? We
address this question in Section 3.1.

3.1. Surface Properties

It is almost impossible to characterize roughness from the wide range of types, shapes, and surface
morphologies. The first step is to adopt clearly defined and measurable surface parameters.What
follows is an attempt to show that, as a bare minimum, a correlation between surface topography
and wall drag is likely to require measures of (a) roughness height (ka, krms, kt, kt, or kz); (b) frontal
solidity λf, effective slope ES, or roughness density parameter s; and (c) plan solidity λp, skew-
ness Sk, or solid volume fraction φ. Clustering and directionality are also important. This is not
intended as an exhaustive list of the taxonomy of roughness, but rather as a set of parameters, with
as little overlap as possible, that exert a known influence on the drag and hence the ks of a surface.
Limiting combinations of these topographical parameters and flow conditions may invalidate the
desired formulation of Equation 6 (see Section 5).

3.1.1. Roughness height. As a first recourse, some measure of roughness height will be indis-
pensable in relating a surface topography to ks. Such measures include average roughness height
ka (e.g., Acharya et al. 1986), root-mean-square roughness height krms (the standard deviation of
roughness elevation), or maximum peak-to-trough roughness height kt. The former two, which
involve area integrals, are less subject to corruption by extreme asperities and thus represent more
reliable statistical measures of mean roughness amplitude. To partially circumvent these issues,
one sometimes uses the subsample-average peak-to-trough roughness height kt, based on sub-
areas of a surface (e.g., Thakkar et al. 2017) or sub-lengths of a surface, such as Rt50, which is
measured along 50-mm lines and commonly used in measuring ship hull roughness (Howell &
Behrends 2006). Another option is kz, the 2N-point-average peak-to-trough roughness height,
the average of theN highest peak-to-trough roughness heights over the entire sample (Figure 1),
e.g., N = 5, the so-called ten-point height (Howell & Behrends 2006). However, alone, none of
these properties is suitable for converting from topography to ks, and other measures must be
employed.

3.1.2. Frontal solidity. For an array of wall-mounted roughness elements (Figure 4a), frontal
solidity λf is simply the ratio of the projected frontal area, Af, of roughness elements to the
total plan area, At. Frontal solidity measures the available area exposed to pressure drag and can
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Surface sketches to illustrate frontal solidity (Af ) and plan solidity (Ap), as well as clustering and directionality. Open and filled arrows
in panel g indicate different possible flow orientations.

imply a measure of density. Certainly the cube roughness illustrated in Figure 4b has a higher
λf and denser packing than in Figure 4a. Very sparsely packed or isolated roughness elements
(λf → 0, Figure 4a) will tend toward smooth conditions since there will be increasing expanses
of smooth-like conditions between elements, as will very densely packed roughness where
individual elements will be sheltered due to proximity to neighbors (Figure 4d). Between these
regimes, there is typically a broad range, 0.1 � λf � 0.3, where the drag (ks/k, to be precise)
is maximum (e.g., Schlichting 1937, Raupach et al. 1991, Jiménez 2004). Although a purely
geometric characterization meant for the fully rough regime, the peak drag in the broad range
0.1 � λf � 0.3 also appears to hold in the transitionally rough regime (MacDonald et al. 2016)
(Figure 5a). Though undoubtedly important, λf alone is inadequate. For example, the two very
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(a) The normalized roughness function, �U+, presented as a function of frontal solidity, λf, for cases with fixed skewness, Sk: (circles)
3D sinusoids of Chan et al. (2015) and MacDonald et al. (2016) with Sk = 0 and a maximum peak-to-trough roughness height of
k+
t = 20; (diamonds) fouled hydro turbine blade of Yuan & Piomelli (2014a) with Sk = 0.135 and an average roughness height of
k+
a = 67; (triangles) 2D sinusoids of Napoli et al. (2008) with Sk = 0 and k+

a = 19.75; and (squares) block roughness of Placidi &
Ganapathisubramani (2015) with Sk = 1.05 and 495 < k+

t < 615. (b–g) Sketches of (b,e) negatively skewed, (c, f ) positively skewed,
(d) zero-skewness steep, and (g) zero-skewness shallow surfaces. The irregular surfaces in panels e–g are adapted from Jelly & Busse
(2018), and the zero-mean elevation variation h′ of panel g was reduced to maintain matched λf.
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different packing densities and element aspect ratios illustrated in Figure 4b,c have the same λf

and height. The plan solidity λp (Section 3.1.3) is needed to distinguish between these cases.

3.1.2.1. Effective slope. The mean absolute streamwise gradient of a rough surface is known
as the effective slope, ES (Musker 1980, Napoli et al. 2008). This measure is equivalent to twice
the frontal solidity, λf = ES/2 (Thakkar et al. 2017), so in some sense it adds little to our ability
to parametrize surfaces. However, it illustrates the point that low λf can be thought of as either
sparsely packed (Figure 4b) or long-wavelength shallow roughness (Figure 5g). Likewise, high
λf could be considered as either densely packed (Figure 4d) or short-wavelength steep roughness
(Figure 5d). In distinguishing between shallow and sparsely packed topographies, it is necessary
to introduce a measure of skewness (Section 3.1.3). As an example, the shallow surface shown in
Figure 5g has the same ES as the cases illustrated in Figure 5e,f, the difference being that these
cases have zero, negative, and positive skewness, respectively. In the transitionally rough regime,
the irregular surfaces of Flack et al. (2019) (at fixed Sk ≈ 0) show that low-ES surfaces approach
Colebrook behavior, while high-ES surfaces approach Nikuradse behavior.

3.1.2.2. Roughness density parameter. The parameter s = λ−1
f (Af/Aw), where Aw is the

total windward wetted surface area, has been suggested by Sigal & Danberg (1990) and van
Rij et al. (2002). Bons (2005) showed that the local value of s is related to the local angle
αh = arctan(∂h′/∂x) for small αh. Since |αh| is approximately ES∝ λf locally, a strong relationship
between all four measures may be expected globally, as evidenced by Thakkar et al. (2017), who
have suggested that only one is sufficient for correlations.

3.1.3. Plan solidity. When combined with λf, plan solidity λp, defined as the ratio of the plan
area, Ap, of roughness elements to the total plan area, At (Figure 4a), can give an improved mea-
sure of the roughness form. Indeed, models (Macdonald et al. 1998, Grimmond & Oke 1999)
predict that the λf at which the drag is maximum depends on λp (see Figure 6a and Placidi &
Ganapathisubramani 2015). High plan solidities (λp → 1) suggest densely packed arrangements
(Figure 4d). Such surfaces tend to be negatively skewed (Section 3.1.3). Cases with λp → 0 imply
sparsely packed arrangements with a resulting positive skewness. The ratio of λf/λp can, in some
scenarios, give an indication of the aspect ratio of the roughness elements. For example, a cube-
like element will have λf/λp = 1 (Figure 4b), a squat element will have λf/λp < 1 (Figure 4d),
and tall thin elements will have λf/λp > 1 (Figure 4c,e). Such generalizations can be corrupted in
situations where elements are clustered (Section 3.1.4).

3.1.3.1. Skewness. A measure of the asymmetry in surface-elevation distribution is skewness,
Sk. In general, pitted surfaces will be negatively skewed (Figure 5b,e) and surface deposits will
be positively skewed (Figure 5c, f ) [see Monty et al. (2016), included here in Figure 2b,c, for
a practical example of a highly positively skewed surface (Sk ≈ 3.0)]. For wall-mounted cubes
(Figure 4b), a measure of skewness is conveyed by the plan solidity λp, where λp > 0.5 implies
Sk < 0 and vice versa, as Sk = (1 − 2λp)/[λp(1 − λp)]1/2, the one-to-one correspondence
demonstrating that they contain the same information. However, this relationship does not hold
in general [e.g., for pyramids, with λp = 1 but Sk > 0 (Schultz & Flack 2009)]. Unlike λp, Sk is
easily calculated for irregular surfaces, and the floor on which elements are mounted need not be
defined. From a study of replicated ship hull roughness, Musker (1980) suggested that Sk (along
with ES and krms) is critical in relating topography to ks, as corroborated by a growing number
of systematic studies (Flack & Schultz 2010, Jelly & Busse 2018, Flack et al. 2019). Specifically,
Jelly & Busse (2018) have shown that, for two irregular surfaces with matched k+

a and ES = 0.17,
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the peaked surface (Sk ≈ 1.62) produces much more drag than the pitted surface (Sk ≈ −1.64).
This is consistent with the irregular surfaces investigated by Kuwata & Kawaguchi (2019), with
ES ≈ 0.31–0.52, and also with the irregular surfaces investigated by Flack et al. (2019), where five
surfaces with matched ES ≈ 0.37 showed ks/krms increasing with Sk. In terms of transitionally
rough behavior, the most positively skewed of these five surfaces (Sk ≈ 0.84) showed abrupt
transition from hydraulically smooth to transitionally rough behavior at large k+

s ≈ 10, echoing
an earlier finding of Monty et al. (2016) (Figure 2b,c).

3.1.3.2. Solid volume fraction. Common in the canopy literature (Nepf 2012), the solid volume
fraction, φ, occupied by roughness between the maximum and minimum roughness elevation can
be viewed as a volume-based generalization of the area-based λp. Formally, it is also given by
φ = [h− min(h)]/[max(h) − min(h)] and ranges between 0 and 1. If φ is small, h would approach
min(h), whence h′ ≡ h− h would tend to be positive and thus Sk > 0. Although strictly unequal,
φ, λp, and Sk characterize related topographical features.

3.1.4. Parameters characterizing arrangement. In this section we look at topographical prop-
erties that are known to be important but lack well-accepted metrics.

3.1.4.1. Clustering. Roughness height, skewness, and frontal and plan solidity fail to capture
clustering or spatial homogeneity. The examples shown in Figure 4e, f all have the same ka, Sk, λf,
λp, and all higher-order moments (due to their identical elevation distributions), yet the 16 ele-
ments per unit plan area are arranged in very different manners, with different expected outcomes
on the flow. Sarakinos & Busse (2019) tested surfaces with matched topographical properties, but
varying degrees of clustering, noting that�U + decreases with increased clustering.Clustering, re-
lated to heterogeneity (Section 5.2), can appear as a spatial modulation of the roughness elevation.
Hence, spatial correlations or spectra of surface elevation can fail to adequately characterize the
effect of clustering.Not strictly related to clustering, but in some sense associated with small-scale
heterogeneity, Forooghi et al. (2017) compared surfaces with matched topographical properties
but varying degrees of height polydispersity (measured by the range relative to the mean), finding
that for surfaces with matched krms, regularly sized (monodisperse) roughness elements lead to a
larger ks than disparately sized (polydisperse) roughness elements.

3.1.4.2. Directionality. The concept of directionality, or anisotropy, is due to either shape or
alignment of roughness elements. Figure 4f,g offers a comparison between two surfaces with the
same ka,Sk,λf, and λp, yet with different levels of directionality.The roughness shown inFigure 4f
is isotropic in the sense that the drag would be relatively invariant with flow direction, whereas the
anisotropic roughness shown in Figure 4g has aligned features, where we may expect the pressure
drag (and λf; Section 3.1.2) to be very different if the flow were from the direction of the open
or closed arrow. Indeed, Busse & Jelly (2020) show that spanwise-aligned surface patterns tend
to have a higher drag penalty than streamwise-aligned surface patterns, as the spanwise-aligned
surface patterns considered feature higher λf = ES/2. Regularity is bound up with notions of di-
rectionality: A regular surface is often anisotropic. Forooghi et al. (2017) compared three surfaces
with matched k+

rms, ES, and Sk, but where the roughness elements were arranged randomly or
regularly in staggered or streamwise-aligned arrangements. All three cases have differing degrees
of anisotropy, but, in this example, they have matched λf = ES/2 (in contrast to the two flow
directions shown in Figure 4g), with the streamwise-aligned arrangement producing the lowest
�U +. Another observation highlighting the effect of arrangement is that due to Yuan & Piomelli
(2014a), who noted that irregular surfaces (at fixed k+

rms ≈ 25 and Sk ≈ 0.135) attain a maximum
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�U + at higher ES (≈0.7) than regular surfaces, e.g., 3D sinusoids (at fixed k+
rms = 5 and Sk =

0) (MacDonald et al. 2016), where the maximum �U + occurs at λf = ES/2 ≈ 0.15 (Figure 5a).
Thakkar et al. (2017) considered the transitionally rough regime of 17 industrial surfaces, finding
that �U + could be best predicted from a correlation based on λf, Sk, and krms, as well as the ratio
of streamwise correlation length to kt, the latter representing an addition to the bare-minimum set
(Section 3). A measure of directionality is the surface texture aspect ratio Str (Thakkar et al. 2017,
Busse & Jelly 2020), the ratio of the shortest correlation length of all directions to the longest cor-
relation length of all directions. Surfaces with Str < 0.3 (0 for all 2D roughnesses) are considered
directional, while surfaces with Str > 0.5 are considered isotropic.

Highly directional surfaces can lead to atypical drag behaviors. For example, riblets (Str = 0),
when flow aligned, feature a distinct narrow range of small sizes k+ with �U + < 0, indicating that
drag is reduced below smooth-wall levels (Bechert et al. 1997, García-Mayoral et al. 2019). Not
only that, but in the drag-increasing regime of large k+, riblets fail to conform to the fully rough
asymptote (Gatti et al. 2020). In some sense this is not surprising, since the fully rough asymptote
is associated with the dominance of pressure drag over viscous drag, which cannot be the case with
flow-aligned riblets that have no surface normals with a streamwise component on which pressure
drag can act. It is also conceivable that larger-scale directional surfaces could selectively interact
with or bias turbulence at particular scales and subsequently violate outer-layer similarity, e.g., the
streamwise-aligned 3D roughness arrangement of Forooghi et al. (2017) and the drag-increasing
riblets (large k+) of Newton et al. (2018), the latter showing that the turbulence structure, even
far from the wall, is profoundly altered.

3.2. Predictive Correlations

In the fully rough regime, Equation 6 can be formulated, at a bare minimum (Section 3.1), with
ks/k as a function of a slope parameter (e.g.,λf,ES) and a skewness parameter (e.g.,λp,Sk).Figure 6
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presents four predictive correlations for ks/k. Since these correlations each use different measures
for k (kt, ka, kt, krms), all panels in Figure 6 are normalized by their respective values for ks at the
common location ES = 0.3 and Sk = 0, denoted by ks×. The data on which the correlations were
developed are also represented in Figure 6, all of which are near the reference ks/ks× = 1 location,
except for Figure 6a, which is based on cube data along the line λf = λp.

Figure 6d shows the correlation of Flack et al. (2019), based on Flack & Schultz (2010),

ks = 2.48 krms(1 + Sk)2.24, ks = 2.11 krms, and ks = 2.73 krms(2 + Sk)−0.45, 7.

for Sk > 0, Sk = 0, and Sk < 0 surfaces, respectively. Equation 7 was developed using a wide
range of roughness topographies, from gravel (Castro 2007) to commercial steel pipe (Shockling
et al. 2006), but it includes no measure of ES (suggested as a bare-minimum set in Section 3.1).
Equation 7 was predominantly formulated for surfaces that have a relatively narrow range of ES
in which ks/k is relatively invariant ( Jiménez 2004) (cf. Figure 5a), avoiding sparse or dense sur-
faces. Barros et al. (2018) have shown that Equation 7 can be extended to lower-ES surfaces if
long-wavelength contributions are filtered out prior to computing statistics. Forooghi et al. (2017)
studied 38 surfaces with both regular and irregular arrangements and size distributions of rough-
ness elements of prescribed shape and proposed, for polydisperse roughness,

ks = kt (0.67Sk2 + 0.93Sk+ 1.3)[1.07(1 − e−3.5ES )], 8.

shown in Figure 6c, which has all the ingredients suggested in Section 3.1. A slightly different
correlation is available for roughness with nearly uniform size distributions (i.e., monodisperse
roughness). Chan et al. (2015) studied 3D sinusoidal roughness, systematically investigating the
influence of roughness height and wavelength. They showed that �U +, in the transitional and
fully rough regimes, depends on both k+

a and ES, proposing

ks ≈ 7.3 ka ES0.45 , 9.

shown in Figure 6b. Equation 9 was formulated together with a data compilation covering a wide
range in ES, but narrow in Sk, explaining the omission of the latter parameter. Figure 6a shows
the correlation of Macdonald et al. (1998), given as

ks ≈ 30kt (1 − d/kt ) exp
{ − [0.5(1.2/0.42)(1 − d/kt )λf ]−0.5}, 10.

with d/kt = 1 + 4.43−λp (λp − 1). Equation 10 was based on a physical model with the constants
here tuned for staggered cube roughness (the cube case is represented by the λf = λp line in
Figure 6).

In general, a graphical comparison of these four correlations indicates that each is formulated
from data that cover a relatively narrow region of the parameter space. Use of these correlations
beyond these respective regions involves a dangerous degree of extrapolation. Even so, there
are some common characteristics. Figure 6a–c all show monotonically increasing ks/k with
increasing ES. As such, these three correlations only seem to be applicable to the sparse λf regime,
despite being formulated on data that includes dense surfaces, as in Figure 6a,b. At fixed Sk, data
(Placidi & Ganapathisubramani 2015,MacDonald et al. 2018) suggest that ks/k will increase with
ES for ES � 0.3–0.6, beyond which it will eventually decrease in the dense fully rough regime,
ES � 0.4–3, depending on the roughness topography. None of the correlations shown here
captures this constant-Sk or constant-λp behavior, perhaps because the decrease of ks/k with
increasing ES at constant Sk has not been seen for irregular surfaces up to ES≈ 0.8–0.9 (e.g., Yuan
& Piomelli 2014a, Forooghi et al. 2017). However, a peak is predicted by the model of Figure 6a
along λp = λf (cf. Placidi &Ganapathisubramani 2015). Along λp ∝ λf intersects,Figure 6a shows
a differing λf location of ks/k peaks, depending on whether the elements are squat or tall. There
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are also commonalities in terms of skewness. In the positively skewed regime, Figure 6a,c,d all
show increasing ks/k with increasing Sk (draggy peaks), with both panels c and d further indicating
minima in ks/k with Sk occurring at Sk ≈ −1 and 0, respectively. Interestingly, panels a and c
both show diagonal contours around the reference ks/ks× = 1 location, perhaps demonstrating
the robustness of the physics-constrained fit (Figure 6a) away from the fitting data.

An all-encompassing equation relating ks to topography remains elusive. In many respects,
progress in this endeavor is linked to an improved appreciation of key topographical parameters
and will be aided by systematic studies that painstakingly isolate the effect of certain topographical
features (i.e., sweeps through the parameter space in Figure 6). Coles’s (1968) view on the useful-
ness of varying only one parameter at a time remains pertinent. In understanding the wider picture
of topographical effects, it would also be useful to populate the extremities of the parameter space
in Figure 6 where there is currently a dearth of systematic data. Readers are encouraged to use
and contribute to a recently developed roughness database (http://roughnessdatabase.org/) that
contains surface profiles and statistics, as well as experimental measurements or simulation results
for flow over a wide range of roughness topographies.

4. ADVANCES IN EXPERIMENTS AND COMPUTATIONS

In the past, a trial-and-error approach was, by necessity, adopted to investigate the effect of largely
random variations in roughness topography. For this reason, identifying key roughness parameters
and quantifying their influence have been troublesome, but recent advances in experiments and
computations have been lowering the barriers.

4.1. Experiments

Experimental investigations have been aided by the commissioning of several high–Reynolds
number pipe (Shockling et al. 2006), channel (Barros et al. 2018), and boundary-layer (Squire
et al. 2016) flow facilities. Further advances focus on the accurate measurement of wall shear
stress, which has long hindered experimental studies. The limitations of the Clauser chart (Perry
& Joubert 1963) are well documented (Castro 2007). While direct measurement using floating-
element balances is not new (Acharya et al. 1986), the last decade has seen widespread adoption
of this technique for studying roughness (Krogstad & Efros 2010, Placidi & Ganapathisubramani
2015, Squire et al. 2016). Taylor–Couette flow can potentially be exploited, as the wall shear stress
can be accurately determined from torque (Zhu et al. 2018). The roughness function measured
in Taylor–Couette flow is similar to that of pipe flow, but whether both flows yield the same
ks independent of radius ratio remains to be resolved (Berghout et al. 2019). Volino & Schultz
(2018) proposed an indirect method for determining wall shear stress based on the streamwise
momentum equation, later expanded by Womack et al. (2019). An increasing availability of rapid
prototyping and CNC (computer numerical control) capabilities now permits test surfaces to be
readily manufactured from surface scans and mathematically generated topographies ( Johnson
& Christensen 2009, Schultz & Flack 2009, Flack et al. 2019), which has in turn led to more
systematic experimental studies of key topographical parameters.

4.2. Computations

Roughness-resolving direct numerical simulation (DNS) is now routine, thanks to increases
in hardware performance and to the maturing of the immersed-boundary method (Fadlun
et al. 2000) for representing complex boundaries in efficient solvers. The immersed-boundary
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method, which simplifies the otherwise cumbersome meshing of roughness boundaries, has been
used to study flow over regular roughness (e.g., Leonardi et al. 2003) and irregular roughness,
synthesized (e.g., Yuan & Piomelli 2014b) or scanned (e.g., Thakkar et al. 2018). A newcomer that
also promises a simple representation of complex boundaries is the lattice Boltzmann method
(e.g., Kuwata & Kawaguchi 2019). Body-fitted meshes remain tenable for regular topographies
(e.g., Coceal et al. 2007) due to the simpler meshes and repeating features. A point to consider is
the higher cost, relative to smooth walls, of resolving small features when viscous drag dominates.
Irregular surfaces, for example, require �12 points per smallest feature (Busse et al. 2015), which
increases the cost of studying the transitionally rough regime in the smooth-wall limit (Thakkar
et al. 2018). If the primary goal is to characterize the drag penalty of small-scale roughness, the
low-cost minimal-channel DNS could be employed to directly simulate the roughness sublayer
without resolving the outer flow (Chung et al. 2015, MacDonald et al. 2017), i.e., the physical
basis for this method is Townsend’s outer-layer similarity (Section 2.1). Another cost-saving
approach is to partially resolve the roughness topography while performing LES with coarser
meshes away from the wall (e.g., Napoli et al. 2008, Yuan & Piomelli 2014a, Nikora et al. 2019).
LES with wall-modeled roughness (e.g., Anderson et al. 2015, Sridhar et al. 2017), i.e., imposing
the local shear stress according to a log law with prescribed roughness length y0, allows for spatial
variations of roughness properties at the level of the LES mesh spacing, and is suited for studying
heterogeneous roughness. For multiscale roughness, an innovation is the dynamic scale-similarity
closure for prescribing y0 from surface-elevation distributions (Anderson&Meneveau 2011). Also
possible is LES with immersed boundaries to resolve the larger roughness elements (presumably
contributing the most to drag) while wall-modeling the unresolved roughness (Yang et al.
2016).

5. LIMITING ROUGHNESS TYPES

While a large number of roughnesses, given ks (Section 3), behave according to the framework of
Section 2, there are subtleties that require care or situations where the framework fails, sometimes
expectedly, but also sometimes unexpectedly. Here we try to discuss the known odd (and fasci-
nating) behaviors, grouping them into dense, nonhomogeneous, multiscale, and wavy roughness.
These groups are neither mutually exclusive, e.g., multiscale roughness can also be nonhomoge-
neous, nor exhaustive, representing only a selection to highlight the rich flow physics encountered
in the study of roughness. It is, however, essential that roughness practitioners, where possible, de-
velop an eye for surfaces that will lead to atypical behaviors, since these will necessitate different
approaches.

5.1. Dense Roughness

When the roughness topography becomes denser at a given height k, exceeding λf � 0.15, it is
well known (e.g., Jiménez 2004) that the roughness becomes less draggy, that is, ks/k (or �U + at
fixed k+) decreases with increasing λf (cf. Figure 5a). Further increasing λf at fixed k+ ultimately
narrows the fluid gap between roughness elements down to the viscous scale ν/uτ , where a gap-
based Reynolds number takes precedence over geometric parameters and k+ in describing the
flow. In the extreme, e.g., sinusoidal wavelength λ+ � 3 (MacDonald et al. 2016) and interblock
fluid gapW+ � 2 (Sharma & García-Mayoral 2020), the flow approaches that of a smooth wall at
the roughness crest. For λf � 0.15, the flow is thought to skim over the roughness (e.g.,Grimmond
& Oke 1999), but if the roughness is dense (λf � 0.15), the skimming flow no longer reaches the
base of the roughness elements. The transverse square k × k bars (i.e., λf = λp) with varying fluid
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gap W come to mind. For approximately fixed k+, �U + increases for λf = 0.017–0.1 and then
decreases for λf = 0.25–0.5, consistent with the λf ≈ 0.15 peak (Leonardi et al. 2007), but at fixed
λf = 0.5,�U + appears insensitive to k+ up to k+ ≈ 80, and at λf = 0.67, trapped mean vortices in
the gaps no longer reach down to the base. However, in a study of deep transverse bars of depth k,
thickness b, and fluid gapW = b (i.e., fixed λp = 0.5),MacDonald et al. (2018) suggested that even
extremely dense surfaces, λf > 0.5, eventually exhibit fully rough behavior (at fixed λf). Their λf =
1.5 data are included inFigure 2b,c, showing that the fully rough asymptote of�U + is approached
at sufficiently high k+. Once the bars are deep enough (λf ≥ 1.5 � 0.15), the relevant parameter
for collapsing �U + is W+, i.e., �U+ ∼ (1/κ ) lnW+ + constant, independent of k+ (equivalently,
ks ∝ W or ks/k ∝ λ−1

f ) (MacDonald et al. 2018). This is because the flow is stagnant deep in the
gap and the turbulent flow around and above the crest only sees the fluid gapW and not the depth
k. In addition to 2D transverse bars, 3D block arrays also show a similar importance of the fluid
gap over the roughness height in the dense regime (Sharma&García-Mayoral 2020), where�U +

saturates with k+ beyond λf � 2.0 at fixed λp = 0.25.
Dense roughness topographies (λf � 0.15) arise naturally in the study of canopies, where

similar concepts have been studied in depth (Finnigan 2000, Nepf 2012). The customary geo-
metrical parameter is not the canopy height, k, but a−1, which is related to the lateral spacing
of obstructions, defined as the frontal area per unit volume, i.e., a ≡ Af/(kAt) = λf/k, such that
λf = ka. Additionally, the solid volume fraction, φ, is related to the plan density, λp. The sparse–
dense delineation at ka≈ 0.1 (cf. λf ≈ 0.15) is well known for canopies (Nepf 2012). The idea that
drag concentrates near dense canopy tops such that the canopy height becomes dynamically irrele-
vant (Nepf 2012) is also evidenced in deep bars (MacDonald et al. 2018), where the force centroids
become independent of k+ for λf ≥ 1.5� 0.15. It is customary to parametrize the canopy drag (per
unit volume)D(y) asD≡ (1/2)(CDa)ρU 2, where the drag length (CDa)−1 is a hydraulic length that
plays the same role to the geometric spacing a−1 as that of ks to k. Because hydraulic lengths, by
construction, relate to drag, ks and (CDa)−1 are connected. For dense canopies, momentum is fully
absorbed at penetration depth∝ ε ≈ k− d� k below the canopy top such that the wall shear stress
τw is approximately equal to

∫ k
d D dy ≈ D(k)ε or, in parametrized form, (1/2)(CDa)ε[U +(k)]2 ≈ 1.

Then, using the fully rough log law evaluated at the crest, U +(k) ≈ (1/κ)ln (ε/ks) + Bs(∞), and
noting (CDa)ε ≈ 0.23 (Luhar et al. 2008, Nepf 2012), we obtain ks ≈ 2.1(CDa)−1. In the dense
regime, this relationship suggests y0/k ∝ ks/k ∝ (CDak)−1 ∝ λ−1

f . These links were already noted
earlier, including counterparts in the sparse and transitionally rough regimes (Raupach 1994,
Luhar et al. 2008, Nepf 2012). A similar idea is used in the study of porous surfaces, where a
hydraulic permeability length scale

√
K , proportional to the pore size, is the relevant parameter,

as opposed to the porous-bed thickness (Breugem & Boersma 2005, Voermans et al. 2017).
For deep roughness topographies such as porous surfaces in pressure-driven flows, uτ , which

scales the turbulence above, need not be related to the total drag on the roughness elements
because not all of the momentum absorbed originates from the turbulence above the roughness
crest (Breugem et al. 2006, Pokrajac et al. 2006) (which complicates, among other things, the
assessment of outer-layer similarity from uτ , as determined from either wall drag or pressure
drop). Some of the momentum absorbed comes from interstitial fluid motion driven by the
pressure gradient. Extrapolations of the linear total stress profile to the wall offset (Chan-Braun
et al. 2011, García-Mayoral et al. 2019) or to the crest (Pokrajac et al. 2006, MacDonald et al.
2018) have been proposed as ways to determine uτ , the former more physical, the latter more
convenient. A further issue is the ambiguity of the drag for 2D transverse roughness in a closed
geometry where the cross-sectional area changes with streamwise location (MacDonald et al.
2018).
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5.2. Nonhomogeneous Roughness

The engineering tools that we have for predicting wall-bounded turbulent flows over rough sur-
faces all assume a homogeneous distribution of roughness. Yet, in applications, roughness is in-
variably patchy or heterogeneous. For the purposes of this review, a heterogeneous or nonhomo-
geneous roughness is defined as one in which the statistical properties of the roughness vary over
a scale that is large relative to the outer scale, δ (e.g., boundary-layer thickness), of the flow. Ex-
amples include patchiness of biofouling on ship hulls, crop and forest boundaries in atmospheric
surface layers, and rivet rows and panel joints on aircraft fuselages. In all of these instances, the
overarching objective is to predict the adjustment of drag over these surfaces. Faced with the in-
finite possibilities of heterogeneous arrangements, researchers have focused on simplified kernel
distributions to unpack the problem.

5.2.1. Streamwise variation in roughness. The smooth-to-rough and rough-to-smooth tran-
sitions in the streamwise direction have long been an important test case (Antonia & Luxton 1971,
1972). In these cases, the sudden change to a new surface condition generates an internal boundary
layer, of thickness δi(x) (Elliot 1958), that demarcates a near-wall layer, which feels the new surface
condition, from the flow farther from the wall, which retains a memory of upstream surface condi-
tions prior to the surface transition. Though a useful modeling construct, the internal layer is not
well defined, with a multitude of differing definitions (Rouhi et al. 2019). In the rough-to-smooth
transition, the local wall shear stress Cf undershoots the equilibrium (homogeneous) smooth-wall
value immediately downstream of the transition, taking several δ in fetch to recover (e.g., Antonia
& Luxton 1972, Hanson & Ganapathisubramani 2016, Ismail et al. 2018, Li et al. 2019). A colla-
tion (Li et al. 2019) of local Cf recoveries reported from experimental and computational studies
of a rough-to-smooth transition indicates that the scatter in integrated drag over the first 10δ
downstream of transition differs by up to 40% between studies, suggesting a pressing need to
better predict this flow. One modeling challenge is that the near-wall flow, even very close to the
surface, requires a substantial fetch to recover equilibrium conditions, giving rise to the concept of
the internal equilibrium sublayer with thickness δe � δi (cf. Brutsaert 1982, Garratt 1990), within
which similarity of the mean profiles with the local τw is observed. Recovery distances in excess
of 10δ have been suggested before profiles start to exhibit local equilibrium (Ismail et al. 2018, Li
et al. 2019).

These studies of streamwise variation in roughness also raise questions regarding the develop-
ment of external turbulent boundary layers. In such cases, even with a homogeneous distribution
of ks, the dimensionless roughness scale k+

s (and ks/δ) will vary in the streamwise direction. In such
situations one might expect a continual progression of weak internal layers, such that at a given x
location, the outer parts of the flow will retain a memory of the roughness condition from some
distance O(20δ) upstream. These effects will be more pronounced where the flow is subject to
aggressive changes in x, arising even in zero-pressure-gradient flows at low δ+ (Squire et al. 2016),
possibly delaying recovery to outer-layer similarity of the turbulence.

5.2.2. Spanwise variation in roughness. In this case, roughness-induced turbulence
anisotropy and spanwise gradients in turbulent stresses lead to the formation of Prandtl’s sec-
ondary flows of the second kind (Hinze 1967, Anderson et al. 2015). Long a concern in hydrolog-
ical flows over bed roughness (e.g., Colombini & Parker 1995), spanwise heterogeneity has seen
a recent revival in interest in the engineering community following a study by Mejia-Alvarez &
Christensen (2013), who observed stationary large-scale features in the turbulent boundary layer
formed over a replicated fouled turbine blade. There has since been a slew of studies that have
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looked at idealized spanwise heterogeneity, typically consisting of spanwise-alternating rough and
smooth strips of some form.These studies show that the sense and strength of the secondary flows
are sensitive to spanwise variations in both the roughness length y0 (strip type; Anderson et al.
2015, Chung et al. 2018) and the wall offset d (ridge type; Hwang & Lee 2018), as envisioned by
Colombini & Parker (1995), the complication being that many spanwise heterogeneous surfaces
are a combination of these two effects (Vanderwel & Ganapathisubramani 2015, Medjnoun et al.
2018, Yang & Anderson 2018). Surfaces that lie between pure strip and pure ridge type can lead
to either upward or downward flow over the regions considered to be roughest (Stroh et al. 2020).
More complicated scenarios can arise where there are additional length scales, e.g., a difference
in strip widths (Yang & Anderson 2018), broadband heterogeneity (Mejia-Alvarez & Christensen
2013), and directionality (Nugroho et al. 2013).

For strip-type roughness, the diameter, strength, and arrangement of secondary flows is
strongly dependent on the repeating spanwise wavelength, , relative to the outer scale, δ. In
general, in the case of large  (�δ), the secondary flows (of diameter ≈δ) will be isolated, lo-
cated at the lateral transition in surface conditions. Away from the location of secondary flows,
the local surface conditions will dominate: slower flow over rougher patches and faster flow over
smoother patches with outer-layer similarity observed based on the local wall drag (Chung et al.
2018,Wangsawijaya et al. 2020).As reduces (to≈2δ), the secondary flows (still of diameter δ) be-
come space filling, forming counter-rotating pairs in themean. Importantly, this wavelength seems
to approximately coincide with the maximum strength of the secondary flows and also the maxi-
mum wall drag (Chung et al. 2018, Medjnoun et al. 2018, Yang & Anderson 2018, Wangsawijaya
et al. 2020). As  reduces still further, the secondary flows (which have diameter ≈/2 for
 � 2δ) weaken and are increasingly constrained closer to the surface. As the homogeneous limit
is approached,  � δ, we see a return to outer-layer similarity based on an averaged wall drag
condition, with spanwise homogeneity observed for y � /2. Identifying  as the wavelength of
the largest spanwise feature, this same limit (yr ≈ 0.5) coincides with the height of the rough-
ness sublayer (yr ≈ 0.5λ) over homogeneous roughness (Chan et al. 2018). Hence the roughness
sublayer can be viewed as a measure of spanwise heterogeneity, or the wall-normal extent of the
secondary flows.

5.3. Multiscale Roughness

In practice, many rough surfaces are irregular with a broad distribution of scales. Studies on fil-
tering and low-order representations of multiscale roughness seek to account for flow behavior
according to surface scales. For example, Johnson & Christensen (2009) and Mejia-Alvarez &
Christensen (2010) tested the flow response of low-order representations (containing the first few
singular value decomposition basis functions) of the turbine blade roughness of Bons et al. (2001),
while Busse et al. (2015) tested surfaces obtained by progressively filtering a scanned graphite sur-
face, varying the cutoff filter wavelength from ≈0.66δ to ≈30ν/uτ . As more and more small scales
are omitted, �U + decreases, which is perhaps not surprising due to the reduced k+

rms, but it is
also likely due to the reduced ES. This conclusion echoes that of Barros et al. (2018), who investi-
gated the fractal surfaces of Anderson & Meneveau (2011), and that of Stewart et al. (2019), who
also looked at fractal surfaces. Surfaces with the weakest small-scale surface-elevation variations
(strongest spectral decay at high wavenumbers) exhibited the lowest drag. Physically, this means
that long, shallow surface features are less draggy than short, steep surface features, consistent
with the ES of the surfaces. Nikora et al. (2019) reported an interdependence between temporal
velocity fluctuations and spatial variations of the time-averaged velocity (Nikora et al. 2007), a
kind of scale interaction, over the fractal surfaces of Stewart et al. (2019), with results similar to
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(a) Examples of premultiplied surface-elevation spectra, κEh′h′ , where κ is an in-plane wavenumber and λ ≡ 2π/κ is the associated
wavelength: (blue line) a Gaussian spectrum (cf. Flack et al. 2019) and (gray lines) the power law Eh′h′ ∼ κ

p, with spectral slopes p = −1.0
and −1.5 (cf. Barros et al. 2018). The area under the premultiplied spectrum is

∫ ∞
0 κEh′h′ d(log λ) = k2rms; the dashed line shows the

viscous scale, ν/uτ ; and the dot-dashed line shows the outer scale, δ. (b) Illustration in spectral space of a hypothetical application
roughness (blue, subscript a) scaled for laboratory measurements or numerical simulations (red, subscript s).

those of Yuan & Piomelli (2014b) that indicated that a loss in one may lead to a gain in the other.
Interestingly, all these multiscale surfaces exhibit outer-layer similarity, suggesting indifference to
spectral content. Presumably this may change if the surfaces were to contain substantial surface-
elevation variations at in-plane wavelengths λ � δ, where heterogeneity (Section 5.2) or waviness
(Section 5.4) effects could become active.However, surfaces with large-scale (λ � δ) spanwise het-
erogeneity could also recover an apparent outer-layer similarity, with noticeable departures only
near λ ≈ δ (Chung et al. 2018). Follow-up studies on multiscale surfaces by Barros & Christensen
(2014) and Nikora et al. (2019) identified persistent secondary flows, suggesting that the surfaces
tested had substantial surface-elevation variations near λ ≈ δ (Section 5.2.2), although both studies
also employed streamwise-repeated tiles, which have been proposed to play a role in accentuating
these secondary flows (Nikora et al. 2019).

When evaluating multiscale roughness, it is useful to consider where the surface scales lie
relative to the flow scales, δ and ν/uτ . Figure 7a shows examples of premultiplied spectra of
surface-elevation variation, κEh′h′ , where κ is an in-plane wavenumber (e.g., the streamwise
wavenumber κx in the case of a 1D κx-spectrum) and λ ≡ 2π/κ, the corresponding wavelength.
For the Gaussian spectrum, the spectral content of the surface-elevation variation is largely local-
ized, but not for the power-law spectra. Computations and experiments impose further cutoffs.
At the small-scale end, resolution must be considered due to either computational mesh spacing
or surface-scanning and -manufacturing techniques. It is desirable that these cutoffs do not affect
the flow, i.e., that they be located at wavelengths with limited surface-elevation variation, and left
of the viscous λ = ν/uτ line in Figure 7a, noting that fluid gaps smaller than 2–3ν/uτ are not felt
by the flow in the transitionally rough regime (MacDonald et al. 2016, Sharma &García-Mayoral
2020). In the fully rough regime, the Kolmogorov scale near the roughness would be the smallest
to be resolved (e.g., Coceal et al. 2007). At the large-scale end, computational domain size, sample
scan area, and replicated tile size can all impose limits on resolved large-scale surface-elevation
variations. It is desirable for this upper limit to be beyond the spectral content of the surface.
Figure 7b illustrates the challenges arising from scaling of replicated surfaces for laboratory
experiments or numerical simulations. The application curve represents the surface-elevation
spectrum of an original surface as observed in an application. The mean wavelength λ of this
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surface can be obtained from a ratio of spectral moments (e.g., Townsin 2003), λ/(2π ) ≡ m0/m1,
locating the centroid of the area under the premultiplied spectrum. For the application, the outer
scale δa is much greater than the variance-containing part of the spectrum, ≈λa. When testing an
observed roughness in the laboratory or in a simulation,wemust scale the surface to preserve inner
scaling, represented by the scaled curve in Figure 7b, which shows a 4×-scaled surface such that
λs = λ

+
a νs/uτ s. However, since Reynolds numbers of scaled facilities are often smaller than in ap-

plications (δsuτ s/νs � δauτa/νa), this scaling results in reduced scale separation between outer and
inner scales, even for δs � (krms)s. For the case illustrated, the scaling resulted in substantial surface-
elevation variation at λ = δs. A similar scenario occurred for Nugroho et al. (2020) in scaling an
observed ship hull surface for testing in a laboratory, with the resulting surface-elevation variation
at λ = δ for the scaled surface leading to atypical roughness function behavior (Section 5.4).

5.4. Wavy Roughness

Roughness topographies characterized by large in-plane wavelengths λ compared to roughness
height k, i.e., wavy features, remain under-explored, with studies (Napoli et al. 2008, Schultz &
Flack 2009, Nugroho et al. 2020) showing �U + of these low-ES surfaces lacking the typical
dependence on k+. In the LES study of multiscale surfaces created from the superposition of 2D
sinusoids, Napoli et al. (2008) found that �U +, the pressure-to-viscous drag partition, and the
mean streamlines do not collapse with the roughness height k+

a but instead with a quantity they
termed the effective slope, ES (Section 3.1.2.1). Notably, mean streamlines show attached flow
for ES ≈ 0.05, consistent with the dominance of viscous drag and flow separation for ES ≈ 0.15,
independent of k+

a . Schultz & Flack (2009) carried out experiments over close-packed pyramids,
finding that �U + increases with the viscous-scaled roughness height, k+

t , toward fully rough
behavior, but only for ES > 0.35. For pyramids with ES < 0.35,�U + appears independent of k+

t ,
reminiscent of the study of Napoli et al. (2008). Schultz & Flack (2009) termed this the “waviness
regime,” in which �U + lacks the typical dependence on k+. In this waviness regime, a doubling
of the roughness height, kt, at fixed unit Reynolds number, Uδ/ν, had a negligible effect on the
drag of the surface. Nugroho et al. (2020) carried out experiments over 2.5× and 15× (scaled)
replicas of in-service ship hull paint, which resembles an orange peel and has ES ≈ 0.089. The
2.5× roughness showed the expected fully rough scaling of �U + with k+

a , while the 15×
roughness did not, despite both surfaces having matched ES. Nugroho et al. (2020) attributed
this to a lack of scale separation between the boundary-layer thickness δ and the roughness
wavelength λ, as δ/λ is approximately 1 for the 15× case and approximately 6 for the 2.5× case
(cf. Section 5.3). Nugroho et al. (2020) reported spanwise variations of the streamwise flow up to
≈0.4δ above the 15× roughness but not above the 2.5× roughness, with concomitant impact on
outer-layer similarity. It is interesting that the cases termed wavy by Schultz & Flack (2009) have
comparable δ/λ = 3–6. More studies are needed to better understand the wavy regime, but the
effect of low ES ∝ k/λ is difficult to isolate from the competing requirement of high δ/λ because
δ/k ∝ (δ/λ)/ES, and practically it is a struggle to maintain sufficiently high δ/k.

6. CONVECTIVE HEAT TRANSFER OVER ROUGHNESS

Roughness alters convective heat (and mass) transfer (Section 2, Figure 1). In forced convection,
a log profile for Θ+ similar to that for U + (Section 2.2) can be argued. The dimensional require-
ments for the log layer are that close to the wall (y� δ), the flow is oblivious to the outer geometry,
yet far above the direct effect of viscosity, roughness and, now, also diffusion (i.e., y+, y/k, and
Pr y+ � 1). Thus, the only relevant dimensionless group is (y/θτ )(dΘ/dy) = 1/κθ , where
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κθ (≈0.47) is generally different from κ for momentum. The log profile follows upon integration.
The following are physically equivalent, but integration constants (log intercepts) vary depending
on the y scaling (cf. Yaglom 1979):

Θ+
R = (1/κθ ) ln y+ + Aθ (Pr) − �Θ+(k+,Pr), 11.

Θ+
R = (1/κθ ) ln(y/y0) + St−1

k (k+,Pr), 12.

Θ+
R = (1/κθ ) ln(y/y0θ ), 13.

Θ+
R = (1/κθ ) ln(y/ks ) + g(k+,Pr). 14.

In y+ coordinates, the log intercept Aθ − �Θ+ is constructed such that the temperature shift is
�Θ+ ≡ Θ+

S − Θ+
R = 0 for smooth walls (k+ and Pr k+ � 1) (Yaglom 1979); �Θ+ > 0 can be

interpreted as heat-transfer augmentation. In y/y0 coordinates, where y0 is the roughness length
for momentum, St−1

k is the log intercept called the inverse roughness Stanton number (Kays &
Crawford 1993). In meteorology, the roughness length for heat y0θ is used (Brutsaert 1982). In y/ks
coordinates, the log intercept is g (Dipprey & Sabersky 1963). Thus, similar to knowing either
�U +, B, or y0/k in terms of k+ for drag, the problem reduces to knowing either �Θ+, St−1

k , y0θ /k,
or g in terms of k+ and Pr for heat transfer.

6.1. Fully Rough Heat Transfer

The main difference between convective heat transfer and drag for conventional roughness is the
lack of a pressure-drag analog (Dipprey & Sabersky 1963, Owen & Thomson 1963) such that in
the fully rough regime, k+

s � 70 (and Pr � 1), unlike τw, qw does not scale with the inertial flow
set by the roughness elements y0 ∝ k, but remains sensitive to molecular fluid properties ν and
α. This means that the log intercept St−1

k of Θ+ in y/y0 coordinates does not approach a constant
but depends on k+ (or k+

s ) and Pr. The power law St−1
k = (1/0.8)(k+

s )
0.2Pr0.44 is typical (Kays &

Crawford 1993). The exponents are based on a fit to the log intercept in y/ks coordinates pro-
posed by Dipprey & Sabersky (1963), g = kf (k+

s )
pPrm = St−1

k + (1/κθ ) ln(ks/y0), where we have
kf = 5.19, p = 0.20, and m = 0.44 for granular close-packed roughness spanning Pr = 1.20–5.94
and k+

s ≈ 2–2,000.The prefactor kf depends on roughness topography.Diverse values, p= 0.2–0.5
and m = 0.44–0.8, have been fitted to heat- and mass-transfer data for Pr � 1 from laboratory
experiments and meteorological observations (Brutsaert 1982, Kanda et al. 2007), with p, m, kf,
and the choice of log intercept sensitive to each other. Unlike �U +, a preferred asymptotic form
of St−1

k or �Θ+ is yet to emerge, with wide scatter (Figure 8a) among models, as it has been
difficult to directly test the underlying hypothesized mechanisms (e.g., Owen & Thomson 1963,
Yaglom 1979, Brutsaert 1982).DNS data for 3D sinusoids at Pr= 0.7 up to k+

s ≈ 400 (MacDonald
et al. 2019) suggest that �Θ+ approaches a constant, as in smooth-wall scaling behavior, but also
show a slight decrease beyond k+

s ≈ 250 (Figure 8a). The DNS data for irregular roughness at
Pr= 1.0 up to k+

s ≈ 100 (Peeters & Sandham 2019) also seem to approach saturation (Figure 8a).

6.2. Effect of Roughness Topography on Heat Transfer

As with drag, heat transfer depends on roughness topography. In general, appreciation of the in-
fluence of roughness topography on heat transfer currently lags that for drag, owing to a scarcity
of systematic studies. Nonetheless, a comparison of a large number of engineered roughnesses is
reviewed by Ligrani et al. (2003). A performance measure for heat transfer that accounts for drag
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(a) Fully rough behavior of the temperature shift �Θ+, showing scatter among models [using temperature log slope κθ = 0.47 and
intercepts Aθ (0.7) = 3.2 and Aθ (1.0) = 6.0] and direct numerical simulation (DNS) data comprising three-dimensional sinusoids
(MacDonald et al. 2019) and irregular roughness (Peeters & Sandham 2019). (b) Fully rough Reynolds analogy efficiency
(St/StS)/(Cf/CfS) from DNS data comprising transverse circular rods and square bars for k+

t ≈ 40–150 (Leonardi et al. 2015) and
irregular roughness for k+

rms ≈ 16–31 (Forooghi et al. 2018), where k+
t and k+

rms are roughness Reynolds numbers, showing broad
minima in the range 0.1 < λf < 0.3, coinciding with the drag maxima (Figure 5a), and a dependence on the choice of intersect in the
frontal and plan solidity (λf, λp) space.

is the Reynolds analogy factor, St/(Cf/2). This measure, relative to its smooth-wall value, defines
an efficiency (St/StS)/(Cf/CfS) that has become common for comparing roughness topographies
(e.g., Ligrani et al. 2003), noting that it depends mildly on δ+ (Forooghi et al. 2018). For con-
ventional surfaces, (St/StS)/(Cf/CfS) falls below unity, meaning that, percentage-wise, roughness
increases drag more than heat transfer, except possibly for dimples (Ligrani et al. 2003) and riblets
(Walsh & Weinstein 1979). DNS data for irregular roughness in the fully rough regime show
that heat transfer is higher on the windward slopes, where unmixed fluid impinges with high tem-
perature gradients, compared to the leeward slopes, where well-mixed fluid recirculates with low
temperature gradients (Peeters & Sandham 2019). Because the frontal-area density λf controls
these inertial flow regimes associated with impingement and recirculation (Grimmond & Oke
1999), heat transfer in the fully rough regime also shows broad peaks in the range 0.1 < λf < 0.3
(Leonardi et al. 2015, Forooghi et al. 2018), coinciding with the λf of the well-known broad peaks
in drag (Figure 5a). The associated minima in the Reynolds analogy efficiency (Figure 8b) tell
us that the increase in heat transfer comes with an even higher increase in drag, most of it due
to the pressure drag component (Leonardi et al. 2015). However, data suggest that this penalty is
mitigated along the constant-λp intersect at low λf compared to the λp ∝ λf intersect (Figure 8b).
Figure 8b also shows clear differences in heat transfer performance between 2D and 3D rough-
ness. Another principle is the similarity between the viscous drag component and heat transfer, as
seen for sinusoidal roughness, except in reversed-flow regions (Leonardi et al. 2015, MacDonald
et al. 2019), because, in the absence of internal heating, temperature cannot exceed its wall value.
Hence, unlike viscous drag, heat can only transfer in one direction. We speculate that dimples
and riblets augment heat more efficiently than smooth walls, (St/StS)/(Cf/CfS) > 1, by minimiz-
ing or eliminating pressure drag, while maximizing the local flow reversals (Chu & Karniadakis
1993, Ligrani et al. 2003) that increase the favorable dissimilarity between viscous drag and heat
transfer.
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7. SUMMARY POINTS AND FUTURE ISSUES

We are now seeing an abundance of detailed flow data across systematically varied roughnesses,
allowing us to understand the physics of and limitations behind the correlations that relate to-
pography to fluid dynamics. For roughnesses that obey outer-layer similarity, we should see, over
time, increases in the reliability of predictions. For roughnesses that do not obey outer-layer sim-
ilarity, such as heterogeneous roughness, new concepts and predictive tools beyond Moody-type
diagrams are needed. Roughness multiphysics are practically important and will increasingly re-
ceive attention as they become accessible to high-fidelity studies. Some of these areas are already
making headway, such as biofilms (e.g., Schultz et al. 2015, Murphy et al. 2018, Hartenberger
2019), roughness noise (e.g., Devenport et al. 2018), pressure gradients (e.g., Piomelli 2018), com-
pressibility (e.g., Bowersox 2007), natural convection (e.g., Xie & Xia 2017), and curvature (e.g.,
Berghout et al. 2019).

SUMMARY POINTS

1. A primary goal of roughness research is to relate a surface topography, referenced by its
size k, to the hydraulic scale ks, which relates to drag.

2. Outer-layer similarity, particularly of the mean flow, is robust. All full-scale predictions
rely on it, fromMoody-type diagrams to large-eddy simulations. The behavior of a large
number of roughnesses is well captured by it. If in doubt, check for outer-layer similarity
at larger δ/k but fixed k+.

3. Roughness-resolving direct numerical simulations at relevant δ+ and δ/k and laboratory
experiments with systematically varied roughness are now possible at manageable cost.
Subsequently, our understanding of the topographical features that contribute to drag
is improving. For example, we know that pits are less draggy than peaks (the effect of
skewness is not symmetric with its sign).

FUTURE ISSUES

1. More systematic studies on irregular surfaces are needed to better understand how the
equivalent sand-grain roughness height ks, the wall offset d, and the roughness sublayer
yr depend on topographical parameters, e.g., root-mean-square roughness height krms,
effective slope ES, and skewness Sk. It is especially informative to explore the extremities
of the parameter space and better understand the effects of clustering and directionality.

2. Heterogeneity is relevant in applications, but how do we incorporate heterogeneity in
predictive frameworks? For example, can we ascribe an equivalent homogeneous rough-
ness that would still allow us to use a Moody chart?

3. Inmultiscale roughness, it is unclear if and how the scales should be filtered, and whether
certain scales can be essentially explained by simpler models.

4. Low-order models beyond correlations (e.g., Gioia & Chakraborty 2006, Yang et al.
2016, Chavarin & Luhar 2020) that can run in seconds or minutes are also needed, not
just for full-scale prediction, but also because they increase our confidence in prediction
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by bridging the gap from a given roughness to the physics of simpler well-understood
building-block flows.

5. Effort is required for predicting heat (and mass) transfer, in particular, for arriving at
a consensus on the asymptotic form at high roughness Reynolds numbers at various
Prandtl numbers and for improving our understanding of the influence of topography.
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